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Multizone Tracer Gas Infiltration 
Measurements-In terpreta ti on Algorithms 
for Non-Isothermal Cases 

CLAUDE-A. ROULET* 
RAPHAEL COMPAGNON* 

The algorithms for interpreting multizone air flow measurements using tracer gases presented in 
the literature are based on implicit rather than clearly defined hypotheses, an important example 
being that the temperature of the air is assumed to be homogeneous and constant. Moreover, an 
error analysis is often omitted and the techniques hilherto presented may be further developed. 

This paper presents the necessary hypotheses, extends the interpretation algorithms to include 
cases where the air temperature is neither homogeneous nor constant, and describes a general 
method for the error analysis which can be used for any measurement technique. 

1. CONSERVATION EQUATIONS 

1. 1 Presentation of the problem 
THE LITERATURE addressing air flow measurements 
using tracer gases contains a degree of confusion related 
to the physical principle involved, which can lead to 
errors when using the presented equations. These equa
tions are based on the conservation of the mass of tracer 
and the mass of air, but it is often volumes which are 
measured and volume flows which are expected to be the 
result. This misunderstanding arises from the range of 
definitions of the tracer gas concentration: parts per vol
ume or parts per mass, mass of tracer per volume of air 
or even molarity or partial pressures (these latter two 
definitions are not used in this topic). 

In the original paper of Sinden [1], the conservation 
equations of the tracer masses are correctly written in 
mass units but the fact that the concentration needs to 
be expressed in mass of tracer per volume of air is not 
specified. Equation (2) of Sinden, however, expresses a 
conservation of the volume of air, which is true only 
when the density is uniform and constant, but this fact 
is not stated. In the review papers [2, 3], the units used 
are not clearly defined and the equations are written in 
volume units whereas the basic principle is the con
servation of mass. In [4] and [5], the equations express 
clearly the conservation of the volume of air, but the 
hypothesis of constant and uniform density is not stated. 

The objective of this paper is to clearly present the 
units used for the physical quantities, the hypotheses 
together with the resulting equations, which are modified 
to be used in the case of varying air density (that is 
varying air temperature). 

1.2 Definitions 
There are Nzones (enumerated by i and} going from 
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1 to N) into which N different tracers enumerated by the 
index k are injected. In principle, each zone receives only 
one tracer. No tracer is injected in the outside air (zone 
0), which is supposed to be of infinite volume. 

Let: 

V; be the volume of zone i (m 3) 

the mass of air in zone i (kg) 
the absolute temperature in zone i (K) 
the volume of tracer kin zone i (m 3) 

the mass of tracer k in zone i (kg) 
the volume concentration of tracer k in zone i 
(m3/m3) 
the mass concentration of tracer k in zone i 
(kg/kg) 

q't the volume injection rate of tracer k in zone i 
(m 3 s- 1) 

Q1 the volume air flow rate from zone i to zone j 
(m 3 s- 1

) 

Pi the density of the air in zone i: P1 = m;/ V; (kg 
m-3) 

p} the density of tracer k in zone i: p} = m} / V} 
(kg m- 3) 

l the density of tracer k when injected (kg m - 3
) 

Mk the molecular mass of tracer k (kg mo!- 1
) 

~u the "non-Kronecker" delta : ~ij = 0 if i = j, 
~u =I if i #j. 

All variables, except Mk and ~u, are functions of the 
time. 

1.3 Basic hypotheses 

(HI) In each zone, the tracer con
centrations are always homogeneous. 

(H2) The atmospheric pressure is con
stant and homogeneous. 

(H3) The injection of tracer does not 
change the density of the air. 
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The first hypothesis is the weakest. In practice, a homo
geneous concentration can only be ac11ieved by the use 
of mixing fans, but these fans have the effect of changing 
the temperature gradients and therefore the infiltration 
conditions. 

The other two hypotheses are easily satisfied, since the 
short time variations of the atmospheric pressure are of 
the order of 10- 4 (daily variations of the order of l % ) 
and the tracer gases are generally injected at very low 
concentrations (lo- 4 in volume or less). 

1.4 Conservation of the mass of tracer gas k in zone i 
The mass concentration is, assuming that m7 « m; 

(H3): 

k m7 p7v7 
C ~ -- = -- hence m7 ~ p;V;C7. (1) 

I p;V; p;V; 

The conservation equation of the mass of tracer kin zone 
i states that the change of tracer mass within the zone is 
the sum of the mass of injected tracer and the mass of 
tracer contained in the air coming into the zone, minus 
the mass of tracer contained in the outgoing air: 

d N N 

-d (p;V;C7) = Pkrt + L P1CJQ1;{Jij-p;C7 L Qij(Jij· (2) 
t J=O J=O 
Mass change Injeclion Infiltration Exfiltration 

An extension of the hypothesis (Hl) is implicit in this 
equation. 

(H4) The air flows entering a zone do not 
modify the homogeneity of the con
centration in that zone. In other words, an 
immediate and perfect mixing is assumed. 

If we replace in equation (2) the mass concentration by 
the volume concentrations given by : 

cf. = V7 hence 
I V; 

we obtain: 

k 

C~ = P; c~ 
I Pi I I 

(3) 

d N N 

-d (p7V;c7) =pk¢+ L: pjcJQJi{Jif-p7¢ L: Qif(Jif· (4) 
t j=O J=O 

The tracer density is defined by p7 = m7 /V7 where the 
volume V7 is at the atmospheric pressure p. Using the 
ideal gas law for the tracer k: 

(S) 

(where R is the molar gas constant (8.31396 x 10- 23 J 
K- 1

), Mk the molar mass of the tracer k and T; the 
absolute temperature of zone i), the density can be com
puted: 

Mk 
k p 

P; =RT' 
I 

(6) 

and substituted in equation (4). Dividing this equation 
by pM\ we get : 

_ __!2 = q; + L c1 Jiu;; _ !i_ L QiJ(Jij· d [v k] k N kQ " J< N 

dt T; T J=O 'I'; Tij=O 
(7) 

The left hand side of this equation can be expanded, for 
a zone with constant volume: 

d [ V;c7]- V; ,k V;c7 · 
- -- - C; - 2 T;. 
dt T; T; T; 

(8) 

Equations (7) and (8) represent a complete statement of 
the conservation of the mass of tracer gas. To derive the 
form encountered in the literature from these equations, 
we need two more hypotheses. 

(HS) The temperature does not vary with 
the time. 

(H6) The temperature is the same 
throughout the whole building and the out
side air. 

Hypothesis (HS) is more important than it appears. In 
fact, this hypothesis wants to make the second tenn 
of the right hand side of equation (8) negligible when 
compared to the first one. In this first term, there is the 
derivative of the concentration, which is in principle zero 
if the constant concentration technique is used. In this 
case, even very small temperature variations might be too 
large to satisfy hypothesis (HS). 

In fact, hypothesis (HS) can be replaced by the hypo
thesis that the relative variations of the temperature in 
zone i is negligible when compared to the relative 
variations of the concentration of any tracer. That is: 

T;/T; « ct!¢. 
Hypothesis (H6) would be satisfied if the temperatures 
of the various zones are the same, if the tracer is injected 
at the building temperature and finally if the measured 
building is neither heated or cooled. Otherwise, relative 
temperature or density differences of up to 10% might 
be reached (say 30 K indoor-outdoor temperature 
difference for an indoor temperature of 293 K). 

Applying both hypotheses (HS) and (H6) to equation 
(7), we get the usual fonn encountered in the literature: 

N N 

Vict =rt+ L: dJQji{Jij-dt I Qij(Jij· (9) 
J= 0 J= 0 

l.S Air mass conserration 
The conservation equation for the air mass is obtained 

the same way as equation (7), except that here the tracer 
is the air itself, which means that: (i) there is no air 
injeetion flowrate (rt = 0), (ii) concentrations are all unity 
dt = 1, hypothesis (H3). Applying all the hypotheses 
(HI) through (H4), we get: 

or, using again the perfect gas law: 

-~. - ~ Qj,(Jij _ __!_ ~ Q ...... 2T, - L.. TL.. ,,uu. 
T; J=O 0· ij=O 

(11) 

If all the internal temperatures (i,j > 0) are assumed to be 
equal but different from the outdoor temperature T 0, we 
get: 

(12) 

where P; is the indoor air density. With the ideal gas law, 
we get: 
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Here again, the air mass conservation equation found 
in the literature implies that the indoor temperature is 
constant and equal to the outdoor temperature. 

1.6 Basic equations 
Substituting relation (11) in equation (7) combined 

with (8), we obtain N 2 equations for N 2 unknowns Qj;, 
which are limited only by the hypotheses (Hl)-(H4): 

V; '* V;cf . t/: ;.. c!J Qj;1' ij 
-c:i --2- T; =- + L...---
T; T; T j-o 1j 

-c! [ I. Qji11
ij + V; t.J (14) 

I j-0 1j Tl I • 

This system of equations can be rearranged and coupled 
with the system (11) to get N(N + l) equations for 
N(N + 1) unknowns. This system allows us (in principle) 
to compute all the air flow rates at any time from the 

\measured values of the tracers concentrations, the injec
tion rates and the temperatures. 

V; i!. - t/: ;.. (c!j - d;') Q 1J 
T 1 - T+L... T jllj 

I J-0 } 
(15) 

In equations (15) and (16) , as everywhere else in the 
paper, the temperature of the volume flow Qji is the 
temperature 1j of zone j, from which the flow is coming. 

If the hypotheses (H5) and (H6) are satisfied, the usual 
and simpler form can be used. 

N 

Vic'!= ti:+ I cc!J-c7)Qji11lj c11) 
1-0 

N N 

Q 10 = I Qp?Jij- I Qv,,u· c18) 
J-0 J- I 

Note that for a single zone (i = 1,j = 0), equations (15) 
and (16) simplify to : 

~ · -~+(Co-C 1 )Q 
T, C1 - T To o1 

and (19) 

and, assuming constant and homogeneous temperature, 
equations (17) and ( 18) become : 

V1c1 = q, +(co-c1)Qo1 and Q10 = Qo1 · 

2. COMPUTATION OF AIR FLOWS 
FROM THE MEASUREMENTS 

2.1 Zone-by-:::one systems of equations 
At each measurement time interval, the measurements 

give discrete values of d:, T1 and ti (i, k = 1 to N). From 

these, the flows Qij can be computed. Here, i and j vary 
from 0 to N but i #- j. 

In equation ( 15) or (17), i and k vary independently from 
I to N. There is hence a system of N 2 equations which, 
when combined with N versions of equations (16) or 
(18), allows us to find the N 2 +Nunknowns Qij. 

The systems of equations ( 15) and (17) are an assembly 
of N independent sub-systems containing the equations 
for each given zone. Each sub-system can be written in a 
matrix form : 

Y; = c;x; (20) 

where Y; is the vector having N components Y7 : 

yk = V; (!, - ti 
I T; I T' (21) 

(where k runs from I to N) or, if hypotheses (H5) and 
(H6) are assumed: 

Y, = c V;c/ - q/,. . ., v,c;- q;,. . ., V;Cf" - qf"'). c22) 

Note that in principle, only q; differs from zero, since 
only gas i is injected in zone i. Moreover, if the injection 
is perfect in a constant concentration technique, c; = 0. 

x; is the vector containing the unknown flows to the 
zone i: 

x; = (Q0/1Q11> · · · 1 Q1- t,l1 Q, Q1+ 1,i> · · ·, QNI), (23) 

and c; a matrix having the element ockj in row k and 
column}: 

c!J-d;' 
ock1=-T- , 

J 

or, assuming hypotheses (H5) and (H6) : 

(24) 

ockj = c!J - d;'. (25) 

The matrix c; has N rows and N + 1 columns, but the 
column i is filled with zeroes. The vector x; has also N + 1 
components, the component i, corresponding to Qi{ being 
zero. We can therefore contract the system (20) into: 

(26) 

where X, is the vector x; without component i, and C, 
matrix c; without column i. The system (26) is then 
entirely determined if the matrix C; is not singular. It is 
solved in principle by: 

(27) 

which gives the N flows QJi from zones j U = 0 .. . N) 
to zone i. Solving (26) for the N zones, we get all the 
flows QJi where j = 0 . . . N and i = I . . . N. The N 
remaining flows Q;o are computed using N versions of 
equations (16) or (18). 

Note that this resolution .method differs slightly from 
the one presented by Sinden [!] and Perera [2] but seems 
simpler if the constant concentration technique is used. 

2.2 Discretization 
The time derivatives of the tracer concentration appear 

in the vector Y;, and the derivatives of the temperatures 
are used in equation (16). Equations (26) and (16) can 
be solved at each time interval, if we write either the 
backwards derivative: 

df(t) = [d;(t)- cf' (1-ot)]/or, (28) 
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t7(1) = [T7(t)-T7(1-ot)J/01, (29) 

or the forwards derivative : 

f;'(1) = rc7c1+01)-d;'(1)J/01, (30) 

t7<1> = [T7(t+ot)-T7(t)J/ot. (31) 

For causality reasons, equations (28) and (29) may be 
better. A test is running with both possibilities on a set 
of measurements made at the LESO on a single cell. For 
this cell, using equation (19): 

(32) 

where Tis the temperature of the tracer when injected, 
T 1 the temperature of the air in the zone and T0 the 
outdoor temperature. 

In reality, the measurements with the constant con
centration techniques are done the following way: 

At a time 10, a sample of the air of a defined zone is 
taken and analysed and this operation lasts for the time 
01 •. 

At time 10 + ot., the amount of tracer gas necessary to 
maintain a constant concentration is injected in the zone 
by opening a valve for a calculated time ot;,nj· 

The start of the next sampling takes part some time 
after the end of this injection. 

Hence, the sampling-analysis-injection cycles lasts a 
period of time which should be taken as a "natural" time 
step for the discretization. Usually this time step is also 
the time interval between the records of measured data. 

In this paper, all the variables (except the volumes of 
the zones) may depend on time but it is implicitly admit
ted that they are constant during the discretization time 
step. This assumption seems obvious, since we have no 
information of the variation of the concentrations 
between the measurements. Nevertheless, it shall be 
remembered that the time step may be large (e.g. 10 min) 
when compared to the time constants of the possible 
changes of the air and tracer injection flows. Because 
of this, interpretation errors may occur, generally over
estimating the air flow rates by several percent. 

It is possible that a more refined interpretation method 
could be found, taking into account that the tracer injec
tion rate is not constant during the measurement interval 
and that the tracer concentration may change during that 
interval. An indication of how this might be done can be 
found in the work Aittomiikki did for U-value measure
ments [6]. 

3. ERROR ANALYSIS 

3.1 The problem 
Experimentation results in a system of equations to be 

solved: 

Ax= y, (33) 

where vector y and matrix A both contain measured 
coefficients (yj and aij) with errors represented respec
tively by a vector oy and a matrix oA . The question is: 
which is the resulting error Jx on the vector x? 

Since components X; are functions of the coefficients 
aij and yj, their variances can be computed approximately 

by : 

(34) 

where s2(aij) and s2( y) are the variances of the measured 
coefficients. If the errors in the variables aij and yj are 
independent and symmetrically distributed and if the 
function is not far from linear, this first order error analy
sis gives satisfactory results [7]. However the com
putation time required increases rapidly with the number 
of variables (that is the number of zones). 

If the matrix oA and the vector oy were exactly known 
for a given case, we could write : 

(A +oA)(x+ox) = y+oy, (35) 

and, taking equation (33) into account, this could be 
solved: 

ox= (A+oA)- 1(0Ax+oy). (36) 

Equation (36) can however not be used to determine the 
absolute error or a statistical standard deviation. For 
that latter purpose, we can use equation (36) several times 
in a Monte-Carlo process, varying the components of oA 
and oy at random but according to their probability 
density function. This provides several vectors ox from 
which an estimate of the probability density functions of 
the components can be calculated. 

Vector ox contains a large number of values. It would 
be helpful to represent the error by a single figure. To 
obtain such a single figure, we need the following defi
nitions, which can be found in the specific mathematical 
literature (e.g. [7, 8]). 

3.2 Vectorial and matrix norms 
The norm Jlxll of a vector xis any operationg of R" in 

R satisfying : 

JlxlJ ~ Oand llxll = Oifandonlyifx = 0 

IJcxJJ =lei :ixll foranyceR 

llx+yll:::; llxll + llYll. (37) 

For example, the euclidian norm (which corresponds to 
the standard deviation if the average (x) = 0): 

(38) 

fulfills the relations (37), but there are other norms, like 
llxll 1 =I: lx;I or the infinity norm defined by llxll 00 

=max Jx;J. 
The norm llA II of a matrix A is any application N(A) -+ 

llA II ER satisfying: 

llAll ~OandllAll =OifandonlyifA =0, 

llcA 11 =lei llA II forany ce R, 

llA+BJJ:::; llAll +llBll, 

llA·Bll:::; llAll·IJBll. (39) 

The matrix norm llA II is consistent with the vectorial 
norm llxll if: 

llA ·xii:::; llA 11 • llxll foranyvalueofx. (40) 

The matrix norm subordinared to the vectorial norm Jlxll 
is detined by : 

llA II =max (llAxll/llxll) for any x -=I 0. (41) 



I 

I 

Multizone Tracer Gas In.filtration Measurements 225 

The subordinated matrix norm is the smallest one which 
is consistent with llxll. For example, the normal llA 11 2 , 

defined by: 

llA II 2 = .fii, (42) 

whereµ 1 is the largest eigenvalue of AH A (AH = hermitic 
conjugate or the transpose of the complex conjugate 
matrix) and is subordinated to the euclidean norm llxll 2. 

This matrix norm is the spectral norm. 
Both Walker [9] and D'Ottavio [10] present an error 

analysis method similar to the following one, but they 
use other matrix and vectorial norms. Walker uses the 
vectorial infinity norm and the subordinated matrix norm 
which is the maximum row sum of the moduli of the 
elements. These norms lead to simpler computations but 
do not give a good image of the usual standard deviation. 
D'Ottavio et al. [10] use the Frobenius norm: 

(43) 

which is consistent with the euclidian vectorial norm but 
which is not subordinated to it, hence not the smallest. 
Therefore these authors have introduced a correcting 
factor adjusted to fit the results of this error analysis 
method to the results of the first order approximation 
method [equation (34)]. 

It is proposed here to use the euclidean vectorial norm 
and the subordinated spectral matrix norm for the error 
analysis. The advantages are that the euclidian norm of 
the vector oy represents its total standard deviation and, 
using the subordinated matrix norm, we will obtain the 
smallest upper bound for ox. 

3.3 Error analysis 
It is possible to give an upper limit to the norm of the 

resulting error lloxll, using the following relations [7] for 
the norms of the experimental errors lloyll and lloA II. 

Only y is perturbed. We can write: 

A(x+ox) = y+oy, (44) 

but, taking equation (21) into account, we get: 

A ox= oy. (45) 

Then, for any pair of vectorial and matrix subordinated 
norms: 

and: (46) 

The number: 

cond(A) = llAll·llA- 111, (47) 

is of great importance here. It is the condition number of 
the matrix A related to the used norm. If llA 11 2 is used, 
we get the smallest possible condition number. Its value 
IS: 

(48) 

whereµ 1 andµ" are respectively the largest and the small
est eigenvalues of A 11 ·A. This condition number is the 
spectral condition number. 

Only matrix A is perturbed. In this case : 

(A+oA)(x+ox) = y then (A+oA)ox = -oAx (49) 

If (A+oA) is regular, hence if llA- 1 0All ~ llA- 111· 
lloA II < 1, then: 

lloxll llA- 1 oA II llA II· llA- 1 II· llOA 11/llA 11 
--$'. ~----------
llxll "" l-llA- 1 oA II "" 1-llA II• llA- 1 II· lloA 11/llA II' 

(50) 

A and b are perturbed. In this case, assuming that 
11111 = 1 (which is true for 11111 2): 

lloxll $'. llA II· llA-
1 II . [lloyll lloA 11]. 

llxll "" 1- lloA II• llA- 1 II llYll + llA II · 

3.4 How to obtain a good condition 

(51) 

To minimize the condition number of the experimental 
matrix, some variable changes can be used on the initial 
problem in such a way that the coefficients aii of the 
matrix A satisfy : 

(52) 

where pis the base of the floating point arithmetic system 
installed in the computer used to solve the system of 
equations. For that purpose, it is often enough to divide 
each row of the system by the largest coefficient, rounded 
to an integer power of p, to minimize the rounding errors. 

Moreover, in the Gaussian resolution procedure, the 
equations are permutated in such a way that the largest 
(in absolute value) pivot is used. 

3.5 Error analysis for two special cases 
If e and e are the constant relative errors on A and y : 

oA = eA and oy = ey, 

and, from the definition of the norms : 

(53) 

lloA II =ell A 11 and lloyll =By. (54) 

We have, for any definition of the norm satisfying 

11111=1: 

lloxll cond (A) 
W~ 1-econd(A)·(e+e). (55) 

It should be remembered that A +oA should be regular, 
which will occur if: 

e·cond(A) < 1. (56) 

In the case of a constant absolute error: 

oA = el and oy = 8yl, (57) 

where I and 1 are respectively a matrix of order N and a 
vector with N components where all the elements are 
unity. 

It is easily seen that, if the euclidian and spectral norms 
are used: 

111112 = N and 111112 =JN. (58) 

In fact, the eigenvalues of 1 are N and oN- 1
, hence those 

of JHJ = 1 2 are N 2 and oN- 1. Then: 

lloAll2=eN and lloyll2=JN8y (59) 

and: 
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We see that for these simple cases, which are the most 
common in practice, an upper bound for the relative 
error on the results can be easily calculated when the 
condition number of the matrix A is known. This matrix 
is C; in equation (26) . 

4. AN EXAMPLE 

4.1 Case configuration 
A constant concentration measurement on a very sim

ple building with two rooms was simulated using a mul
tizone infiltration computer code to provide the data used 
in this example. This way, the measurement errors are 
avoided. The input data are given in Table 1. 

The volume flows Qjo to the outside result from the 
mass conservation of the air. After a few hours, the tracer 
concentrations stabilize and the results of the simulated 
measurements are those given in Table 2. 

4.1 Results for uniform temperature 
Using equation ( 17) for zone 1, we get : 

[
-2.65 x 10-

4
] = [-10 

0 -6.46 

Temperature 
Volume 
Flows from outside Q 01 

Flows from zone 1 Q 11 

Flows from zone 2 Q ~' 

Table I. 

Zone 0 
(Outside) 

0 

20.73 
22.2 

- 7.71] _6 [Qo1] 
3.54 lO Q21 ' 

Zone 1 Zone 2 

20 20 
50 100 
IO 30 

IO 
20 

oc 
mJ 

m3 h- 1 

mlh-1 
ml h-1 

which gives the flows: 

Q01 = 10.99 m3 h- 1 and Q21 = 20.06 m 3 h- 1. 

The same calculations for zone 2 gives : 

Q02 = 32.57 m3 h- 1 and Q1 2 = 9.68 m3 h- 1. 

Finally, using equation (18) we get: 

Q 10 =21.37m 3 h- 1 and Q20 =22.19m 3 h- 1. 

Comparing these results with the exact values given 
above, we see that the largest differences, of about 10%, 
occur for Q01 and Q02, which are the flows coming from 
the cold. 

4.3 Results taking into account the temperature 
Using the new proposed equations (15) and (16), the 

following results are obtained: 

Q01 = 10.24 m3 h- 1 Qii = 20.06 m3 h- 1, 

Qo2 = 30.35 m3 h- 1 Q 12 = 9.68 m 3 h- 1, 

Q10=21.37m 3 h- 1 Qz0 =22.19m3 h- 1. 

Since both zones have the same temperatures, only the 
flows coming from outside are changed and these results 
are more accurate than the results found in Section 4.2. 
The remaining differences (3% or less) are caused by 
rounding errors, since only three digits were kept for the 
simulated concentrations and tracer injection flow rates. 

4.4 Error analysis 
The matrices of equation (15) were reconditioned (Sec

tion 3.4) before solving the system, in such a way that 
the largest elements (in absolute value) of each row were 
equal to 1. A uniform relative error was assumed, being 
2% on the concentration matrix and 5% on the injection 
vector (that is e = 0.02 and e = 0.05). For this recon
ditioned system of equations and using two different 
norms, the results given in Table 3 for II oQ II /II Q II were 
obtained using equation (55). 

We see that the spectral norm gives a smaller upper 
bound for the relative error than the Frobenius norm, 

Table 2. 

Zone l Zone 2 

Concentration of tracer I 10 2.29 ppm 
Concentration of tracer 2 6.46 10 ppm 

Injection rate of tracer I 2.65 x I0- 4 0 m 3 h- 1 

Injection rate of tracer 2 0 3.6 x 10-• m' h- 1 

Table 3. 

Norm used Frobenius Spectral 
[equation (43)] [equation (42)] 

Zone l 2 l 2 

Matrix norm llA 11 1.666 l.487 1.426 l.057 
and for the inverse llA - 1 II 1.356 l.355 l.161 0.956 
cond(A) = llAll·llA-'11 2.259 2.015 l.656 l.OlO 

Relative error 11.SQll /ll Qll 0.166 0.146 0.120 0.072 
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the difference going up to a factor of two for the second 
zone. 

air in such a way that measurements made with variable 
and non homogeneous temperatures can be interpreted 
properly. If the matrix were not reconditioned, we would get, 

for the zone I and with the spectral norm: Secondly, in order to obtain error figures which are 
not exaggeratedly large and which represent standard 
deviations, it is proposed to use the euclidian vectorial 
norm and the subordinated spectral matrix norm. 

116Qll/llQll = 0.153 

which is only slightly more than the conditioned matrix 
in this case, since the system is already not too badly 
conditioned. For badly conditioned systems, this differ
ence may be much larger. 
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5. CONCLUSIONS 

In this paper, we have proposed modification of the 
equations of conservation of the tracer gases and of the 
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