# #3441

#### Formaldehyde Emissions from Low Emitting Pressed-Wood Products and the Effectiveness of Various Remedial Measures for Reducing Formaldehyde Emissions

Richard A. Grot Steve Nabinger Samuel Silberstein

#### Abstract

This report presents the results of chamber tests to determine the emission of formaldehyde from several low emitting US and foreign manufactured particle boards and the effectiveness of various remedial actions on the emission of formaldehyde from pressed wood products. Pressed wood products considered to represent the most recent (as of the fall of 1985) US and foreign manufacturing technology were obtained from seven US manufacturers and six European manufacturers representing four countries. Most of the pressed wood products tested were underlayment (29) and low emitting medium density fiber board (8). Two (2) industrial particle boards were tested. The technologies identified by the product's manufacturer used to reduce the emissions of formaldehyde were 1.) low furning UF resins, 2.) low furning UF resins with a post press scavenger (usually anhydrous ammonia) and 3.) the addition of a chemical additive. The remedial measures evaluated consisted of the application of coatings and barriers. The coatings tested for their effectiveness in reducing formaldehyde emissions were polyurethane, nitrocellulose lacquer and latex paint. The barriers evaluated were carpeting with foam padding and carpeting with waffle padding.

#### 1 Introduction

The National Bureau of Standards (NBS) has recently [1] undertaken a series of laboratory tests for the Consumer Product Safety Commission (CPSC) to validate models used to predict formaldehyde (HCHO) emissions from pressed wood products. These tests have shown that for bare pressed wood products there is good agreement between IAQ models and measurements in a simulated house. However, a person is not often exposed directly to the emission from a pressed wood product. For example, when particle board underlayment is used as a flooring material, it is usually covered with tile or a carpet and padding. Another example could be a kitchen cabinet made with medium density fiberboard (MDF) where the MDF is usually finished with a coating or covered with another material.

Also, there have been new developments in the manufacture of pressed wood products which reportedly have lead to a reduced emission of formaldehyde. For this reason NBS with the assistance of the US Environmental Protection Agency (EPA) received from both US and foreign manufacturers samples of their lowest emitting pressed wood products. A total of 12 foreign boards and 33 recently manufactured US boards were obtained. Previously, CPSC had obtained for NBS 6 samples of low emitting medium density fiber board (MDF). These products were evaluated in specially designed medium size dynamic chambers (see ref. [1] for details on the construction, operation and test procedures used to determine HCHO emissions in dynamic chambers) to obtain their emission rates as a function of formaldehyde level at the standard conditions of 23 °C, 50% relative humidity. Several products (underlayment, industrial particle board and low emitting MDF) were coated with polyurethane, nitrocellulose lacquer and latex paint to determine the effect of these coatings on their formaldehyde emissions. The effect of padding and carpeting on the emission of formaldehyde from underlayment was also investigated.

#### 2 Brief Summary of the Model

As discussed in reference [1], the emission rate ER (in mg/m<sup>2</sup>•h) of HCHO from a pressed wood product can be predicted from the equation:

$$ER = \alpha - \beta c \tag{1}$$

where  $\alpha$  and  $\beta$  are parameters which can be determined from laboratory measurements in the medium size dynamic chambers and c is the concentration of HCHO in the chamber (in ppb). In general  $\alpha$  and  $\beta$  are functions of temperature and humidity. In this report the intercept  $\alpha$  and the cutoff concentration at which the emission rate goes to zero:

$$cutoff = \frac{\alpha}{\beta}$$
(2)

are reported for each product. The determination of these two parameters allows the prediction of HCHO levels in buildings under various loadings and air exchange rates using a mass balance model (see reference [1]).

In the tables and graphs in this report, values for  $\alpha$  (call the intercept) and the cutoff are reported as well as ser<sub>100</sub>, the emission rate at standard conditions (23°C, 50% RH and an ambient concentration c = 100 ppb) and the correlation coefficient  $R^2$  and the standard error of a least squares fit of equation (1) to the chamber data for each product tested. The use of these parameters for predicting the HCHO levels in buildings due to emissions from pressed wood products is summarized in the appendix of this report.

#### 3 Summary of Previous Data from Test for CPSC

For completeness, data from the tests performed for CPSC in the research to validate models for predicting formaldehyde levels in homes are included in this report (see references [1] and [2] for a more complete discussion of these data). Table 1 contains the results of the determination of HCHO emissions from underlayment at 23°C, 50% RH. Table 2 contains the results of similar measurements at 26°C, 60% RH. It should be noted in Table 1 that tests indicated by T1 and T2 were performed prior to subjecting the boards to the higher temperature and humidity. The boards used in the CPSC tests were manufactured at one facility in June of 1984. The tests indicated by T3 and T4 were at the higher temperature and humidity conditions. The tests indicated by T5 occurred after returning the specimens to the conditions of the test T1 and T2. The data in Table 2 show that at a temperature of 26°C and 60% RH, the emissions of formaldehyde from these products at 100 ppb (ser<sub>100</sub>) occurred at rates greater than three times the rate at 23°C, 50% RH. This increase in temperature and humidity alos caused the cutoff concentrations to increase by more than 50%. It is also worthy of note that the emission rates of test T5 were all higher than those of tests T1 and T2 for all products.

#### 4 The Effects of Carpets and Padding on Formaldehyde Emissions

Seven particle board underlayments were selected for an experiment to determine the effect of carpets and padding on the emission of HCHO from underlayment. The carpets and padding were initially tested in the medium size chambers in order to determine if they by themselves emitted any significant level of formaldehyde. It was found that they did not. Four underlayments were covered with carpet and padding in May 1986. Two boards were covered with foam padding and carpet, two with waffle padding and carpet and three were left uncovered to serve as controls. After four months, the emission rates of formaldehyde from the composite of underlayment, padding and carpet were measured in the medium size chambers. The results of these tests are summarized in Table 3. Also included in Table 3 are the results of covering underlayment U5 of the CPSC tests with a carpeting and a foam padding. As can be seen from the data of Table 3, the composite of foam padding and carpet had little effect on the emission rate of formaldehyde from the underlayment. However, the composite with carpet and waffle padding reduced the HCHO emission of the underlayment to approximately 30% of the control underlayment.

#### 5 The Effectiveness of Coatings in Reducing Formaldehyde Emissions

In order to test the effectiveness of various paint-like coatings for reducing HCHO emissions from pressed wood products, several specimens of underlayment, industrial particle board and low emitting medium density fiber board were coated with latex paint, nitrocellulose lacquer and a polyurethane finish. Samples of the underlayment, industrial particle board and low emitting MDF were first evaluated without any coating. Some were then coated with latex paint, nitrocellulose lacquer and polyurethane and retested. The results of this test sequence are shown inf Figures 1 to 12 and summarized in Tables 6, 7, 8 and 10. Also included in Table 6 are the results of testing two underlayments received from Ball State University, one of which had an unknown coating. These results of these tests showed that nitrocellulose lacquer reduced the emission rate of formaldehyde to 69% of the precoated value for underlayment, 53% for industrial particle board and 26% for low emitting medium density fiber board. Polyurethane reduced the emission rate of underlayment to 18% of the precoated value and to 6% for the low emitting medium density fiberboard. The polyurethane and latex coated industrial particle board showed increases of 140% and 150% respectively. The latex coating had little or no effect on the emission rates of underlayment and medium density fiberboard (95% and 90% respectively).

#### 6 The Emission Rates of Low Emitting Medium Density FiberBoard

Figure 9 and Table 5 contain the results of testing five specimens of regular MDF manufactured in the United States. From the data of Table 5 regular MDF emits formaldehyde at rates of 0.995 to 1.549 mg/m<sup>2</sup>-h. These data compare favorably with the data of reference [1] (1.36 mg/m<sup>2</sup>-h). The untreated emission rate from low emitting MDF are given in Table 8. These range from 0.429 to 0.668 mg/<sup>2</sup>-h, approximately half those of regular MDF, though still high compared with underlayment.

#### 7 Summary of New Technology US Manufactured Particle Boards

Thirty-one (31) particle boards were received from seven US manufacturers in response to a request by EPA to provide two samples of low emitting pressed wood products. These were classified by the manufacturers as having 1.) low fuming UF resin, 2.) low fuming UF resin with a scavenger 3.) low fuming resin industrial particle board and 4.) underlayment with a chemical additive. Two boards from one manufacturer contained no information on the remedial measures used in the manufacture of the boards. The data from these products are given in Table 4 and Figures 13 and 14. The boards with low fuming resin have emissions rate ranging from 0.052 to 0.367 mg/m<sup>2</sup>•h, with five boards from two manufacturers having emission rates less then 0.1 mg/m<sup>2</sup>•h. The emission rates of products with low fuming resins and a scavenger ranged from 0.102 to 0.254 mg/m<sup>2</sup>•h.

#### 8 Emissions from Foreign Particle Boards

Twelve particle boards were received from six manufacturers in four European countries. The results of the evaluation of these products are shown in Table 9 and Figures 15 through 20. Products of three countries, France, Sweden and Belgium, had very low emission rates (0.012 to 0.112 mg/m<sup>2</sup>•h). These boards also have very low cutoff concentrations (less than 150 ppb). The boards for Norway had relatively low cutoff concentrations (less than 317 ppb) but showed a sharp increase in emission rate as a function of ambient concentration (see Figures 14 and 15).

#### 9 Conclusions

The data from this series of experiments have shown that various measures can be effective in reducing the emission of formaldehyde from pressed wood products

- •Carpets with waffle padding can reduce HCHO emissions from underlayment by 60%
- •Polyurethane coating can reduce HCHO emissions by 80% on underlayment and low emitting MDF
- •Nitrocellulose lacquer can reduce HCHO emissions by 30% for underlayment, 75% for low emitting MDF and 50% for industrial particle board.
- •Swedish, French and Belgium manufactured boards tested in this project can have emission rates less than 0.1 mg/m<sup>2</sup>•h and cutoff concentrations less than 125 ppb.
- •Some US manufactured particle boards have characteristics approaching the best European boards.

On the negative side, there were several measures which were not effective in reducing HCHO emissions. Latex paints (as expected) do not decrease HCHO emission from pressed wood products. Coatings can have a varying effect depending on the product coated. Foam padding did not decreased HCHO emissions from underlayment. Some supposedly low emitting pressed wood products still have significant emission rates

#### References

- Grot, R.A., S. Silberstein, K. Ishiguro, "Validation of Models for Predicting Formaldehyde Concentrations in Residences Due to Pressed Wood Products, Phase I", NBSIR 85-3255, Gaithersburg, MD, 1985
- [2] Silberstein, S., R.A. Grot, "Validation of Models for Predicting Formaldehyde Concentrations in Residences Due to Pressed Wood Products, Phase II", NBSIR 88-XXXX, Gaithersburg, MD, in preparation.

#### Appendix

#### A Model for Predicting HCHO Levels in a Single Zone Building Using Chamber Data

As shown and verified in references [1,2], the following model, derived using mass balance principles, can adequately predict the equilibrium level  $C_{o}$  of HCHO in a single zone, well mixed building:

$$C_o = \frac{\hat{\alpha}}{Ai + \hat{\beta}} \tag{A1}$$

where

$$\hat{\alpha} = \frac{1}{\rho V} \sum_{\forall products} \alpha_i \cdot area_i$$
(A2)

$$\hat{\beta} = \frac{1}{\rho V} \sum_{\forall products} \beta_i \cdot area_i \tag{A3}$$

where

Ai is the air change rate in h-1

area, is the exposed area of the pressed wood product in  $m^2$ 

and

 $\alpha_i$  and  $\beta_i$  are the parameters of equation (1) determined from the chamber tests.

 $\rho = 0.0012 \text{ mg/cm}^3$  (density of formaldehyde)

V is the volume of the building in  $m^3$ 

The concentration determined from equation (A1) is in ppb.

Tables A.1 and A.2 contain the predicted concentrations for a house maintained at 23°C, 50% RH completely floored with US and foreign pressed wood products. These predicted results are shown in Figures 21 to 32.

# Table 1. Underlayment Obtained for CPSC Tests

## 23°C 50% RH

| Board #                                                                                                                                                                          | Date                                                                                                                                                                                                                                                                                                                                         | intercept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cutoff                                                                                                                            | R²                                                                                                                                                             | ser <sub>100</sub>                                                                                                                                                                        | Std.<br>error                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              | mg/m²•h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppb                                                                                                                               |                                                                                                                                                                | mg/m²•h                                                                                                                                                                                   | mg/m²•h                                                                                                                                                                                             |
| U1-T1<br>U1-T2<br>U1-T5<br>U2-T1<br>U2-T2<br>U2-T5<br>U3-T5<br>U4-T1<br>U4-T2<br>U4-T5<br>U5-T1<br>U5-T2<br>U5-T5<br>U6-T1<br>U6-T2<br>U6-T5<br>U7-T1<br>U7-T2<br>U7-T5<br>U7-T5 | 10/01/84-11/16/84<br>02/09/85-02/14/85<br>04/18/86-04/28/86<br>11/10/84-11/13/84<br>02/20/85-02/26/85<br>04/09/86-04/18/86<br>03/07/86-03/19/86<br>09/28/84-11/14/84<br>03/01/85-03/05/85<br>04/18/86-04/28/86<br>10/01/84-11/12/84<br>02/15/85-02/20/85<br>03/07/86-03/19/86<br>11/16/84-02/08/85<br>03/28/85-04/02/85<br>03/07/86-03/19/86 | $\begin{array}{c} 0.209\\ 0.237\\ 0.310\\ 0.328\\ 0.211\\ 0.242\\ 0.250\\ 0.213\\ 0.213\\ 0.213\\ 0.276\\ 0.160\\ 0.168\\ 0.234\\ 0.266\\ 0.211\\ 0.262\\ 0.243\\ 0.232\\ 0.262\\ 0.243\\ 0.232\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.262\\ 0.$ | 205<br>241<br>393<br>268<br>270<br>313<br>324<br>261<br>277<br>359<br>260<br>283<br>337<br>222<br>262<br>345<br>274<br>266<br>308 | 0.912<br>0.914<br>0.994<br>0.994<br>0.789<br>0.895<br>0.371<br>0.866<br>0.969<br>0.724<br>0.883<br>0.901<br>0.993<br>0.985<br>0.974<br>0.813<br>0.813<br>0.913 | 0.107<br>0.138<br>0.231<br>0.205<br>0.133<br>0.165<br>0.173<br>0.131<br>0.136<br>0.199<br>0.099<br>0.099<br>0.109<br>0.109<br>0.164<br>0.146<br>0.130<br>0.186<br>0.154<br>0.145<br>0.177 | $\begin{array}{c} 0.020\\ 0.029\\ 0.009\\ 0.014\\ 0.025\\ 0.008\\ 0.029\\ 0.062\\ 0.026\\ 0.018\\ 0.025\\ 0.018\\ 0.025\\ 0.018\\ 0.019\\ 0.012\\ 0.009\\ 0.015\\ 0.027\\ 0.039\\ 0.026\end{array}$ |
| 07-10                                                                                                                                                                            | 10/22/00-10/20/00                                                                                                                                                                                                                                                                                                                            | 0.102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212                                                                                                                               | 0.9/3                                                                                                                                                          | 0.085                                                                                                                                                                                     | 0.012                                                                                                                                                                                               |

## Table 2. Underlayment Obtained for CPSC Tests

## 26°C 60% RH

|                                                      | cuton                                                                                                                                           | K-                                                                                                                                                                                                                                          | Ser <sub>100</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                   | Std.<br>error                                                                          |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| mg/m²•h                                              | ppb                                                                                                                                             |                                                                                                                                                                                                                                             | mg/m²•h                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/m²•h                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 395<br>404<br>412<br>413<br>433<br>408<br>383<br>436<br>484<br>880<br>467                                                                       | 0.933<br>0.976<br>0.880<br>0.885<br>0.830<br>0.882<br>0.999<br>0.903<br>0.972<br>0.492                                                                                                                                                      | 0.281<br>0.499<br>0.327<br>0.317<br>0.351<br>0.275<br>0.316<br>0.377<br>0.342<br>0.342<br>0.342                                                                                                                                                                                                                                                                                                                                                      | 0.038<br>0.040<br>0.057<br>0.051<br>0.077<br>0.048<br>0.007<br>0.067<br>0.026<br>0.096 |
|                                                      | mg/m <sup>2</sup> •h<br>5 0.377<br>5 0.663<br>5 0.432<br>5 0.418<br>5 0.457<br>5 0.365<br>5 0.428<br>5 0.428<br>5 0.431<br>35 0.386<br>35 0.319 | mg/m²•h   ppb     5   0.377   395     5   0.663   404     5   0.432   412     5   0.418   413     5   0.457   433     5   0.365   408     5   0.428   383     5   0.428   383     5   0.431   484     35   0.386   880     35   0.319   467 | mg/m²-h   ppb     5   0.377   395   0.933     5   0.663   404   0.976     5   0.432   412   0.880     5   0.432   413   0.885     5   0.457   433   0.830     5   0.457   433   0.830     5   0.457   433   0.830     5   0.457   433   0.830     5   0.457   433   0.830     5   0.457   433   0.830     5   0.457   433   0.842     5   0.428   383   0.999     35   0.431   484   0.972     35   0.386   880   0.492     35   0.319   467   1.000 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                  |

Note:

U1 to U7 indicate underlayment specimens 1 through 7 T1 to T4 indicate test

## Table 3. Emissions from Carpeted Underlayment

## Carpet with Foam Padding

| Board #            | Date                                                        | intercept                          | cutoff                   | R²                      | Ser <sub>100</sub>                 | Std.<br>error                      |
|--------------------|-------------------------------------------------------------|------------------------------------|--------------------------|-------------------------|------------------------------------|------------------------------------|
| C1<br>C2<br>U5-T2C | 11/06/86-11/24/86<br>11/06/86-11/24/86<br>03/28/85-04/02/85 | mg/m²•h<br>0.206<br>0.188<br>0.161 | ppb<br>263<br>382<br>256 | 0.874<br>0.930<br>0.798 | mg/m²•h<br>0.128<br>0.139<br>0.098 | mg/m²•h<br>0.031<br>0.020<br>0.030 |
|                    | C                                                           | arpet with Wa                      | ffle Paddin              | g                       |                                    |                                    |
| Board #            | Date                                                        | intercept                          | cutoff                   | R²                      | $ser_{i\infty}$                    | Std.<br>error                      |
| C3<br>C4           | 11/06/86-11/24/86<br>11/06/86-11/24/86                      | mg/m²•h<br>0.112<br>0.118          | ppb<br>180<br>216        | 0.856<br>0.927          | mg/m⊶h<br>0.050<br>0.064           | mg/m²•h<br>0.019<br>0.014          |

## Untreated Control Underlayment for Carpets

| Board #        | Date                                                        | intercept               | cutoff            | R²                      | ser <sub>100</sub>      | Std.<br>error           |
|----------------|-------------------------------------------------------------|-------------------------|-------------------|-------------------------|-------------------------|-------------------------|
|                |                                                             | mg/m²•h                 | ppb               |                         | mg/m²•h                 | mg/m²•h                 |
| C5<br>C6<br>C7 | 10/22/86-10/30/86<br>10/22/86-10/30/86<br>10/22/86-10/30/86 | 0.310<br>0.232<br>0.196 | 369<br>365<br>347 | 0.995<br>0.985<br>0.971 | 0.226<br>0.169<br>0.140 | 0.009<br>0.012<br>0.015 |

Note:

C1 through C7 indicated underlayment boards used in carpet experiment. U5-T2C is carpet covered underlayment U5 of Table 1

| Board #                                                                                                                                     | Date                                                                                                                                                                                                                                | intercept                                                                                                                         | cutoff                                                                                           | R²                                                                                                                | Ser <sub>100</sub>                                                                                                                   | Std.<br>error                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             |                                                                                                                                                                                                                                     | mg/m²•h                                                                                                                           | ppb                                                                                              |                                                                                                                   | mg/m²•h                                                                                                                              | mg/m²•h                                                                                                                    |
|                                                                                                                                             | U                                                                                                                                                                                                                                   | Jnknown Classi                                                                                                                    | fication                                                                                         |                                                                                                                   |                                                                                                                                      |                                                                                                                            |
| USM1-1A<br>USM1-1B                                                                                                                          | 01/13/87-01/30/87<br>01/13/87-01/30/87<br>Low Furning                                                                                                                                                                               | 0.287<br>0.276<br>UF Resin Indus                                                                                                  | 334<br>350<br>strial Partic                                                                      | 0.858<br>0.913<br>cle Board                                                                                       | 0.201<br>0.197                                                                                                                       | 0.038<br>0.030                                                                                                             |
| USM2-1A<br>USM2-1B                                                                                                                          | 05/01/86-06/11/86<br>05/01/86-06/11/86<br>Low Fu:                                                                                                                                                                                   | 0.316<br>0.230<br>ming UF Resin                                                                                                   | 649<br>582<br>and Scave                                                                          | 0.669<br>0.675<br>nger                                                                                            | 0.268<br>0.191                                                                                                                       | 0.075<br>0.053                                                                                                             |
| USM3-1A<br>USM3-1B<br>USM3-2A<br>USM3-2B<br>USM3-3A<br>USM3-3B<br>USM4-1A<br>USM4-1B<br>USM5-1A<br>USM5-1B                                  | 04/08/86-05/13/86<br>04/08/86-05/13/86<br>06/15/87-06/26/87<br>05/15/87-05/29/87<br>04/08/86-05/13/86<br>04/08/86-05/13/86<br>04/08/86-05/13/86<br>04/08/86-05/13/86<br>06/01/87-06/15/87<br>05/15/87-05/29/87                      | 0.171<br>0.173<br>0.254<br>0.160<br>0.274<br>0.238<br>0.187<br>0.197<br>0.331<br>0.184<br>Low Fuming UF                           | 973<br>597<br>342<br>391<br>347<br>379<br>634<br>576<br>431<br>226<br>5 Resin                    | 0.224<br>0.786<br>0.943<br>0.942<br>0.969<br>0.778<br>0.763<br>0.977<br>0.989<br>0.986                            | 0.153<br>0.144<br>0.180<br>0.119<br>0.195<br>0.175<br>0.158<br>0.162<br>0.254<br>0.102                                               | 0.061<br>0.030<br>0.022<br>0.013<br>0.016<br>0.031<br>0.034<br>0.010<br>0.014<br>0.007                                     |
| USM2-2A<br>USM2-2B<br>USM2-3A<br>USM2-3B<br>USM6-1A<br>USM6-1B<br>USM6-2A<br>USM6-2B<br>USM6-3A<br>USM6-3B<br>USM7-1A<br>USM7-1B<br>USM7-1C | 05/27/86-08/10/86<br>05/27/86-08/10/86<br>05/01/86-06/11/86<br>03/30/87-04/18/87<br>03/30/87-04/18/87<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>12/20/86-01/12/87<br>01/13/86-01/30/87<br>01/09/87-02/06/87<br>01/09/87-02/06/87 | 0.156<br>0.178<br>0.150<br>0.270<br>0.211<br>0.183<br>0.182<br>0.200<br>0.298<br>0.288<br>0.128<br>0.116<br>0.097<br>Chemical Add | 386<br>403<br>646<br>582<br>180<br>185<br>383<br>487<br>295<br>365<br>312<br>208<br>215<br>itive | 0.419<br>0.524<br>0.469<br>0.806<br>0.974<br>0.978<br>0.322<br>0.264<br>0.937<br>0.946<br>0.923<br>0.979<br>0.939 | $\begin{array}{c} 0.115\\ 0.134\\ 0.127\\ 0.224\\ 0.094\\ 0.084\\ 0.142\\ 0.159\\ 0.197\\ 0.209\\ 0.087\\ 0.060\\ 0.052 \end{array}$ | 0.039<br>0.049<br>0.059<br>0.048<br>0.010<br>0.008<br>0.060<br>0.077<br>0.024<br>0.024<br>0.024<br>0.012<br>0.006<br>0.009 |
| USM6-4A<br>USM6-4B                                                                                                                          | 12/20/86-01/12/87<br>12/20/86-01/12/87                                                                                                                                                                                              | 0.447<br>0.425                                                                                                                    | 375<br>356                                                                                       | 0.945<br>0.969                                                                                                    | 0.328<br>0.305                                                                                                                       | 0.031<br>0.025                                                                                                             |

# Table 4. New Technology US Manufactured Particleboards

#### Note:

USM1 through USM7 indicates US manufacturers 1 through 7 The number after the dash indicates the product sample The final letter (A,B or C) indicates the specimen (usually two were provided for each product.

| Table 5. Regular US Manufactured | MDF | 2 |
|----------------------------------|-----|---|
|----------------------------------|-----|---|

| Board #      | Date                                   | intercept      | cutoff     | R²             | ser <sub>100</sub> | Std.<br>error |
|--------------|----------------------------------------|----------------|------------|----------------|--------------------|---------------|
|              |                                        | mg/m²•h        | ppb        |                | mg/m²•h            | mg/m²•h       |
| MDF1<br>MDF2 | 06/01/87-06/15/87<br>06/01/87-06/15/87 | 1.735<br>1.137 | 934<br>796 | 0.995<br>0.984 | 1.549<br>0.994     | 0.038         |
| MDF3         | 05/15/87-05/29/87                      | 1.311          | 970        | 0.967          | 1.176              | 0.078         |
| MDF4         | 06/01/87-06/15/87                      | 1.293          | 1371       | 0.998          | 1.199              | 0.055         |
| MDF5         | 05/15/87-05/29/87                      | 1.435          | 1782       | 0.984          | 1.354              | 0.062         |

Note:

MDF1 through MDF5 indicated medium density fiber board specimens 1 through 5 all of the same US manufacturer

| Date                                                      | intercept                                                                                                                        | cutoff                                                                                                                                                                                                                                                                                                                                                                                                                                      | R²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ser <sub>100</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Std.<br>error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                           | mg/m²•h                                                                                                                          | ppb                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/m²∙h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/m²•h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | Untreated                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10/04/85-10/25/85<br>07/20/85-07/25/85<br>7/20/85-7/24/85 | 0.211<br>0.241<br>0.208<br>0.201                                                                                                 | 400<br>415<br>329<br>285                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.420<br>0.727<br>0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.158<br>0.183<br>0.145<br>0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.036<br>0.025<br>0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | Lacquer-trea                                                                                                                     | ted                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10/04/85-10/25/85<br>10/07/85-10/25/85                    | 0.152<br>0.109<br>0.212                                                                                                          | 356<br>463<br>287                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.520<br>0.781<br>0.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.109<br>0.085<br>0.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.024<br>0.010<br>0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Po                                                        | olyurethane-ti                                                                                                                   | reated                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10/07/85-10/9/85                                          | 0.025                                                                                                                            | 1218                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                           | Latex-treate                                                                                                                     | ed                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10/04/85-10/26/85<br>10/04/85-10/25/85                    | 0.215<br>0.216<br>0.223                                                                                                          | 331<br>294<br>342                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75<br>0.741<br>0.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.150<br>0.142<br>0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.020<br>0.023<br>0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Particle Boards R                                         | eceived from                                                                                                                     | Ball State                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Universi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ţ                                                         | Unknown Coa                                                                                                                      | ating                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 03/30/87-04/18/87                                         | 0.035                                                                                                                            | 121                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           | Untreated                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 03/30/87-04/18/87                                         | 0.310                                                                                                                            | 337                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                           | Date<br>10/04/85-10/25/85<br>07/20/85-07/25/85<br>7/20/85-7/24/85<br>10/04/85-10/25/85<br>Particle Boards R<br>03/30/87-04/18/87 | Date intercept   mg/m²+h Untreated   10/04/85-10/25/85 0.241   07/20/85-07/25/85 0.208   7/20/85-7/24/85 0.201   Lacquer-treat 0.152   10/04/85-10/25/85 0.109   10/04/85-10/25/85 0.109   10/07/85-10/25/85 0.212   Polyurethane-tr 10/07/85-10/9/85   10/04/85-10/26/85 0.215   10/04/85-10/26/85 0.216   10/04/85-10/25/85 0.216   10/04/85-10/26/85 0.216   10/04/85-10/26/85 0.216   03/30/87-04/18/87 0.035   03/30/87-04/18/87 0.310 | Date   intercept   cutoff     mg/m <sup>2</sup> -h   ppb     Untreated   0.211   400     0.7/20/85-07/25/85   0.241   415     07/20/85-07/25/85   0.208   329     7/20/85-7/24/85   0.201   285     10/04/85-10/25/85   0.201   285     10/04/85-10/25/85   0.152   356     10/07/85-10/25/85   0.212   287     10/07/85-10/25/85   0.212   287     10/07/85-10/25/85   0.215   331     10/07/85-10/25/85   0.215   331     10/04/85-10/26/85   0.215   331     10/04/85-10/26/85   0.216   294     10/04/85-10/25/85   0.216   294     10/04/85-10/25/85   0.216   294     10/04/85-10/25/85   0.216   294     10/04/85-10/25/85   0.216   294     03/30/87-04/18/87   0.035   121     Untreated   03/30/87-04/18/87   0.310   337 | Dateinterceptcutoff $\mathbb{R}^2$ mg/m2+hppbuntreated10/04/85-10/25/850.2114000.42007/20/85-07/25/850.2414150.72707/20/85-07/25/850.2083290.9137/20/85-7/24/850.2012850.91310/04/85-10/25/850.1523560.52010/04/85-10/25/850.1094630.78110/07/85-10/25/850.2122870.781Polyurethane-treated10/07/85-10/9/850.0251218Latex-treated10/04/85-10/26/850.21629410/04/85-10/25/850.2162940.7410.750.2233420.8850.2233420.885Unknown Coating03/30/87-04/18/870.31033703/30/87-04/18/870.31033703/30/87-04/18/870.31033703/30/87-04/18/870.310337 | Date   intercept   cutoff   R²   ser,100     mg/m²+h   ppb   mg/m²+h   ppb   mg/m²+h     10/04/85-10/25/85   0.211   400   0.420   0.158     07/20/85-07/25/85   0.241   415   0.727   0.183     07/20/85-07/25/85   0.208   329   0.913   0.145     7/20/85-7/24/85   0.201   285   0.130   0.130     Lacquer-treated   10/04/85-10/25/85   0.152   356   0.520   0.109     10/04/85-10/25/85   0.122   287   0.781   0.085     10/07/85-10/25/85   0.025   1218   0.028     Latex-treated     10/04/85-10/26/85   0.215   331   0.75   0.150     10/04/85-10/26/85   0.216   294   0.741   0.142     10/04/85-10/25/85   0.216   294   0.741   0.142     10/04/85-10/25/85   0.216   294   0.741   0.142     03/30/87-04/18/87   0.035   121   0.710 |

# Table 6. Emissions from Underlayment in Coating Experiment

Note: CU1 through C8 indicate underlayment boards used in coating experiment.

## Table 7. Emissions from Industrial Particle Board

## Untreated

| Board #                                       | Date                                                                             | intercept                                 | cutoff                           | R²                                        | ser <sub>100</sub>                        | Std.<br>error                             |
|-----------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                               |                                                                                  | mg/m²•h                                   | ppb                              |                                           | mg/m²•h                                   | mg/m²•h                                   |
| all untreated<br>IPB1<br>IPB2<br>IPB3<br>IPB4 | 07/18/85-07/26/85<br>07/15/85-07/26/85<br>07/29/85-08/12/85<br>07/30/85-08/12/85 | 0.302<br>0.370<br>0.269<br>0.399<br>0.196 | 741<br>724<br>703<br>506<br>1312 | 0.490<br>0.784<br>0.838<br>0.934<br>0.491 | 0.261<br>0.319<br>0.231<br>0.320<br>0.181 | 0.063<br>0.049<br>0.026<br>0.030<br>0.039 |
|                                               |                                                                                  | Lacquer-trea                              | ated                             |                                           |                                           |                                           |
| IPB3                                          | 08/28/85-09/10/85                                                                | 0.166 /                                   | 583                              | 0.788                                     | 0.138                                     | 0.016                                     |
|                                               | P                                                                                | olyurethane-t                             | reated                           |                                           |                                           |                                           |
| IPB2                                          | 10/04/85-10/16/85                                                                | 0.440                                     | 571                              | 0.898                                     | 0.363                                     | 0.038                                     |
|                                               |                                                                                  | Latex-treat                               | ed                               |                                           |                                           |                                           |
| IPB4                                          | 08/29/85-09/10/85                                                                | 0.471                                     | 574                              | 0.758                                     | 0.389                                     | 0.059                                     |

Note: IPB1 through 4 indicate industrial particle boards 1 through 4 used in coating experiment.

| Board #                                                                              | Date                                                                                                                                            | intercept                                                                                    | cutoff                                                          | R²                                                                   | $ser_{1\infty}$                                                                | Std.<br>error                                                                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| LMDF-1A<br>LMDF-1B<br>LMDF-1C<br>LMDF-1D<br>LMDF-1E<br>LMDF-1F<br>LMDF-2A<br>LMDF-2B | 07/30/85-08/12/85<br>07/30/85-08/12/85<br>09/14/85-09/25/85<br>07/31/85-08/12/85<br>08/01/85-08/12/85<br>07/29/85-08/12/85<br>04/08/86-05/13/86 | mg/m <sup>2</sup> •h<br>0.464<br>0.476<br>0.640<br>0.695<br>0.701<br>0.748<br>0.742<br>0.735 | ppb<br>1296<br>1012<br>590<br>1059<br>1013<br>926<br>947<br>840 | 0.572<br>0.953<br>0.968<br>0.808<br>0.688<br>0.769<br>0.666<br>0.996 | mg/m→h<br>0.429<br>0.429<br>0.532<br>0.629<br>0.631<br>0.668<br>0.664<br>0.647 | mg/m <sup>2</sup> h<br>0.068<br>0.027<br>0.048<br>0.084<br>0.100<br>0.114<br>0.205<br>0.016 |
|                                                                                      |                                                                                                                                                 | Lacquer-treat                                                                                | ed                                                              |                                                                      |                                                                                |                                                                                             |
| LMDF-1D                                                                              | 08/28/85-09/10/85                                                                                                                               | 0.163                                                                                        | 723                                                             | 0.600                                                                | 0.141                                                                          | 0.021                                                                                       |
|                                                                                      | Ι                                                                                                                                               | Polyurethane-tr                                                                              | eated                                                           |                                                                      |                                                                                |                                                                                             |
| LMDF-1B<br>LMDF-1E                                                                   | 08/26/85-09/10/85<br>08/30/85-09/10/85                                                                                                          | 0.100<br>0.090                                                                               | 541<br>1576                                                     | 0.879<br>0.038                                                       | 0.081<br>0.084                                                                 | <b>0.0</b> 06<br><b>0.0</b> 10                                                              |
|                                                                                      |                                                                                                                                                 | Latex-treate                                                                                 | d                                                               |                                                                      |                                                                                |                                                                                             |
| LMDF-1F                                                                              | 09/12/85-09/22/85                                                                                                                               | 0.717                                                                                        | 644                                                             | 0.994                                                                | 0.605                                                                          |                                                                                             |

## Table 8. Emissions from Low-Emitting Medium Density Fiberboard

Note:

LMDF indicates low emitting medium density fiber board The number after the dash indicates the US manufacturer The final letter indicates the specimen

| Board #                                                                                                                                        | Date                                                                                                                                                                                                           | intercept                                                                                       | cutoff                                                                    | R²                                                                                              | ser <sub>100</sub>                                                                              | Std.<br>error                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                                                                |                                                                                                                                                                                                                | mg/m²•h                                                                                         | ррb                                                                       |                                                                                                 | mg∕m²•h                                                                                         | mg/m²•h                                                                                         |
| Sweden-1A<br>Sweden-1B<br>Norway-1A<br>Norway-1B<br>Norway-2A<br>Norway-2B<br>France-1A<br>France-1B<br>Belgium-1A<br>Belgium-1B<br>Belgium-2A | 05/27/86-07/11/86<br>05/27/86-08/10/86<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>03/19/86-04/07/86<br>03/04/87-03/22/87<br>03/04/87-03/22/87 | 0.120<br>0.067<br>0.406<br>0.224<br>0.656<br>0.496<br>0.110<br>0.070<br>0.408<br>0.378<br>0.136 | 124<br>426<br>227<br>295<br>317<br>205<br>240<br>122<br>132<br>142<br>125 | 0.339<br>0.052<br>0.802<br>0.533<br>0.907<br>0.615<br>0.363<br>0.520<br>0.967<br>0.993<br>0.987 | 0.023<br>0.051<br>0.227<br>0.148<br>0.449<br>0.225<br>0.064<br>0.012<br>0.098<br>0.112<br>0.027 | 0.056<br>0.037<br>0.047<br>0.064<br>0.066<br>0.101<br>0.024<br>0.015<br>0.023<br>0.010<br>0.005 |
| Belgium-2B                                                                                                                                     | 03/04/87-03/22/87                                                                                                                                                                                              | 0.150                                                                                           | 110                                                                       | 0.971                                                                                           | 0.014                                                                                           | 0.009                                                                                           |

# Table 9. Emissions from Foreign Boards

 $\mathbf{x}_{i}$ 

## Table 10. Summary of Emission Rate Reduction from Coatings

# Underlayment

|                                               | Ser <sub>100</sub>               | Cutoff            | Percent<br>Untreated<br>Ser₁∞ |
|-----------------------------------------------|----------------------------------|-------------------|-------------------------------|
|                                               | mg/m²•h                          | ppb               |                               |
| Untreated<br>Lacquer<br>Polyurethane<br>Latex | 0.158<br>0.109<br>0.028<br>0.150 | 400<br>356<br>400 | 69%<br>18%<br>95%             |

# Industrial Underlayment

|              | Ser₁∞   | Cutoff | Percent<br>Untreated<br>Ser <sub>100</sub> |  |  |
|--------------|---------|--------|--------------------------------------------|--|--|
|              | mg/m²∙h | ppb    |                                            |  |  |
| Untreated    | 0.261   | 741    |                                            |  |  |
| Lacquer      | 0.138   | 583    | 53%                                        |  |  |
| Polyurethane | 0.363   | 571    | 140%                                       |  |  |
| Latex        | 0.389   | 574    | 150%                                       |  |  |

# Low Emitting Medium Density Fiber Board

|                | Ser <sub>100</sub> | Cutoff | Percent<br>Untreated<br>Ser₁∞ |
|----------------|--------------------|--------|-------------------------------|
|                | mg/m²•h            | ppb    |                               |
| Untreated LMDF | 0.524              | 981    | 40% (of regular)              |
| Lacquer        | 0.141              | 981    | 26% (of untreated LMDF)       |
| Polyurethane   | 0.085              | 538    | 6% (of untreated LMDF)        |
| Latex          | 0.605              | 644    | 90% (of untreated LMDF)       |

|                       |     | P   | redicted | НСНС | Conce | ntration | s (ppb) |     |     |     |     |
|-----------------------|-----|-----|----------|------|-------|----------|---------|-----|-----|-----|-----|
| Air<br>Change<br>Rate | 0   | 0.1 | 0.2      | 0.3  | 0.4   | 0.5      | 0.6     | 0.7 | 0.8 | 0.9 | 1.0 |
| Board #               |     |     |          |      |       |          |         |     |     |     |     |
| USM1-1A               | 334 | 253 | 203      | 170  | 146   | 128      | 114     | 103 | 94  | 86  | 79  |
| USM1-1B               | 350 | 259 | 206      | 171  | 146   | 127      | 113     | 101 | 92  | 84  | 78  |
| USM2-1B               | 764 | 450 | 319      | 247  | 202   | 170      | 147     | 130 | 116 | 105 | 96  |
| USM2-1B               | 848 | 388 | 252      | 186  | 148   | 122      | 105     | 91  | 81  | 73  | 66  |
| USM3-1A               | 973 | 379 | 235      | 170  | 134   | 110      | 93      | 81  | 72  | 64  | 58  |
| USM3-1B               | 597 | 306 | 205      | 155  | 124   | 104      | 89      | 78  | 69  | 62  | 57  |
| USM3-2A               | 342 | 249 | 196      | 162  | 138   | 120      | 106     | 95  | 86  | 79  | 72  |
| USM3-3A               | 391 | 234 | 167      | 129  | 106   | 89       | 78      | 68  | 61  | 55  | 51  |
| USM3-3B               | 347 | 257 | 204      | 169  | 145   | 126      | 112     | 101 | 91  | 84  | 77  |
| USM4-1A               | 634 | 328 | 221      | 167  | 134   | 112      | 96      | 84  | 75  | 67  | 61  |
| USM4-1B               | 576 | 318 | 220      | 168  | 136   | 114      | 98      | 86  | 77  | 70  | 63  |
| USM5-1A               | 431 | 317 | 251      | 207  | 177   | 154      | 137     | 123 | 111 | 102 | 94  |
| USM5-1B               | 226 | 169 | 135      | 112  | 96    | 84       | 74      | 67  | 61  | 56  | 51  |
| USM2-2A               | 386 | 229 | 163      | 127  | 103   | 87       | 76      | 67  | 60  | 54  | 49  |
| USM2-2B               | 403 | 248 | 179      | 140  | 115   | 98       | 85      | 75  | 67  | 61  | 56  |
| USM2-3A               | 852 | 544 | 400      | 316  | 261   | 222      | 194     | 172 | 154 | 140 | 128 |
| USM2-3B               | 764 | 479 | 349      | 274  | 226   | 192      | 167     | 148 | 133 | 120 | 110 |
| USM6-1A               | 180 | 146 | 122      | 106  | 93    | 83       | 75      | 68  | 63  | 58  | 54  |
| USM6-1B               | 185 | 145 | 119      | 101  | 87    | 77       | 69      | 63  | 57  | 53  | 49  |
| USM6-2A               | 383 | 243 | 177      | 140  | 115   | 98       | 86      | 76  | 68  | 62  | 56  |
| USM6-2B               | 487 | 291 | 208      | 161  | 132   | 112      | 97      | 85  | 76  | 69  | 63  |
| USM6-3A               | 295 | 232 | 191      | 162  | 141   | 125      | 112     | 101 | 93  | 85  | 79  |
| USM6-3B               | 365 | 270 | 215      | 178  | 152   | 133      | 118     | 106 | 96  | 88  | 81  |
| USM7-1A               | 312 | 187 | 133      | 103  | 85    | 72       | 62      | 55  | 49  | 44  | 40  |
| USM7-1B               | 208 | 139 | 105      | 84   | 70    | 60       | 52      | 47  | 42  | 38  | 35  |
| USM7-1C               | 215 | 133 | 97       | 76   | 62    | 53       | 46      | 41  | 36  | 33  | 30  |
| USM6-4A               | 375 | 304 | 256      | 221  | 195   | 174      | 157     | 143 | 131 | 122 | 113 |
| USM6-4b               | 356 | 289 | 243      | 210  | 185   | 165      | 149     | 136 | 125 | 116 | 107 |

Table A.1 Predicted Formaldehyde Levels at Various Air Change Rates in a House with Complete Underlayment Flooring Using New Technology US Products

#### Table A.2 Predicted Formaldehyde Levels at Various Air Change Rates in a House with Complete Underlayment Flooring Using Foreign Products

Predicted HCHO Concentrations (ppb)

| Air                                                                                                                                             |                                                                                  |                                                                               |                                                                             |                                                                            |                                                                           |                                                                          |                                                                         |                                                                         |                                                                         |                                                                        |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Change<br>Rate                                                                                                                                  | 0                                                                                | 0.1                                                                           | 0.2                                                                         | 0.3                                                                        | 0.4                                                                       | 0.5                                                                      | 0.6                                                                     | 0.7                                                                     | 0.8                                                                     | 0.9                                                                    | 1.0                                                                   |
| Sweden-1A<br>Sweden-1B<br>Norway-1B<br>Norway-2A<br>Norway-2B<br>France-1A<br>France-2B<br>Belgium-1A<br>Belgium-1B<br>Belgium-2A<br>Belgium-2B | 124<br>426<br>227<br>295<br>317<br>205<br>240<br>122<br>132<br>142<br>125<br>110 | 97<br>155<br>197<br>216<br>280<br>184<br>150<br>82<br>121<br>129<br>100<br>91 | 79<br>95<br>174<br>171<br>250<br>167<br>109<br>62<br>112<br>118<br>83<br>78 | 67<br>68<br>155<br>141<br>226<br>153<br>86<br>50<br>104<br>108<br>71<br>68 | 58<br>53<br>140<br>120<br>207<br>141<br>70<br>42<br>97<br>100<br>62<br>61 | 51<br>44<br>128<br>105<br>190<br>131<br>60<br>36<br>91<br>94<br>55<br>55 | 46<br>37<br>118<br>93<br>176<br>122<br>52<br>31<br>86<br>88<br>49<br>50 | 41<br>32<br>109<br>83<br>164<br>114<br>46<br>28<br>81<br>82<br>45<br>46 | 38<br>28<br>102<br>76<br>153<br>107<br>41<br>25<br>77<br>78<br>41<br>42 | 35<br>25<br>95<br>69<br>144<br>101<br>37<br>23<br>73<br>73<br>38<br>39 | 32<br>23<br>89<br>64<br>136<br>96<br>34<br>21<br>70<br>70<br>35<br>36 |
|                                                                                                                                                 |                                                                                  |                                                                               |                                                                             |                                                                            |                                                                           |                                                                          |                                                                         |                                                                         |                                                                         |                                                                        |                                                                       |



Figure 1. Emission Rates of Untreated Underlayment for Coating Experiment



Figure 2. Emission Rates of Polyurethane Coated Underlayment



Figure 3. Emission Rates of Lacquer Treated Underlayment



Figure 4. Emission Rates of Latex Treated Underlayment



Figure 5. Emission Rates of Untreated Industrial Particle Board



Figure 6. Emission Rates of Polyurethane Treated Industrial Underlayment



Figure 7. Emission Rates of Lacquer Treated Industrial Underlayment



Figure 8. Emission Rates of Latex Treated Industrial Underlayment



Figure 9. Emission Rates of Untreated Low Emitting MDF



Figure 10. Emission Rates of Untreated Low Emitting MDF



Figure 11. Emission Rates of Lacquer Treated Low Emitting MDF



Figure 12. Emission Rates of Latex Treated Low Emitting MDF



Figure 13. Examples of US Particle Boards Using Low Fuming UF Resins and a Scavenger



Figure 14. Examples of US Particle Boards Using Low Furning UF Resins



Figure 15. Emission Rates from Swedish Boards



Figure 16. Emission Rates from Norwegian Manufacture #1



Figure 17. Emission Rates from Norwegian Manufacture #2



Figure 18. Emission Rates from Belgium Manufacture #1



Figure 19. Emission Rates from Belgium Manufacture #2



Figure 20. Emission Rates from France Manufactured Boards







Figure 22. Predicted HCHO Levels from Coated Underlayment







Figure 24. Predicted HCHO Levels from Industrial Particle Boards



Figure 25. Predicted Effect of Temperature and Humidity on HCHO Levels



Figure 26. Predicted HCHO Levels From Coated and Uncoated Ball State Boards



Figure 27. Predicted HCHO Levels From Belgium Manufacturer # 1.



Predicted HCHO Levels

Figure 28. Predicted HCHO Levels From Belgium Manufacturer # 2.



Figure 29. Predicted HCHO Levels from Norweign Manufacturer # 1



Figure 30. Predicted HCHO Levels from Norweign Manufacturer # 2



Figure 31. Predicted HCHO Levels from French Boards



Predicted HCHO Levels

Figure 32. Predicted HCHO Levels from Swedish Boards