No. 3127

CORRELATIONS FOR PRESSURE DISTRIBUTION ON BUILDINGS AND CALCULATION OF
 NATURAL-VENTILATION AIRFLOW

M.V. Swami S. Chandra, Ph.D., P.E. ASH RAE Member

ABSTRACT

A review of the worldwide data base on distribution of pressure coefficients (C_{p}) on building surfaces yielded usable data from eight different investigators for low-rise buildings and one source for high-rise buildings. It was found that average surface pressure coefficients for low rise buildings were adequate, and local data were assimilated as 544 average surface C_{p}. A nonlinear regression with wind incidence angle and building side ratio as variables was found to predict these data with a correlation coefficient of 0.80 . Local pressure coefficients rather than average surface C_{p} were used for high rise buildings. More than 5,000 data points were fitted with another nonlinear regression involving the earlier variables plus the location coordinates.

Building pressure coefficient correlations developed in this paper can be useful for infiltration and indoor air quality studies as well as for natural ventilation airflow calculations.

A structured procedure for calculating wind-driven natural ventilation rates. is given in appendix A. This procedure is an enhanced version of the Vickery (1983) algorithm for calculating airflow through buildings.

INTRODUCTION

Better knowledge of pressure distributions on building surfaces has become more importance in recent years for several reasons. The need to maintain indoor air quality by providing minimum air changes in buildings requires knowledge of surface pressure distribution in order to calculate infiltration air flows through buildings. As the costs of mechanical cooling have steadily increased, interest in passive cooling strategies such as natural ventilation has also increased. Detailed knowledge of pressure distribution is also necessary for the calculation of natural ventilation. Parameters such as building geometry, terrain, and other factors influence the value of pressure coefficient (C_{p}).

[^0][^1]art (ASHRAE 1985). However, the correlations are far from complete, since data ara available only for receangular buildings --quite different from typical residantial floor plans.

The range of low- and high-rise building geomecries curve fitced is:

Low rise: Floor Plan - rectangular

$1<$ long to short wall ratio <- 8
$0.1<0$ eave height to short wall ratio < 0.4 (typieal of 1 to 2 story)
$0<\infty$ overhang/eave haight <0.2
$0 \ll$ coof angle < 60 degrees
High rise: Floor Plan - reeeangular
$1<\infty$ long to short wall ratio < 4
$1<$ eave hoight to short wall tacio <- 8
overhang - nore
zoof angle $=0$
The worldeide dete base on preseure coefficient (C_{p}. defined in Appendix, Seceion A. 1) distribution on building surfiaces wes reviewed, providing data from eight differant investigacors for low-rise buildings and one source for high-rise buildings. It was found that-average surface prassure coafficienes for low-rise buildings were adequace, and local daca were assinilated as 544 average surface C_{p}. A nonilnear regression with wind incidence angle and building side Eatio a variables wes found to predict these data with a correlation coofficient of 0.80 .

Local proseure coefficients, racher than surface average, were used for high-rise buildings. More than 5,000 daes poines were fitted with another nonlinear regression involving the earlier variables pius the locstion coordinaces. Building pressure coefficienc correlations developed in this work can be useful for infileraeion and indoor air quality studies an well an for netural ventilation airflow calculaeions.

A seructured procedure for calculacing wind driven naeural ventilation rates is given in appendix A. This procedure is an enhanced version of the Vickery (1983) algorithm for calculacing aimflows in buildings.

APPROACH TO DATA REDUCTTON

The coefficient of pressure over a building surface varies wich the position on che surface, particulariy near the edges. However, such daca are exeremely voluminous and primarily important for wind load caleulations. A logical simplification is co usa che average surface C_{p} for calculating vancilation rates for low-rise buildings. Swani and Chandra (1987) found that the error introduced by uning average surface C_{p} racher chan local C_{p} wes generally about 5\%. A similar comparison by Wiren (1985) showed the error to be under 10\%. However, C_{p} variations along the height of high-rise buildings can be relatively large. Thus, the regression equetions for high-rise buildings were developed for local racher chan average surface C_{p}.

Tind Ancle and Budlding Geomesty

The coefficient of pressure varies considerably with che approach wind angle and, co a lesser excenc, with the geometry of the building (i.e., side ratio and roof slopes).
C_{p} dara, either mean or local, are usually given in terms of the wind angle for each of che four surfaces constituting the house. Most researchers have defined the wind angle with respect to the windward wall of the building, and C_{p} dara for all four walls are tabulated with respece to the wind angle. The disadvantage of chis approach is having co carry che wall number as an additional parametar for curve fiteing. It was felt that defining the wind angle with esspect to the actual surface for which C_{p} is sought, rather than any one surface, would be more appropriace and would be less cumbersome for curve fiefing. Since all data. are available for rectangular buildings, the data could easily be corverted in tarms of our wind angle definition. This would elininate wall numer as a dependene paramerar. The wind angle is defined co be the angle between the outward normel of a surface and the wind direction and
is always a positive value between 0 and 180 degrees (see Flgure 1). Due to the symatry of the data, the actual sign of the angle is unimportanc. The solid line in the figura is the wall surface under consideration, and the doteed line indicates the rest of the building. To account for the effect of the adjacent wall, the parameter side racio (S. in Figure i) is defined and is another parameter influencing the C_{p} value. Data for all the surfaces were converted into this form. Samples of such a conversion are provided in Swami and Chandra (1987).

Two other parameters affecting C_{p} are the ronf slopn (γ) of the wall under consideration and the roof slope (δ) of the adjacent wall (illustrated in flgure 2).

Normalizand_Cp_(NCip)

Different researchers have referanced C_{p} baned on velocitien at different haighes. Since it is proposed to use C_{p} referenced to the valocity at the building height, all C_{p} data in the literature must be re-referenced. To do this, the velocity profile of the study will have to be known a priori. This effort can be considerably simplified if C_{p} at differenc wind angles are normalized with respect to C_{p} at a fixed wind angle. Since C_{p} at a wind angle of zero degrees is usually most reliable and this value is provided by most studias, all G_{p} are normalizad with respect to the G_{p} at the wind angle of zero degrees. The normalized values thus become independent of the reference height, and it is only needed to reference the C_{p} at zero degress to the building height. This will result in the value of normalized C_{p} at zero degrees to be 1.0 regardless of all other parameters, which facilitates in curve fitting.

GONSOLTDATION OF AVATLABLE CP DATA

Pressure coefficients from a number of sources were exanined for useful daca for data raduction and consolidation. The Air Infileration Centre bibliography (Allen 1984) was used extensively to search for original source documents. In addition, somerescarchers in the field were contacted directly. Table 1 sumarizes the sources used and gives the parameters utilized by the authors and the C_{p} values at zero incidence. Refor to Swani and Chandra (1987) for the decails of data extraction.

The data extracted for low rise buildings yielded 544 average wall daca points representing several thousand local C_{p} data that were digitized from contour plots.

A computar program was used to obeain curve fit for the normalized C_{p} daca by step-wise regression cechniques. The program was run with a large number of possible parameters, generated from the combination of wind angle (α), side racio (S), and roof angles (γ and δ). Wind angle and building side ratio were found to significancly influence C_{p}, while roof angles were insignificant. This could be due to some conflicting data as well as to the fact that only wall C_{p} distributions are being correlated.

With the significant paramecers obeained, the actual forn was chosen. The natura of the data imposed several constraines.

1. Regardless of all ocher parameters, the normalized C_{p} must aiways be equal to 1.0 for zero degrees wind angle.
2. The terms containing the roof angles in the equation must disappear from the equation when they are zero, leaving the rest of the equation intact.
3. Since the natural logarithm of the side ratio is the significant paramerer, this term will become zero for $\mathrm{S}-\mathrm{L}$. These terms must be chosen so that chey do not affect the other cerms of the equation. To abide by these conscraines, cerms containing side. ratio as well as roof angles were combined with sine functions of wind angle so that these terms would vanish for wind angle of zero degrees. The final recomended equacion is:

$$
N C_{p}=\underset{\operatorname{CS}\left(C G^{2} * \operatorname{SIN}^{2}(a / 2)+\operatorname{Cl} * \operatorname{SIN}(\alpha / 2)+C 2 * \operatorname{COS}^{2}(\alpha / 2)\right)}{\operatorname{La}(\alpha)+\operatorname{C3*} \operatorname{SIN}^{3}(2 * \alpha * G)+C 4 * \operatorname{Cos}(\alpha / 2)+}
$$

where:

$$
\begin{align*}
& \text { NCp is the normalized Cp } \\
& \text { Ln denotes the necural logarithm } \\
& \text { a is the wind angle In dogrees } \\
& G \text { - Ln(S) (natural log of the side ratio } S \text {) } \\
& \text { The coefficients of the equation are: } \\
& \begin{array}{llll}
C O=1.248 & C 1=-0.703 & C 2=-1.175 & C 3-0.131 \\
C 4-0.769 & C 5=0.07 & C 6-0.717 &
\end{array} \tag{2}
\end{align*}
$$

The correlation coefficient for the above equation is 0.797 , which is a good value considering the diveraity of the daca. Figure 3 shows a scatter plot of the observed versus prediceed data for low-rise buildings besed on Equacion 1. Longer corralacions involving more Eerms, including roof angle corms, and a slighty higher correlacion coafficiont of 0.811 any be found in Swari and Chandra (1987).

The observed NC ${ }^{\text {a }}$ and that calculated using Equation 1 are ploted against wind angle for two cases in Figured 4 and 5 . Note that the curve fit perforas adequately compared to the exporimantal deta. Siailar comparisong for all low-rise building daca are given in Swai and Chandra (1987).

Gp_ar_Zaro_Incidance

Table 1 gives C_{p} values at zero incidence from asch source for the long wall and shore wall (see dofinition of long wall and short wall in Appendix A.1). The data are highly diverse, showing no firm trend with respect to any paramecer. While it is expected that the open tarrain should have higher C_{p} than the suburban terrain .- which is the case with Vickery's (1983) data .- cross comparison of Vickery's (1983) open terrain data with suburban data of ocher references such as Ashley (1984) shows just the opposite. Jensen's (1965) values for large turbulence are always higher than for small turbulence, indicating a conflict in the data erand. On the other hand, Akins (1979) showe no change betwoen short and long wall for all three aapect ratios. It should be pointed out that the idea of normalizad C p developed earlier removes many of the uncertainties of individual experiments from which daca are gathered.

In light of the aboye, it is suggesced that a uniform value of 0.60 be chosen to represent C_{p} at zero incidence for all types of low rise buildings. This represencs the average of all $\mathrm{C}_{\mathrm{p}} \mathrm{s}$ at zero incidencs.

EFEECT OF SURROUNDING BUITRDINGS

Surrounding buildings can have significant effects on the airflow through buildings. Corrolations for change in C_{p} due to the presence of three specific surrounding patterns-rectangular, hexagonal, and a single neighboring building .. were carried out by Swami and Chandra (1987) from the data available in Wiren (1985). Since these are only specific effects, they are not presonead here. However, correction factors were developed based on the generalized shielding coefficients of Sherman and Grimsrud (1982), and the effects af wingwalls, garages, and U shaped $f l o o r$ plans are presented below. They are believed co be of more practical significance.

Correction for Shielding Effects

The factors for reduction in airflow due to shielding were calculaced based on the generalized shielding coefficients of Sherman and Grimsrud (1982). Taking their Shielding Class I to represent a totally unobstrucred house, the correction factor to be applied for che ocher classes was calculated by taking the racio of the Sherman and Grimstud coefficients with respece to the unshielded class. The calculated correction factors are given in Table 2. Note chat the correction factors given in the eable should be applied to the ventilation flow rate and not C_{p}.

$$
\begin{equation*}
\text { Corrected ACH }-\mathrm{ACH} * \mathrm{SCF} \tag{3}
\end{equation*}
$$

where
ACH- a air changes per hour
SCre shielding correction factor

Presence of Garare or Wine Walls

The presence of a garage wall or wingwall protruding from a wall will drastically affect che value of C_{p} depending on the appronch wind angle (Fipure 6 shows a typical layoue). Since no meanured data are available for chis case of practical importance, the following is our best angineering judgement. Studies done by Chandra et al. (1983) show that for an angle of up to 90 degrees between the garage wall and the approach wind (as shown in the figure), the value of G_{p} on. the wall may be assumed to be the value at zero incidence. For angles in the positive direction beyond 90 degrees, the effect of the garage or wing wall is binimal and therefore no modification is suggested. For angles in the nagetive direction, as shown in Figure 6, the preaence of the garage or wingwall produces negacive prossures an if the wind is approaching frow the leoward side. In this case, it is suggeated that the window areas of the wall may be addad to the window areas of the leaward wall of the building.

U-Shaned Butiding

Figure 7 shows a typical U-shaped building. Since measured daca are unavailable for this common building shape also, commonsense guidelines are recomended. The $C p$ of the wall forming the imer surfaces of the U should be modified as follows. For approach wind up to 45 degrees on boch sides of line 00 (Figure 7), the C_{p} valuen of all the U-walls may be eaken an the value at zero incidence since positive pressures will be experienced by chose walls. For anglea beyond 45 degrees and up 5060 degrees on boch sides of line 00 , the wall facing away from the wind approach is likely to be experiencing suction conditions, while the ocher two walls are likely to be experiencing poaitive pressures. The wall facing away from the wind direction should be Ereated as if it were a leeward wall, and its aperture area should be added to the aperture aree of the leward wall of the building. The C_{p} for the other two walls of the U may be eaken as C_{p} at zero incidence. For angles beyond 60 degrees, the flow is likely to bypasa the U ragion, and all walls of the U will experience suction. Therefore, the areas of windows on these walls should be added to the window areas of the appropriate leaward wall. Figure 7 illustrates the different cases.

TERRAIN EFFEGTS

Wind engineers have developed five standard terrain classifications, ranging from open ocean frones to the center of large cities. The terrain enters into the calculation of the refarence wind speed, as discussed in the appendix (Section A.2), since the terrain affects the shape of the approach wind velocity profile.

Another question on terrain effects is whether the shape of the velocity profile affects the C_{p} directly. Akins (1976) conduced a systemacic investigacion of five velocity profiles of high-rise buildings and found that C_{p} dependence on cerrain virtually vanistes if the C_{p} is defined with wind velocities at local height rather than at some fixed height. No one has yec conducted a systamatic study for low-rise buildings, encompassing all five cerrain classes. Most available data are for terrain classes II or III (see Table A-1 for cerrain classifications) and the data are conflicting. Thus, we have chosen to ignore the effect of velocity profile shape on C_{p}.

DATA REDUCTION FOR HIGH-RISE BUILDING

More than 5,000 data points from Akins (1976) are available for all four surfaces for three buildings (lengeh-to-wideh-ratios 1, 2, and 4) and for five wind angles, as well as for 110 locations on the surface of each wall. The horizoncal and vercical coordinaces (XL and 2 H) of the points on the wall are nondimensionalized with respect to the lengeh and height of the wall. C_{p} is referenced with respect to the velocity at the height of measurement.

Because Akins (1976) in using local $C_{p} s$ found no dependence on either terrain or height of the building, no attempt has been made to normalize the C_{p} data, and it was decided to curve fit the actual C_{p} data. However, the data were converted according to our conventions of wind angle (α) and side ratio (S) and x-axis origin to eliminate the wall surface number as one of the variables (see Flgure 8). The final equarion obtained for C_{p} for high-rise buildings is:

$$
\begin{aligned}
& \mathrm{Cp}-\mathrm{CO}+\mathrm{Cl} * \mathrm{Ar}+\mathrm{C} 2 * \operatorname{COS}(2 * \alpha)+\mathrm{C} 3 * 2 H * \operatorname{SIN}(\alpha) * S * * 0.169+\mathrm{C} 4 * \operatorname{COS}(2 * \alpha) * S * * 0.279+
\end{aligned}
$$

$$
\begin{align*}
& \text { C10*2H*SIN(a) + C11*KL*SIN(a) + C12*XL }+ \text { C13*COS (Xr)*S**0.85 } \tag{4}
\end{align*}
$$

where
Ar $=a+3.1415 / 180$ (wind angle in radians)
$X I=(X L-0.5) / 0.5$
and
a, S, XI and ZH have chair umal meaning (See definition in Section A.1)
The coefficients of the equation are:

co	- 0.068	C1	- -0.839	C2	- 1.733	per radian
C3	- - 1.556	C4	=-0.922	C5	- 0.344	
C6	- -0.801	C7	- 1.118	C8	- -0.961	
C9	- 0.691	610	- 2.515	C11	- 0.399	
C12	- -0.431	C13	- 0.046			

Figure 9 shows a scacter plot of observed versus prediceed C_{p} for high-rise buildings besed on Equation 4.

COMPARISUN OF PREDTCIUED AND MPASITRED VENIEIIATION RATES

Chandra et al. (1983) provides ventilation rates measured in a photovoltaic house (FSEC•PV house) for three differont wind directions. This is a cypical three-bedroom, two-bath residence with photovoltaic pancls. These values were compared against values predicted from the correlations obtained here and the calculation procedure shown in Appendix A. Figure 10 shows the plan of the house and Table 3 shows the comparison. In sumary, we can conclude that the suggested procedure and the correlations used are quite accurate for calculating natural ventilation airflow rates. We could noc find other experimencal measurements of natural vencilacion airflow rates for comparison.

DISCUSSIONS AND CONCIUUSIONS

The objective of chis study was to synthesize and develop correlacions for C_{p} daca for the widest possible range of building shapes. Thus, wo had to cackle the problem of correlating confliceing daca from different sources, as can be seen in Table 1 , for the normal incidence C_{p} value $C_{p}(0)$. Since the major objective was to develop C_{p} correlations as a function of the wind incidence angle and the building geometrical parameters, the only feasible way to resolve the inconsistency in the data was to normalize the C_{p} data with the $C_{p}(0)$ value. We do recommend a $C_{p}(0)$ value of 0.6 , which is consistent with the carefully conducted tests reported in Cermak ec al. (1981) and akins and Cermak (1979). It also happens co predice the measured vencilation rates to 118 for the only field-mensured daca we could locace. Thus, we feel that the proposed correlations are reasonable.

We hasten to add chat calculacing airflows through buildings is difficult and cannot be done with precision. Uncertainties in the estimation of site wind speed and the effect of surrounding buildings are likely to be equal to or greater than the uncertainty in estimating C_{p} from the proposed corrolations.

The proposed procedure uses C p data from a variety of sources. All sources give data for simple rectangular floor plans. It will probably be correct to state that over 90\% of singlefamily detached housing in the U.S. is not constructed as a simple rectangle but is L-shaped
or U-shaped or is even more complex due to the presence of garages, porches, ote. Realizing chis, we have given engineering suggestions for computing average wall C_{p} for these popular house shapes. It must be stated again that these are estimates based on educated guesswork. Systematic wind tunnel experiments must be conducted on L, U, and other floor plans to accurately analyze those cases.

Another area where data are inadequate is in the area of roof slopes. Only a few studies have data on models with various ronf slopes. In nur dara annlynis, we fousd no symemntic effect of roof slope, so the recomended correlation dues noc have roof slope as a variable. However, one study did systemetically study the effect of roof slope. These daea were diluted by othor studies with randon roof slopea, so roof slope does not appear am atelatically significant parameter. Additional research on this topic is desirable.

NOMFNCTATIRE

```
A = area, ft2
a - terrain conseant muleiplier, ND (ND - nondimonsional)
ACK = air change per hour, h-1
b - terrain constant exponent, ND
Ca = corracted flow coofficiant, ND
Gp = prasaure coofficient, ND
CQ - flow coefficione, ND
h = hoight at which metorological wiad data are available, ft
H = reforence haight, ft
L - longer side dimansion of building, ft
NCp = normalized pressure coofficient, ND
p - local wind presmure, paf
Q - airflow race, ft %/s
S - sida ratio, ND
SCF = shielding corroceion factor, ND
V = velocity, ft/s
XL - dimensionless horizontal window locacion coordinate, ND
ZH - dimensionless vertical window location coordinace. ND
W = smaller side dimension of buildings, ft
ZV - zone volume, ft 3
```


Greek

```
- wind angle with respect to outward normal of a wall, degree
- roof angle, degree
- roof angle, degrea
- air density, lb/ft
- sumention
- difference
```


Subscript

```
    - refers to zero incidence as in Cpo
    = building cerrain
    - effective
    - value at height h
    = value ac reference heighe H
    - ith or inlet
    - building interior
    - number of apertures
    - iceration number
    - outlet
    - raforence
ref - reference
```


REFERENCES

Allen, C. 1984. "Wind pressure data requirements for air infiltration calculations." Techoicial Note 13, Air Infiltration Centre, Great Britain.

ASIRAE. 1985. Handbook--1985 Fundamentals, Chapeer 14. Aclanca: American Sociecy of Heating, Refrigerating and Air-Conditioning Engineers.

Akins, R.E.; and Cermak, J.E. 1976. "Wind prossumes on buildings." NSF Granc ENG72-0h260A01 and 5NC76-03035. Fluid Mechanics and Diffusion Laboratory, College of Engineering. Colorado SEace University. CER76-77REA-JECI5.

Aking, R.E.; Petarle, J.A.; and Carak, J.E. 1979. "Average pressure coefficients for
 Collins, CO.

Ashley, S.K. 1984. FField and wind tunnel eesting on natural ventilation coolingeffects on thrae Navy buildings." Inahnian Ranopt R-912, Naval Civil Engineering Laboracory, Port Hueneme. CA.

Cermak, J.E.; Paearlen, J.A.; Ayad, S.S.; and Poreh, M. 1981. "Pansive and hybridcooling developments: Natural vencilation-A wind tunnel study." DOE Conerace No. DE-ACO3-80CS11510, Fluid Dymaics and Dfffusion Laboratory, Colorado State Univarsity, Fort Collins.

Chandra, S.; Houston, M.: Fairey, P.; and Kerestecioglu, A. 1983. "Wing walls eo improve natural ventilacion: Full scale results and dasign stracegies." procendings of AsES Richth National Pataive Conferonen, Glocieta, NM.

Hamilton, G.F. 1962. "Effeces of velocity diseribueion wind loads on walls and low buildings:" Thih nublicatipn revite. TP6205 Novamer 1962, Dept. of Mach. Eng. Univ. of Toronto.

Jensen, M. : and Frank, N. 1965. Modal-scale eests in turbulent wind, Part II. Phenomena dependant on the velocity pressure." Whad Londs on Buildinas. Danish Technical Press, Coperhagen.

Lusch, G.; and Truckenbrode, E. 1964. "Windkanaluntersuchungen an Gebauden von rechteckigem Grundriss mit Elack-und Sattaldachern." Berichee aus der Bauforschung, Vol. 41, p25-69.

Sherman, M.H.; and Grimsrud, D.I. 1982. "Wind and infileration tnteraction for small buildings." Annual Meeting of the Amerigan Society of Civil Engineers, New Orleans. Ocrober.

Swami, M.V.; and Chandra, S. 1987. "Procedure for calculating natural ventilation airflow rates in buildings." ASHRAE, Final_Repore, FSEC-CR-163-86, March.

Vickery, B.J.; Baddour, R.E.; Karakaesanis, C.A. 1985. "A study of che excernal wind pressure distribueions and induced incernal vencilation flow in low-rise industrial and domestic structures." Repore No. BLHT-SS2-1983, Boundary Layer Wind Tunnel Laboratory, University of Wescarn Ontario, January.

Niren, B.G 1985. "Effects of surgounding buildings on wind pressure distribucion and ventilative heat losses for a single-Eanily house." Report number M85: 19, The National Swedish Instituce for Building Research. December.

ACKNOWLEDGMENT

We appreciate the financial support of ASHRAE for funding ehis research (ASHRAE research project 448). We thank Mr. WIllian Seacon, manager of ASHRAE cesearch, for his cooperacion throughout tha project. We are grateful to the ASHRAE project monicoring commiteee-Ered Bawen, Tamei Kusuda and Chip Barnaby for their helpful advice and suggestions. We also would like to thank Bishri Abdel-Hanid and Adel Kanal, both graduace assistants at the Florida Solar Energy Center, for their assistance in data analysis.

Staps to be followad in order to calculate ventilation airflows for a known building are given here, Fighe A-1 otver the flow chare of phescens necessarg Section A. propides a list of deffinifion for easy referance.

The asamption inhorant in ehis celculation procedure are:
No seack offoct.
No presmure drop inside building, nogligible effeces du to pareitions.
Perface mixing.
Wind profile can be described by power law.
Use of Cp daca on an average wall balis for low-rise buildings.
Velid for window or other wall apertures only, not for roof level apertures.

STEP 1: Gee wind, building, and temrain daea. The following data should be known in this stap.

Pervain data

Buildinge date

L : Longer side dimension of building (ft)
W : Sanll side dinension of building (Et)
H : Reference height (ft)

- Average window height for tall buildings
- Eave height for low rise buildings (up to 3 stories)

Window parameters

A_{i} : Area of che $i^{\text {th }}$ window ($E t^{2}$)
It is defined as the open window area. For sliding or hung windows, open window area is typically 40% of the rough opening in the wall. For fully operable windows (e.g., awnings or casement windows) assume A_{i} co be the entire glazed area. The window may or may not have insect screening. Carrection factors for insect screoning or awning window blockage when open are given later in step 6 of chis section.

XI and 2H: The dimensionsless horizoncal and vereical locacion of each window on the wall (required for call buildings only - see Figure 8 and definitions).

STEP 2: Using H as the reference heighc, calculate che reference velocity (Vref) at this reference height using procedure ourlined in Section A. 2.

STEP 3: Choose one of the following:

1. If all windows are on a single wall, determine the cocal window area (A). Go to Step 4.
2. If low-rise building:

- Sum window areas on each wall and treat them as single windows.
\because Follow procedure in Section A. 3 and detarmine C_{p} for each wall.

3. If high-rise building: Follow procedure in Seceion A. 3 and decermine C_{p} for each window locacion.

STEP 4: Choose one of the following:

1. Use procedure A outlined in Section A. 5 for single windows
2. Use procedure B outlined in Section A. 6 for one window each on two walls
3. Use procedure C outlined in Section A. 7 for windows on three or more walls

STEP 5: Choose one of the following:

1. If procedura A was used in step 4, ignore this step.
2. If procedure B or C was used, apply the following correction to account for window aperture.

$$
\begin{equation*}
\mathrm{Ca}=\mathrm{CQ} /(1+\mathrm{CQ}) \tag{A-1}
\end{equation*}
$$

where
Ca - is the actual flow coefficione
CQ - ia the flow coefficiont calculated in procedures B or C
Calculace airflow (in $\mathrm{ft}^{3} / \mathrm{s}$):

$$
\begin{equation*}
Q=C a V_{\text {ref }} A_{0} \tag{A-2}
\end{equation*}
$$

STJP 6: Correct for window type and ineect screening by multiplying the flow by the following factors.

1. Fully open avoning window, no screen: 0.75
2. Awning window and 60 porosicy insect screen: 0.65
3. 60: porosity insect screening: 0.85
4. No data available for blockage in casoment windows when the winds are at an oblique angle.

STEP 7: Calculate air change per hour, ACH

$$
\begin{align*}
& A C H=\frac{Q}{Z V * 3600} \tag{A-3}\\
& Z V=\text { Zone Volume }\left(f t^{3}\right)
\end{align*}
$$

STEP 8: Apply correction for surrounding effects to the flow from Section A.4. If ACH is less chan 3 use $A C H$ - 3. Noce chat chis value is based on measured ACH in two field residences with windows fully open on windless nights?

A. 1 DEETNITIONS

The definitions of the various parameters used in the calculation procedure are sumarized here.

1. Pressure coefficient (C_{p}): This dimensionless quantity is defined as:

$$
\frac{p \cdot P_{I}}{1 / 2 \rho V_{I E f} f^{2}}
$$

p. - local pressure on a surface measured by a pressure eap flush with the building surface (psf)
P_{5} - reforence free strean static pressure (psf)
$p \quad-a i r$ density ($\mathrm{lb} / \mathrm{fe}^{3}$)
$V_{\text {ref }}=r a f e r a n c e$ wind spead at a reference height or free straam velocity (ft/s)
2. Wind Angle (a): The angle (in degrees) between the wind direction and the outward normal of the wall under consideration (See Flgure l).
3. Side Ratio (S): The ratio of the width of the wall under consideration to the width of the adjacent wall (see Figure 1).
4. Effective Area (A_{e}): Effective window arnn (ft ${ }^{2}$). Definition differs for differenc cases. For buildings with windows on only one wnll or windows on three or more walls, Ae is the sum of all window areas. For problems with windowa on cwo wells ses Section A. 6.
5. Terrain Consente ($a^{\prime} s$ and b 's) : The valuas of $a^{\prime} s$ and $b^{\prime} s$ chosen from Table $A-1$, which defise the eorrain characteristics.
6. Length Ratio (XL): The dimonsionless horizontal location of a point on a wall. It is the ratio of the horizontal distance of the point from the odge of the wall to the length of the wall (see Figure 8).
7. Height Ratio (2H): The dimensionlese vertical locacion of a point on a wall. It is defined al the ratio of the distance of the point from the ground to the height of the wall (see Figure 8).
8. Long wall : of a rectangular building is the wall having che larger side dimonsion Short wall : of a rectangular building is the wall having the smaller side dimension
9. Roof angle γ : is the roof slope (degree) of the roof parallel to the wall for which Cp la sought
10. Roof angle $\delta:$ is the roof slope (degree) of the roof perpendicular to the wall for which C_{p} is soughe.

A. 2 DETREMTINATION OF RETGRENGE VETOCTIE

The following data must be known

Reference cerpain oaramerers

h : mast haight in the reference terrain (ft)
$V_{\text {rh }} \quad$: wind speed in the reference eerrain at height $h(f t / s)$
$a_{r} \& b_{5}:$ Terrain constants of the reference terrain (Table A-1)

Building Eerrain paramerers

H : haighe in building eerrain where Vref is required (ft)
$a_{b} \& b_{b}$: terrain constants of the building terrain (Table $A-1$)
$V_{r e f}-V_{b H}$: The reference velocity (ft/s) at the height (H) in the building cerrain. This is the reference velocity that has to be determined and used in the calculation procedure.

$$
\begin{equation*}
V_{r e f}-V_{b H}-\left[(33 / h) * * b_{r}\right] *\left[(H / 33) * * b_{b}\right] *\left(a_{b} / a_{r}\right) * V_{r h} \tag{A-4}
\end{equation*}
$$

A. 3 RRESSURE COEFETCIENTS

This section gives the procedure for obeaining C_{p} through the curve fit equations for boch low-rise and high-rise buildings.

Low-rise Building

1. For each wall, decamine che appropriate side ratio (S) according co definitions
2. For each wall, determina the wind incidence angle (a) according co definition.
3. Use Equation 1 and its coefficients given In Equation 2 to calculate the normalized C_{p} (NC ${ }_{p}$) for each wall.
4. Froe tho normalized C_{p} velue, calculate the actul C_{p} by muleiplying the normalized value by the C_{p} at zaro incidence. Use C_{p} at zero incidance to be 0.6.
5. If gerage or wingwell is present on a wal, modify C_{p} for thet wall ae illustraced 15h Figure 6.
6. If the houe is U-shaped, rodify C_{p} for the innar walls of the U as illugtrated in Eigura 7.

Nota that all daca in literatura are for rectangular buildings. staps 5 and 6 above are authors' recomandation on whet to do for cealistic house plans.

Hirh rise Buildins

1. For each window, detezrine its location in tazes of $X I$ and $Z H$ and the applicable side ratio (S) according to definitione.
2. For each window, decermin the wind incidence angle (a) according to definition
3. Use Equetion 4 and its coafficiants given in Equetion 5 co calculate the actual Cp for each window.

A. 4 CORRECTIONS FOR SURROUNDTNG EEFECTS

Corrections are to be appliad to the ventilation flow rata calculated in step 7 of the calculation procedure, based on the general shielding class in which che building is located and correction Eactors of Table 2 and Equation 3.

Noce that these correction factors should be applied to the ventilation flow rate and not C_{p}.

A. 5 PROCEDURE A: SINGFE WINDON

The formula for calculating ventilation rates through a single window is given by:

$$
\begin{equation*}
Q=1.766 \mathrm{~A} \mathrm{~V}_{\mathrm{ref}} \tag{A-5}
\end{equation*}
$$

where
Q - Is the airflow (in $E t^{3} / \mathrm{s}$)
A - is the open aperture area of all windows on chat wall (in $f c^{2}$)
$V_{\text {ref }}$ - is che wind speed (ft/s) at the building site at reference height. For low-rise buildings, use eave height as referenca heighe. For high-rise buildings, calculate airflow separately for each floor using ceiling height of chat floor as the reference hoight.

The reference wind speed at the site reference height can be calculated from meteorological detarusing the procedure outined in Section A. 2 .

A. 6 PROCEDURE B: ONE INTET AND ONE OUTIET

The procedure for calculating the flow ehrough a cross ventilated building with one effective inlet and one effective outlet is presented here. The procedure can be used for a low rise building having windows on two walls or for a high- rise building having one window each on two walls.

The airflow coefificient in such roons can be expressed as

$$
\begin{equation*}
C Q=Q /\left(A_{Q} V_{\text {ref }}\right)=C d\left(\Delta C_{P}\right) 1 / 2 \tag{A-6}
\end{equation*}
$$

where

CQ is the flow coefficient
Q is the flow ($\mathrm{ft}^{3} / \mathrm{s}$)
A_{0} is the offective window area $\left(f t^{2}\right)=A_{0} A_{1} /\left(A_{0}{ }_{0}+A_{i}\right)^{1 / 2}$
where A_{0} and A_{1} are the open outlet and inlet areas respectively (ft ${ }^{2}$)
Cd is the discharge Coefficient $=0.62$ (recomanded per Swami and Chandra 1987)
$\Delta C_{p}=$ Prasaure coafficient diffarence across the inlet and outlet.

A. 7 PROGEDURE G: MUTTITPLE INT ATS AND OUTILETS

The calculacion procedure deacribed here uses the Vickery (1983) model. The model searts with the standard orifice flow equation through the i ch aperture. Note: in this procedure, apertare means the sum of all open areas on a wall for low-rise buildings or an individual window for high-rise buildinge.

$$
\begin{equation*}
Q_{i}=C d_{i} A_{i} v_{r \in f} \frac{\left(C p_{i}-C p_{i}\right)}{\left|C p_{i}-C p_{I}\right|^{1 / 2}} \tag{A-8}
\end{equation*}
$$

where

```
\(Q_{i}-\) Flow through the \(i^{\text {th }}\) aperture ( \(\mathrm{ft}^{3} / \mathrm{s}\) )
\(\mathrm{Cd}_{1}\) - Discharge coefficient for the ith aperture 0.62 (recommended value,
        Swani and Chandra 1987)
    \(A_{1}=\) Area of the \(f t h\) aperture ( \(f t^{2}\) )
    \(V_{\text {ref }}=\) Reference velocity (ft/s)
    \(C_{P_{1}}\) - Pressure coefficient for the ith aperture
    CPI - Incernal pressure coefficient (unknown)
```

The numerator and denominator are writen specifically to accounc for inflows and outflows Equation $A-8$ is nondimensionalized by $V_{r e f}$ and (effective) area A_{e} (where A_{e} is the sum of all window areas in $f t^{2}$) such that Equation $A-8$ is recast as:

$$
\begin{equation*}
\Delta C Q_{i}-C d_{i} \frac{A_{i}\left(C p_{i}-C \dot{p}_{i}\right)}{A_{e}\left|C p_{i}-C p_{I}\right|^{1 / 2}} \tag{A-9}
\end{equation*}
$$

An iterative solution (since $C_{P I}$ is unknown) is obtained as follows:
(i) Define two stareing valuas of $\mathrm{CPI}_{\mathrm{I}}$ as

$$
\begin{equation*}
\left(C p_{I}\right)_{1}=1 / n \cdot \Sigma C p_{I} \tag{A-10}
\end{equation*}
$$

where
n - number of apertures
and

$$
\begin{equation*}
\left(C P_{I}\right)_{2}-\left(C P_{I}\right)_{1}+.01 \tag{A-11}
\end{equation*}
$$

and compute the corresponding values of net inflow Σ_{1}, and Σ_{2} where, net inflow for the $\mathrm{N}^{\text {Eh }}$ iteration,

$$
\Sigma_{N}-\sum_{1=1}^{n} \Delta C Q
$$

(ii) Compute ane eatimate (CPI)N, for the $N^{\text {th }}$ iteration, from the relationahip;

$$
\begin{equation*}
\left(C_{P_{I}}\right)_{N}=\left(C P_{I}\right)_{N-1}+\frac{\Sigma_{N-1}}{\sum_{N-2}-\sum_{N-1}}\left(\left(C_{P_{i}}\right)_{N-1}-\left(C_{P_{I}}\right)_{N-2}\right) \tag{A-12}
\end{equation*}
$$

(iii) Compute the corresponding value of the net inflow,

$$
\Sigma_{\mathrm{N},} \text { and test }\left|\sum_{\mathrm{N} \mid}\right|<10^{-4}
$$

If yes: put $C_{P I}-\left(C_{P I}\right)_{N}$ and compues the elemantal flow coefficients $\Delta C Q_{i}$
If no : recurn co (i)
The Elow coefficiont into the building can then be evaluaced by suming $\Delta C Q_{1}$ over all positive. values, while the Elow through a given surface of a high-rise building can be obtained by an algebraic sum over the regions comprising that surface.

$$
\begin{equation*}
C Q=\Sigma \Delta C Q_{\mathbb{L}} \text { for all poaiteive } \Delta C Q_{\mathbb{L}} \tag{A-13}
\end{equation*}
$$

A. 8 EXAMPLE

A sample calculation comparing predicted and measured ventilation rates is presenced here Chandra (1983) provides measured data for the FSEC PV house for chree different wind directions. The vencilation rate for one wind direction is calculated here. Figure 10 is a plan of the experimencal house, showing the window locations and areas (in ft^{2}). The window areas are open aperture areas with insect screening. The zone volume is $9300 \mathrm{ft}^{3}$. A uniform discharge coefficiant of 0.62 was assumed.

```
Wind direction 87 degrees (north = 00}\mathrm{ , ease = 900}\mathrm{ , souch = 180
```

Step 1:	
h	$=33 \mathrm{ft}$
$\mathrm{V}_{\text {Th }}$	$=8.2 \mathrm{ft} / \mathrm{s}$

From Table 2:
$a_{r}=110$
$b_{r}=0.15$
$a_{b}=1.0$
$b_{b}=0.15$

Since the meterological daca wore collected on site, the constants for the reference terrain and the building eerrain are the same. This may not be the case if, for example, che meterological data are taken from the airport and the building is situated far away in a developmant.

$$
\begin{aligned}
& H=7.66 \mathrm{ft} \\
& \operatorname{segp}_{\mathrm{V}_{\text {tef }}} 2:=8.2 *(7.66 / 33) * * 0.15-6.6 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

ep 3:				
Windows	South	East	Noreh	Weat
Araa (ft ${ }^{\text {) }}$	16.91	10.67	15.3	2.66
Wind angle (a deg)	93	177	87	42
Side ratio (S)	1.56	0.64	1.56	0.64
0.6* NCp (from Equation 1)	-0.337	-0.337	-0.253	0.347

Correction for the presence of the garage is applicable to the north wall. The C_{p} for that wall is modified to 0.6 ar per Eigure 6.

Stape 4 and 5:
Procedure C was prograned into a computer that directly gave the air change per hour (ACH) given all previous inputs. The reaule from ehe procedure is ACH $=22.56$.

Stepa 6 ehsough 8:
The corraction factor for insect screnning - 0.85
SCF $=0.88$ (amauning Clase II shielding of Sherman and Grimarud)
Corrected ACH $=22.56 \pm 0.88 \$ 0.85=16.9$
Measured $=19.0$ (Chandra 1983)
\% difforence - -11:

TABLE 1
Source of Data Showing Model and Iorrain Characteriseics and
C_{p} at Zero Incidence Referonced Eo. Eave Hoight

Source		L: 17 : H	Model Roof	Terrain	C_{p} at zero Long wall	incidence short wall
jensen	(1965)	2:1:1	Elac root	Open	. 500	. 559
JENSEN	(1965)	2:1:1	flac roof	Industrial	. 600	. 616
JENSEN	(1965)	2:1:1	1:1 roof	Open	. 592	. 599
JENSEN	(1965)	2:1:1	1:1 roof	Industrial	. 685	. 599
JENSEN	(1965)	2:1:0.5	1:1 ront	Indistrial	. 913	. 952
Cermak	(1981)	36:36:24	1:2 500E		621	. 609
HAMILTON	(1962)	1:1:1	flat roof	Suburban	. 610	. 610
HAMILTON	(1962)	1:1:1	15 deg roof	"	. 511	. 548
HAMILTON	(1962)	1:1:1	30 deg roof	*	. 476	. 493
HAMILTON	(1962)	1:1:1	45 deg coof	*	. 546	. 536
VICXERY	(1983)	100:80	1:12 roof	Open	. 564	. 518
VICKERY	(1983)	125:80	4:12 roof	Open	. 403	. 253
VICXERY	(1983)	125:80	1:12 roof	Open	. 448	. 495
VICXERY	(1983)	125:80	12:12 500f	Open	. 479	. 186
VICXERY	(1983)	125:80	4:12 roof	Suburban	. 384	. 281
VICXERY	(1983)	125:80	1:12 roof		. 394	. 311
VICXERY	(1983)	125:80	12:12 roof	${ }^{*}$. 523	. 168
WIREN	(1985)	130:85:52	1:1 roof	Open	. 635	. 722
LUSCH	(1964)	4:2:1	0 deg roof		. 628	. 600
LUSCH	(1964)	4:2:1	10 deg root		600	. 580
LUSCH	(1964)	4:2:1	20 deg root		. 600	. 620
LUSCM	(1964)	4:2:1	30 deg roof		. 740	. 620
LUSCH	(1964)	4:2:1	40 deg roof		. 660	. 720
LUSCH	(1964)	4:2:1	60 deg roof		. 772	. 900
ASHLEY	(1984)	8:1:0:5	Elat roof	Suburban	. 690	630
ASHLEY	(1984)	10:3:1:5	20 deg roof	"	. 727	. 674
ASHLEY	(1984)	2:7:1:0:5	24 deg roof	"	I. 209	. 817
AKINS	(1979)	1:1	flat roof	"	. 613	. 613
AKINS	(1979)	2:1	flat roof	"	. 613	. 613
AKINS	(1979)	4:1	Elat roof	"	. 613	. 613

Noce: Where building heighe is noe specified, the C_{p} was obeained at by averaging the data from models of the same side racio but different heights.
Long and short walls refor to the larger and shorear building side.
table 2
CORRECIION FACTORS FOR GENERALIZED SHIELDING

Shielding Class	$\begin{aligned} & \text { Correction } \\ & \text { Facror (SCF) } \end{aligned}$	Description
I	1.0	No obstruction or local shielding
II	0.88	Lighe local shielding with fow obstructions (e.g., a fow trees or a shed in the vicinity)
III	0.74	Moderace local shielding; some oberructiona within two house haighte (e.g., thick hadge or fence and nearby buildings)
IV	0.57	Henvy shiclding; obstruction around most of perimecer building or crees within Eive building heighes in most direceions (e.g., well developed Erace houess)
V	0.31	Very heavy shielding; large obstruction surrounding pertmeter within two house hoights (e.g., typical downtown area)

TABLE 3
COMPARISON OF PREDIGTED AND MFASURED ACH

	Wind dir. (degrees)	Wind Speed at 10. (mph)	$\begin{aligned} & \text { Measured ACH } \\ & (1982) \end{aligned}$	Calculaend ACH	* Diff.
1	87	5.6	19.0	16.9	-11
2	140	9.7	29.8	29.9	0.4
3	152	7.1	23.3	22.5	-3.2

table a-1
terrain parameters for standard terrain classes

Class	b	a	Description
I	0.10	1.30	Ocean or ocher body of water with at least 5 km of unrescricted expanse
II	0.15	1.0	Flat terrain with some isolated obstacles
III	0.20	.85	Rural areas with low buildings
IV	0.25	0.67	Urban, industrial or forest areas
V	0.35	0.47	Concer of large city


```
Figure 1. Conventions for wind angle (e) and side ratio (S)
Note: a : is the angle between the wind direction and the outward normal
5 : is the side ratio ( \(\mathrm{H}_{2} / \mathrm{N}_{2}\) )
\(W_{1}\) : is the widen of the wall for which \(C_{p}\) is sought
\(W_{2}\) : is the widen of the adjacent wall
```


Figure 3. Correspondence of predicred and observed normalized C_{p} for low-rise buildings.

Figure 4. Comparison of our prediction wich observed daca from Jansen (1965)

Figure 5. Comparison of our prediction with observed dace from Akirm (1979)

Figure 6. Correcelon/rodificarion to C_{p} for the presence of garage or wingwails.
Noea: Corraction/modificarion for wall AG should be as follows:

1. For β in the positive direction up to $90^{\circ}, C_{P}$ eay be eaican as the value ac zaro incidence (i.8., $c_{p} \infty$.6)
2. For β in the positive directuon greater thm 90°, no coszection is surgeaced.
3. For β is thegerive direceion up to -90°. includa the aparruras in mall AC as if ehey are in wail EC asd une nosmal aquenios.

Figure 7. Modification to C_{p} for U-shaped buildinge.
Noea: the following modifitacion to C_{p} for walls $A B, A C$ and $B D$ is suggesead:
i. For argias A up to $\$ 45^{\circ}$, C_{p} for walls $A B, A C$ and $B D$ ary bo argued to be the velue at zaro incidince (1.e., $C_{p}=0.6$).
11. For pesitetve A up to 60°, walls $A B$ and $A C$ eny be eacan so ac 2050 ingidmage (1.e., $C_{p}-0.6$). Window(s) on mall. BD my be added to tbece in wall EF.
1i1. For pegative A up to 60°, walls DB and $A B$ an be eaken to be ac zaro focidage (i.e., $C_{p}=0.6$). Windiow(s) in $A C$ my bo added to those in -11 타.
iv. For amgle β bsyond $\$ 60^{\circ}$, the apernures in all trree vallx should be craaced as if they are in leeward region. Thus, add all che apercure areas in wall $A G, A B$ and $3 D$ and include ches as areas in wail GE for $\beta>+60^{\circ}$, and in wall HF far $\beta<60^{\circ}$.

Figure 8. Definieion of $X 1$ and $Z H$ for call buildings.
Nora: Langeh racio XI $\quad x / L$
Haighe zacio Z4 - 2/H
$z=0$ is always the ground leval (sae clovacion)
$x=0$ mage bo eaken as the edge clocer to the eail of che wind (see plan).

Figure 9. Correspondence of predicted and observed C_{P} for rall bulldings.

Flgare 10. The plan of the houee und for veneilation experimanex, showing vinden loarelon and windew arean (in sq. Et.).

26

[^0]: Over the years, the civil engineering. community has conducted wind tunnel investigations of C_{p} distributions to determine their importance in wind load calculations. This paper attempts to assimilate this worldwide data base for use in natural ventilation calculations. Results of this ASHRAE-sponsored study have produced a significant advance in the scare of the

[^1]: Swami, M.V. is Research Engineer, Research and Development Division, Florida Solar Energy Cancer, Cape Canaveral, FL.

 Chandra, S. is Director, Research and Development Division, Florida Solar Energy Canter, Cape "anaveral, EL.

