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Tracer gas techniques a.re becoming widely used to measure the ventilation rates in build
ings. As more detailed information is required for both energy a.nd indoor a.ir quality pur
poses, re!earchers a.re turning to complex, multizone tracer strategies. Both single gas 
a.nd multiple gas techniques a.re being utilized, but only multiga.s a.re capable of uniquely 
determining the entire matrix of a.ir flow!. Because of the inherent limitations in the abil
ity to estimate zonal concentrations, estimates of multizone air flows a.re highly imprecise 
for rea.l buildings. However, exogenous information concerning physical constraints can 
allow a. greatly improved estimate and interpretation of results if combined with meas
ured data.. This report describes techniques for improving tracer-gas derived ventilation 
data using physical knowledge a.bout the system under study. 

· Keywords: Ventilation, In.filtration, Tracer Gas, Multizone Me:isurement Techniques, 
Error Analysis, Uncertainty 
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INTRODUCTION 

Tracer gasses are used for a wide range of diagnostic techniques including leak detec
tion 1•2 and atmospheric tracing. 3 One application which has had a resurgence in the last 
decade is the use of tracer gasses to measure ventilation (i.e., air flow) in buildings.4 Ven
tilation is an important process in buildings because of its impact on both energy require
ments and indoor air quality-both of which are topics of concern to society. Measure
ment of the tracer gas concentration and source emission combined with conservation 
laws allows a quantitative determination of the tracer transport mechanism (i.e., a meas
urement of the air flow). 

The vast majority of the ventilation measurements made to date have involved a 
single-tracer gas deployed in a single zone. This technique has proven very useful for 
buildings which may be treated as a single zone (e.g., houses) and for more complex build
ings in \which there are isofatable sub-sections. However, as the need to understand more 
complex buildings has grown, .tracer gas techniques that are able to treat multiple zones 
have been developed. 5 Multizone techniques recognize that not only does air flow between 
the outside and the test space, but that there are air flows between different parts (i.e., 
zones) of the test space and, in the complete case, they are a:ble to measure these flows. 

Because of the multiple sources of randomness associated with multizone tracer gas 
studies, precision may be relatively poor. However, a user of such tracer gas techniques 
has more information available to him than is contained within the data alone. This a 
priori information can greatly improve the accuracy and precision of the measurement if 
properly combined with the data. This report will endeavor to show how to combine 
prior information with the data to get an a posteriori set of air flow estimates and associ
ated errors that improves upon the data. 

BACKGROUND 

The continuity equation expresses the conservation of tracer gas. In a general mul
tizone environment, a matrix form of the continuity equation must be used: 

V·C(t) + Q(t)·C(t) = S(t) (1.1) 

For every zone of the system there will be a row in both the concentration and source
strength matrices. For every unique tracer gas there will be a column in those ma.trices. 
If there are N zones, the volume and air flow matrices will be square matrices of order N 
and the continuity equation can be rewritten with explicit indices: 

.t ( V,.1c1k(t) + Q;1(t)Cjk(t)) = S;k(t) (1.2) 
1-1 

If there are as many tracer species as there are zones, the problem is called complete and 
there will be an exact answer; we shall focus our attention to the complete problem and 
therefore assume that all of the matrices are square. 

As Roulet6 points out, the continuity equation is a mass balance equation and serious 
errors can result if it is used as a volume balance equation unless proper precautions are 
taken. Accordingly, the concentrations are expressed in mass of tracer per unit volume to 
assure correctness even when the density of air varies from zone to zone (e.g., if the zones 
are at different temperatures). 

LBL-25772 
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Interpretation of Matrix Elements 

Eq. 1 contains measured data and derived quantities. The measured data are the 
flows and concentrations of each tracer gas in each zone. Specifically, Cii' C;j, and Sij 
all represent the respective value of the J

0

th tracer gas in the ith zone. 

The volume matrix can either assumed to be independently determined or derived 
from the measured data. It is usually assumed (and will be herein) that the volume has 
been exogenously determined. For most practical purposes the volume ·matrix can be 
assumed diagonal with the individual zone volumes as the entries. If, however, there is 
short circuiting of the tracer source from one zone to another, it can manifest itself as an 
off-diagonal volume element, but the sum of each column must be equal to the (effective) 
physical volume of the zone. 

The interpretation of the air flow matrix requires a bit more explanation. The diago
nal elements, Q;;, represent the total flow out of that zone to all other zones and should 
have positive sign. The off-diagonal elements represent the flows between zones; 
specifically, -Qij is flow from the ;"th zone to the ith zone. Since the fl.ow from the ;"th 
zone to the ith zone can be different from the fl.ow from the ith zone to the J.th zone, this 
matrix will in general not be symmetr_ic. 

The flow matrix explicitly contains information about flows between measured zones 
and the total fl.ow . If there are flows to zones other than those being measured (e.g., out
side), the sum of some rows and columns of the flow matrix will be positive; and system is 
said to be open. If all zones of the building are monitored these flows to "elsewhere" are 
attributed to air e'xchange with the outside. 

ESTIMATION OF FLOWS FROM MEASURED DATA 

Inversion of eq. 1 is a straightforward mathematical problem: 

Q(t) - ( S(t) - v-c(t) }c(tr1 (2) 

If there were no uncertainty in the measured data (i.e., the concentrations and source 
strength), this inversion would give the correct (and only) answer. In any real experi
ment, however, there will be uncertainty in the measurements due either to instrumenta
tion error;> or other random processes. Such uncertainty can be described by a probabil
ity distribution as to where the true value lies. Tarantola7 gives an excellent discourse on 
the issues related to the general problem of extracting model parameters from measured 
data. 

The covariance of the data can be calculated if the uncertainties in the measured con
centrations and source strengths are known; 8 all of the data covariances* used herein are 
so calculated, but the results of this report can be used howsoever the covariance is deter
mined. The remainder of this report assumes that the errors can be assumed to be Gaus
sian. This common assumptio_n may not be strictly true for a variety of reasons (e.g., 
the fl.ow and concentration values are positive definite, mixing is not a Gaussian process, 

• The reader should be careful to note the number or dimensions used in the matrix notation. The a.ir flows a.re naturally 
treated a.a a. matrix (i.e., tensor or rank 2) which implies that the covariance "matrix" is really of ra.nk 4. To compare with 
more standard treatment.a, the air l!ows could be considered a.s a vector a.nd the covariance a.s a. normal matrix. As long a.s 
it is realized that the covariance matrix ha.s twice the dimensions of the a.ir l!ows, the matrix notation will be left genera.I. 
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. :.). For most common applications, however, the assumption is unlikely to lead to 
-=znificant errors and we will use it. If the covariance of the flows are known and can be 
.:...=sumed Gaussian, the probability distribution for the true value is 'as follows: 

'II o(.Q I Qd) = Eo(Qd) e -~llQ,Qdll 2 

(3) 

-·!lere subscript "d" implies that the quantity is calculated directly from the data. The 
=-:crmalization for the probability is as follows: 

Eo(Qd) == ((27r)iY2 I a(Qd) I r·~ (4.1) 

_:::-_d the determinant: 

I a I = Determinant of the Covariance Matrix 

.Je norm used in the above equations, 

llQ,Qdll2 = ( Q-Qd)·a(Qdt1
·( Q-Qd) 

(4.2) 

'(5) 

-::presents a normalized distance between two points using the covariance as the weight
:-_; (i.e., the metric of the space). (This square may be familiar to the reader as a X- vari

_::ile.) 

It should be noted that the mean, median, and maximum likelihood estimator (i.e., 
:::e mode) of the distribution are all equal to the point value as calculated by the inver

~ :m of eq. 1 (i.e., Qd)· 

.:.:icorpora.tion of Prior Estimates 

It is quite often the case that we have some knowledge about the result that does not 
::"Jme from the current data. Such a priori information is called prior knowledge or more 
::-::nply referred to as the "priors". Two common examples of such prior knowledge would 
. ~ an independent measurement of (some of) the same quantities, or some physical 
.::iowledge about a particular flow. If this knowledge can be expressed as mean set of air 

-:.Jws,, QP, with (Gaussian) covariances, ap, we can combine our measured value with 
·.:.r prior knowledge to improve our estimate of the true value: 

( 

-1 -1 ) 
Q = a. ad ·Qd + a p ·Qp 

a= (ad-1 + ap-lrl 

(6.1) 

(6.2) 

Even if the prior knowledge is very uncertain, its effect can only be to improve our 
:::5timate of the true values, provided we know how uncertain the prior knowledge is. 
~his improvement can be especially useful when the problem is poorly conditioned and 
: :ie or more flow elements may be extremely uncertain. Any relationship that can be 
::::pressed linearly can be reflected in the prior. If little prior knowledge is available for a 
:: 3.rticular element, any reasonable value may be used-provided that its variance is large 
: :iough to cover the bulk of its allowed range. 

The frior covariance and the final covariance can be combined to give a resolution 
- 9erator which .describes the quantities that are well-resolved by the data and those that 
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are not. The resolution matrix is defined as follows: 
-1 

R=I-ap .a 
R·Q>- = rrQ>. 

5 

(7) 

(8) 

The eigenvectors of this matrix are the linear combination of the parameters which are 
independently resolved by the data. The eigenvalues represent how well the data resolves 
those vectors: an eigenvalue of zero means that all the information about that combina
tion came from the prior knowledge (i.e., no information in the data); while an eigenvalue 
of unity means that the data completely determined that combination of parameters. r>,, 

the square root of the eigenvalue, plays the role of a correlation coefficient in a multil
inear regression in that it determines how well a quantity ( Q>.) is determined by the data 

(as represented by ad)· 

Sometimes it is stated that no prior information was known about the flows. But if 
we interpret "no prior information" to mean that there is a large (uncorrelated) variance 
on each term and that that variance is constant for all parameters we can reduce the 
problem to finding the eigenvalues and eigenvectors of the initial covariance: 

(9) 

.These eigenvalues represent the variances of the (uncorrelated) eigenvectors. This type. of 
principal value decomp~sition is used in analysis of errors, but often ignores the assump
tions stated above. 

There are other approaches to the analysis of error for multizone tracer problems. 
Roulet6, D'Ottavio, 9 and Walker10 have all proposed methods based on the condition 
number of air flow and concentration matrices. These methods do not in fact estimate 
the uncertainty of the air flow matrix, but rather they set bounds on specific errors. As 
such, they may be useful in estimating errors for the incomplete problem, but are not as 
powerful as the principal value methods described herein.· 

PHYSICAL KNOWLEDGE OF THE SYSTEM 

The previous sections do not contain all of the information that is known about the 
system of equations. The flow matrix does not even contain any elements relating to 
flows to or from outside-which are usually the flows of most interest. To properly inter
pret the results more physical knowledge is needed. 

Eq. 1.2 is an open set of equations; that is, there are flows that can go to and from 
"elsewhere", where "elsewhere" is usually interpreted to mean outside. These flows are 
inf erred by assuming that there are no unaccounted for sources or sinks of tracer and that 
the volume of air flowing in and out of a. zone is equal. 

LBL-25i72 
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Augmentation of the Matrices 

We can make these physical assumptions more explicit by augmenting the matrices 
by an additional (zeroth) tracer to account for the conservation of air and zone to account 
for outside flows. Thus Qio represents the flow from outside to the ith zone, and Q0 j 

represents the flow to outside from the jth zone, and Q00 represents the total flow to all 

zones from outside. 

The outside zone is different from the other zones in several ways. The outside zone 
must supply closure to the system so that there is no net flow of air or tracer into or out 
of the system. For this to be true the following conditions must be met: 

N 
ESik = 0 k=O .... N (10.1) 

which in turn implies that 
N 

EVij = 0 j =0 .... N 
i-0 

and, therefore, 
N 

EQij =O 
i-0 

j=O .... N 

(10.2) 

(11) 

These three expressions then serve as defining relations for the zeroth row of there respec
tive matrices. The zeroth row of the concentration matrix may contain any background 
concentration of tracer gas. 

Cok = outsi'de concentrati'on of gas k k =O · · · N (12) 

The zeroth column of the concentration matrix is the density of air in the zones: 

c jO = p j j -o ... N (13.1) 

Since the there is no addition of air to any zones, 

Sio = O £=0 · · · N (13.2) 

the air flow matrix must meet the following criterion: 
N N . 
EQi;Pi = - EVi;P; £-o · · · N 
;-o ;-o 

(14) 

Note that if the density of air is invariant and equal in every zone, this relationship is the 
transpose analogue of eq. 11. 

Finally, in order to continue to meet eq. 1 in the augmented style, the remaining 
volume terms must be zero: 

V.-o = 0 i=O · · · N (15) 

Thus the outside zone is treated as a fully coupled zone with zero effective volume, but 
with tracer sinks. 

We have then two equivalent descriptions: the set of equations defined by the eqs. 1 
10 12 and 13. or the unaugmented set of equations, plus the definitions derived for the 
outside flows eqs. 11 14. Assuming that the time change of density in any zone is small, 
these flows can be rewritten as follows: 
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N 
Qoi =-EQii j=O · · · N 

i-1 

N P· 
Qio = - EQii-

1 i=O · · · N 
;-1 Po 

7 

(16.1) 

(16.2) 

Either method may be used to determine the flow matrix, but since the augmented 
matrices are larger by one dimension, their inversion may .take significantly longer. 
Hence, for computational efficiency it is better to use the unaugmented version. 

Since these equations completely determine the flows to and from outside, the proba
bility description of the air flow matrix need not explicitly contain them. Accordingly, the 
matrix represented by the symbol Q should be taken to mean the unaugmented flow· 
matrix, with the outside flows implied by eq. 16. 

Physicality Constraints 

In our definition of flow matric~s only certain values of individual elements represent 
physically meaningful values, which are refiected in the signs of the matrix elements. The 
physicality constraints can · be summarized as follows: 

I 
i=O ·. · · N 

Q .. < 0 i=F1' 
IJ -

j=O ... N 
(17) 

which when included with eqs. 16 yield the following weak condition: 

Qii > O i=O · · · N (18) 

Ta.ken together eqs. 16 and 17 represent the physicality constraints on the air flow 
matrix. 

These expressions for incorporating prior knowledge in the previous section are 
strictly true only for Gaussian distributions. In the case of these physicality constraints, 
we have some critical prior knowledge that cannot be expressed with a. Gaussian covari
ance; specifically, we know that the true value must meet all of the physicality con
straints. Although we cannot use the Gaussian expressions, we can modify the probabil
ity distribution to account for our knowledge: 

w(Q I Qd) = P(Q) E(Qd) e -l2(llQ,Qdllf (19) 

where P represents the physicality constraint, 

{

1 if Q is physically possible 
P(Q) = 0 otherwise 

and again E normalizes the distribution: 

€(Qd) = t ) J P(Q) e-''2 llQ.Qdll dN2Q 

Thus the (unnormalized) distribution P represents our prior knowledge . 

LBL-25i72 
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Because the addition of the physicality constraints has truncated the erstwhile nor
mal distribution, the mean, median, and mode will all have changed values. These values 
will no longer be equal to each other and none of them will be a totally unbiased estima
tor of the the true value. If we wish to characterize this distribution by a single parame
ter, any of the three, a priori, could be considered, but each has different consequences. 
Once the estimator has been found, however, the covariance can be calculated from it and 
the distribution: 

(22) 

Thus, the posterior covariance is just a simple multiple of the covariance of the original 
data. 

The posterior variance will be minimized if the estimator is the mean of the distribu
tion. When the initial point, Qd, is allowed and far from the \(physicality) boundary, this 
integral will be unity and the two covariances are the same; as the initial point 
approaches the boundary the posterior covariance gets smaller; as the initial point moves 
into the disallowed area, the posterior covariance gets quadratically larger. The expecta
tion value of such posterior covariance (integrated over the distribution of initial points 
given a true value) is the same as the prior covariance, which suggests that the integral 
above plays the role of a chi-sguared statistic. Unfortunately, it does not follow a chi
squared distribution. Shapiro11 has shown that our type of distribution can be described 
by one which is a combination of chi-squared distributions having degrees of freedom up 
to the total number (i.e., N2 in our case). 

The fact that the mean has minimum variance might suggest that it is the estimator 
of choice. For our purposes, however, the mean has several disadvantages (which will be 
left unproven) that make it unsuitable for use as the point estimate. The mean of our 
(truncated) distribution is a biased measure (i.e., on average it will tend to predict a point 
estimate that is slightly further away from the physicality limits than the true value). 
The bias is biggest when the true value is nearest these limits. Since we expect that (for 
the interzonal flows) the true values will often be at the limits (i.e., there will be no inter
zonal flow between some zones), the mean is an inappropriate point estimate. 

The median is sometimes considered an estimator because it is more robust. That is, 
it is less sensitive to low probability events. The median, however, is always a more 
biased estimate of the true value for our case than is the mean. Since the robustness of 
the median is not of significant usefulness to justify the increased bias, the median is not 
an appropriate point estimate. 

In contradistinction to the mean and median, the maximum likelihood indicator has 
several advantages as an estimator. By definition it is the most likely point to be the true 
value. Although biased, the maximum likelihood indicator is a less biased indicator than 
the mean for our Ca.5e. Furthermore, when the initial point (i.e., Qd) is physically 

allowed, that initial point is the maximum likelihood indicator. Since for most tracer 
applications it is the point estimate rather than its variance which is most important., we 
choose the maximum likelihood estimator as our point estimate of the true value of the •· 
air flows. 

LBL-25772 
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When the initial point is allowed no further calculation to get the maximum likeli
hood indicator in necessary. When the original point is physically prohibited, the deter
mination of the estimator can be reduced to a minimization problem with bounded values 

where we minimize the norm : 

Q: llQ,Qd 112 is a minimim (23) 

If Gaussian priors are available as well as the physicality constraints, they should be 
applied before the physicality procedure. If the new point is still disallowed then the 
minimization should be over both initial point and prior estimate: 

Q: llQ,QP 112 + llQ,Qd 112 is a minimim (24) 

Example 

As an e~ample of this technique we consider the dataset presented by D'Ottavio9 in 
which the matrices were augmented. The augmentation procedure was not. complete, but 
was equivalent to the one presented herein, assuming all of the air densities were constant 
and equal (and arbitrarily set to unity) and the concentrations were invariant. Then a 
matrix error propagation method that assumed small, normally distributed errors was 
used to find the uncertainties in the flows. Although. the technique is different from the 
general technique of ref. 8, the results are equivalent for .the special case of the data and 
are displayed in table 1. 

TABLE 1: Example Air Flows and Uncertainties for PFT Dataset [mJ /hr] 

Q;j±O'q,, 1 2 3 Outside 

1 667±107 -314±64 15±25 368±61 
2 -132±43 454±52 -212±33 110±33 
3 -17±5 -23±6 293±43 254±37 

Outside 518±92 118±69 97±42 733±59 

The errors can be calculated from the original reference. The calculation of the 
covariance was not done by the authors, but was done in a separate report8. Using our 
initial (i.e., uncorrected) values of the air flows and covariance matrix we can find the 
linear combinations of flows that make up the principal components of this data and 
dis~l-ay them in table 2. 

The rows are ordered in an . approximately diagonal fashion for clarity. The eigen
value n um be rs indicate order of increasing variance, so that the lower n um be rs are the 
most well determined combinations and the higher numbers are the least well determined . 
The coefficients have been normalized to unity . As indicated by the bold entries certain 
vectors are dominated by a single air flow value; as indicated by the ital£cs certain pairs 
of vectors are dominated by pairs of air flows. 

There are several interesting observations one can make. The most well determined 
. combination (i.e., eigenvalue #1) is dominated by the 3,3 air flow (i.e., the total flow in or 
out of zone 3). Thus is appears that this combination is much more well determined (cf. 
2.~ m

3 
/hr) than the precision on that element (from table 1) would suggest (cf. 43 

m
3 

/ hr). In a similar way the last entry (i .e., #9) which represents the least well 
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Table 2: Coefficients of Principal Components of Measured Data 

# O\.[m3 / hr] 1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3 

3 10 -0. 76 -0.65 -0.03 -0.03 0.04 -0.00 -0.06 0.01 -0.01 
6 37 -0.65 0.76 -0.03 -0.01 -0.04 0.04 -0.06 -0.03 0.00 
7 46 -0.00 0.01 0.59 -0.55 0.21 0.54 0.07 0.07 0.06 
8 61 -0.01 0.01 o.54 0.59 0.38 -0.09 -0.31 -0.42 -0.03 
2 5 -0.03 -0.06 0.19 0.24 -0.73 0.34 0.28 -0.38 -0.20 
4 16 -0.01 0.02 0.38 -0.39 -0.23 -0.65 -0.07 0.01 -0.47 
g 124 -0.10 0.03 0.18 0.23 0.27 -0.22 0.87 0.17 0.00 
5 26 -0.02 -0.01 0.34 0.37 -0.30 0.03 -0.22 0.77 0.14 
1 2 -0.02 -0.01 0.18 -0.16 -0.25 -0.33 0.05 -0.23 0.85 

\ 

determined combination of air fiows is dominated by the 1,3 value and is more poorly 
determined (cf. 124 m3 /hr) than its variance would indicate (43 m3 /hr). Such a result is 
not surprising-noting that that element was the one which came out with a physically 
impossible result. 

There are two pairs of rows (and columns) which are dominated by a nearly equal 
pair of values-indicating that the sum and difference of these two air fiows is a princi
pally determined quantity. With· the exception of the =#3, all of the eigenvectors that 
involve zone 1 have. large variances; such a result may indicate a problem with the meas-

. urements in that zone. 

We can take this example further by putting the physicality constraints on the point 
estimates. If we integrate the probability distribution over the allowed space, we find 
that only 31 % of the initial distribution is in the physically permitted space. 

In this example Q13 is physically disallowed. We can use the minimization technique 
to .fi.nd the best possible solution. Using the covariance and the physicality constraints 
the adjusted results become the following: 

TABLE 3: Fixed Air Flows and Uncertainties for PFT Data.set [mJ / hr] 

Q;j±<J'Q,, 1 2 3 Outside 
1 653±94 -291±56 0±22 362±54 
2 -130±38 448±46 -206±29 113±29 
3 -17±4 -23±5 292±38 253±33 

Outside 506±81 134±61 87±37 . 727 ±·5'2 

The new point is, of course, physically allowed so that the offending element has been 
moved to the boundary. To do this with minimal change in the norm required that some 
of the other elements be adjusted also. The covariance calculated at this new point is 
different for two reasons: 1) the central value is slightly different and 2) the integral in eq. 
22 induces a scale factor based on the minimization. The first reason is a small shift, but 
the scale factor for this dataset is approximately 0.9. 
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TIME-SERIES DATA 

The preceding sections have described methods to estimate air flows from a single set 
of measured data. Many of the tracer gas, systems currently in use measure the concen
trations and flows at a high data rate; that is, there are many measurements in the time 
it takes for the system (i.e., the air fiows) to change significantly. In such a case, the data 
contains redundant information, which can be used to improve the estimate of the under
lying air flow. 

Physically we know that the flow vaiues are correlated in time, and we can assume 
that we can estimate a (Gaussian) correlation time for the system-r Q· The most 
straightforward approach to solving the time series problem would be to do a fit for each 
time point (as described above) combined with a simultaneous correlation in time for all 
the points. However, since in such a global approach the number of dimensions in the fit 
grows very large, the computing requirements become unreasonable. (Requirements typi
cally go as the cube of the number of dimensions.) Furthermbre, such a global procedure 
is acausal; that is, values at any time are related to events that happened both before and 
after the event. We, therefore, would prefer an analysis method that is causal, local and 
contains fewer dimensions. 

If we assume that over some time period, r Qi the underlying system does not change 
much, we can then integrate the continuity equation (eq. 1) over this period and treat the 
air flows as constant. The integrated continuity equation will have a significantly smaller 
(data) covariance than the instantaneous one. The longer the integration time is the 
more precise the deter.mination of the air flows will be. One must be careful, however, 
not to make the time too long or the assumption of constant air flows will break down 
and a bias will be introduced. The passive ventilation measurement technique suffers 
from this bias. 12 The trade-off between precision and bias in the selection of the integra
tion time constant requires some prior knowledge about the system; however, for houses 
without mechanical systems, this time is typically on the order of one hour. 

Because we know that the underlying air flows are smoothly varying causal functions 
of time, we can use a prior (i.e., previous in time) estimate of the air flows to improve a 
current estimate. To do so we must estimate an upper bound to the covariance between 
two air flow values separated by art integration time, and then use the prior-knowledge 
technique to find a new estimate. A very reasonable assumption is that the air flows 
change by much less than one air change rate in a correlation time. Th~s if two measure

ments are made at a time 8t apart, the prio[r ;:
2
valriance should be as follows: 

(]' P << r~ VV (25) 

Usually we assume the volume matrix to be diagonal and therefore the covariance matrix 
will be diagonal and has a very strong dependence on the correlation length, r Q· 

If more specific knowledge of the time behavior of air flows is known, a more detailed 
prior covariance than the above equation could be used. However, in most cases there is 
little to be gained by such a procedure. 

The time series analysis technique can be summarized as follows: 
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• 

• 

• 

• 

• 
• 
• 

INTEGRATE the continuity equation over the correlation time (rQ) at a number of 
overlapping points separated by a convenient time ( 8t < T Q) spacing. 

INVERT the. integrated data to get an estimate of the flow values (Qd) calculate the 

covariance of the data (ad), and calculate outside flows. 

COAfBINE this initial estimate with the previously calculated time point (Qp) using 

a prior covariance (a p) based on the correlation length. 

ADJUST, if necessary, these values (Q) to meet the physicality constraints by 
minimizing both the norm calculated from the initial point and the prior value using 

the appropriate covariances. 

CALCULATE the final covariance (a( Q))based on the final value . 

REPEAT for every time point in the dataset 

POST PROCESS the data for presentation or reduction. Weighted averagmg may 

be accomplished using the covariance. The data may be filtered or smoothed to 
further reduce noise or unwanted frequencies without adding bias. 

Time-Series Example 

LBL has recently completed a MultiTracer Measurement System (MTMS), 13 that 
uses multiple tracer gasses in a fully auto!llated manner to measure flows and concentra
tions for the purpose of determining air flows in a multizone environment. The analysis 
technique described herein was used to estimate the air flows from the data measured 
with MTMS. 

As an example we have chosen a two-story house situated in the Seattle area of the 
state of Washington. Figure 1 is a plot of air flow data calculated by integrating the data 
over a one hour period but no adjustment or incorporation of data was done on it. There 
are an entire set of air flows which may be graphed, but we have elected to show only the 
ones which are flows to the (upstairs) bedroom zone. The uncertainties are typically in 
the range of 1-10 m3 /hr. As can be seen the data is very unstable; such behavior is not 
surprising as there is unsteady mixing of the tracer gasses in this house. Many of the 
points are clearly unphysical. 

The house is insulated and has forced air (electric heat-pump) heating. This two 
stOry house has one third of the lower story taken up by an (unconditioned) garage; the 
main living area is upstairs. The floor plan is open with a wide, open stairway between 
the two floors. Each room has a heating register and the return is located in living area. 

Figure 2 is the same dataset after all of the steps in the analysis are completed. Most 
of the points needed to be adjusted and in some cases the adjustment was highly 
significant; however, when the posterior covariance was used to calculate a weighted aver
age, the uncertainties are not changed significantly from the unimproved data. In general 
the data is both more accurate and more precise. 

From the finer results in figure 2 it is possible to ascertain some of the behavioral 
effects going on in this house. For example, in the morning the heating system comes on 
after set back and presumably interior doors are opened and windows shut, while at bed
time the opposite happens. This shift can most readily be seen in the January 15 data in 
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which the nightime flow between the two upper floor zones is increased at bedtime, while 
the flow from the lower zone is decreased as the forced air system no longer distributes 
the air between zones. 

CONCLUSION 

Point estimates of air flows are often desired for determining energy and pollutant 
flows in multizone buildings. Because of the high degree of correlation between different 
components, the analysis of multizone air flows from tracer concentration and flow data is 
a difficult task. The simple 1nalysis techniques, which are typically used to analyze such 
data, do not take into account. the high degree of correlation and therefore may not pro
vide a good picture of the situation. 

This report· has demonstrated that the estimates and their interpretation can be 
significantly improved by using the information contained in the covariance matrix. The 
following recommendations use the covariance to improve the point estimate and its 
interpretation: 

• A .Principal component decomposition .of the covariance matrix gives a better indica
tion of the precision of the point estimate than do the individual variances. 

• If prior information is available it should be incorporated into the estimate. The 
resolution matrix can then be used to determine how much the data determines the 
air fl.ow parameters. 

• If the point estimate is physically impossible, the norm of the difference between that 
point and the physical possible es~imate should be minimized subject to the physical
ity constraint. The final covariance matrix can then be scaled based on the fit. 

For time-series data: 

• A correlation time should be chosen based on knowledge of the system being meas
ured. 

• For each desired output point the continuity equation should be integrated over the 
correlation time to maximize precision and minimize bias. 

• The previous time series point should be used as a prior in the calculation of the 
current value. 

Once the best estimate of the air flow matrix has been calculated, its covariance. can 
be used to estimate its uncertainty. The eigenvalue techniques presented herein are supe
rior to condition number error estimates because they can be used to 1) determine which 
linear combination of air flows can be determined independently, ~) how well determined 
are those combinations and 3) how much of the determination is due to the measured 
data and how much is due to prior knowledge about the system. 
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Instantaneous tracer gas concentration [kg/m 3] 

Multizone tracer gas concentration matrix [kg/m 3] 

Identity Matrix [-] 

Number of zones [-] 

Ventilation [m 3 /h] 

Ventilation matrix [m3 /h] 

Ventilation matrix from measured data [m 3 /h] 

Ventilation matrix from prior information [m3 /h] 

Point estimate of ventilation matrix [m3 /h] 

Resolution matrix [-] 

Correlation coefficient [-] 
. 3 

Instantaneous source strength of tracer gas [m /h] 

Multizone tracer source strength matrix [m3 /h] 

Time [h] 

Time difference between-measurements [h] 

Corr-elation (Integration) time [h] 
3 . 

Volume [m J 

Zone ~olume matrix [m 3] 

Density of air in a zone [kg/m3] 
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(Unnormalized) Distribution of physically allowed values [-] 

Standard deviation of an air flow [m3 /hr] 

Covariance matrix of air flows [m 3 /hr] 2 

Covariance matrix from measured data [m 3 /hr]2 

Covariance matrix from prior information [m 3 /hr] 2 

Probability normalization [-] 

Indices indicating zone [O, 1 · · · NJ 
Index indicating eigenvalue [1 · · · N 2] 
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LIST OF FIGURES 

1) Figure 1 is a plot of the uncorrected air flows to the upstairs bedroom zone as a func
tion of time from January 14 through January 17. The flows are from the main liv
ing zone, the family (lower floor) zone, outside, and the total fl.ow. 

2) Figure 2 is the same data as figure 1, but analyzed and adjusted as described in the 
text. In this corrected data, the change in ventilation at .bedtime is evident. 

\ 
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