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The Moisture Performance of Framed 
Structures-A Mathematical Model 

1t 336 J 

M. J. CUNNINGHAM* 

A mathematical model is deueloped for the moisture performance of a f ramed stmcture (e.g., a 
flat roof or a waif), containing a hygroscopic f raming material and a cauity filled with air or 
lnsulatio11. Aformula is developed that com1ec1s tire enclosed and u11e11closed drying rime constams 
for tire framing material. Tire enclosed drying time co11sca111 alone describes the longer term 
moisture behaviour of the strucwre (much greater tha11 one day) 1mder any driving forces given 
the linearity assumptions used. Tire model allo1vs for anisotropic f raming materials with initial 
moisture contents above or below fibre saturation. 

NOMENCLATURE 

a half-width of framing material (m) 
A area (m2

) 

b half-height of framing material or half-depth of cavity 
(m) 

c half-width of cavity (m) 
c, concentration of moisture in the air in region 

(kg m- 1) 
D,. diffusion coefficient under moisture concentration 

driving force (m2 s- 1
) 

DP diffusion coefficient under vapour pressure driving 
force (s) 

D,. diffusion coefficient of the framing material in the 
direction framing to cavity (s) 

D,6 diffusion coefficient of the framing material in the 
direction framing to lining (s) 

D po diffusion coefficient of the cavity material in the direc
tion parallel to the linings (s) 

F air change rate (s- 1) 

h mass transfer coefficient under vapour pressure driving 
force (s m - 1

) 

k proportionality constant linearising the sorption curve 
of a hygroscopic material (m2 s- 2

) 

Jr ratio of k's (dimensionless) 
L dimensionless ratio of volume to surface mass transfer 

rates 
m moisture concentration (kg m - 1) 

M initial moisture concentration (kg m - 1) 

p vapour pressure (Pa) _ 
p final vapour pressure (Pa) 
p weighted mean of vapour pressures (Pa) 
P initial vapour pressure (Pa) 
r total surface vapour resistance (N s kg- 1 m -2) 

r,; vapour resistance between region i and j (N s kg- 1
) 

r,. total surface vapour resistance at surface to face cavity 
(NS kg- I m -l) 

r,b total surface vapour resistance at surface to face linings 
(N s kg- 1 m - 2) 

R total vapour resistance (N s kg- 1 m - 2) 

R universal gas constant (8310 J K- 1 kmole - 1) 

R., total vapour resistance between framing material and 
external regions via the cavity (N s kg- 1 m - 2

) 

R.. total vapour resistance between framing material and 
cavity (N s kg- 1 m- 2) 

R., total vapour resistance between framing material and 
external regions via the linings (N s kg- 1 m-2

) 

R., total vapour resistance between the cavity and the 
external regions (N s kg- 1 m - 2) 
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R.. total vapour resistance of a half-width of f~aming 
material facing the cavity (N s kg- 1 m-2) 

Rw6 total vapour resistance of framing material facing the 
linings (N s kg - 1 m- 2

) 

time (s) 
1. unenclosed drying time constant through the face of 

the framing material which will face cavity (s) 
16 unenclosed drying time constant through the face of 

the framing material which will face the linings (s) 
t0 time constant associated with cavity perfonnance (s) 
lw drying time constant for unenclosed framing material 

(s) 
11 short term structure time constant, "equilibration time 

constant" (s) . 
t2 long term structure time constant, "drying time con· 

stant" (s) 
T Kelvin temperature (K) 

T. unenclo&e;d time for above fibre saturation drying 
through '!lie .face of the framing material which will 
face cavity (s) 

T6 ' unenclosed time for above fibre sat,uration drying 
through the face of the framing material which will 
face linings (s) 

V volume (m3
) 

W molecular weight of water (18 kg kmole- 1
) 

ct surface mass transfer coefficient under mass con-
centration driving force (m s- 1

) 

y dimensionless resistance ratio 
o dimensionless resistance ratio 
C dimensionless resistance ratio 
11 dimensionless resistance ratio 
v ratio of the volume of the framing material to the 

volume of the cavity 
~ dimensionless resistance ratio 

<p phase lag (radians) 
w angular frequency (radians s - 1

) 

II parallel combination 

Subscripts 
a edge of the framing material which will face the cavity 
b edge of the framing material which will face the linings 

i, j external regions 
o cavity 
w framing material 

BACKGROUND 

THE MOISTURE performance of framed structures 
containing hygroscopic structural and insulant materials 
is . complex and not necessarily well described by tra· 
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ditional means. The complexity arises out of the hygro
scopic properties of the materials, the two dimensional 
nature of the flow, and the time dependency of the moist
ure performance of the structure. None of these issues is 
addressed in full by conventional design tools [I, 2]. This 
paper examines the particular case of the moisture per
formance of a tla t roof or wall with a hygroscopic framing 
material and a cavity filled with air or insulation, and, 
by ·the nature of the model used, addresses the issues 
mentioned. 

To elucidate the moisture behaviour of a structure, a 
logical approach would be to model the structure in detail 
with a numerical model and validate this modelling with 
experimental and field studies. Numerica.I modelling 
however does not necessarily lead to insights to system
wide performance nor to parameters characterising this 
performance. The philosophy adopted here and in earlier 
work f3-5] is to make appropriate simplifications to the 
differential equations describing the moisture per
formance of a structure to enable these equations to be 
solved analytically. This approach leads to a small num
ber of parameters, each with a. clear physical meaning, 
which provide insight into the moisture performance 
of the structure and give an appropriate means for the 
researcher to communicate to the practitioner, whether 
he be engineer, architect or builder. 

The key result derived is a formula for the drying ~ime 
constant of the enclosed framing material, defined as the 
time constant for drying of the framing maLeria.I once it 
is enclosed within tbe structure. Once this drying time 
constant is known then Lhe long term behaviour of the 
structure under any driving force can be derived approxi
mately. Enclosed framing material will dry more slowly 
than the unenclosed material and the result derived here 
expresses this quantitatively. Although the concept of an 
enclosed drying time constant is developed using steady 
state driving conditions, because of the assumptions of 
linearity which are made the moisture performance of the 
structure under any driving force variation (in particular 
periodic seasonal variations) can be given. 

In a series of papers [3-5) the author has developed a 
more general analytical model describing the moisture 
behaviour of a bui.lding cavity containing hygroscopic 
material. An important approximation used in the devel
opment of the earlier model was to assume that the hygro
scopic framing material dried exponentially below fibre 
saturation point. This work examines this approximation 
showing that it is soundly based in theory . 

In New Zealand timber framing is often enclosed with 
moisture contents much higher than fibre saturation 
despite recommendations to the contrary f6]. The impli
cations of this in terms of the moisture performance of 
structures do not seem lo have been addressed. The 
model developed here predicts that enclosed framing 
material with an initial moisture content above fibre 

. saturation dries linearly, after an initial transient. An 
expression is given that compares the enclosed to the 
unenclosed linear drying rates. 

OUTLINE 

This work examines the case of a fiat roof or wall 
which has the features that the framing materfal is joined 

' ' 

to the inside and outside lining and the associated cavity 
may be filled with anything, in particular insulation or 
air. 

The new features of this model are: 

1. The model is two dimensional in the sense that 
moisture can flow from all four faces of the hygro
scopic framing material (usually timber), both into 
the adjacent cavity as in previous work [3-5] and 
into the surrounding linings as for more traditional 
models [I, 2]. 

2. The adjacent cavity can be filled with any material, 
not just air as in previous work (3- 5). 

3. The framing material can have an initial moisture 
content that is above or below fibre saturation 
point. 

4. The materials can be anisotropic, in particular they 
can have different moisture diffusion coefficients in 
the horizontal and vertical directions. 

5. The assumption of exponential drying of the fram
ing material below fibre saturation, is shown to be 
an approximation which is soundly based in theory. 
An expression is given for the size of the associated 
time constant in terms of the fundamental physical 
parameters (diffusion coefficients, size etc.) describ
ing the framing material. 

The model consists of two coupled first order differ-
ential equations constructed by conserving moisture in 
the framing material and in the cavity. This means that, 
after linearising, the solution exhibits two time constants 
below fibre saturation. The shorter time constant can be 
interpreted as the time constant for the framing material 
to come into moisture equilibrium with the cavity 
material (the "equilibration lime constant") while the 
Longer time constant can be interpreted as the time con
stant for the drying of the initial construction moisture 
in the framing (the "drying time constant"). However 
since the equations have been linearised, the time con
stants have a wider utility than this. By the theory of 
linear systems, see for example [7], they become the par
ameters that completely describe the moisture per
formance of the structure under any driving forces. 

An express.ion is derived for the longer lime constant 
that shows the increase in drying lime of the enclosed 
framing material compared lo the drying time of the 
unenclosed material. This expression generalises that 
derived in earlier work, reflecting the fact that moisture 
movement can now take place out of alJ four faces of 
the framing materiaL Whether the result is significantly 
different from that obtained earlier clearly depends on 
whether the flow of moisture through lhe alternative path 
provided (from the framing material through the Linings) 
is of the same order or larger than flow through the path 
to the cavity. Examples are given to illustrate this. 

It is shown that the effect of the insulation is twofold. 
Firstly, it lengthens the shorter time constant by an 
amount depending upon the hygroscopic nature of the 
cavity material. In the case of air, which cannot hold 
much water vapour, lhe equilibration time constant is 
very small, in the order of hours ; in the case of insulation 
the time constant will be longer depending upon the exact 
hygroscopic nature of the material, that is the amount of 
water it can hold for a given vapour pressure. 
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Secondly, the insulation contributes to the longer (dry
ing) time constant through its vapour resistance. Whether 
this is significant depends upon the relative size of the 
vapour resistance of the insulation compared to the 
vapour and air resistances of the cavity and the 
vapour resistance of the framing material. 

If the framing material has an initial moisture content 
above fibre saturation then its vapour pressure is inde
pendent of moisture content and equal to the saturation 
vapour pressure at the temperature of the material. It is 
shown in this paper that this results in constant moisture 
concentration in the cavity and a linear fall in moisture 
concentration in the framing material after an initial tran
sient in which the cavity and framing come into moisture 
equilibrium. An expression for this drying rate is derived. 

In the first section of this paper the approximation 
which forms a basic assumption in this and previous 
work, namely of exponential drying of the hygroscopic 
materials, is put on a sound theoretical basis and an 
expression is given for the size of the associated time 
constant in terms of fundamental physical parameters 
(diffusion coefficients, size, etc.). In the next section the 
model is described, the differential equations for the 
model constructed and these equations are solved for the 
cases of initial framing material moisture content below 
and above fibre saturation. The behaviour of the solu
tions with the longer time constant are examined, being 
the solutions of most practical interest. An expression is 
given for the increase of the longer time constant for the 
enclosed framing material compared to the time constant 
when the framing material is unenclosed. A similar ratio 
is shown to hold if the initial moisture content of the 
framing material is above fibre saturation, This is the key 
result of this work. , ,._. . 

The paper concludes with some examples deriving the 
value of the longer time constant which determines the 
drying rates of initial construction moisture. These results 
are compared to results derived in earlier work. The fact 
that, under the assumption of linearity, all other moisture 
performance characteristics of the structure can be deter
mined once the enclosed drying time constant is known, 
is illustrated with examples showing how structures will 
behave under seasonal periodic driving forces. 

THE EXPONENTIAL DRYING 
APPROXIMATION 

It is assumed for this model, as in previous work 
[3-5], that the hygroscopic material dry, approximately 
exponentially, that is 

dm 
dt C:: - (m-!!i), (1) 

where mis the moisture concentration in the hygroscopic 
material (kg m - 3

) and m is its final equilibrium value. 
This is a lumped approxi;ation in which the entire moist
ure content of the material is visualised as being con
centrated at one point, and transfers in and out of the 
material through an effective vapour resistance. In an 
electrical analogue a hygroscopic material would be mod
elled by an RC circuit which has a time constant 

t =RC. (2) 

In what follows it is shown that this exponential drying · 
approximation is mathematically valid under the fol
lowing conditions: (a) constant diffusion coefficient (con
centration independent); (b) times greater than one time 
constant for the exponential solution. The physical val
idity or otherwise of these conditions is discussed at the 
end of this section. 

Consider the case of drying (desorption) of a two sided 
plane sheet. Crank [8] shows that for this case 

2 ( p;D.,t) 2L exp - --
m-m "" a 2 

M - = L pi(pi Li L) , (3) ;-!!! n - 1 n n+ + 

where D"' is the diffusion coefficient for mass transfer 
under moisture concentration driving force, i.e. 

i.e. 

also 

am ' dm ap 
mass flux= -D., ax= -D., dp ax' 

arx. 
L=

D., 

and P. are the positive roots of the equation 

P. tan /3. = L, 

(4) 

a. here is the surface mass transfer coefficient under mass 
concentration driving force, i.e. 

mass flux across the surface = rx.(mw -m0 ) (5) 

where mw is the moisture concentration at the surface of 
the material and m 0 is the moisture concentration exter
nal to the material. 

Consider in particular now the case of framing timber 
which will have parameters in the following range for the 
structures that are being considered, see for example 
Cunningham [5] and Siau [9] 

k:..,20m2 s- 2, 

a - 2-5x10- 2 m, 

a.-10- 1-10-sms- 1, 

D.,-10-11_10-9m2s-1, 

which in turn implies that L will be in the range of 2 to 
very large. For the moment take 

ai 
t>/32D, 

I m 

which is t greater than one time constant for the first 
exponential term in formula (3). 

Inspection of formula (3) for the range of values for L 
above shows that the series is very rapidly convergent for 
this range of t and can be well approximated by the first 
term, viz 

•••••••111119•1!1!1••11"'1~~..,...,.....-~..,......,"""~ -----·---- ----- ... " "' n<>r•> ,.. ,..,, 
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surface resistance 

I 

:.-surface 
I 

surface-.! 

surface resistance 

equivalent resistances 
of the material 

Fig. l. Lumped vapour flow resistances for plane hygroscopic materials. 

m-m 
2 ( f3f Dmt) 2L exp -~ 

f3f(f3T + L 2 + L) 
(6) 

For materials in intimate contact, for example insulation 
in contact with wood framing, it may be possible to 
ignore the surface resistance-this is the case of L infinite. 
Since /3. = (2n- l)n/2 for L infinite then in this case 
formula (3) reduces to [8] 

which is also very rapidly convergent for t greater than 
one time constant for the first exponential term, i.e. for 

4a 2 

t > --r--D . n m 

In this case the following approximation can be written 

m-!!! ~ _! (- n
2Dmt) 

M.-m - n 2 exp 4a 2 • 
I -

(8) 

Formula (6) and its special case formula (8) demonstrate 
that for times greater than one time constant the moisture 
desorption or absorption of the materials in our structure 
is exponential. In fact, for all but the smallest values 
of L considered here, it will be found the exponential 
approximation holds good for times considerably less 
than one time constant. 

In so far then as the diffusion can be assumed constant, 
for times greater than one time constant, drying is expon
ential, i.e. 

dm 
dt ex: - (m-!!!). 

As explained above, this equation describes a lumped 
model. It remains to be shown what size the lumped 
parameters should be given. This is established as follows. 

Let R be the equivalent total resistance to moisture 
movement from the middle of the sheet to one surface 
and r be the total surface mass transfer resistance. Total 
resistance is defined as 

total resistance= vapour resistance/A, 

where A is the area through which the moisture transfers. 
Figure 1 shows that, as the moisture transfers through 

an area A on each of the two faces, the total resistance 
to moisture transfer out of the hygroscopic material R, 

is given by the parallel combination of two resistances 
each equal to R+r, that is 

R, = HR+r). (9) 

It is widely accepted that, below fibre saturation, moist
ure transfer in timber is driven by vapour pressure gradi
ents [10, 11]. Vapour pressures can be determined from 
the moisture content using the sorption curve of the 
material. As in earlier work [3-5], to make progress, the 
simplification is made of linearising the sorption curve, 
i.e. it is assumed that 

p=km, (10) 

where k is assumed constant. 
In what follows we are concerned primarily with the 

long term behaviour of the structure and so can assume 
that the framing and cavity material are at a fixed tem

.perature, being the mean temperature of the structure 

. over the time period considered. This assumption is 
important to the usefulness of the linearity approxi
m!!-tion implied by equation (10). When temperature vari
ation becomes important the temperature dependency of 
k must be taken into account, see [5]. This issue is dis
cussed further when unsteady driving forces are evoked, 
see below. 

Note that from equation (4) above this implies that 

Dm = kDP' 

Formula (5) can also be rewritten as 

mass flux across surface = h(pw - p0 ), 

implying that 

ct=hk, 

(11) 

(12) 

(13) 

where h is the surface mass transfer coefficient under 
vapour pressure driving force. 

If R, is the effective vapour resistance for the hygro
scopic framing material in the lumped model then equa
tion (I) can be written as 

where Vis the volume of hygroscopic material associated 
with the area A across which the moisture flows, i.e. 

V= 2Aa. 

Hence using equation (10) 
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dp :_ ~ ( f!_ - .!!_) 
dt - V R, R, . 

The solution to this equation is an exponential with a 
time constant t0 of 

R,V 
t.=y· (14) 

This is the time constant of the exponential drying solu
tion to the lumped approximation being used. 

On the other hand the (approximate) solution taken 
from Crank [8], namely equation (6), can be rewritten 
using equation (10) as 

p-p_ 
2 ( PfDmt) 2L exp - ----a2 

·. 
Pf(Pf+L 2+L) 

which has a time constant 

ai ai 
t. = pi D = pikD ' 

I m l p 

' • ' 

( 15) 

by comparing (14) and (15) it follows that 

ka a 
R, = 2P 2AD = 2p 2AD . 

I m I p 

(16) 

When L is infinite p 1 = rr./2, and by inspection of the 
tables of the values of P. [8], it can be verified that within 
2% 

Hence 

R, = 2:DP (:2 + ±) 
2a 1 

= rr. 2ADP + 2Ah. (17) 

Note that the moisture transfer is diffusion limited 
(diffusion very slow compared to surface mass transfer) 
if 

in which case 

1 4 
-«
L rr.2 

2a 
R,--> rr.2ADP . (18) 

Note also that if the moisture performance is diffusion 
limited then R » r so that in equation (9) 

R,--> !R, 

by comparing (18) and (19) it can be seen that 

4a 
R = rr.2ADP' 

and hence from equations (9) and (17) 

a 1 
r =AD L =Ah' 

p 

IAI 23 :2-D 

(19) 

(20) 

(21) 

1/2R • 

Fig. 2. Electrical circuit analogue for hygroscopic materials. 

Consider now the case of material of rectangular cross 
section. Drying and wetting in this case can take place 
out of four faces. As the governing equation is linear the 
solution in two dimensions is just the product of two one 
dimensional solution equations derived above [equations 
(3), (6-8)], see for example Carslaw and Jaeger [12]. It 
follows that the time constant for drying from four faces 
in the exponential approximation is given by 

1 1 1 
-=-+-, 
lw la fb 

or 

(22) 

Here II is the operation of determining the parallel com
bination of the operands, i.e. if 

then 

or 

c = allb, 

1 1 1 
---+c - a b' 

ab 
c = a+b' 

t. and th are of the form given by equation (15), viz 

(23) 

and 

(24) 

with D.P and Dbp being the diffusion coefficients in the 
direction of the edge that will face the cavity or the linings 
respectively, while the resistances are of the form given 
by equation (20), viz 

4a 
R. = iA D ' 

1t a ap 

(25) 

and 

4b 
Rb=-2--

rr. AbDbp 
(26) 

In the above analysis, the hygroscopic materials have 
been characterised in a lumped fashion with the par
ameters R., R6, t0 and t6 • Alternatively an electrical circuit 
analogue can be used, see Fig. 2. This requires values to 
be given to the resistors and the capacitor illustrated. 

. ·:-: ... • ·. ~ .~· ... :· . -. 
• I 
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I·~!· 2c ·I 
=r=;;;=;;:=;::::;;;::;;:;;;::;;;:=;::::;;;:;<:;;::;::=;;:=r=~---oUler lining :I ~=m)<J andm•mbranes 

~-- lnnar llnlng 
and mombranos 

Jcl!I cavlfy material . . ' 
Fig. 3. Diagram of the structure type modelled. 

Since the resistances and time constants are known the 
capacitance can be deduced by noting that for a simple 
RC circuit from formula (2) 

t 
c=-

R" 

In Fig. 2 it can be seen that the total resistance is given 
by Ra and Rb in parallel, i.e. 

l 1 1 
-R= 1R +~R' 

2 a 2 b 

(27a) 

or 

(27b) 

while the overall time constant t"' for the circuit is given 
by formula (22). It follows that 

v 
(28) 

Formulae (27) and (28) give the lumped parameters in 
the alternative electrical circuit analogue. 

It has been shown in this section that provided the 
diffusion coefficient is constant and time periods greater 
than the time constant for drying of the hygroscopic 
materials (a few weeks for framing timber) are being 
considered then the drying is exponential. In reality the 
diffusion coefficient Dm is a function of moisture content. 
Furthermore, materials such as wood are not hom
ogenous and initial moisture distributions are not 
uniform. Nevertheless the exponential drying indicated 
by equation (6) or (8) is a useful approximation and one 
for which there is some experimental evidence, see for 
example [13]. 

MODEL DEVELOPMENT AND ANALYSIS 

The structure to be analysed is a flat roof or wall with 
a framing material which is joined to the inside and 
outside linings and an associated cavity filled with insu
lation or air, see Fig. 3. Both framing and cavity material 
can store moisture but the hygroscopic properties of the 
linings are ignored. Any membranes such as vapour 
barriers, building paper, sarking, etc. are lumped in 
with the linings. 

By symmetry, for the analysis that follows only one 
half of the structure is considered, namely from the 
middle of the framing material to the middle of the insu
lation. The half-volume of the cavity V0 and the framing 
V"' are therefore given by 

V0 = 2bc x depth, 

V"' = 2ab x depth, 

where a is half the width of the framing material; b is 

half the height of the cavity; c is the half-width of the 
cavity. 

Moisture in the cavity and in the framing is conserved 
as follows: 

Increase in cavity moisture per unit time= flow of 
moisture from external regions by diffusion+flow of 
moisture from external regions by air leakage-flow 
of moisture to the framing material 

which results in the equation 

V dmo _Pw-Po 
0 dt - Rwo 

(29a) 

and 

Increase in framing material moisture per unit time = 
flow of moisture from cavity+flow in moisture from 
exterior regions through the linings 

givmg 

where the subscripts are defined as follows : 

i,j-external regions, i, j = 1 or 2; o--cavity; w-
framing material 

and · 

cP is the concentration of moisture (kg m - 3
) in the air 

in region p; m1 is the moisture concentration (kg m - 3
) 

in the material in region i; rpq .is ".the series sum of all 
vapour resistances between region p and q (N s kg- 1

); 

R"'0 is the total vapour resistance including area, 
between the centre of the framing material and the 
centre of the insulation (N s kg- 1 m - 2

) ; Apq is the area 
(m2

) between region p and q; Fpq is the air change rate 
(s- 1

) between regionp and q. 

Also the net air flow into the cavity is zero, i.e. 
2 

L (F; 0 -F0 ;) = 0. 
i= 1 

Note that the term F10c1-F01c0 in equation (29a) assumes 
perfect mixing of the air flows in the cavity. 

It is straightforward to include internal moisture 
sources, other moisture source regions [5), or leaks into 
the model at this stage but these are excluded here for 
simplicity. 

Water vapour concentrations c1 are now converted to 
vapour pressure by assuming water vapour to be an ideal 
gas, i.e. 

wl 
te1 
We 

si1 

w 
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framing 
materlals 

lining• 

cavity 
material 

Fig. 4. Definitions of the lumped total vapour fl.ow resistances. 

(30) 

where R is the universal gas constant, T is the Kelvin 
temperature of the air and Wis the molecular weight of 
water. 

A number of lumping definitions are now made to 
simplify these conservation equations, see Fig. 4, i.e. 

where 

and 

t (Aio + VoFo;W), 
i= I r;o RT 

4a 
R.,. = iA D , 

1C a ap 

4b 
R .,b = zA D , 

7t b bp 

4c 
Rao= 2A D ' 

1t a op 

__ R ~ A1.,P1 
Pw - be L, ' 

i- I r jw 

(31) 

and D 0 P is the diffusion coefficient of the cavity material 
in the direction parallel to the linings. 

ko and k., are temperature dependent but are taken 
here as constant at their mean value over the range of 
temperatures under consideration, see discussion in the 
previous section. 

With these definitions equations (29) become 

Yo dpo =Pw-Po +Po-Po 
k 0 dt R.,0 R 0 • 

(32a) 

Fig. 5. Electric circuit analogue of the structure. 

V., dp., _Po-Pw +p.,-p,. 
k.,dt-~ ~· 

(32b) 

Figure 5 shows an electrical equivalent of this structure 
as represented by equations (32). 

The steady state solution to these equations is found 
by putting the time derivatives to zero and is 

(33) 

where underlining is used to denote steady state values. 
The steady state cavity and framing vapour pressures 

and moisture contents are seen to be a weighted mean 
of the driving (external) vapour pressures, the weights 
depending upon the relative ease with which each driving 
vapour pressure can influence the volume under con
sideration. 

If Rb. is infinite, that is, flow through the framing to 
the linings is negligible, then 

f!.o = f!. w =Po• 

as was found earlier [3-5]. 
The time dependent case with initial moisture contents 

below fibre saturation is solved first. The initial con
ditions are taken at t = 0 as 

or m0 = M 0 

or m., = M ,. 
(34) 

with steady driving forces, i.e. the step function case. The 
following definitions are now made 
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VoRoe 
t =--

0 ko 

V., 
v=

Vo 

A.= R., 
Rb• 

% = k., . 
ko 

(35) 

Note that in the case of the cavity containing air, under 
the assumption of an ideal gas, equation (30), we have 

and therefore 

RT 
ko=w, 

k.,W 
%=RT' 

as was defined earlier [3-5]. 
Since the driving forces are steady the temperature 

dependence of k0 and k., is irrelevant so that the full 
solution of equations (32) under initial conditions (34) is 
found to be 

where 

f!.o f!.w 

!!!o = k' !!J. .. = k' 
0 "' 

and the time constants t 1 and t 2 are 

1 1 1 (1 1 v ri 
- - = - -+-+-+-
11' !2 2 !0 I~ :i:"t~ t~ 

± (
I 1 v ri)1 

4 ) -+-,+ -, +- - -,(l+A.) 
lo t. :i:"t. f. t0 t0 

(36) 

(37) 

Using the initial conditions (34) A, B, C and D can be 
evaluated as 

B=M -m -A C=:i:"(l+tt-~)A 
w _w ' 'I l1 ' 

The significance of these solutions is examined in the next 
section. 

Equations (32) are now solved in the case where the 
initial moisture content of the framing material is above 
fibre saturation. Other conditions are as before, i.e. the 
initial cavity moisture content is below fibre saturation 
and the driving forces are steady. 

This case gives rise to qualitatively different solutions, 
because as long as the moisture content of the framing 
material is above fibre saturation its vapour pressure 
remains constant at the saturation vapour pressure 
appropriate to the temperature of the material. It is 
assumed here that this vapour pressure remains as the 
driving force for drying at the surface for as long as the 
mean moisture content of the framing material is above 
fibre saturation. If this statement were strictly true then 
moisture transfer out of the framing material would be 
controlled by surface resistance only. However the true 
situation is more complex than this and no attempt is 
made here to derive an equivalent resistance formula 
comparable to equation (17) for the case of moisture 
contents above fibre saturation. Note that dp.,/dt must 
be replaced by k., dm.,/dt in equation (32b), since p., is 
now constant. 

With these assumptions equation (32a) has the solu
tion 

(38) 

or 

where 

and after substituting this result int•> the modified form 
of equation (32b) the expression for m., is 

_ _!_ (Pw-Po +Pm-ftw). 
V.. R., Rbe 

These results show that, after an initial transient, as 
long as the moisture content of the framing material 
remains above fibre saturation the vapour pressure and 
moisture content in the cavity material remains constant 
at p_ 0 and !!J. 0 respectively while the framing material dries 
out at a constant rate given by 

dm., = _ _!_(p.,-fto +p.,-p"') . (39) 
di V., R.. Rb. 

The transient has a time constant of tP which is found 
to have a value of less than an hour for loose cavities 
containing air to values in the order of a day for tight 
cavities filled with insulation. This transient can be inter
preted as the time taken for the cavity to come into 
equilibrium with the framing. 

PROPERTIES OF THE LONGER TIME 
CONSTANT SOLUfIONS 

The solution below fibre saturation exhibits two time 
constants while the solution aboye fibre saturation exhi-
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bits a short time constant and a rate term. This section 
concentrates on the properties of the longer time constant 
or the rate part of the solution since they are of more 
practical interest. The short term behaviour of a structure 
will be more complex than this model allows because 
of the influence over these time periods of the possible 
hygroscopic nature of the linings and initial non-uniform 
moisture concentrations. 

It must first be shown that the short time constant 
transient is rapid enough to be ignored over the longer 
time periods of interest here, namely weeks and months. 

An expression for the initial transient time constant t,, 
equation (35), for the case of initial framing moisture 
content above fibre saturation has already been derived. 
Using values of parameters likely to be encountered in 
practice this will have values in the range of an hour to 
a day, as mentioned before. 

Similar considerations for the below fibre saturation 
case show that the shorter time constant t 1 is approxi
mately 

(40) 

which also will have values in the order of an hour to a 
day. 

In the below fibre saturation case once the initial t 1 

transient has passed the solutions (36) of equations (32) 
can be rewritten in a simpler form. Since.Ji9w 

dpo,.,, O 
dt -

then from equation (32a) 

( Pw Po )/( 1 1 ) p = -+- -+-
0 Rwo Roe Rwo Roe 

which upon substituting into equation (32b) and solving 
the resulting differential equation gives 

Pw = (Pw-!!_w)e-'112 +£.w 

where 

as before (equation (33)) and where 

or 

(41) 

Equations (40) and (41) represent the simplified form 
of the two time constants t 1 and t 2 first derived in equa
tions (37). Recall that kw and k 0 are temperature depen" 
dent so that t 1 and t 2 will take on different values for 
different mean temperatures. 

In the equivalent circuit analogue, Fig. 5, once the 
capacitor representing the cavity is fully charged, it no 
longer contributes significantly to the circuit perform-

ance. Hence the circuit becomes a simple RC combination 
and can be redrawn as in Fig. 6. 

Intuitively one would expect that once the framing 
material has been enclosed its drying time t 2 would be 
longer than for the unenclosed material. This can be 
placed on a quantitative basis by comparing the time 
constant t 2 in formula (41) above to the time constant 
fw, equation (22) for unenclosed drying for the framing 
material. 

From equation (41) 

k., ( I 1 ) 
= V,. R.,.0 (1 +y) + Rwb(l +o) ' (42) 

where 

(43) 

and 

(44) 

For comparison, take the case of unenclosed drying being 
diffusion limited, i.e. diffusion very much slower than 
surface mass transfer. Unenclosed timber will probably 
be in this regime because the appropriate parameter L 
will be 2 or larger as shown above. In this case from 
equation (14) 

(45) 

where r;. is the surface resistance at the edge to face the 
cavity, and 

Expression (42) now becomes 

1 1 1 
-=--+---
t2 i.c1 +1) tb(l+o) 

(46a) 

or 

(46b) 

This is the key result of this work in that it shows how 
the long term time constant-physically, the drying time 
of the framing material once enclosed in the structure
is increased over the unenclosed value, according to the 
air and vapour tightness construction details of the struc
ture and the driving forces upon it. 

However the value of this result goes much further 
than this : the value of this time constant allows the 
moisture behaviour of the structure to be predicted for 
any driving forces in so far as linearity can be assumed; 
in particular, provided that the temperature dependence 
of kw and k 0 can be allowed for at least approximately, 
the seasonal behaviour of the cavity can now be derived, 
see [5]. In the electric circuit analogue, knowing the longer 
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OR 

Fig. 6. Simplified equivalent circuit for the structure. 

time constant t 2 is equivalent to knowing the size of the 
capacitor and resistor in the equivalent circuit shown in 
Fig. 6 and once this is known the performance of the 
circuit under any driving voltage can be predicted. It will 
be appreciated that what is predictable knowing only t 2 

is the longer term behaviour only of the structure. The 
shorter term behaviour with time periods ofless than say, 
one day, is governed by t 1 in this model and by even more 
complex considerations in reality. 

The formula derived in earlier work can be recovered 
by considering the case of the cavity material containing 
air and noting that 1J is infinite if moisture flow to the 
framing material is insignificant. Formula (46) for the 
drying time constant is found to reduce under these cir
cumstances to 

t 2 vto 
-=1+
r. :trt. 

(47) 

which is identical to the expression derived in earlier work 
[3-5]. 

A similar analysis can be carried out for the constant 
rate of drying term, equation (39), in the above fibre 
saturation case as follows. 

In this case it is necessary to examine the time T 2 taken 
for the framing to dry from a moisture content m 1 above 
fibre saturation down to a moisture content m 2 also above 
fibre saturation. Let T. be the time taken for the framing 
material to dry through this range in air through the faces 
that will face the cavity and Th be the time taken to dry 
through the other two faces to air. At steady state if p, is 
the external vapour pressure then by conservation of 
moisture in the framing material it follows that 

V _dm_w = ...;:p_._. -_p:...'-
w di Rw

0
+r,

0
' 

for drying through the edges to face the cavity, with Pw 
constant in this case, then 

Vw(m 2 -m 1) (Rw. + r,0 ) 

T. = . 
p,.-p, 

Similarly 

Once the framing material is enclosed and steady state 
has been reached the governing equation (39) becomes 

where ft, is a weighted driving vapour pressure defined 
by 

- (Po Pw ))( 1 l ) p = -+- -+-• R0 , Rb, R., Rb, . 

Hence the time Ti taken for the enclosed framing to dry 
from a moisture content m 1 down to a moisture content 
m 2, both above fibre saturation, is given by 

(48) 

In terms of the time taken for the unenclosed framing 
material to dry equation (48) becomes 

taking p, =ft, for comparative purposes and where 

~ = R., 
Rw0 +r,0 ' 

(49) 

Only if r,. « Rwa and r,b « Rwb could ~ = I +y and 
C = l +bin which case equation (49) for the above fibre 
saturation would take the;Same form a~ equation (46) for 
below fibre saturation. ff anything, for the above fibre 
saturation case, the surface resistances are likely to domi
nate so that equations (46) and (49) must remain in 
distinctly different forms. 

Whether the expressions derived here for the enclosed 
drying time compared to the unenclosed drying time 
(equation (46)) give rise to results that are significantly 
different from those that would be obtained using the 
expression derived in earlier work, equation (47), clearly 
depends upon the size of the parameters involved-if the 
alternative path for moisture transfer from the framing 
material through the linings is a relatively important one 
then the results may differ significantly, otherwise not. 
This is pursued further in the next section in which some 
specific examples are given. 

In earlier work [3], as a result of the formula for the 
increase in drying time for enclosed framing material, 
three types of structures were identified according to 
the tightness. They were : "hygroscopically controlled", 
"intermediate", and "construction controlled". These 
concepts remain useful here. If y and 1J are small, much 
Jess than one, then the structure can be described as 
"hygroscopically controlled", i.e. the moisture behaviour 
of the framing material does not differ significantly from 
the unenclosed material and hence is dominated only by 
the hygroscopic nature of the material. If y and 1J are 
large, or more precisely if t 2 is significantly greater than 
t.,, then the moisture behaviour can be described as "con
struction controlled" because the rate of drying is deter-
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mined by the air and vapour tightness of the structure. 
The intermediate case lies between these extremes. 

One of the new features in this work is to allow for the 
possible presence of insulation in the cavity. The effect 
of the insulation is to increase both the short and long 
term constants 11 and 12• 

The shorter time constant 11 is lengthened depending 
upon the hygroscopic nature of the cavity material. This 
can be seen by rewriting t" equation ( 40), in terms of 
resistances. This gives 

k 0 becomes smaller for more hygroscopic materials and R0 , becomes larger for higher vapour resistance 
materials-both terms will increase the smaller time con
stant t 1• If the cavity material is air which cannot hold 
much water then t 1 is very small, in the order of hours; 
otherwise the time constant will be longer depending 
upon the exact hygroscopic nature of the material and 
its vapour resistance, perhaps up to the order of days. 

The insulation increases the longer (drying) time con
stant through its vapour resistance. This can be seen by 
examining equation (46) 

ti= t.(1+y)11 tb(l +Ci) 

= t.( l + R•~:.Roe) II tb(I +Ci) . 

As the cavity material vapour resistance increases so does 
R.0 and R0 e which in turn increases y and hence the long 
term drying constant t 2• Even for relatively low vapour 
resistance materials such as fibreglass this increase in y 
can be quite significant, see the examples below. 

EXAMPLES 

In this section some examples are presented to illustrate 
the application of formula (46) to find the· drying time 
constant for a building struccure. Further examples show 
how knowledge of this time constant implies complete 
knowledge of the moisture behaviour of the structure [5] 
(within the limitations of the model assumptions). 

Two structures are considered and two subcases are 
considered for each structure. Structure l has 50 x 50 mm 
timber joists spaced at 500 mm centres with the cavity in 
between filled with fibreglass. Structure 2 is simila r except 
that the joist is 50 x 100 mm and is orientated so that the 
cavity between the joists is I 00 mm across and also filled 
with insulation. For definiteness the struccure is con
sidered to be 1 m deep in the third dimension but of 
course its exact value is "irrelevant in finding time con
stants. 

For each structure two subcases are considered. Sub
case (a) has the internal linings plus membranes with a 
vapour resistance of2 GNs kg - 1 and the external linings 
with a vapour resistance of l GNs kg - 1

• Subcase (b) has 
the internal linings with a vapour resistance of 20 GNs 
kg - 1 and the external linings with a vapour resistance of 
LOGNs kg - 1• 

In all cases the driving air pressures and air per-

meabilities are such that the air change in the cavity is 
0.5 air changes per hour. {To calculate the long term time 
constant the direction of air movement is not needed.) 
The mean temperature of the structure is taken as 11 °C. 
The diffusion coefficient (vapour pressure driven) for the 
wood is taken as 7 .32 x Io- 1 2 s and for the insulation as 
1.67 x 10- 10 s. kw is taken as 20 m2 s- 2

• 

Formulae (46) are used to calculate the time constants 
ta and th for open air drying of the joists. This comes to 
20 days for drying through faces 50 mm apart and 80 
days through faces 100 mm apart. Hence from formula 
(22) the overall drying time in air will be 10 days for a 
50 x 50 mm joist and 16 days for a 50 x 100 mm joist. 

To find how these drying times increase when the struc
ture is enclosed we proceed as follows . R0 e is calculated 
from formula (31) and y calculated from its definition 
formula (43). Similarly Rh. and Rwb are calculated from 
their definitions, form ulae (31 ). R ,, is then found by 
subtracting R~h from Rb, as indicated in formulae (31) 
and o calculated from its definition formula (44). This 
allows the drying time constant i 1 to be calculated from 
formula (46). 

Table I shows the results of these calculations and the 
values that would be obtained from earlier work, formula 
(47), assuming drying through the joist edges facing the 
insulation only. 

Two opposing effects have been included in this model 
in refining earlier work. Firstly the framing material 
enclosed drying time has been decreased because an alter
native path from the joist through the linings has been 
included. This effect is most significant in case l (a) where 
the alternative path presents the lowest resistance of all 
cases considered, causing the enclosed drying time con
stant to be reduced to 17 .2 days. Secondly the drying time 
has been increased because moisture passing through the 
cavity must pass through insulation rather than air as 
assumed in the earlier work. These opposing effects have 
nearly cancelled in all cases except l(a). However it is 
possible that this model overestimates the contribution 
from the cavity insulation vapour resistance because the 
effect of lumping is to cause all the moisture to flow to 
the centre of th.e cavity and then turn at right angles to 
fl.ow to the linings; in reality flow from the joist to the 
linings via the cavity is fully two-dimensional, causing 
the effective vapour resistance to be less than that given 
by this model. 

To highlight the fact that knowledge of the drying 
constant t1 implies complete knowledge of the longer 
term moisture performance of the structure (assuming 
linearity), the case of periodic driving forces will now be 
considered. It was shown in [5] that the chief factor 
contributing to non-linearity is the temperature depen
dence of k .. and k0 • This problem was partially overcome 
by using as a value for t2 its mean value over the range 
of temperatures that are of concern, written as !2• 

Consider now for example the important case of sea
sonal variation in the moisture content of the "structure. 
In this case the driving forces can be approximated as [5] 

ft= ft+/!,.psinwt 

where ft is the mean value of ft and flp is the m'aximum 
deviation of the driving force from this mean and w is 
the angular frequency of the driving forces. 

r 
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Table I. Drying time constants for various structures 

I. 50 x 50 mm Joist 2. 100 x 50 mm Joist 
l(a) Low l(b) High 2(a) Low 2(b) High 

Formula resistance resistance resistance resistance 
Quantity number linings linings linings linings 

y (43) 0.50 1.19 0.61 1.66 
{J (44) 1.02 9.75 0.52 4.92 

Drying time constant for 
unenclosed framing, t., (22) 10.0 days 10.0 days 16.0 days 16.0 days 

Drying time constant for 
enclosed framing, t 2 (46) 17.2 days 36.4 days 25.5 days 47 .8 days 

Drying time constant for 
enclosed framing from 
earlier work (47) 22.l days 35.9 days 24.0 days 45.0 days 

Table 2. Seasonal moisture behaviour for various structures 

I. 50 x 50 mm Joist 2. 100 x 50 mm Joist 
l(a) Low l(b) High 2(a) Low 2(b) High 
resistance resistance resistance resistance 

Quantity linings linings linings linings 

Drying time constant for 
enclosed framing, t 2 

Phase lag 
17.3 days 36.8 days 25.8 days 48.5 days 

0.56 months 1.10 months 0.81 months 1.35 months 
Amplitude response o.96 o.84 0.9 I . 0.71 

The moisture content of the framing material can be 
simply determined by examining the RC circuit analogue 
in Fig. 6. From circuit analysis the voltage V, across the 
capacitor for this circuit is 

V = Vo 
' J1+(wt2)

2 

where V0 is the driving voltage and t2 is the meaned time 
constant of the circuit. 

The phase <p of the voltage across the capacitor lags 
the phase of the driving voltage by 

<p = tan - 1 (wt2 ) . 

Taking the driving period as 1 year, Table 2 contains 
the amplitude response and phase lag of the framing 
material vapour pressure and hence moisture content 
compared to the driving forces for each of the four cases 
analysed in the examples above. For example in the case 
of the structure with a 50 x 100 mm joist and high vapour 
resistance linings, the maximum seasonal moisture con
tent in the joist occurs 1.35 months later than the peak 
driving forces, and the value of the deviation of the moist
ure content from the yearly mean value is only 77% of 
that which would be predicted. from assuming the timber 
was in moisture equilibrium with the driving forces. In 
fact as pointed out earlier [5], the droop in amplitude and 
phase lag is only significant for tight structures, that is, 
structures in which the enclosed drying time constant is 
significantly longer than the unenclosed time constant. 

CONCLUSIONS 

This work is an attempt to find through analytical 
modelliug, parameters that characterise the moisture per
formance of the struclure as a unit. These system-wide 
parameters are not easy to find if numerical modelling is 

used. The system-wide parameter discovered here is the 
time constant t 2 which describes the drying of the 
enclosed timber frame. The existence of this parameter 
and an understanding of its meaning should provide 
insight into the moisture performance of a structure and 
provide a means for the researcher to communicate to 
the practitioner, be he engineer, architect or builder. 

However this simplicity has not been obtained without 
cost. Quite strong simplifications have been made to 
enable the differential equations to be solved, the most 
significant of which is to assume that over long time 
periods (say l year) one can satisfactorily take account 
of the temperature dependence of the parameter being 
used to describe the sorption curves, k, by using its mean 
value over the time period under consideration. Other 
simplifications are less significant, but still important. 
It has been shown for example that the assumption of 
exponential drying is only true if the diffusion coefficient 
is concentration independent. In fact , experimental evi
dence exists, see [IO], to show that the exponential drying 
approximation is a valid one. 

Three ways forward are indicated which still preserve 
the essential philosophy underlying this work, viz. to 
provide system-wide parameters with simple physical 
meaning in order to allow a better intuitive under
standing of the moisture performance of the structure. 
Ways forward are: l, experimental validation; 2, numeri
cal modelling to test the limits of the analytical solutions; 
and 3, refinement of the analytical solutions addressing 
some of the simplifications mentioned above. 

Until the conclusions of this model and others like it 
are tested experimentally it remains uncertain to what 
degree the concepts derived here will be reflected in the 
actual moisture performance of structures. Programmes 
are in place to provide the necessary experimental vali
dation, see for example [14] . 
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The model developed here has two time constants. 
The longer term time constant is interpreted as the time 
constant for the drying of the enclosed framing material 
and is given by 

of a real structure has been accurately modelled. Other 
factors not considered will have an important influence· 
in the shorter term such as the hygroscopic nature of the 
linings, nonuniform initial moisture distributions, non
linearities, etc. 

1 l 1 
-=---+---
t 2 t0 {l +y) tb(l + o) 

or 

(50) 

The formula for the drying time constant generalises 
the formula obtained in earlier work because more detail 
has been included in the model described in this paper. 
In particular a flow path connecting the framing material 
directly to the linings has been included and the cavity 
material does not now have to be air only. 

This is the key result of this work. The formula 
describes quantitatively how the drying time of the 
framing material enclosed in a structure is increased over 
the unenclosed drying time. Once this longer term time 
constant is known then under the assumption of linearity 
used here the moisture performance of the model under 
any (longer term) driving force is known. In particular, 
the seasonal moisture performance of the structure can 
be ascertained. 

This paper has also shown that, provided the diffusion 
coefficient of the framing material can be taken as 
approximately constant, then it can be safely assumed 
that drying of the framing material below fibre saturation 
is exponential. It has been shown that if the moisture 
content of the framing material is above fibre saturatjon 
then the framing material dries linearly at a slower rate 
than if it were unenclosed. 

The chief value of an analytical model such as that 
developed here is to condense into one formula a single 
parameter, the long term drying time constant, which 
will explain and predict the moisture behaviour of a wide 
number of different structures under a very wide range 
of driving forces. 

The shorter time constant can be interpreted as the 
time constant for the process of the framing material and 
the cavity material to come into equilibrium. It is not 
claimed here that the short term moisture performance 
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