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ABSTRACT

The algorithms for interpreting muitizone air flow measurements
using tracer gases which are presented 1in the literature are
based on implicit rather than clearly desiined hypotheses, an
important examplie being that the temperature of the air 1is
assumed to be homogeneous and constant. Moreover, an errcr
analysis is often omittea and the techniques presented till now
can still pe devalopped.

This paper presents the necessary hypotheses, extends the
interpretation algorithms <to 1include cases where the air
temperature 1s neither homogeneous nor constant, and describes
a general method for the error analysis which can be used for
any measurement technique.

1 CONSERVATION BEQUATIONS
1.1 Présentation of the problem

The literature addressing air flow measurements using tracer
gases contains a degree of confusion related to the physical
principle involved, which can lead to errors when using the
presented equations. These equations are based on the
conservation of the mass of tracer and the mass of air, but 1t
is often volumes which are measured and volume flows which are
expected to be the result. The misunderstanding arises from the
range of definitions of the tracer gas concentration: parts per
volume or parts per mass, mass of tracer per volume of air or
even molarity or partial pressures (these latter two
definitions are not used in this topic).

In the original paper of Sinden {1}, the conservation equations
of the tracer masses are correctly written in mass units but
does not specify that the concentration needs to be expressed
in mass of tracer per voiume of air. ‘fhe equation (Z) of
sinden, however, expresses a conservation of the volume or air,
which is true only when the density is unmiform and constant,
but this fact is not stated. In the review papers (2 and 3],
the units used are not clearly defined and the equations are
written in volume units whereas the basic principle is the
conservation of mass. In [4] and (5], the equations express
clearly the conservation of the volume of air, but the
hypothesis of constant and uniform density 1s not stated.

The objective of this paper is to present clearly the units
used for the physical quantities, the hypotheses together with
the resulting equations, which are modified to be used in the
case of varying air density (that is varying air temperature)



1.2 Définitions

There are AN zones (enumerated by 1 and ) going from | to N)
into whicn N different tracers enumerated bv the inde: K are
injected. In principle, each zone receives oniy one tracer. Ao
tracer i1s 1njected in tnhe outside air (the zone 0), which is
supposed to be of infinite voiume.

Let \i be the volume of the zone i [m!]

m the mass of air in the zone i [kg]

Ti the absolute temperature in the zone i (k]

Vik the voiume of tracer k in the zone i [m3]

m *» the mass of tracer k in the zone i [kg)

ci » the volume concentration of the tracer k in the zone i (m3/m? ]
Ci ¥ the mass concentration of the tracer Kk in the zone i [kg/kg)
gi * the volume injection rate of the tracer k in the zone i [m3/s]
@& ; the volume air flow rate from the zone i to zone Jj [m®/s]

pi the density of the air in the zone i: A= m/\, [kg/md ]

F‘k the density of the tracer k in the zone i: gik = mh/\:*  [ka/me]
p* the densityv of the tracer & when injected [kg/m®]

Mk the molecular mass of the tracer k [kg/Mole]

8i ; the "non- Kronecker’ delta: & ;= 0 if i=j, & i= 1 if 1¥)

I M W M MW N W e
> x r r or

The variavles marked with an asterisik are runctions of the
time.

1.3 Basic hypotheses

H1l: In each zone, the tracer concentrations are always
hamogeneous.

2: The atmospheric pressure is constant and hamogeneous.

3: The injection of tracer does not change the density of the
air.

H
H

The first hypothesis is the weakest. 1n practice, an homoge-
neous concentration can only be achieved by the use of mixing
fans, but these fans have the effect or changing the tempera-
ture gradients and therefore the infiltration conditions.

The other two hypotheses are easily satisfied, since the short
time variations of the atmospheric pressure are of the order of
10-4 (daily variations of the order of a percent) and the
tracer gases are generally injected at very low concentrations
(104 in volume or less).

1.4 Conservation of the mass of the tracer gas k in the zone i

The mass concentration is, assumed that m* << my (hypothesis
H 3):
m A pik vk
Gh o= — hence m& =P Vi Gk (1

pi v poovi

The conservation equation of the mass of tracer ik in the zone 1
states that the change of tracer mass within the zone is the
sum of the mass of injected tracer and the mass of tracer
contained in the air coming into the zone, minus the mass of
tracer contained in the outgoing air:




d N N

-=l Vi Gih) = phogh o+ Z fi Gk Wi & - pi Gh @& &, (2
dt J=0 =0

Mass change Injection infiltration Exfiltration

An extension of the hypothesis H 1 1s aimplicit 1in this
equation, wnich is:

H 4: The air frlows entering a zone do not modity the
homogeneity of the concentration 1in that zone. In other
words, an immediate and perfect mixing Is assumed.

1f we replace in equation (Z) the mass concentration by the
volume concentrations given by:

\,vil\ P R
Cih = ——- hence (ih = === ¢, h {3)
Vi i
we obtailn:
d N N
-—tp;k Vi cih) = P* gt + I ko &y - pa“ GE¥ T @i &
at j=0 Jj=u

The tracer density is defined bv gi* = m k/Vi* where the volume
\ih 1s at the atmospheric pressure p. Using the perfect gases
law for the tracer k:

pVik = mbh K Iy /Me (5)

(where R 1is the molar gas constant (8,31396.10-23 Jj/k), M+ the
molar mass of tne tracer k and ii the absolute temperaturs ot
the zone 1), the density can be computed:

p‘._\r]l\
p-‘ h S emema—— ‘b,

R'l)

and substituted in equaticn (4), Dividing this equaticn by
p:M:, we get:

N
—mmmmem| 2 —m= 4 D mmmeemeeeee - == s D@ & (1)

The left hand side of this equation can oe expanded, for a zone
with constant volume:

dl-\"‘ ci » Vi . Vi ok .,
—— | m——— T e O h - e T (8)
dt Ti Ti o

| )

Equations (7) and (8) represent a compiete statement of the
conservation of the mass of tracer gas. 1o derive the form
encountered in the literature from these equations, wve need two
more hypotheses:

(4)



H 5: The temperature does not vary with the time.

H 6: The temperature is the same throughout the whole building
and the outside air.

Hypothesis H 5 is more important than it appears. In fact, this
hypothesis wants to make the second term or the right hand side
of equation (&) negligible when compared to the first one. In
this first term, there is the derivative of the concentration,
which is in principle 2zero if the constant concentration
technique is used. 1n this case, even very small temperature
variations might be too large to satisfy hypothesis H 3.

in fact, hypothesis H 5 can be replaced by the hyvpothesis that
the relative variations or the temperature 1n the zone 1 1s
negligible when compared to the reilative ‘ariations of the
concentration of any tracer. lhat is:

Ti /Ti << cik/oih

Hypothesis H 6 would be satisrfied if the temperatures of the
various zones are the same, if the tracer is injected at the
building temperature and finally if the measured building is
neither heated or cooled. Otherwise, relative temperature or
density differences of up to 10 % might be reachecd (say 30 K,
indoor-outdoor temperature difference for an indoor temperature
of 293 K).

Applying both hyvpotheses H 5 and H 6 to equation (7), we get
the usual form encountered in the literature:

Vi cih =gk 4+

TR G

N
Cik Qs &y —Cik T @ 6i; (9)

J=0 J=0

1.5 Air mass conservation

The conservation equation for the air mass is obtained the same
way as equation (7), except that here the tracer is the air
itself, which means that:

- there is no air injection flowrate (qik = 0)

- concentrations are all unity (cik = 1, hypothesis H 3).

Applying all the hypotheses H 1 through H 4, we get:

d N N
=—=@Vi)= I @i & - pi LQ; 6 (10)
dt J=0 Jj=0

or, using again the perfect gas law:

Vi . N Qi & 1 N
-=—=Ti =2 L ‘== - e L& & {11}
Ti ¢ J=0 T; T =0

If all the internal temperatures (i, j > 0) are assumed to be
equal but different from the outdoor temperature To; we get:



z

Pu N ;.li

-~ i + S Qi 6 T IR & + Vi —-- tlz)
Pi J=1 Jsv OB

/

where pui is the indoor air densityv. With the perfect gas lav,
we get:

Ti
@y &y -V - {i3)
V] T;

Ti
-= Goi +
To J

Qi & =
i J)

[TH 5 -4
TR 4

Here again, the air mass conservation equation found in the
literature implies that the indoor temperature 1s constant and
equal to the outdoor temperature.

1.6 Basic equations

Substituting relation (11} in equation (7) combined with :8),
we obtain N“ equations for N unknowns Q;; , which are limited
only by the hypotheses H | through H 4:

Vi . Vi cih . ai* NCikh @y 6 [ N Qi &g v
— G = e T = === + ¥ memm——————— -ci* | e + -
Ti Ti = T =1 T;

This system of equations can be rearranged and coupled with the
svstem (11) to get N(N+l) equations for N(N+!}) unitnowns. lhis
svstem allows us (in principle) to compute all the air flow
rates at any time from the measured values of the tracers
concentrations, the injection rates and the temperatures:

Vi . a*r N icjk =c¥)
-~ Cih = e 4 T e Qi & (135)
Ti T i=0 T;
N Q.)l 8. J N \. .
Qo =Ti £ =—-=——=—r - L@ b +—T (16)
J=0 T; j=1 1
[ e =t

In equations (15) and (16), as everywnere eise in that paper,
the temperature of the volume flow @;j; is the temperature T; of
the zone j, from which the flow is coming.



1f the hypotheses H 5 and H 6 are satisried, the usual and
simpler form can be used:

VL ,vooih o zgh L ik =m0 k) W i

e - - = ——— ————————— -

Note: For a single zone (i=l, j=0), equations (15) and (lc)
simplify to:

Vi . o J} {Co - C1) T, Vi o
== €1 = === 4 —m—mmoee- @1 and Wo = -- Qo1 + -- Ti(iy)
Ty T To To I

and, assuming constant and homogeneous temperature, (17) and
(18) become:

Vict =1 + (co - C1) and o = Woa

2 OOMPUTATION OF AIR FLOWS FROM THE MEASUREMENTS.
2.1 Zone by zone systems of equations

At each measurement time interval, The measurements give
discrete values of ci», 1i and q® (i, k = . to \). krom these,
the flows w; can be computed. Here, 1 and 1 vary from U to N
but 1 £ j.

In equation (13) or (17), i and ik vary indeperdentiy from | to
N. There is hence a system of M\ equations which, combined with
the N equations (i) or (18) allow us to find the XN+ N
unknowns @ ; . %
The systems of equations (15) and (17) are an assembly of N
independent sub-systems containing the equations for each
given zone. Each sub-system can be written in a matrix form:

Y, =GN’ {20)
where Y; is the vector having N components Y &:
Vi . qk
Yib 2 == ik = == where k runs from 1 to N 121
T; T
or, if the hypotheses H 5 and H 6 are assumed:

Yi = (Vi =aqity ooy Vit =gty v.e y ViV = qih) (2%)



Note: i1n principie, only q' dirfers from zero, since only the
gas 1 is injected in the zone i. Moreover, if the injection is
perfect in a constant concentration technique, ¢! = 0.

X’ is the vector containing the unkrown fiows to the zone 1i:

-\_i_,:(%inliv 'l|Q°l.i|0| %01-'!;'0 l‘-ﬁ\'i) ‘2(5’

and (; ' a matrix having the element 6ck; in row Kk and column j:

OCkj T ===—————— teh)

or, assuming H o and H 6:
6Cki = Ccjbh - b Ly

The matrix (' has N rows and >+1 columns, bur the column 1 1%
filled with =zeroes. The vector A\ has alsc n+i componente, the

component i, corresponding to Wi Deing zero. we can therarore
contract the srstem (20) into:

Y, =

e

N (26)

where X; 1is the vector Xi ' without the the ccmponent i, and ¢;
the matrix (i’ without the column 1. The system (26) is then

entirely determined 1if the matrix ¢; 1is not singular., It is
solved in principle by:

VI

e

S T (27)
which gives the & flows ;i from the zones j (j = 0 .. N) to
the zone 1i. Solving (2¢) for the N zones, we get all the flows
Wi where j =0 .. Nandi =1 .. N. tThe N remaining flows Q
are computed using the N equations (16) or (18}

Note: This resolution method differs slightly from the one
presented oy Sinden [1] and Perera {2] but seems simpler if the
constant concentration technique is used.

2.2 Discretisation

The time derivatives of the tracer concentraticn appear in the
vector Yi , and tne derivatives of the temperatures are used in
equation (16). The equations (26) and (16) can be scived at
each uwme interval, if we write either the beckwards
derivative:

cihit) = foid(t) = cibh(t=5t)]/6t 128)

Tik(t) = [Tid(t) = Tib(t-61)]/6t {29)

or the forwards derivative:

cik(t) = [cihitebt) - b (L) ]/6T 1309
Tis(t) = [T, k(t+6t) - Tik(v)}/6t (311



For causality reasons, equaticns (28&) and (Z9) may be better.

4 test is running with botn possibiiities orr a set ot
measurements made at the LESU on a single cell. for this cell,
using equation (19):

where T 1is the temperature of the tracer when injected, T, the
temperature of the air in the 2zone and To the outdoor
temperature.

In the reality, the measurements with the constant

concentration techniques are done the following way:

8 At a time to, a sample of the air of a defined zcne is take:,
and analyzed and this operation lasts for the time &t..

B At time to+6ta, the amount of tracer gas necessar< to
maintain a constant concentration is injected in the zone by
opening a valve for a calculated time &tinj .

B The start of the next sampling takes part some time aftar the
end of this injection.

Hence, the sampling-analysis-inijection cvcle lasts a period or
time which should be taiten as a "natural” time step for the
discretisation. Usually this time step 1is also the time
interval between the records of measured data.

In this paper, all the variables t(except the wvolumes of the
zones) may depend on time but it is implicitely admitted that
they are constant during the discretization time step. This
assumption seems obvious, since we have no information of the
variation of the concentrations between the measurements.
Nevertheless, it shall be remembered that the time step may be
large (e.g. 10 minutes) when compared to the time constants of
the possipble changes of the air- and tracer injection flows,
Because of this, interpretation errors may occur, generally
overestimating the air flow rates by several percent.

It is possible that a more refined interpretation method could

be found, taking into account that the tracer injection rate is

not constant during the measurement interval and that the

tracer concentration may change during that intermal. An
indication of how this might be done can be found in the work
ittomikki did for U-value measurements [6].



3 ERROR ANALYSIS

3.1 The problem
As a result of an experience, we have to solve a system of
equations:

Ax=v {33
where vector y and matrix A both contain measured ccefficiznts
(vi and a;;) which are perturbated with errors represented
respectively by a vector ¢y and a matrix &.. The question 1s:
which is the resuiting error 6x on the vector x?

Since the components Xi are functions of the coefficients a, ,
and y;, their variances can be computed approximately by:

oxi X
84(xj ) = T ——~=8%(a;j) + T --- sy, ) t3h
J Bai; J 6v;

where s“(a;j) and s*(y;) are the ~variances of the measured
coefficients. If the errors in the variables a;; and yv; are
independant and symetrically distributed and if the function is
not far from linear, this first order error analysis gives
satisfactory results [9]. However the computation time required
increases very strongly with the number of variables (that is
the number of zones).

If the matrix 6A and the vector §v were exactly known for a
given case, we could write:

(A + 8A) (X + 6x) = ¥ + by (33)
and, taking (33) into account, this coula be solved:
6X =tA + HA1-i 16A X + bY) 136)

Equation (36) can however not be used to determine the absoiute
error or a statistical standard deviation. tor that latter
purpose, we can use (36) several times in a Monte-Cario
process, varying the components of SA and §y at random but
according to their probability density function. This provides
several vectors ¢6x from which an estimate of the probability
density functions of the components can be calculated.

The vector 6x contains a large number of values. It would be
helpful to represent the error by a single figure. To obtain
such a single figure, we need the following definitions, which
can be found in the specific mathematical literature (e.g.
9.

3.2 Vectorial and satrix norms

The norm |3| of a vector x is any operation of R"™ in R
satisfying:

¥] 20 and x| = 0 if and only if x = 0
cx] = |e| Jx| for any c € R {37)
x+y] < I3} + o

For example, the euclidian norm (vhich corresponds to the
standard deviation if the average <x>=U0):



fxfz = viZ =< %) (38

fulfills the relations (37}, but there are other norms, like
§xf1=fxi | or the infinity norm defined by fxf e=max|xi | .
The norm |A] of a matrix A is any application N(A)->fa] € R
satisfying:

fA] 2 0 and §af = 0 if and only if A = 0

lcél = |c! L\ﬂ for any ¢ € R (39)

VRN

The matrix norm jafj 1s consistent with the vectorial norm |z
if:

E

The matrix norm subordinated tc the vectorial norm inf is
aefined by:

[P

Xj = jAf-§x} for anv x {40

jaf = max(a xf/fx|) for any x 7 0 (41

The subordinated matrix norm is the smallest one which is
consistent witn “-‘iﬁ For example, the norm ﬂ.'-_\uz, defined by:

jafz = v L

where yi1 1is the largest eigenvalue of Afa (AF = hermitic
conjugate or the transpose of the complex conjugate matrix) 1is
subordinated to the euclidian norm |x|z. This matrix norm is
the spectral norm.

Both Walker [7] and d’Ottavio (8] present an error analvsis
method similar to the following one, but they use other matrix
and vectorial norms. Walker uses the vectorial infinity norm
and the subordinated matrix norm which is the maximum row sum
of the moduli of the elements. These norms lead to simpler
computations but do not give a good image of the usual standard
deviation. D’Cttavio et al. [8] use the Frobenius norm:

|A|r= viss(aiy 1%} t43)
ij

which is consistent with the euclidian vectorial norm but which
is not subordinated to it, hence not the smallest. Therefor
these authors have introduced a correcting factor adjusted to
fit the results of this error analysis method to the resuits of
the first order approximation method (equation 34}.

It is proposed here to use the euclidian wectorial norm and the
subordinated spectral matrix norm for the error analysis. The
advantages are that the euclidian norm of the vector &y
represents its total standard deviation and, using the
supordinated matrix norm, we will obtain the smallest upper
bound for §x.

1o



3.3 Error analysis
It is possibie to give an upper 1limit to the norm of fthe
resuiting error gg;g. using the following relations t(trom [9]}

for the norms of the experimental errors jox| and féaf.

1f only y is perturbed, we can write:

13

(X + 6x) =y + by (44

but, taking (21) into account, we get:

&

&x = &y 143)

Then, for any pair of vectorial and matrix subordinated norms:

=
4

—
A

S At byf s jatf-fory
and {16)
jop ey
R

|
1
1
1
A

The number:

cond(a) = [a]fa*{ (47)
is of great importance rere. 1T is thes condition number oi the
matrix A relared to the used ncrm. If "A“z is used, we g2t the
smallest possible conditlon number. Its value 1s:

condz (&) = fAfz At = S /pn ) (i8)
where p; and pun are respectively the largest and the smalilest
eigenvalues of A#.3. This condition number is the spectral

condition number.

Matrix A only is perturbed. In this case:

(A + BANX + 6xX) = ¥ then (A + fM6X = - dAx (49

If (A + 64 is regular, hence if | "6A| < lé‘lj-lgél < 1,
then:

16x] 1884 (FY M Bl M EET R B
< s (50)
Ix] 1 - [aieal 1 fal-iat ] laalvial

A and b are perturbed

In this case, assuming that |Ij = | (vhich is true for fI1§2):

f6xj (EVH | r jexl 8l

(B IR 1% B V- B i B

i1



3.4 How to obtain a good condition

‘lo minimize the condition number of the experimental matrix,
some variable changes can be used on the initial problem in
such a way that the coefricients a;; of the matrix A satisfy:

1/78% max(|aij|’ <1 {52}

where 3 is the base of the rloating point arithmetic system
installed in the computer used to solve the system of
equations. For that purpose, it is often enough to divide each
row of the system by the largest coefficient, rounded to an
integer power of 3, to minimise the rounding errors.

Moreover, in the Gaussian resolution procedure, the equations
are permutated in such a way that the largest (in absolute
value) pivot is used.

3.5 Error analysis for two special cases

If e and € are the canstant relative errors on A and }:

15

e Aand §y = € v (33)

and, from the definition of the norms:
184 = e jA} and jox| = € v 154)
We have, for any definition of the norm satisiying ﬁIH = I

fox| cond(A)
< - (E + ) (
Ixu 1 -e cond(é)

Oy
(8]

It should be remembered that §+gé should be regular. which wiil
occur if:

e-cond(a) < 1 (56)
In the case of a constant absolute error.

3

el and Hy=6yv1 157)

[i4

where 1 and | are respectively a matrix of order N and a vector
with N components where ail the eiements are unity.

It is easiliy seen that, 1f the euclidian and spectral norms are
used:

!élz =N and [(l]z = N 158)

In fact, the eigenvalues of I are N and 0U¥-!, hence those of
181 = 1% are A and 0*-3. Then:

j8A): = e N and |&y|z = vN by (59)
and
jéx]: condz (A) [ VN 6y  Ne 4
< .

< +
Ixl: 1 -eNja'fs L Izl: 12 !

(60)

2N



We see that for these simple cases, which are the most common
in practice, an upper bcund for the relative error on the
results can be easily calculated when tne condition number of
the matrix A is known. This matrix is (i in equation 6.

4 EXAMPLE
4.1 Case configuration

A constant concentration measurement on a very simple building
with two rooms was simulated using a multizone infiltration
computer code to provide the data used in this exampie. This
way, the measurement errors are avoided. The input data were
the following:

Zone U Zone | Zon= Z
tutside)
Temperature v 20 20 C
\‘olume - U 100 m3
Fiows from outside Qoi - 10 30 mi/h
Flows from zone 1 @i 20,73 - 10 m? /h
Flows from zone 2 @i 22.2 20 - md /h

The volume flows @j6 to the outside result from the mass
conservation of the air. After a few hours, the tracer
concentrations stabilize and the results of the simulated
measurements are:

Zone 1 Zone ¢
Concentration of tracer 1 10 2.29 PPm
Concentration of tracer ¢ 6.46 10 ppm
Injection rate of tracer 1 2.5 10-4 0 md /h
Injection rate of tracer 2 0 3.6 10-4 m3/h

4.1 Results for uniform temperature

Using equation (17) for the zone 1, we get:
1 T
-2.65 10-+ -0 -7.71 | o1
10-9%
0 -6.46 3.54 l@:: |

L

"

which gives the flows:
Qi = 10.99 ¥ /h and Wi = 20.0U6 m*/h

The same calculations for the zone 2 gives:
Q@2 = 32.5Tm/h and @12 = 9.638 m?/h

Finally, using equation 18 we get:
o = 21.37T m/h and o = 22.19 m¥/h

Comparing these results with the exact values given above, we
see that the largest differences, of about 10 %, ocurr for @i
and @3z, which are the flows coming from the cold.

L3



4.3 Rkesults taking into account the temperatures

Using the new proposed equations (15) and (16), the following
results are ootained:

i1 = lU.24 m/h ki1 = 20,06 m?/h
Q2 = 30.35 m/h @z = 9.68 m3/h
Qo = 21.37 m*/h o = 22.19 m?/h

Since both zones have the same temperatures, only the flows
coming from outside are changed and these results are more
accurate that the results found under 4.2. The remaining
differences (3% or less) are caused by rounding errors, since
only three digits were kept for the simulated concentrations
and tracer injection flow rates.

4.4 Error analysis

The matrices of equations 15 were reconditicnned acccrding
section 3.4 before solving the system, 1in such a wayv that the
largest elements (in absolute value) of each row vere equal to
1. A uniform relative error wvas assumed, bheing 2% on the
concentration matrix and 5% on the injection vector (that is
e = 0.02 and € = (.05) For this reconditionned svsten of
equations and using twwo different norms, the rolleving rresust.
were obtained, according equation 55 for lesf - e :

Norm used Frobenius (eq. +3) Speciral eq. o
Zone i g L &

Matrix norm néﬂ 1.666 1.487 i.426 1,087
and for the inverse [a:| 1..356 1.355 1.161 0.935
cond(A) = JAj-fA-1] Z.299 2.015 i.636 1.010
Kelative error |8Q{/{Q| 0.166 0.116 0,12 0.072

We see that the spectral norm gives a smaller upper bound for
the relative error than the Frobenius norm, the daifference
going up to a factor of two for the second zone.

If the matrix were not reconditionned, we would get, for the
zone 1 and with the spectral norm:

joqj/Je@f = 0.153
which is only slightly more than with the conditionned matrix
in this case, since the system is already not too badly
conditionned. For badly conditionned systems, this difference
may be much larger.

CONCLUSIONS

In this paper, we have propused to modify the egquations of
conservation of the tracer gases and of the air in such a way
that measurements made with variable and non homogeneous
temperatures can be interpreted properiy.

Secondly, in order to obtain error figures which are not
exaggeratedly large and which represent standard deviations, it
is proposed to use the euclidian vectorial norm and the
subordinated spectral matrix norm.
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