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Combining Door Swing Pumping 

with Density Driven Flow 
D.E. Kiel D.J. Wilson 

ABSTRACT 

Measurements of exchange flows through doorways 
were made in a test house and in a geometrically similar 
1:20 scale model. A tracer gas was used in the full-scale 
study to determine the volume of air exchanged during 
opening-closing cycles over a range of temperature dif­
ferences from 0°C to 34°C across the doorway. The 1:20 
model simulation utilized salt water and fresh water to 
simulate the density difference caused by temperature in 
full scale. 

Total exchange volumes were correlated with frac­
tional density difference to develop an exchange model for 
buoyancy-driven flow during both the steady flow period 
when the door was fully open, and for the transient flow 
period when the door was opening and closing. When 
doo.r swing pumping was negligible, a quasi-steady 
counterflowing jet model gave a good estimate of flow rate 
if a time-varying door orifice size was used. The orifice 
coefficient, which accounts for the effects of viscosity, 
streamline contraction and mixing between the inward 
and outward counterflows, varied between 0.6 at large 
temperature differences and 0.4 at zero temperature 
difference. 

The experimental data were used to determine the 
nonlinear combination of pumping caused by the swing­
ing motion of the door and the buoyancy-driven 
counterflow caused by the temperature difference across 
the doorway. For typical swing speeds it was found that 
the pumping exchange could be neglected entirely above 
a temperature difference of 3°C to 5°C. At a temperature 
difference of zero the volume pumped increased linearly 
with the speed of the moving door, with a typical exchange 
volume of about 50% of the swept volume of the door. 

INTRODUCTION 

Predicting airflow through doorways has important 
applications in energy conservation, ventilation, smoke 
control, and pollutant transport. The driving mechanisms 
are often a combination of density differences, mechanical 
ventilation, and kinematic effects such as the motion of an 
occupant through the opening or the motion of the door 
itself. The present study investigated the combination of 
two of these mechanisms-buoyancy from density differ­
ences and pumping by the swinging door. 

Buoyancy-driven flow occurs when there is a dif­
ference in density across the opening, and results in 
counterflow with dense air flowing through the bottom of 

the opening and less dense air flowing in the opposite 
direction through the top. In most practical situations the 
density difference is caused by an indoor-outdoor temper­
ature difference. A static pressure difference across the 
opening will cause a unidirectional flow from the higher to 
lower pressure. Typically this pressure arises from mechan­
ical ventilation or wind loading. Finally, exchange flow will 
occur as an occupant moves through the opening or as the 
door swings from the closed to open position . In this case, 
air is drawn behind the person or door surface. These 
motions also produce vorticity, which promotes transport 
across the opening. Attention in the past has been focused 
on the combined effects of buoyancy and static pressure, 
relevant to large commercial buildings with strong 
mechanical ventilation and large stack effects (Shaw 1972, 
1974). 

Before attempting to understand the combined 
exchange flow produced by buoyancy and door-swing 
pumping it is necessary to consider each independently. 
Experimental data from a full-scale test house and a 1 :20 
scale model are used to determine the limiting conditions 
where the effects of door-swing pumping are negligible 
compared to buoyancy-driven flow. The data are also used 
to establish scaling relationships and to provide the infor­
mation required in an empirical model of combined pump­
ing and buoyancy-driven flow. 

A MODEL OF BUOYANCY DRIVEN FLOW 
THROUGH DOORWAYS 

Steady-State Buoyancy Flow 

When there is a difference in fluid density across an 
exterior or interior opening a buoyancy-driven counterflow 
will result. Figure 1 illustrates the case of an exterior open­
ing with inside fluid at temperature T; and density p,, and 
outside fluid at T0 and p 0 . An inviscid analysis outlined in 
Kiel and Wilson (1986) and further developed in Wilson and 
Kiel (1989) predicts an outflow velocity profile given by 

U~= (2g~:zJos (1) 

The inflow profile is similar. with p0 being replaced by P;· In­
tegration across the inflowing and outflowing streams, and 
application of conservation of volume in a sealed room 
results in the following expression for inviscid inflow or 
outflow rate: 

O = .W [ gH3~P] os 
3 Pe 

(2) 

where 
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Figure 1 Inviscid and actual velocity and temperature profiles in the 
doorway of a sealed room 

[1 + (pjpt'J3 
Pe= P; 8 (3) 

The effective density Pa can be accurately approx­
imated by the average density p-= (p1 + p0 )12. To account 
for the effects of viscosity, streamline contraction. and 
viscous losses, a discharge coefficient Cd is introduced in 
Equation 2. 

(4) 

Mixing between the counterflowing streams will occur 
if the interface is unstable, as illustrated in Figure 2. A 
volume flux. Om, of inflowing air is transported across the 
interface and returns outdoors. while an equal amount of 
outflowing air is returned indoors. This transport has a two 
effects: the net volume flux is reduced by an amount Q,,, 
due to re-entrainment and, in addition, the increased inter­
facial shear reduces the base flow, Q, as shown by the 
diminished velocity profile in the mixed layer in Figure 1. 
Both of these effects are accounted for with a mixing coef­
ficient Cm where 

(5) 

In most practical situations it is not possible to measure Cd 
and Cm separately. For this reason it is convenient to 
define an overall orifice coefficient K as 

K = Cd(1 - Cm) (6) 

such that the net flow rate can be written as 
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Aeentrainment by cross-stream interfacial mixing between 
buoyancy-driven counterflowing streams 

(7) 

Complete details of the development of these equa­
tions are given by Wilson and Kiel (1989). 

Buoyancy-Driven Flow During Opening and Closing 

Equation 7 applies to an opening of fixed dimensions 
at a time when steady flow ls fully established. In this sec­
tion we deal with the more real istic case of an opening and 
closing door. We will begin by assuming that the flow is 
quasi-steady and account tor the time variation of W in 
Equation 7. . _ 

At any time as the door 1s opening or closing , the 
minimum opening width is given by W' = W cos8, where 
8 is the angular position of the door. Treating the flow as 
quasi-steady allows Equation 7 to be written in integral form 
over the total opening time t,. which is the sum of the 
opening time t0 , the fully open hold time th, and the clos­
ing time tc. 

V = J1-1, f!.W' [ H3t:i.!] osdt (8) 
n 1~0 3 g p 

Assuming that the orifice coefficient does not vary 
significantly with door position and that the door swing 
speed is constant allows Equation 8 to be reduced to 

V = Q [t + 2t0 + 2tc] (9) 
n n h 7r 7r 

Other door motions and other types of doors can be 
dealt with similarly. For example, a sliding door moving at 
constant velocity would result in a factor of 0.5 rather than 
2/7r in Equation 9. The assumption of a constant orif!ce 
coefficient is not unreasonable considering that the onf1ce 
edge geometry does not vary significantly with door 
position. . . 

The assumption of quasi-steady flow implies that the 
flow instantaneously adjusts to the changing opening size 
while the door is moving. In practice, however, there is a 
finite amount of time required for the flow to increase to the 
larger value, so as the door swi~gs open the .actual ex­
change will be less than that predicted by Equal!on 9. If the 
door opens slowly and if the density difference is large, the 
lag time will be small. If., however, the opening v~locity is 
large and the density difference small, the quasi-steady 
assumption may be invalid. Experimental data will be used 
to determine the acceptability of the neglecting of accelera­
tion time. If the acceleration time is important we would 



expect to see a total exchange less than that predicted by 
Equation 9, particularly at small density differences. 

DOOR PUMPING WITH NO DENSITY DIFFERENCE 

The simplest model of door swing pumping is to 
assume kinematic flow similarity, neglecting viscous forces 
and fluid inertia. As the door begins to open, air is drawn 
in behind the door at a velocity proportional to the average 
speed 0.1 of the door surface (which is equal to the speed 
of the center of the door) 

- 7rW uci = 4t (10) 
0 

where 10 is the time to swing the door to its fu lly open 90° 
position. Because there is no fluid inertia in the kinematic 
model. the fluid motion stops when the door comes to rest 
at the fully open position. This is similar to incompressible 
fluid being drawn behind a piston moving along a cylinder. 
For kinematic similarity, it is easy to see that the volume 
V po pumped by the door at ~ T = 0 must be proportional 
to the volume swept by the moving door V0 

VP 0 O[. Vd = ~ HW' (11) 

The most important result is that there is no influence 
of the door velocity Od in models that rely on kinematic 
similarity. 

The kinematic model ends to contradict our intuition. 
We know from experience that if smoke or odors are being 
cleared from a room, the pumping rate depends not only 
on how often a door is swung back and forth . but also on 
how rapidly the door moves. 

In searching for an alternatlve model we must keep in 
mind that the room into which the door opens is sealed, 
requiring the volume flow rate of ou door air in through the 
doorway to be balanced by an equal outflow of indoor air. 
A simple dynamic model for pumping can be formulated 
by providing the inflow air with an impulsive velocity equal 
to the door velocity, and then allowing the flow rate to 
decrease as turbulent shear between the inflowing and 
outflowing streams decelerates the flow. The parameter in 
this analysis is the turbulent eddy viscosity "r 1n the 
counterflowing shear layer. We assumed the general form 
v r ex: Uo(v/Uo)6 , where U is the instantaneous inflow veloc­
ity, o is the shear layer th ickness, and 11 is lhe molecular 
kinematic viscosity. The exponent a is experimentally 
determined. and varies from a = O for fully turbulent flow 
with no Reynolds number dependence to a = 1.0 for 
laminar flow where "r = v. Equating the counterflow shear 
forces to the flow deceleration and integrating twice leads 
(after considerable manipulation) to 

v a: v [Vdo]• 
po d 

11 
(12) 

Jsing Equation 11, this becomes 

V O[. Hw2 [Vao] J 
po V (13) 

laminar flow, a = 1.0 and 

V O[. HW2Ucli 
po " 

(14) 

and for fully developed turbulent flow a = 0 and 

Vp0 O[. HW' (15) 

These are surprising results, because they show that 
a fully turbulent impulsive flow model predicts no effect of 
door velocity Od. Measurements in a full-scale house with 
air and in a model with water allowed both viscosity and 
door swing speed to be varied tn order to test these 
kinematic and impulse flow models. 

COMBINED BUOYANCY AND PUMPING FLOW 

In most practical problems both pumping exchange 
and buoyancy-driven exchange will occur. We cannot 
expect simple addition of the two flows to provide an esti­
mate of their combined eHect because each mechanism 
tends to interfere with the other's ability to promote ex­
change. Vorticity is produced at the edge of the opening 
door and In the region of flow between the inbound and 
outbound flow. This vorticity will tend to roll up into a stand­
ing vortex. further decoupling the door from the outside 
air and from the size and shape of the inside room. The 
counterflowing currents Will sweep vorticity away, reducing 
its ability to promote exchange as well as carrying away 
entrained flu id from behind the door. Similarly the vorticity 
produced by the moving door will tend to disrupt the co­
herent structure of the counterflow. The degree to which 
the two mechanisms influence one another depends upon 
their relative strength. For a given door velocity buoyancy 
torces will dominate at large temperature differences and 
the flow will be that predicted by buoyancy alone. At a small 
temperature difference door swing pumping will dominate. 
Between these two extremes the exchange flow that results 
depends on the combined effect of the two mechanisms. 

These ideas are illustrated in Figure 3. The predicted 
buoyancy line ls the exchange that would result from buoy­
ancy atone, as given by Equation 9. Below some critical 
value of fractional density difference, the effects of pump· 
ing start to be important and we see a departure from the 
predicted buoyancy curve. As the density difference ap· 
proaches zero, the total exchange approaches an intercept 
ot V po• which is the vGlume exchanged by pumping alone. 
The curve labeled actual buoyancy is shown to emphasize 
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Figure 3 Idealized volume exchange curves for combined buoyancy· 
driven flow and pumping flow during a typical door open­
ing/closing cycle 
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Figure 4 Interior partition layouts used in full-scale and model 
experiments • 

that the buoyancy-driven flow is modified by the swinging 
action of the door. The actual pumped contribution is the 
difference between the total exchanged and the actual 
buoyancy exchange. From a practical poi~t of view.it is ~m­
possible to distinguish between the pumping contribution 
and the actual buoyancy contribution. For tl1 is rea~on it 
proves most useful to identify a volume called the residual 
pumped volume, v,,. which is defined as the volume ex­
changed in excess of that predicted by buoyancy alone. 

The concept of residual volume (rather than a volume 
flow rate) is attractive if the pumped volume does not 
depend on how long the door is fully open because it can 
then be thought of as a per opening quantity. 

The total exchange we.uld then be the sum of the 
buoyancy flow. given by Equation 9, and the residual 
pumped volume, V p0· 

Departure from Buoyancy Prediction Due to Pumping 
As illustrated in Figure 3, the actual exchange flow 

departs from the buoyancy prediction at a critical value 

of fractional density difference. The value depends on the 
relative strength of inertial forces caused by the door mo­
tion relative to the buoyancy forces produced by the 
density difference. The buoyancy forces are dependent 
on the density difference and the door height, while the 
inertial forces depend on the velocity of the door. The ability 
of the pumping flow to disrupt the buoyancy flow may also 
depend on the contact surface between the flows. For 
example the buoyancy flow through a tall narrow door may 
be less disrupted by pumping than it would if the door was 
short and wide. From this we conclude that 

6.p -[--=-] = fcn(U0 ,H,H/W) 
p er 

(16) 

Dimensional analysis suggests that a Froude number 
criterion should apply. This indicates that the critical frac­
tional density difference shown in Figure 3 should scale 
with 0/. Exper mental data will be examined to deter­
mine the appropriate relationship. 

MEASURING EXCHANGE FLOWS 

Description of Full-Scale Facility 

Full-scale measurements of air exchange through an 
exterior doorway were carried out at the Alberta Home 
Heating Research Facility. The test house used in these 
studies was a single-story building with overall floor dimen­
sions of 6.5m x 7.1m. an interior wall height of 2.4m, and 
no interior walls. A srngle exterior door 2.06m high and 
0.91 m wide was opened and closed by a remotely controll­
ed actuator. providing accurate and repeatable limes for 
opening. closing, and fully open. From Equation 11 the 
swept .volume of the door during a 90° swing is 
Va = 1.28m3 • The effect of interior walls and room size was 
investigated using partitions to create three different interior 
volumes, as shown in Figure 4. 

The air exchange was measured using sulfur hexa­
flouride as a tracer gas. A quantity of gas was injected, 
thoroughly mixed with the interior air, and the concentra­
tion measured using an infrared gas analyzer. Following 
the exchange, the interior air was again thoroughly mixed 
and the final concentration determined. Using the initial 
concentration, final concentration. and the interior volume, 
the total exchange was determined. 

Thermocouple arrays were used to determine spacial 
information about the air flow patterns inside the house. 
such as temperature profiles and gravity current front 
motion. More information about the experimental facility 
may be found in Wilson and Kiel (1989). 

Description of 1 :20 Scale Model 

A 1/20th plexiglass scale model was constructed and 
suspended in a fresh water reservoir from a load cell , as 
shown in Figure 5. The model was filled with saline solution, 
the density of which was selected to match the full-scale 
indoor-outdoor density difference to be simulated. The 
model door was then opened and closed by a computer­
controlled stepping motor. As the dense solution poured 
from the top of the inverted door during the opening-clos­
ing cycle there was an Inflow of lighter fresh water from the 
reservoir to replace it. The changing weight of the model 
as sensed by the load cell was continuously monitored. 
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Figure 5 Differential weight measurement system used in the 1:20 
scale model to determine exchange volumes 

At small density differences, the weight change was 
very small and the differential weight measurement system 
was prone to error. Electrical conductivity probes were 
used instead to determine the net volume exchange in a 
manner analogous to the tracer gas technique in full scale. 
To simulate temperature differences very near zero, alco­
hol-saline solutions were used to produce neutral buoy­
ancy solutions which still had sufficient salt present to 
provide accurate exchange measurements. Multiple 
probes were also used to measure point concentrations 
within the flow, analogous to local temperature measure­
ments in the full-scale flow. This provided information on the 
frontal position of the intruding gravity current and a mea­
sure of intertacial mixing across the counterflow boundary. 

SCALE MODELING CRITERIA 

There are several advantages associated with scale­
model simulations to gain insight into full-scale flow prob­
lems. Model studies usually can be accomplished in a 
shorter time, provide complete control over experimental 
parameters, allow for the use of alternative measurement 
techniques, and permit modifications to be made easily 
and inexpensively. One difficulty with scale modeling is the 
invariable mismatch in dynamic similarity between the 
model and full-scale flows. It is essential to carefully 
consider the relevant scaling relationships to ensure that 
the associated difficulties are minimized and clearly 
understood. 

In this study Froude number similarity was used 
throughout and, with some minor exceptions, provided 

5 

satisfactory results. Stated in terms of forces, Froude num­
ber similarity requires that the ratio of inertia forces to 
buoyancy forces be identical at all geometrically similar 
points in the model and full-scale flow, where the Froude 
number is defined as: 

Fr = [_i__J 05 (17) g't2 
where g' is the effective gravitational acceleration defined 
as g(t:.p/P'J. The Froude number is usually written in terms 
of velocity, F, = (U2/g'L)05 . Here we use t, the velocity time 
scale in U = Ut, to express the Froude number in terms 
of the fundamental variables of length and time. 

Equating the model and full-scale Froude numbers, 

[~] 05 = [it_] 05 (18) 
gfAti g~t~ 

defining length, time, and effective gravity scale factors Ls, 
ts, and g's, 

L - LF 
s - LM (19) 

t - !£ 
S - tM (20) 

9s = ~t (21) 

and combining Equations 18, 19, 20, and 21 results in the 
following conditions for Froude number similarity: 

t
;-S I = 1 (22) 
s9s 

The model was 1/20 the size of the test house and thus 
LM = 20, and the fractional density difference in the 
model was identically matched to the full scale so g$ = 1. 
Substituting these scales into Equation 22 results in a 
Froude number buoyancy time scale of .j20. This buoyancy 
time scale implies that events occur 4.47 times faster in the 
model compared to full scale. For example, to simulate an 
opening time of 3s in full scale requires the model door to 
be opened in 3/4.47s. 

To allow easy comparison of model and full-scale 
results, the model data presented in the figures and tables 
have been converted to equivalent full-scale values using 
the 20:1 length scale and 4.47:1 time scale. For example, 
the exchanged volumes in the model were multiplied by 
203 , and the opening times by 4.47 to give their full-scale 
equivalents. It should be kept in mind that these conver­
sions require that both the pumped and density-driven 
flows be dominated by buoyancy and inertia forces, and 
thus are insensitive to viscous forces. 

The decision to match Froude numbers means that 
other potentially relevant nondimensional parameters were 
not matched. There is no difficulty with this as long as the 
flow regime is dominated by buoyancy and inertial forces. 
If, however, at small density differences viscosity becomes 
more important than buoyancy, then the Reynolds number 
may be the more relevant parameter and errors in the 
predictions will result. If the flow of interest spans more than 
one flow regime, it may not be possible to accurately model 
both using a single time scale. 
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Following the same procedure for Reynolds number 
as was applied to the above Froude number results in the 
following scale relationship: 

(23) 

where v5 , the viscosity scale, is equal to 12.7 for the water 
and air combination used in this study. Substituting the 
length scale and viscosity scale in Equation 23 gives a time 
scale of 31. Clearly it is not possible to satisfy both the 
Froude number time scale of 4.47 and the Reynolds 
number time scale of 31 at the same time. Choosing to 
match the Froude number results in mismatch in Reynolds 
number by a factor of seven because the difference in 
viscosity between the water model and the full-scale air 
system helps to compensate for the 20:1 length scale 
difference. 

ReF = 7 ReM (24) 

We can calculate the full-scale Reynolds number for 
pumping flow using the door width as the characteristic 
length and the average door surface velocity as the char­
acteristic velocity. The full-scale Reynolds number was 
14,000 and the model Reynolds varied between 2000 and 
4000, depending on the door velocity. These are probably 
sufficiently high for the flow to be inertially dominated and 
therefore viscous effects may be negligible. 

If there is a transition in the flow regime from buoyancy­
dominated to viscous-dominated flow, we will see a diver­
gence between the model and full-scale results due to time 
scale mismatching. Experimental data will be examined 
with these ideas in mind. 

EXPERIMENTAL RESULTS 

Steady-State Buoyancy-Driven Flow 

A series of exchange experiments were conducted in 
which the fully open hold time was gradually increased. 
Correlating the volume exchange with fully open time 
allowed the net steady flow rate, On, to be determined. 
The fully open duration was long compared to the open­
ing and closing time to ensure that a true measure of 
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Figure 7 Full-scale volume exchange measured during short dura­
tion opening/closing cycles for different interior layouts 
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steady flow was made. Using these flow rates in Equation 
7 allowed the value of overall orifice coefficient to be deter­
mined and values of Kare plotted in Figure 6 for both the 
model and full-scale test house. 

From Figure 6 we see that the model orifice coefficient 
is constant at 0.6, while the full-scale coefficient decreases 
from 0:6 at large temperature differences to about 0.4 at a 
temperature difference of zero, as described by 

K = 0.4 + 0.0075LiT (25) 

The variation in full-scale orifice coefficient is in close 
agreement with data obtained by Fritzsche and Lilienblum 
(1968) for flows through cold room doors. Wilson and Kiel 
(1989) examined the data closely to determine the cause 
of the observed differences between the model and full­
scale results. Measured temperature and concentration 
profiles showed that the increased net flow rate in the 
model (which produces the higher orifice coefficient) is 
caused by the absence of interfacial mixing between the 
counterflowing streams. This is one of the effects of 
Reynolds number mismatch. 

It must be remembered that the model flow rates are 
converted to full-scale units using the length scale of 20 and 
a time scale of 4.47 based on Froude number similarity. 
Froude number similarity does a good job of matching the 
results at large density differences where the secondary 
effect of interfacial mixing does not influence the net flow 
rate. It was also found that Froude number similarity 
resulted in excellent agreement between model and full­
scale data for other buoyancy-dominated aspects of the 
flow such as gravity current frontal velocity. From this we 
may conclude that the buoyancy flow is well modeled in a 
gross sense, but that some details of the counterflow mix­
ing process are inaccurately modeled, but can be cor­
rected for using a modified orifice coefficient. 

Short Duration Exchange 

Having now examined the problem of steady flow we 
turn out attention to exchange during the opeing and clos­
ing period. Figure 7 shows the total exchange that occurs 
when the door was fully opened for a short period of time 
such that the exchange was dominated by flow during the 
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opening and closing periods. Equation 9, which is based 
on a quasi-steady flow assumption, is used to predict the 
buoyancy-driven exchange. The value of K used in this 
prediction is given by Equation 25. which accounts for 
counterflow interfacial mixing effects that are a function of 
density difference. 

The quasi-steady approximation of Equations 9 and 
25 gives good estimates of the total volume exchanged for 
temperature differences greater than about 4°C. Below 
4°C the exchange diverges from that predicted by quasi­
steady buoyancy flow and approaches a value of approx­
imately 0.5m3 at t. T = 0. This exchange is about 40% of 
the swept volume of the door, for the particular swing speed 
of Gd = 0.2m/s used in all the tests. ,A.greement is also 
good at temperature differences larger than those shown 
on Figure 7, but only the lower range has been shown to 
clearly illustrate the departure region. Below 4°C the door 
swing motion begins to influence the total exchange. In this 
range, between 0°C < t. T < 4°C, buoyancy and pumping 
combine to produce an exchange which is greater than 
that predicted by buoyancy alone. 

At small density differences we expected to see the 
effects of buoyancy flow acceleration time. As discussed 
previously this would tend to reduce the exchange below 
that predicted by Equation 9. Clearly no such departure is 
apparent in Figure 7 above 4°C.his does not mean thatthe 
effect is not present, but it may only become important at 
density differences smaller than those at which pumping 
exchange begins to cause increased flow, thereby obscur­
ing the delayed flow effect of buoyancy acceleration time. 

Effect of Hold Time on Residual Pumping 

Another critical question is whether the flow induced 
by the motion of the door persists after the door is fully 
open. Figure 8 shows the residual pumping exchange that 
occurs for fully open hold times between 0.5s and 10s. If 
the flow persisted after the door was fully open, we would 
expect to see larger values of residual pumping exchange 
associated with longer hold times. From Figure 8 it is ap­
parent that this is not the case. It is possible that at door 
velocities greater than those tested here the flow will per-
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sist for a longer time. Based on these data we conclude that 
for door velocities of approximately 0.2m/s and slower, it is 
acceptable to consider the residual volume exchanged as 
independent of the fully open hold time, and is therefore a 
per opening quantity. 

From Figures 7 and 8 there appears to be no signifi­
cant variation in exchange with room size or layout. This is 
not the case if very long hold times are used because the 
flow will start to diminish once the gravity current has struck 
the interior wall and reflects back to the door. The data ex­
amined here is for sufficiently short hold times that the 
buoyancy flow has not yet begun to decrease. The residual 
pumped volume concept and values still apply even if the 
buoyancy exchange starts to decrease (due to the room 
being of finite size) because the pumping exchange occurs 
early in the exchange process. In this case the buoyancy 
prediction given by Equation 9 will be in error and a model 
of diminishing flow must be used (Kiel and Wilson 1986). 

Critical Fractional Density Difference 

The departure from buoyancy-dominated exchange 
is evident in both Figures 7 and 8. This departure point can 
be more accurately established by considering the ratio of 
the total volume exchanged to that predicted by buoyancy 
alone, V/Vb, as shown in Figure 9. This clearly shows that 
above a fractional density difference of 0.009, buoyancy 
flow alone is important. The agreement between the model 
and full-scale data is very good and strongly suggests that 
the departure is dependent on inertial effects and not on 
viscous effects. This is because Froude number scaling 
has been used to set the model time scaling as f[; and is 
independent of viscosity. 

The fractional density difference at which departure 
from buoyancy-dominated flow occurs will depend on the 
inertial forces associated with the door motion and thus 
on the door velocity. To evaluate this, four different swing 
speeds were tested in the model. The good agreement 
between the model and full-scale data in Figure 9 suggests 
that the model results should provide an accurate predic-
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tion of the full-scale departure values using the time scale 
of ...;T; based on Froude number similarity. 

Figure 10 shows model data plotted in a similar format 
to Figure 9, for a door velocity of 0.37m/s, compared to 
0.20m/s in Figure 9. The departure point has clearly shifted 
to approximately O.D19 from 0.009 in Figure 8. The depar­
ture points were determined similarly for the two other 
swing speeds tested. 

TABLE 1 
Critical Fractional Density Difference for Suppression 

of Door Swing Pumping Effects 

Model* 

Full Scale 

Door Velocity, 
iJd, mis 

0.37 
0.29 
0.23 
0.20 

0.19 

·model data scaled up 

Critical Density Difference 
.::,,p/p 

0.019 
0.012 
0.012 
0.009 

0.009 

From these results it was found that the critical frac­
tional density difference (Table 1) is directly proportional 
to the door velocity 

[6!] = o.046Vd 
p er 

(26) 

This linear dependence of critical density difference on 
swing speed is unexpected and puzzling. What we ex­
pected was a critical Froude number based on door swing 
speed. Because it is the door height, H, that controls the 
average velocity of the counterflowing streams, it is 
reasonable to define a door swing Froude number by 

(27) 

If a critical value of Frd occurred at the point where door 
swing effects are suppressed by density difference effects, 

we would expect (6.plPJcr a: 0/. Instead we found the 
linear dependence in Equation 26. 

Nondimensional Groupings 

It is always attractive to formulate nondimensional 
groupings to allow interdependent variables to be quan­
tified through single parameters. To form appropriate 
nondimensional groupings requires the selection of appro­
priate length and time scales and in some cases there is 
ambiguity as to the correct length scales to be used. Only 
one door size was tested in the experimental study pre­
sented here and for this reason, data will be presented 
in terms of the measured variables, such as volume ex­
changed or density difference, rather than normalized 
parameters. Although this may not be as attractive, it is at 
least honest. and prevents the construction of nondimen­
sional groupings that may not apply for door sizes and 
density differences that are significantly different than those 
tested here. 

Pumping Exchange at Zero Temperature Difference 

Having established the point of departure from 
buoyancy-dominated flow we now turn our attention toward 
the opposite extreme of zero density difference and con­
sider the effect of door velocity on the volume pumped. For 
the same four swing speeds discussed above the follow­
ing volumes were measured at 6.p/p = 0. (see Table 2). 

TABLE 2 
Door Swing Pumping at Zero Temperature Difference 

Door Velocity, 
iJd, mis 

0.37 
Model* 0.29 

0.23 
0.20 

Full Scale 0.19 

·model dala scaled up 

Volume Exchanged, 
Vo• m3 

0.72 
0.61 
0.52 
0.43 

0.50 

On the basis of these results it is apparent that at a 
density difference of zero, the pumped volume is propor­
tional to the door velocity as given by 

vp0 = 2.3Vd (28) 

and is independent of the fluid kinematic viscosity, v. 
Two models of pumping flow were proposed-a 

kinematic flow model and an impulsive flow model. The 
kinematic model, which predicted no dependence on 
door velocity, is clearly incorrect. The model experiments 
support the linear dependence of pumped volume, Vpa• 
on door swing speed, Od, given by the laminar shear flow 
(a = 1.0) deceleration theory in Equation 14. However, 
comparing VP0 for the water model and the air full scale in 
Table 1, we see that there is no dependence on fluid vis­
cosity even though the water in the model had a kinematic 
viscosity 12.7 times less than air. But, if there is no depen­
dence on viscosity there should also be no effect of door 
swing speed (which is what is predicted by the fully turbu­
lent a = 0 shear deceleration model in Equation 15). All we 
can conclude at this stage is that the impulsively started, 



shear-decelerated flow model does not give realistic 
predictions. 

The good agreement obtained between full-scale and 
model data at a density difference of zero, using Froude 
number time scaling, suggests that the pumping process 
is totally inviscid. If it were not, Reynolds number scaling 
would have applied, requiring a time scale of 31, not 4.47. 
This would have resulted in considerable mismatch be­
tween the model and full-scale results. We must conclude 
from this that the pumping time scale is similar to, or the 
same as, Froude number time scaling. 

Normalizing Residual Pumping Exchange 

Having examined the asymptotic extremes of pump­
ing exchange we will now consider the intermediate 
regime of combined pumping and buoyancy-driven flow. 
From Equation 26 we have concluded that the critical frac­
tional density difference can be normalized with door 
velocity using the ratio (t::..p/P'J/Od and the data will collapse 
to a value of approximately 0.046s/m. At the opposite 
extreme of zero density difference. it was shown that the 
pumped volume can also be normalized with the door 
velocity as VPjOd with the data collapsing to a value of ap­
proximately 2.3m 2 s. With these relationships in mind, data 
from all four door velocities are combined in Figure 11. 

As expected, the data collapses nicely at a density dif­
ference of zero and at the critical departure point. The data 
for each door velocity appear to follow a similar functional 
form between the two asymptotic extremes. Scatter in all 
the data is not much greater than the scatter within any 
individual set of data, so it is reasonable to approximate all 
four velocities with the same empirical function. The 
function 

~ - ___ 2_.3 __ _ 

vd - 1 + [451:::.._e10J 4 

ud 
(29) 

was chosen because it becomes diminishingly small 
above the critical departure point and is simple in form. 

These results may now be combined to construct a 
model of combined buoyancy and pumping flow. This 
model is simply the sum of buoyancy-driven flow and 
residual pumping flow, V = VP + Vb, which is the com­
bination of Equations 7, 9, and 29. 

V = K
3
W [ gH3t::..: J 05 [th + 2;0 + ~c J 

2.3Ud + ---~-,---
+ [ 451:::..~/p] 4 

ud 
(30) 

This equation is valid only for doors of about the same 
size as the door tested here because the residual pump­
ing contribution is not properly nondimensionalized for the 
door size. 

EFFECT OF OCCUPANT MOTION ON EXCHANGE 

Up to this point the effects of occupants moving 
through the opening has been neglected. Two different 
and quite opposite effects can be imagined. The motion of 
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the occupant may increase exchange by entraining out­
side air in his or her wake in a manner similar to the door 
itself, or decrease the exchange by constricting the open­
ing size and disrupting the buoyancy counterflow. 

Shaw (1976) studied occupant entrainment transfer 
through an open sliding door 0.90m wide and 2.05m high, 
at a temperature difference of zero. He determined that 
exchange volumes ranged from 0.29m3 for a fast walk to 
0.087m 3 for a slow walk. The importance of occupant­
entrained air will diminish with larger temperature dif­
ferences in the same way residual pumping exchange 
diminishes. 

CONCLUSIONS 

• The assumption of quasi-steady buoyancy-driven 
flow during door opening and closing gives an ac­
curate estimate of buoyancy-driven exchange flow. 
The initial acceleration time of the buoyancy current 
was compensated for by the door swing pumping 
and can therefore be neglected. 

• Modeling buoyancy-driven flow is best achieved 
using Froude number similarity; however, correc­
tions to the orifice coefficient are required to ac­
count for differences in interfacial mixing of the 
counterflowing streams. 

• At a density difference of zero the model was found 
to predict the same pumped volume measured in 
full scale by using a time scale equal to the square 
root of length scale, which is the buoyancy time 
scale. 

• At a density difference of zero the total exchange 
volume was found to be proportional to the door 
swing speed and independent of fluid viscosity. 

• Above a critical ratio of density difference t::..plpto 
door swing speed Od, density-driven flow sup­
pressed all effects of door swing pumping. This 
critical ratio was the same in model and full scale 



when Froude number time scaling was used on the 
swing speed. 

• Between zero density difference and the critical 
fractional density difference departure point, data 
from a range of door velocities were found to follow 
a similar functional form if the residual exchange 
volume and the fractional density difference were 
normalized with the door velocity. An empirical reia­
tionshi p was developed to estimate the residual 
volume. 

Further experimental investigation of the scalirg rela­
tionships is required before nondimensional parameters 
can be formulated with certainty. For this reason the em­
pirical relationship developed in this report should be used 
with caution if the door is substantially different in size from 
the door tested here. 
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NOMENCLATURE 

Cd = discharge coefficient 
Cm = mixing coefficient 
F, = Froude number, Equation 27 
g = gravitational acceleration, ms-2 

g' = effective gravitational acceleration, ms - 2 

h = layer thickness 
H = opening height, m 
K = orifice coefficient 
L = length 
Q = flow rate. m3s - 1 

Re = Reynolds number 
t =time, s 
V = volume, m3 

W = doorway opening width, m 
W' = instantaneous opening width, m 
z = height above counterflow interfacial streamline 

Greek symbols 

o = shear layer thickness 
~ = indoor-outdoor difference 
() = door angle, 0 

11 = dynamic viscosity, kg,m- 1s-1 

P = kinematic viscosity, m2s-1 

p = density, kg m - 3 

Subscripts 

c = closing 
d = of the door 
F =full scale 
h = hold 
1 = indoor 
m = interfacial mixing 
M =model 
n =net 
o = outdoor or opening 
p =pumped 
po = pumped at zero temperature difference 
S = scaling factor 
t = total 
T = turbulence 

Superscripts 

= inviscid 
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