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ABSTRACf 

'lhe ali;i:ori trims for interpreLin~ mul t.izone air flo1.; measurement.s 
usi~ tracer gases ~nich are presented 1n the iiterat.ure are 
based on implicit. rather than clearly defined h:11:xnheses, an 
import.ant example bein_g t.hat t.he tempera'[ure of t.he air is 
asstnned to be homo.~eneous and canst.ant. :'ioreover, an errcr 
anai~·sis is often omi tt.eci and t.he techniques presented t.ili not-.· 
can sti 11 be dev·~iopped. 

This paper presents t.he 
interpretation algorithms 

necessary h:o.1)(nheses, e~~t.ends 
t.o include cases 1•here t.he 

the 
air 

temperature is ne:;.ther homogeneous nor canst.ant, and describes 
a general method for the error anah's1s ~inch can be used for 
any measurement. t.echn1que. 

1 rnNSERVATION Eg.JATION8 

1.1 Presentation of the problem 

The literature addressing air f lo,.: measurements using tracer 
gases contains a. degree of confusion related t.o t.he physical. 
principle invol ,-ed, wn1cn can lead t.o errors ·when using the 
presented equations. These equat.ions are based on the 
consen·at.ion of t.he mass of t.racer and the .mass of air, but 1 t 
is often volumes which are measured and volume tl.or-.s which are 
expected to be t.he result.. The misund.erst.anding arises from the 
range of definit.ions of the tracer gas concentrat.ion: part.s per 
volume or part.s per mass, mass of tracer per voltune of air or 
even molarity or partial pressures <these lat.t.er n.:o 
definitions are not used in this topic1. 

In the originai paper of Sinden f i l, tile conser•:atior1 equauon~ 
of the tracer masses are correctly written in mass units but. 
does not specify t.hat the concentrat.ion needs tu be e~~pressed 
in mass of tracer per volume of air. '!he equation 1~1 of 
~ind.en, however, e:-..-presses a conservation of the volume or air, 
which is t.rue only when the densi t.~· is lDUform and constant., 
but this fact is not st.ated. In the re\·iew papers i '2. and 3] , 
the units used are not ciearly defined and the equat.ions are 
writ.ten in ''oliine uni t.s whereas the be.sic principle is the 
conservat.ion of lllSSS. In [4] and (5], 'the equations express 
clearly the conservation of the \'oltme of air, but the 
hypothesis of canst.ant and unifonn density JS not stated. 

The objective of this paper is to present ciearly t.he unit.s 
used for the Jitysicai quantities, the hypotheses together with 
thP. resulting equations, wtuch are modified to be used in the 
case of varying air density <that is \'B.ryi.ng air temperature l 



1.2 Definitions 

There are !\ zones 1 enumerated by i and .J gc1irig from l t:.i ·' l 

into which .\ different tracers em.une:ateci b:"-- t.h t> inde~: k are 
inJected. ln principlE·, eacn zone recei ,-es onl~- onF.> tracer. :'\o 

tracer is in.Jected in tne outsicie air 1 t.he zone 01. which is 
supposed to be of infinite \ "Oll.UTle. 

Let \; be the voi \..DTle of the zone i ( mJ l 
* Dli the mass of air in the zone l . r kg] 
* T; the absolute temperature in the zone i (hi 
* v; k the ,-oi wne oi tracer k in the zone i {ml ) 
* !Iii" the mass of tracer i\: in the zone i [kg) 
* c;i. the volume concentration of the tracer kin the zone i (m3 /m.l 1 
* Ci k t.he mass concentrat:lon of the tracer k in the zone i [kg/kg) 
*qi " the volume injection rate of the tracer kin the zone i (ml;sj 
* Q .i the vol\.Dlle air flO'o.· rate from the zone i to zone .i (m~/sl 
* pj the riensi ty of the air in the zone i: pj = !tli /\ J r k~/:nJ l 
* p; k the density of the tracer k in the zone i: Jli k = llli i. /\ ; " [ i \ g;m~ i 
* p• the densi t:S.' of the tracer K t-i'len injected [ kg/m3 ) 

Mk the molecular mass of the tracer k [kg/Moie] 
e; j the "non- t\ronecker " delta: ~ i i = 0 if i=.i. 6; .i = 1 if iiC.J 

The ,-aria-oles marked '''i th an asterisk are :functio:'ls of t.he 
time. 

1.3 Basic h-ypotheses 

H 1: In each zone, the tracer concentrations are always 
hcmogeneous. 

H 2: '!be atmospheric pressure is constant and hotDOReneous. 
H 3 : The injection of tracer does not change the density of t.he 

air. 

The first hypothesis is the weakest. In practice, an homoge
neous concentration can onl:v be achieveci by the use of mixing 
fans, but these fans have the effect of charn:1;ir.ig the tempera
ture gradients and therefore t.he inf il trat.ion condi t.lons. 

The other t"Wo hypotheses are easily satisfied, since the short 
time varjations of the atmospheric pressure are of the order of 
10-"' cdaily variations of the order of a JY..!rcent I and the 
tracer g;ases are generally injected at ver~· low concentrations 
( 10-' in volume or less I. 

1.4 Conservation of the mass of the tracer "88 k in the wne i 

The mass concentration is, assumed that llli i. «. II\ I hypothesis 
H 3): 

llli .. fJi .. \Ii .. 
Ci .. ::::: = ------- hence I l 1 

pi \•; J>i \·; 

The conseI"\'ation equation of the ma.ss of tracer i<.. in the zone i 

states that the change of tr&C'er mass ~it.h1n the zone is the 
S\..111 of the mass of injected tracer and the mass of tracer 
contained in the air camiAA into the zone, minus the mass of 
tracer contained in the out.goin.~ a]r: 



d 
--ljl1 \.; L; a. I 

dt. 
Mass chan.e:e 

~ 

= pi. % I. + : pj lj Ii ll.; i b; 
j:O 

ln.1ecLion infilt.ration 

!'. 
jli Li I.. ; ~ j ~i I ( 2 I 
. j=O 
Ex f i l t ra u on 

An extensi ::m of t.he hypot.hes1s H 1 is i mpilc i t in t h i s 
e<luation, ~hich is: 

H 4: '/be air nows entering a zone do not modiz)r the 
h01110gene i ty ot1 the concentration in that zone. 1n other 
words, an ilrmediate and perfect mixing is assr.ined. 

1 f we :-epl ace in equation ! 21 t.he mass concent.r at ion b~ · the 
volume concentrations gi,·en b:v: 

Ci;,. : 

we obt.ain: 

d 
-:--\pi I. \'; Ci I.) 

at. 

hence ( · . .. 
· I 

= pl. q; i.. + ' pj i. Cj i.. Q; ; b, j - jii k C; Ii " ~ .) bi .i l ~ l 

j:O j=O 

The tracer dens1 tY is defined b;.- pi i. = ITli k /Vi 1. where the volume 
\ ·; i.. is at the atmospheric pressure p. l'sin~ the perfect gases 
lat; for the t.racer k: 

( 5' 

l t..i'lere R is ti1e molai~ gas constant I 8. 3 i 396 • i (i- i 3 J /h. I , .:-11. t.he 
molar mass of tr1e tracer k and i\ t.he absoiute temperature oi 
the zone i 1 , t.he densi t.Y can be comput.ed: 

I t l 

and su·osti tuted. in equation I '1 I ' lJi,·iding this equaticn by 
p•Mli' t•e get.: 

r l Cj I.. Ci I.. d I V; Ci I. qi I.. N Q; I lti j N 

~~ l---:;:-- = + " ----------- . " (,,& j &; j (I I ... 
T ,j:O °i'j Ti ,j:O 

The left hand sicie of this equation C3ll oe expanded, for n zone 
with constant volume: 

\.; Vi C i Iii 

Ci .. - ------- Ti 181 
'h 'fj .:. 

Equations ti) and 18) represent a complete statement of the 
conservation of t.he mass of tracer gas. To derive the form 
encmmtered in the literature from these equations, 1:e net:.'<i t~o 
more hypotheses: 



H 5: 1be temperature does not vary with the time. 

H 6: 7be te.perature is the same throughout the whole wilding 
and the outside air. 

Hypothesis H 5 is more important than it appears. In fact, this 
hypothesis wants to make the second tenn of the right hand side 
of equation (8) negligibie when compared to the fi!'st one. In 
this first term, there is the derivative of the concentration, 
which is in principle zero if the constant concentration 
t.echnique is used. l.n this case, even ver;\" small temperature 
var]ations mi~ht be too large to satisfy hypothesis H 5. 

ln fact, hypothesis H 5 can be rep.iaced b;\• t.he h~-pot.hesis that 
the rel8ti\'e variations or' the temperature in the zone 1 is 
negligible r.;hen compared to the relatl\·e \"Br1ar.1ons of the 
concentration of an:v tracer. lhat is: 

T;/T; << c;i./c;i. 

Hypothesis H 6 would be satisfied if the temperatures of the 
various zones are the same, if the tracer is injeci:.ed at the 
building temperature and finally if the measured building is 
neither heated or cooled. Otherwise, relative temperature or 
density differences of up to 10 % mi.ght be reachee 1 say 30 K. 
indoor-outdoor temperature difference for an indoor temperature 
of 293 Kl. 

Applying both h:vpot.heses H 5 and H 6 t.o equation (I I , \,·e get 
t.he usual fonn encmmt.ered in 'the li te:-ature: 

N N 
V; Ci I. = qi Ii. + I: C.i Ii Qj i ~i ; - Ci Ii ' Q j bi j ( !1 ) 

j=O j=O 

1.5 Air mass conservatioo 

The conservation equation for the air mass is obtained the same 
way as equation 17), except i:.hat here the tracer is the air 
itself, which means that: 

- there is no air injection flowrate lqi 1i. = 01 
- concentrations are all unit.:v ICi 1i. = 1, hypothesis H 31. 

Applying all the hypotheses H 1 through h 4, we ~et: 

d 
--Cpi V1 ) = 
dt 

N N 
!: jlJ ~ i bi J - pi E Q J 6i J 

j:O j:O 

or, using again the perfect gas law: 

Vi N Q; i bi J 1 N 
T1 = !: ------- !: QJ bi j 

Ti " J=O TJ Ti .J=O 

( 10) 

( 11) 

If all the internal temperatures <i, j > 0) are ass\.IDed to be 
equal but different from the outdoor t.emperature To; we get: 



po ~ ~ p; 
~i + ' Qj i e; j = ,-

Q; j bi j + \'i ( 12) -
fli .l=l .j=u j)i 

I 

where µ; is the indoor air densi t~·. With the perfect .12'.as lat.-, 
we ~et: 

T; )\/ N T; 
~i + !:: Qj i e; j = ' Qj j bi j - \i; - ( 13) 

To .j= 1 j=O T; 

Here again, the air mass conservation equation found in the 
literature implies that the indoor t.emperature is cons'tant and 
equal to the outdoor temperature. 

1.6 Basic equations 

Substituting relation !111 in equation !ii combined w1tn (8), 
we obtain N6 equations for .N"' unknot,ns Q; i , which are li.mi t.ed 
only by the h:"Vi:x>t.heses H 1 through H 4 : 

V; Ci I. ;\ Cj I. QJ I Eti j 

Ci ii. + ~ -----------
T; T .i =0 T; 

r !\ Q.; i ~i i 

I ~ ------- + 
j .i=O T, .. 

V; • l 
-- i, I 
T; - I 

J 

Tnis system of equations can be rearranged and coupled w1t.h 'the 
S~'stem 1111 to get N!N+ll equations for 1\(1\+!I wumot,ns. L'his 
s~·st.em allows us ( in principle 1 t.o compute all the air flm• 
rat.es at any time from the measured values of the tracers 
concentrations, the injection rat.es and the temperatures: 

r--------------------------------------------------
\ii • qi .. N l C.i ,. - Ci ,. ) 

Ci I. = + !; ----------- Q.j i ft; j ( 151 
T .i=O T; 

]\ Qj i &i j \ .-. 
I 

Q o = Ti !: ------- - ' Q i &i J + Ti ! 1 t) I 

'--------------~:: ____ :~-----~:~~---------~~--------J 
In equations 1151 and (16), as ever}'l'here else in that. paper, 
the temperature of t.he ,·olume flow Q; i is the temperature T.1 of 
the zone j, from which the flow is coming. 

( 14) 



If t.he nYJ>Ot.heses H 5 and H 6 are sat.isiied., t.he usual and 
simpler fonn can be used: 

------------------------·--------------------·-------, 
I 

\·1 Ci I. IC; I. - C, I.) ~ii &; i 

I 
! 
I 
I ~i ~. j t-; j 

.l=O 
I 

L.--------------------------------------------------1 
Note: For a single zone ( i=l, .1=0 J' equations ( 15 J and ( lt;) 
simplif:'\' t.o: 

\' l . qi (Co - C1 I T1 \'1 

C1 = + --------- ~l and Q1 0 = Qo 1 + '11 ( 181 
T1 I To To f1 

and, assumin.2 constant. and homogeneous t.emperat.ure, lli) anci 
( 18) become: 

V1 C1 = q1 + (co - C1 I and 

2 CXMIVI'ATION OF AIR FlJ.)WS ~ 'l'lffi ,MEA.glJRFME!'lfS. 

2. 1 Zone by zone systems of equations 

At. each measuremen't t.ime irn:er.·al, tile measurements g1 ,.e 
discrete values of c; i.., 'fj and q; i. 1 i, k = i to ~ J. rro~ t.hese, 
t.he flows ~ j can be computed. Here, l and .1 ,-ary from 0 t.o !\ 
but i ~ j. 

ln equation 115 I or I 17 I, i and k vary independeni:l~- from 1 to 
\. There is hence a S;\-stem of ;\' equations ,,nich, combined w1 th 
the~ equations I i6J or ( 181 allow us to find the .\"';- .\ 
tmknowns Q .; • 

The systems of equations t 15 I and t 17) are an assembl:'\~ of N 
independent. sub-syst.ems cont.a1n1ng the equations for each 
given zone. f.ach sub-system can be i..Ti t.ten in a matrix form: 

120> 

where YL is the \"£-ct.or having N components Y; i. : 

w"here k runs from 1 to !\ ( 21 J 

T; T 

or, if the hYPOt.heses H 5 and H 6 are asstmed: 

li = ( \."i Ci 1 - Qi 1 ' • • • ' \ii Ci i - Qi I ' • • • ' vi Ci Ii - Qi ,.. ) ( 21) 



Note: in principle, onl;v q, 1 differs from zero, since onl;\- the 
gas i is in.iected in the zone i. ~Joreover, if the in.1ect1on is 
perff>Ct in a constant. concent.rat.1on technique, Ci; = 0. 

\i ' :is the vector containing the UI'lkr!O\..Tl f j ot-·s to the zone i: 

~i J - (~j I Qi; I••• Q-1,i I 0, ~+1,j 1 •• 1~i) \2 J J 

and ~L' a matrix ha\'ing the element 6c1;; in ro1.; k and cnlumn .J; 

C;;,. - Ci I. 

6Ckj : - - - ----- -

1'.i 

or, assuming H S and H 6: 

Tne matrix ~ · :nas N rm--s and .\-t-1 columns, bur the- c.::·olumn l is 

filled l•i th zeroes. The vect )r ~\.; has alsc '.'.+ 1 C' ()mponer!tS, ".".he 
component i, corresponding to ~; bein~ zero. it.·e cat'l ther0?fore 
contract the s~.-stem I 20 I in-to: 

i.;here &__ is the vector & ' 1,-i thout the the ccmponent i, a.'1d (; 

the matri~: L._ ' without. the column i. The s:-·stem \ 26 J is then 
ent.irel:-· rieterniined if the matrix ~:::L is not sin.~nilar. It is 
soh·ed in principle by: 

( 21) 

\..ilich .tti ves the :\ flot-·s Qj; from the zones ,j ( .j = 0 . . !Ii l to 
the zone i. Solving (2Ed for the N zones, we ,aet all the flows 
QJ i where ,j = 0 . • N and i = 1 • . N. The !\ remaining flows Q o 
are computed using the~ equations (161 or (181 

Note: This resolution method differs slight.ly from 't.he one 
presented o:-· ~inden fll and ~erera [2) but seems simpler if the 
constant concentration technique is used. 

2.2 Discretisation 

The time derivatives of the tracer concentratic,n appear in the 
vector lL• and tile derh-atives of the t.emperatures are used in 
equation tl61. The equations t261 ard tl6l can be sohed at 
each t.ime interval, if we write either the backwards 
derivative: 

Ci k(tl : fCi k(tl - C; k(t-6tl)/6t 1281 

or the forwards derivative: 

Ci k(tl : {c; 1..(t+6tJ - C; k(t)}/6t t30J 

T; i..1t1 : [T, k lt+ot) - T1 Ii It) ]/6t ( 311 

-
I 



For causality reasons, equatic0ns 1.281 and 12~1 may be betr.er. 
A test: is running i>Hh botn possibii..i tiE:s or~ a s•:' t of 
measurement:s made at: the i..ESv on a s1n~le ceil. }or this cell, 
usini?: equation 1 19 J: 

To r V1 ~ 1 I 
( 32) ~l = --------- I C1 -

Co - C' l I T1 T J 
L 

where T is the temperature of the -i:racer i>hen in.iected, T1 the 
temperature of the air in the zone and To the outdoor 
temperature. 

In the reality, t:he measurements i;i th the constant 
concentrat.ion techniques are done the f ollowin.e: "·a:v: 
I At a time to , a sample of the air of a defined zone is t.<\.kf·1 , 

and anal:vzed and this operation lasts for the t:ime ot~. 
I At time to +6ta, the amount of tracer gas nece~. !'-,ar - to 

maintain a constant- concent.rat.ion is injected in the ::one by 
opening a vah·e for a calculated. time bt; nj • 

I The start of the next sc>Jllpl1n,12: takes part. some time aft ~r i_ne 
end of this in.jeclion. 

Hence, the sampling-analysis-in.iect:ion C.\-cle last~ a ;Y:ri·)d or 
time which should be taJ;;en as a ··natural.. time st.ep for the 
discretisation. Lsua.11:--- this t.ime st.ep is also t:ht.· time 
interval bet~een the records of measured data. 

In this paper, all the ,·ariables 1 e xcept c.he volumeE of t.he 
zones1 may depend on time but it is implicit.ely admitted that 
they are constant durin~ the discret.ization time step. This 
assumption seems obvious, since we have no infonnation of the 
variation of the concentrations beti.:een the measurements. 
Nevertheless, it shall be remembered that the time step ma~· be 
large (e.g. 10 minutes) when compared to t.he time con£tant.s of 
the possfole changes of the air- and tracer injection flows. 
Because of this, interpretation errors may occur, generally 
overestimating the air flow rat.es by severai percent.. 

It is possible that a more refined interpret.ation method could 
be found, taking into ElCC.'Ount that the tracer in~iection rate is 
not constant during the measurP.rDent interval and that the 
tracer concentration may change during that interval. An 
indication of how t.his might be done can be found in the t;ork 
Ai ttom8kki did for L;-value measurements [ 6). 



3 ~ ANALYSIS 

3. 1 The problem 
As a result. of an e:-.-perience, i-·e have to solve a s::.·st•?m of 
equations: 

~ ~ = ~ ( 3.5: 
where vector ~ and matri~~ ~ both contain meast:red. coeff ici :.-nts 

( :V.i and ai j ) which are p~rt. urbateci. 1.;i t:h e!Tor·s repr+-:·~entect 

rcspective-l:r oy a vector ~ and a mat.rix 6:1. The question is: 
which is the resulting error 6x on the \·ect.or ~'? 

Since the components Xi are functions of the coefficients a, , 
and YJ , their variances can be computed approximate!;\' b~·: 

OXi OXi 

s"' (X; , = " s" 19.i j ) + " s" I YJ ) I :J I I - ... 
j 6ai j j 6yj 

where s~ ( 9.i j and s• ( yj are t.he variances of t.he measured 
coefficients. If the errors in the variables a; j and :.·j are 
independant and s~'llletrically dist.ributed and if the function is 
not far from linear, t.his first orcier error analysis gives 
satisfactory results f9). However the computation time required 
increases very strongly with the munber of variables I that. is 
the number of zones). 

If the matrix &A and the vector §,;: were exactly knotm for a 
given case, \'e could write: 

(~ + 8Al !~ + 6x1 = L + §}'.' 

and, taking ( 3~ I int.o account, this coulci. be s ·.)l•:ed: 

Equation 1 36 l can howe,·er not. be useci to determinC> the absolute 
error or a statistical standard deYiation. For that lat.ter 
purpose, we can use 136) several times in a Monte-Car.!.o 
pr~ess, van•ing the cornponent.s of bA and ~ at random but 
according to their probability density ftmction. This provides 
sevel'a.l vectors 6x from which an estimate of t.he probabili t~· 
density functions of the component.s can be calculated. 

The vector §X contains a large number of Yalues. It would be 
helpful to represent the error by a single figure. To obtain 
such a single figure, we need the following definitions, which 
can be found in · the specific mathematical literat.ure (e.g. 
[9] ) • 

3.2 Vectorial and matrix nonm 

17>e norm I~ or a vector !f is any operat.ion of R" in R 
satisf~·ing: 

l
~I 2: 0 and hi = 0 if and onl~- if ~ = Q 
c~I = jcj l~I for any c e R 
~+~I ~ 1~1 + lxl 

For example, the euclidian norm I t•hich corresponds to the 
standard deviation if the average <x>=01: 



fulfills the relations (3i1, but there are other nonns, iike 
~~~1=~jXi I or the infinity nonn defined by jj;sllD=maxjxi I· 

The norm I~ of a .aatrix ~ is an;1' application :,;i ~ l- ~ t~~ e R 

satisf;\-ing: 
l~I ~ 0 and I;~~ = 0 if and only if d = 0 
lc~I = jcj UI for any c e R 1 3~ 1 

1~+!11 5 t~~ · rn~ 
I~·~~ ~ !~u · H~~ 

The matrix norm tH is consistent •.:i th the:, ,·ectonal norm ii~~ 

if: 

The matrix norm subordinated. to the \"CCt.oI"ial norm u~~ is 
ciefined b;\·: 

( ·di 

The subordinated matrix norm is the smallest one Khich is 
consistent with II~~. For example, the norm ~g~2, defined b~-: 

"-"here µ1 is 
conjugate or 
subordinated 

the largest. ei~enYalue of 
the transpose of the complex 

to the 
"the spectral norm. 

euclidian norm ~;s\\ 2 • 

:1iiA I ,1ii = hermitic 
conjugate mat.rixl is 

This matrix norm is 

Both walker f i] and d'0ttavio f8i present, an error analysis 
method similar to the following one, but they use other matrix 
and vectorial norms. ~'alker uses the vectorial infinity norm 
and the subordinated matrix nonn which is the maximtun row sum 
of the moduli of the elements. These nonns lead to simpler 
computations but do not give a good image of the usual standard 
deviation. D'Ottavio et al. [8] w:.e the Frobenius norm: 

I Al r = ~· f ~~ l ai j I'} I 4 3 ) 
i.j 

which is consistent ld th the euclid.ian vectoriai norm but. 1-:hich 
is not subordinated to it, hence not. the smallest. Therefor 
these authors have introduced a correcting factor adjust.ed to 
fit t.he resul t.s of th~is error analysis method to the resul t.s of 
the first order approximation method 1equation 3·! I. 

It is proposed here to use the ecx:!lidian vectorial. norm and the 
subordinated spectral .atrix no1111 for the error analysis. The 
advantages are that the euclidian nonn of the vector ~ 
represP.nts its total standard de,·iation and, us in~ the 
subordinated matrix nonn, we will obtain the smallest upper 
bound for~· 

10 



3.3 Error analysis 

It is possible to give an upper .iimit to l:he norm of the 
resulting error l6xl, using the follm•inl!( relations t from i ~ l i 

for the nonns of the experimental errors ~~I and 16~\~. 

lf only ;y is perturbed, we can \..Tite: 

but, taking I 211 into account , 1-·e .e:et : 

1451 

Then, for any pair of vectorial and matri:-: subordinated norms: 

and 

n~~ 
$ llgll "~Q- l ~ ·----

!Ir~ 

The numi::ier: 

( ·16' 

1-!!1 

is of great importance here. H. is the condition mmber or the 
matrix A relau:ci. to the used norm. If ff--\~2 is UEed, i;e g·::t the 
smallest possible condition number. lts ,-alue is: 

'hilere µ1 and µn are respecti\·el;.- the largest and the smallest 
eigem·alues of ,jil ·~· This conciition number is the spectral 
condition mnber. 

Hatrix !1 only is perturbed. In this case: 

1~ + 6All~ + 6xJ = ~ then (~ + 6.\16x = - 6~~ 1481 
- -

If (~ + 6A) is regular, hence if 1~-; 6AI ~ 1~- 1 D ·l6AI < 1. 
then: 

l~l ·1~- 1 I ·l6Altl~I 
~ ---------- ~ ---------------------

1 - l~l ·~~- 1 I ·l6Al!l~I 

In this case, assurning that UI = l I "nich iE. true for E~2 l: 

l6x& lgl·l~- 1 1 rl2xl l6Al1 
-i~i ~ ~-=-,~~1:1;~~1·l -1;1+1;1 J 

t 511 
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3.4 How to obtain a good condit.ion 

'Io minimize the condition munber of the e~""(:>erimental matrix. 
some variable changes can be used on the initial problem in 

such a i..-ay t.hat t.he coefficients a; i of the matrix -1 satisf;v-: 

11 ~i S max 1 I a; j I I ~ 1 1521 

where 1j is the base of the :fioating point arithmetic system 
installed in the c-omputer used to solve the s:vstem of 
equations. for that purpose, it is often enough to di\-ide each 
row of the S;\-Stem b:r the largest coefficient, rounded to an 
integer power of 13, to minimise the rounding errors. 

Moreover, in the Gaussian resolution procedure, the equa-tions 
are pennutated. in such a way that the largest lin absolut.e 
value) pivot is used. 

3.5 Error analysis for two special cases 

If e and e are the constant relative errors on A and ~: 

and, from the definition of the norms: 

I 6All = e Ml and n ~~ = E :'>- ( 5 J I 

y,·e haYe, for any definition of the norm satisfying p~ = 1: 

~6xjj condl~) 

S -------------· IE + el 
I~~ 1 - e cond(~J 

It should be remembered t.hat ,1i-6A should be re.~lar. w-hich will 

occur if: 

e•cond1~1 <. 1 1561 

In the case of a canst.ant absolute error: 

6A = e l and Qx = 6y l 15i I 

where ! and ! are respecti ,·ely a matrix of order 1" and a ,-ect.or 
with K components where all the eiements are unity. 

It. is easil~' seen that., if the euclidian and spectral nonns are 
used: 

and Ulz = , !\ 1581 

In fact' the eigenvalues of 1. are ~ and u:• - 1 ' hence thOSE' of 
11 ! = f" are \"' and 0:.-1. Then: 

l6Al2 = e :-. and I 2l-:I z = .;N oy 1591 

and 
1ax1z condz (~) r ~N 6Y Ne 1 

s ~-=-~-~:1;~~1~·l ----- + J 1~1 2 1xl 2 1~1 2 
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we see that for these 
in practice, an upper 
results can be easily 
the matrix A is known. 

simple cases, 1-·h1ch are the most. coomon 
bcund for the relati,·e error on the 
calculat.ed ~nen tne condition number of 

Th.:is matrix is ~; in equation :26. 

4 EXAMPLE 

4. l Case configuration 

A constant concentrat.ion measurement on a Yery simple building; 
with two rooms was simulat.ec:i using a multizone infiltrat.ion 
computer code to pro\·id1:!> the data used in this exrunple. This 
wa~-, the measurement errors are a\·oided.. The input data were 
the following: 

L.one (J Zone 1 Zons- .-, 
,;.. 

t Out.side I 
Temperature 0 20 20 ( 

\:olume 50 100 mJ 
Flows from outside Qi; 1(1 30 ir.' ;h 
Flows from zone 1 Qi i 20. i3 10 m3 /h 
Flows from zone 2 Qz i 22.2 20 mJ i ii 

The Yolume flows Q.; o to the outside result from the mass 
conservation of the air. After a few hours, t.he trace!" 
concentrations stabilize and the results of the simulated 
measurements are: 

Zone 1 Zone 2 
Concent~ation of tracer 1 10 2.~9 ppm 
Concentration of tracer 2 6. 413 10 ppm 

In.iection rate of tracer 1 2.65 Hr~ 0 m3 /h 
Injection rate of tracer 2 0 3. 13 10- ~ m3 /h 

4.1 Results for uniform temperature 

Using equation 117) for the zone 1, ~e get: 

-1(1 -7.71 ,j ~ _ r ~l 
1 hr 0 I 

-o.46 3.54 l Qz 1 J 
which gives the flows: 

Q.1 = 10.99 mJ/h and Qz1 = 2(1.06 m.;ih 

The same calculations for the zone 2 gives: 
Qi2 = 32.5i m3 /h and ~12 = 9.68 ml /h 

Finally, using equation 18 we get: 
Qio = 21.3i ml/hand Qzo = 22.19 ml/h 

Comparing these results with the exact values gi vcn abo,•e, t•e 
see that the lar~est differences, of about 10 %, ocurr for '=Jo 1 

and Qo z , which are the flows coming from the cold. 



4. 3 Itesul t.s taking int.a acco\Dlt. the temperatures 

Lsin,q; the new proposed equations l 15) n.nd l 16 I , the foil en; in£?: 
results are ootained: 

~I = 10.24 m.; /h Qi l = :20. 06 rr.l/h 
Q,2 = 30. :i5 m3 /h Q12 = 9.68 m3 /h 
Qio = 21. 3i mj/h ~o = ~2 .1~ m3 /h 

Since both zones have the same temperatures, onl;...- the flDl•s 
coming from outside are changed and these results are more 
accurate that the results found under 4. 2. Tne remaining 
differences ( 3% or less I are caused by rounding errors, sinct=_· 
onl~· three d i gits were kept for the simulated concentrations 
and tracer injection flow rates . 

4.4 Error analysis 

ThP. mat rices of equ":t tions 15 were recondi t ionned accc,1'dine: 
sec1:ion 3.4 before solving the s ys1:em , in such a way t.hat the 
largest element.s I in absolute value I of each rm-: t ·eri::- e-qt:al to 
1. A unifonn re la ti \·e error h'as assumed, being 2:7~ on the 
concentration matrix and 57., on the ir1.iection •:e-:-to ~· t t:hs t i~ 
e = 0.02 and E = 0.051 For this reconditionrit.'Cl. ~;:\·stern uf 
equations and using t:~.:o different norms, the iollo1:irlq. r·• .,.:.\ u t ·. 

w-ere obtained, according equation 5 5 for il~ll _. 11~11: 

.\onn used 
Zone 

~latrix norm ~QU 

and for the inYerse ll~t' ~ 

cond1AI = t~~ ·~g- 1 I 

Relati\·e error ~Q.Q!li~Glll 

Frobenius 1eq • .i:j1 

i : 

1.666 
1.356 

2.259 

0.166 

1. 48i 

1. 3,55 

2.015 

0.1 !6 

::, pt:.·c 1 . .ro l 
L 

l. !26 
1. 16.i. 
i.656 

(• .12 

\ i:.'~J' i - J 

1. 0~. 7 

LI. 85r3 

1. CiiO 

(J . (112 

~e see that. the i:rp:...octral norm gi,·es a smaller upper bound for 
the relat.ive error than the Frobenius nonn, the ciifference 
going up to a factor of two for the second zone. 

If the matrix were not reconditionned, we would get, for the 
zone 1 and with the spectral norm: 

l6Ql/IQI = 0.153 · 
,,tiich is onl;\- slightl;\' more t.han wi 'th the con<ii tionned. matrix 
in this case, since the s~:-stem is already not too badly 
ronditionned. For badl~- condit1onned S;\'Stems, this difference 
may be much larger. 

In this paper, we ha\'e propused t.o modify t.he equations of 
ronservat ion of the tracer gases and of the air in such n \.'8~' 
that measurements made i,;i th variable and non homo~u1eous 
temperatures can be interpreted properly. 

Secondly, in order to obtain error figures "hich are not 
exaggeratedly large and which represent standard deYiations, it 
is proposed to use the euclidian vectorial nonn and the 
subordinated spectral matrix nonn. 

1 i 
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