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The numerical prediction of buoyancy-induced flows provides special difficulties for standard numeri
cal techniques associated with velocity-buoyancy coupling. We present a multigrid algorithm based 
upon a novel relaxation scheme that handles this coupling correctly. Numerical experiments have 
been performed that show that this approach is reasonably efficient and robust for a range of Ray
leigh numbers and a variety of cycling strategies. 

1. OVERVIEW 

The multigrid concept has emerged as one of the most promising for the solution of certain types of 
partial differential equations. There are extremely fast and robust codes available for single elliptic 
equations (see, for example [ 6)), and the techniques have been successfully applied to some systems 
of elliptic pdes. The philosophy of multigrid algorithms is (in a certain sense) to find an efficient 
smoother, i.e. a relaxation scheme which reduces high frequency errors, and organize a hierarchy of 
grids so that this rate of convergence applies to all error modes. 

The aim of this paper is to present a multigrid algorithm and, in particular, a novel relaxation 
scheme that is effective for buoyant flows. This is an extension of the block-implicit scheme 
developed by Vanka [5]. 

Natural convection flows cause special numerical problems for iterative schemes (see, e.g .• [7] 
and (9)). The new feature, not present in forced flows, is the coupling between momentum equations 
and the temperature equation through the buoyancy source term. Conventional (i.e., segregated) 
schemes that update the velocity fields independently of the temperature field suffer from a severe 
restriction: the effective time-step taken in this type of iterative procedure is limited by the buoyant -
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606 Buoyancy-Induced Flow Problem 

time-scale (see [8] and [9]). This situation is true for both steady and transient problems and can be 
extremely restrictive because conduction time-scales are often between three and six orders of magni
tude longer than the buoyant time-scale. Thus, in processes where buoyancy, convection, and con

duction are present, special techniques are required for efficient solution. 
In Section 2 we describe the "laminar double-glazing problem." This test case has been widely 

studied [IO], and many solution algorithms have been applied to it. It has several interesting features. 
There is a high degree of nonlinearity in the problem, causing a significant degree of structure in the 

resulting flows. Narrow boundary layers are found for some parameter values. Unlike some other 
"benchmark" problems, this one is free from singularities and also has a simple geometric 
configuration. Also, accurate answers are available for this test case (12], and comparisons with the 
current results are presented. 

In Sections 3 through 7 we discuss various features of the present multigrid method, starting 
with an overview and continuing with various details of our algorithm, concentrating on the relaxa
tion (Section 5) and the treaunent of the coarse grid (Section 7). 

Finally, in Sections 8 and 9 we present the efficiency of the algorithm in tcnns of work units, 
compare the accuracy to other solutions;-and discuss possible extensions of the technique. 

Table 3 shows the average rate of convergence and the times per cycle for the various 
Rayleigh-number/grid-size combinations for a variety of cycles. Although the cycling strategies used 
are conservative, they appear to be reasonably efficient and robust. For linear problems, multigrid 
theory predicts that the convergence rate is independent of the mesh size. This is approximately true 
in the present case as well, a fact that is somewhat surprising since the Frechet derivative for this 
problem is large. 

2. GOVERNING EQUATIONS AND FINITE DIFFERENCE APPROXIMATION 

We consider the steady-state Navier-Stokes equations for the problem of natural convection in a 
two-dimensional square cavity subject to differential side heating. The cavity contains a viscous, 
heat-conducting fluid subject to conditions for which the Boussinesq approximations may be made. 
The equations will be given in non-dimensional fonn using the scales L2/v:., KIL, and p0v:.2/L2 for 

time, velocity, and pressure. Here L is a reference length, K is the coefficient of thermal diffusivity, 
and Po is a reference density. The non-dimensional temperature is defined by T = (~ -r;)/(71,-1";), 
where r• is the local fluid temperature and r;,,r; denote the temperature at the hot and cold boun

daries, respectively. In the non-dimensional spatial units, the cavity is located in the unit square (0,1] 

x [0,1] in the xy plane. The hot boundary is at x = 0, the cold boundary is at x = 1, and the top and 
the bottom are adiabatic. The x and y components of the scaled velocities are denoted by u and ii; p 
denotes the scaled difference of the total pressure from the hydrostatic pressure. The non
dimensional conservative equations for mass, momentum, and energy take the following form: 

UJC+ Vy= 0 (2.1) 

(2.2) 

(2.3) 

(2-.4) 

where Pr= v/v:. denotes the Prandll number and Ra= gpL3(71,-r;)lvv:. denotes the Rayleigh number. 
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Here g is the gravitational acceleration, ~ the coefficient of volumetric expansion, and v the kinematic 
viscosity. 

These equations are discretized using a hybrid finite-differencing scheme [1], which employs 
second-order central differences on the convection and diffusion terms when the local cell Reynolds 
number is less than two. However, when the local cell Reynalds number is greater than two, the 
scheme modifies the convective differencing procedure to a donor cell (upwind) formulation and 
presumes that the diffusion flux at the cell interfaces is small by comparison to the convection flux 
and thus can be ignored. This scheme provides reasonable accuracy for sufficiently small mesh sizes 
while being stable (i.e., h-elliptic) on the coarse grids. 

A standard staggered mesh is overlaid on the domain. The yelocities are associated with the cell 
faces, and the pressures and temperatures arc associated with the cell centers. The mesh is uniform 
with cell dimensions ox and oy. Note the border of ficiitious cells and the placement of the tangen
tial velocity components at the domain bou11dary. If we consider the (iJ)-th cell, then the pressure 
associated with the cell center is denoted by Pij• the x component of the velocity associated with the 
center of the right-hand face is denoted by ui+'h.i• and they component of the velocity associated with 
the top face is denoted by vi~\-i· The resultif)g finite-difference equations can be written in the fol
lowing form: 

AfTi,; = A~Ti~l + A'[Ti,;-1 + A°!°Ti+l.i + A~T;-1,; 

The coefficients are defined as follows. For 4> = u, v, and T, we have 

A~ = A* + A~ + A~ + A~ 

' d ' ~ A,,= max(I ,.+~.D,,.) - ,,. , 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where the differential form of the coefficients is used to give the correct scalings across the grids. 
Thus we have 
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c;- = (v;.;-y,+v;+1.;-y,)/4oy; v;_ = Prtoy2 

c;. = (v;J+y,+vi+iJ+y,)t4oy; P;+ = Prtol 

CT = V · · · ·'2ov· DT - l/ov2 
y- IJ-W J• y- - J 

CT = V· · · · '2ov· DT = 1/ov2 
y• &Ji-W _., y• J • 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The cavity is assumed to be solid, and no slip conditions are assumed to prevail; thus the nonnal and 
tangential components of the velocity are set to zero at the boundary. The temperature at the left
hand wall has the value one, while the temperature at the right-hand· wall has the value zero. The 
adiabatic walls imply that the normal derivative of the temperature is zero at these walls. Note that 
the tangential velocities in the border cells are associated with the walls, and the temperatures in the 
border cells by the hot and cold walls are also associated with these walls, as indicated in Figure l. 
A minor modification to the diffusion terms in the energy equation allows the temperature boundary 
conditions to be modelled without loss of accuracy. 

3. BASIC MULTIGRID TECHNIQUES 

The finite difference equations derived in the preceding section are solved by a multigrid technique. 
For a complete review of multigrid techniques with applications to fluid dynamics, articles by Brandt 
[2] and Brandt and Dinar [4] may be consulted. An introduction to the subject may be foun~ in a 
review by Stubcn and Trottenberg [3]. 

The basic multigrid technique used in this application is the FAS (Full Approximation Storage) 
method which is fully discussed in [2], [3], and [4]. The basic approach can be described as follows. 
We define a series of unifonn grids with spacing ht= ht_1/2 for k=l,2, ... ,M. In addition, we have a 
set of grid transfer operators 1:-1• 11-1

• and 1:_1, where the first two operators map grid functions 
defined on grid k to functions defined on grid (k-1) (restriction) and the last operator transfers func
tions defined on grid k-1 to functions defined on grid k (interpolation). Starting on the finest grid 
k =Mand setting/= P, we wish to solve 

•' ...... 
.... . : ... 

\. .. .. . · .. , · : 
~.~ .. · .. ;. 
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T=O · 
u = 0 L-- +---'11"""1 

v=O 

i)T = 0, u = 0, v = 0 
dj 

T=l 
a.---t-<u=O 

i)T = 0, u = 0, v = 0 
i)y 

v=O 

FIGURE 1. Staggered grid: arrangement of variables and boundary conditions 
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(3.1) 

Relaxation iterations are perfonned generating a grid function w1c. A transfer is then made to the next 
coarser grid, k-1, where the following problem is posed: 

L/c-l(w*-1) = 1-1 = 1~-1</-Llc(vl)) + L /c-1(/1-lw/c) . (3.2) 

Relaxation iterations are used to generate a grid function w1c-1• At this point a decision is made 
whether to restrict to the next coarser grid and repeat the above process or to interpolate back to the 
k-th grid and generate a new approximation to ~ with the expression 

-lc -le+ lie <-k-1 1:1:-1-/c) 
Wnew = W k-1 W - lc W • (3.3) 

An FAS method is not completely specified until one defines a strategy concerning when and in what 
direction to transfer from one grid to another. A strategy based on smoothing rates and convergence 
is usually referred to as adaptive FAS, while a strategy based on a fixed cyclic pattern of grid 
transfers and a fixed number of relaxation iterations on each grid is usually referred to as cyclic FAS, 
with a prefix specifying the type of cycle, e.g., V, W, F [2]. Our study is concerned with adaptive 
and fixed-cycle FAS methods. 

4. MULTIGRID STRATEGIES 

In this section we describe the adaptive strategy and the W-cycle strategy used in this study. Both 
strategies are described in Brandt [2] and have been used in many different investigations. 

4.1. Adat>tive FAS 

The particular implementation of the adaptive FAS algorithm used in this study is essentially the 
same as that described by Brandt [2]. The process is initiated on the coarsest grid (grid number 1) 
where the solution of the complete nonlinear problem is sought. At this level, Newton-type iterations 
are used; and the resulting linear equations are solved by a direct method. The converged solution on 
this grid is prolongated to the next finer grid, where relaxation sweeps are perfonned. Since the · 
problem is nonlinear, the coefficients are evaluated after each sweep. If the smoothing rate, as meas
ured by the ratio of successive norms of the current residual, falls below a given threshold value 11. a 
decision is made to transfer to the coarser mesh k-1. The residuals are transferred to grid (k-1), and 
one solves for grid functions ~-I which are approximations to 1~-1 w1c; the problem on grid k-1 is 

L.t-1~-1=/-1=1~-1</-L"w") + L1t-111-1w1c. (4.1) 

If the grid function w-t-1 generated at this level is satisfactory, the correction to ~at the k-th level is 
then 

. Jr. _ -1c+ 1.1: c-1c-1_1tt-1-k> 
W~ew - W k-1 W Ir. W . (4.2) 

Note that it is the correction w/c-l - 11-1w1c that is transferred, not the grid function w1c-1. Also, the 

relaxation sweeps for Equation (4.1) are started from the initial grid function 11-1w1c. 

At any stage there is a current finest level l; and when the convergence tolerance is met on this 
level, the grid function is prolongated to a finer level. Thus an adaptive FAS process is nested with 
many visits to the coarser grids. When the finest level (k = M) is solved to the desired accuracy, the 
overall solution cycle is terminated. Note that the tolerance level on any grid is equal to the origi
nally prescribed value only when that grid is the current finest level l. However, when the current 
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level k is less than /, the tolerance e k is set to 

(4.3) 

where ek+l is a nonn of the residual on grid k+ 1, and typically 15 = 0.2. 
When restricting from grid k to k-1, the coefficients A~,A~ .... as defined in Equations (2.9)-(2.13) 

are initially generated from the restricted grid function 1~-1 wt. For succeeding iterations, the 
coefficients are generated from the latest values W'H. 

4.2. W-Cycles 

The second type of multigrid algorithms used in this study is base.d on the use of W-cycles (cf. [2] 
and [3]). Cyclic algorithms are based on a strategy of cycling through the grids in a specified pattern 
while perfonning a given number of smoothing iterations on each visit to each grid. The visitation 
pattern of W-cycles can be described recursively as follows. For M = 2, we start with relaxation 
iterations on the first grid (M = 2), restrict to the coarser grid M-1 = 1, perfonn a direct solution or 
relaxation solution, and then prolongate to !he finest grid (M = 2) for further relaxations. Let this 
cycle be denoted by W(2). In general, if M"is given and W(M-1) is defined, we generate W(M) as 
follows. Starting on grid M, we perfonn relaxation iterations and then restrict to grid M-1. Next we 
perfonn two W(M-1) cycles in succession, prolongate to grid M, and finish with relaxation iterations. 

To complete the description of a W(M) cycle, we need to specify the number of relaxation itera
tions perfonned on each grid. In this study, we specified a W(M)-cycle by three parameters vc,vp,vr• 
where Ve specifies the number of Newton iterations perfonned on the coarsest grid (k = J); fork> 1, 
v, specifics the number of relaxation iterations pcrfonned on a grid k when that grid is reached by a 
restriction from the grid (k+l); and for k > 1, Vp specifies the number of relaxation iterations "per
fonned on a grid k when that grid is reached by a prolongation from grid (k...,.1). At local peaks in 
the W(M)-cycle (a local peak occurs when a grid is reached by prolongation and is followed by a res
triction), the number of relaxation iterations is taken to be V = max(v,,vp). To generate the initial 
grid function defined on the finest grid, we use a simple starting procedure consisting of perfonning a 
specified number v~ of Newton iterations on the coarsest grid (k = I) and successively prolongating 
to the next finest grid and perfonning vP relaxation iterations, repeating this process until the finest 
grid is reached, at which point the W-cycle starts. The number of iterations on the finest grid is 

taken to be V = v, + Vp where Vp iterations come from the previous W-cycle and v, iterations arise 
from the current cycle. To avoid excessive iterations, we make the following test On any intennedi
ate grid k < M, the relaxation iterations are tenninated after one additional iteration when 

~<~M• ~~ 

where ek is a nonn of the current residual, S = 0;001, and e M is the error tolerance on the finest grid. 
The W-cycles are repeated until convergence is achieved on the finest grid. 

5. RELAXATION TECHNIQUES 

The choice of an efficient relaxation (smoothing) operator is of primary importance for the success of 
the multigrid technique. The choice of a relaxation procedure is somewhat problem dependent, and 
there is a tradeoff between a robust technique with a larger operation count and a less robust but 
simpler technique with a lower operation count. Of course, the primary objective in the design of a 
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relaxation procedure is to achieve the best possible smoothing rate. 
In this study, the relaxation technique is a modification of the procedure introduced by Vanka 

[5]. The temperature, momentum, and continuity equations are relaxed in a coupled manner. In this 
scheme the temperature, four velocities, and one pressure associated with one finite-difference cell are 
simultaneously updated by solving a 5x5 set of equations with special structure. Thus the velocities 
on all four sides of a cell are updated together. This type of procedure is referred to as a symmetri
cal coupled Gauss-Seidel (SCGS) procedure. The details of the procedure when applied to the 
natural convection problem are as follows. 

For any given grid level k, consider a staggered mesh centered at cell (iJ), which we take to be 
an interior cell. We are given a set of grid functions tij. [Ji+'hj• vij+'h• Pij, and a set of right-hand 
side grid functions S'{j, Sf+V.j• Sij+V.• Sfj which are generated from residual and variable transfers as 
indicated by the right-hand side of Equation (4.1). The variables t ij• U;+V.j• ... are used to generate 
the finite difference coefficients (A~),(A~).... as specified in Equations (2.9)-(2.13). With these 
coefficients defined over the entire mesh, our task is to solve Equation (4.1). We write this equation 
in block form as follows. We order the mesh cells lexicographically, and wilh each mesh cell (iJ) 

(cf. Figure 4) we group the following set_of six variables as a unit to determine the block structure: 

(5.1) 

With this blocking and ordering of the mesh cells, Equation (4.1) has the following form: 

AX=S, (5.2) 

where 

A =D-L-U, (5.3) 

D is the block diagonal matrix found from the grouping of the six variables in the {iJ)-th cell, and 
L,U are block lower, upper triangular matrices relative to this ordering. The particular form of relax
ation used in this study is motivated by the following considerations, Standard block Gauss-Seidel 
relaxation applied to Equation (5.2) would take the following form: 

DX = LJC.1> + ux<-0> + s (5.4a) 

x<-1> = wi + (l-w)x<-0>, (5.4b) 

where x<-0> is some initial estimate, as is a given parameter, and x<-D is the new estimate generated by 
the procedure. This relaxation procedure can be written in the following form by setting 

(5.5) 

and then obseiving that 

D(i-x<-0~ = R. (5.6) 

Combining this result with 5.4b, we find 

..!. D(x<.ILx<.O~ = R . 
w 

(5.7) 

Equation (5.7) is the basis for the relaxation procedure used in this study. We have modified this 
procedure by using the factor l/w only on the diagonal elements of D rather than on all the clements 
of D. 

As indicated in Equation (5.7), we will solve for the corrections; thus, for example, we write 
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r<J> = r<J> + T' ij 

with similar expressions for the other variables. In Equation (5.5), set 

Q = DJC..O> - I.JC.I) - uJC..O) • 

We defined the following quantities associated wtih the (iJ)-th cell: 

Qi= (Ar);liJ> - (A!);jr<!L - (Ar>v11% - (A~>vii~L - (Af)Ji~1 

Qi'+.'hj = (A~;+~jlf(!~j - (A:)i+'hju<!l12j - (A:)i+'hjuf2~.i+I 

- (A~)t+'hju<~~j - CA;);+Yijuf!~j-1 - ;x ~~L 

Qr-ihj = (A~i-'hjix,~~j - (A:>i-'hjuf~lnj+1 - (A~>i-'hjm2~.; 

- <A~>i-inji1~~2j - c~;>;-inpg~j-1 + ~ ~~L 

(Av>1,;.1h.<l) (Av) ..tl) 1 p(O) 1 RaP ...10) 
- .r v;.,....in - w ij+'h Vl-lj+'h - T •J+I + - Tl ;,,...1 uy · 2 

Q/j-'h = (Adij-Yivf~~ - (A;);j-'hv<!lj-in - (A:,);.;-invf~lj-in 

- (A;Jij-'h Vij+'h - (A.!Jij-'h 0.i12 

Then form R by setting 

613 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16a) 

(5.16b) 

(5.16c) 

(5.16d) 

At this juncture we have calculated -the right-hand side for Equation (5.7). As mentioned earlier, we 
have modified the relaxation procedure described by Equation (5.7), Actually, we have modified the 
procedure in two ways: 

(i) The factor l/w will not multiply the entire 6x6 block matrix, but instead just the diagonal 
entries. 

(ii) Since the problem is nonlinear, a local approximation is made to the Jacobian to bring in the 
effect of velocity on the temperature. The effect is to modify the block diagonal matrix D in 
Equation (5.7). 
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Thus Equation (5.4) is replaced by the nonlinear Gauss-Seidel relaxation scheme: 

D(i)X = L(X(l>)x<1> + U(x<0>p~.o) + S (5.17a) 

x<1> = wX + (1-w)x<0> . (5.17b) 

Consider the (iJ)-th cell, and let <I> denote the group of six variables defined in Equation (5.1) which 
are associated with that cell. Then for this cell we wish to solve the vector equation (of dimension 6) 

D(cf>)ci> = F , (5.18) 

where F is the right-hand side of (5.17a) restricted to the (iJ)"th cell, and D(ci>) is the 6x6 matrix 
associated with this cell. So for this cell, the task is to solve the vector equation 

G(ci>) = F - D(cf>)ci> = 0 . 

Using Newton's method with <1><0> as the initial estimate would lead Lo the linear system 

H<I>' = G(<I><0>) = F - D(<1><0»<1><0> = R . 

(5.19) 

(5.20) 

Note that R is that portion of the vecto! R appearing in Equation (5.7) which is associated with the 
(iJ)-th cell. Herc H is the negative of the Jacobian of G(<I>) given by 

Hpq = Dpq(<P'0» + :E<P}0>+vps(<I><0»; (5.21) 
s=I o<Pq 

The simplest approximation to Hpq is Dpq(<P<0>) (frozen coefficient approximation). In this study, we 
have incorporated some of the terms from the summation appearing in (5.21). 

With the variables associated with the (iJ)-th cell grouped ai; indicated in (5.1), the 6x6 matrix 
Dpq which is formed from the frozen finite-difference coefficients is defined by the following expres-
sion: 

<AI>ii 0 0 0 0 0 

0 (A~)i-~j 0 0 0 1/0x 

0 0 (A~);+~j 0 0 -Wix 
D(<P<O» = (5.22) 

Y2RaPr 0 0 (Adij-~ 0 1/0y 

Y2RaPr 0 0 0 (Adij+~ -11oy 

0 -1/ox 1/0x -1/0y 1/0y 0 

Here 

<P(O) - (TIO) u<O~ ino~ 0,0) 0,0) p(O)l - •i • 1-'hj• 1+'hj• 1j-'h• 1j+~· lj • (5.23) 

and the coefficients Ar.A~ .... are evaluated using <1><0>. 
To form the Hpq used in this study, we have used only the additional terms in Equation (5.21) 

that give the velocity contribution in the temperature equation. Thus we set p = 1 and obseive that 

Hence 

H1q = D1q + <I>\0> + D11 (<P<0>), q=l,2, ... ,6 . 
o<Pq 

Recall that <P\0> = T-J>, D11 (<P<0» = (AI)ij, and from Equation (2.9) 

(5.24) 

(5.25) 
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(5.26) 

Here it is understood that we are dealing with the (iJ)-th cell, so this subscript is omitted for simpli
city. The coefficients A!, A~. Af, A~ are defined by Equations (2.10)-(2.13) and Equations (2.22)

(2.25). Consider, for example, 

_a_ D11(<l>(Oh. =_a_ (AT)··= _a_ (AT)·· 
"'<1><0> ") au. . c v au. . "'v • u 2 •-'hJ 1-'h.J 

(5.27) 

since only A~ depends on Ui-'hj· From the definition of A~ we have 

A~ = max(IC_!'J,D_!'-> + c_!'- (5.28) 

with 

(5.29) 

Define 

ax_ = max(O,sign(Vi-•h)) . (5.30) 

Then 

(5.31) 

In a similar manner, we define 

(5.32a) 

a,- = max(O,sign(Vi,;-y,)) , (5.32b) 

(5.32c) 

Then, we find 

{ 

t ·f -a 1 
_0) a r_oxx'" 

H1a - rt ~U-. (A,) - -I 
u ..+·'h.1 - else 

20x 

(5.33) 

{

....!..a if 
.....-o> a r oy ,-

H14 ='ii -..,-,-. - As= 1 
uV,.,....in - else 

2oy 

IVi,;-'hloy > 2 
(5.34) 

{

...!.. a
1
+ if 

_ .....-o> a T _ oy 
His - Ju ~ An - -1 

u ,,,...y, - else 
2oy 

(5.35) 



616 Buoyancy-Induced Flow Problem 

(5.36) 

If we use the factor l/w only on the diagonals and use the elements H 1q as defined above, the 6x6 
matrix approximation to the matrix H which appears in Equation (5.20) has the following fonn: 

1 T 
H12 H13 H14 His 0 -(A)-· W C IJ 

0 _l(A~)i-\lzj -{A:>i-'hj 0 0 ox w 

0 -{A!)i+\lzj _l(A~)i+'hj 0 0 - 1 
w ox 

fl= 1 1 
(5.37) 

l/iRaPr 0 0 -;<AdiJ-\lz -{A:)iJ-'h oy 
1hRaPr 0 0 -{A;')ij+\lz 

1 -1 
-(Adij+\lz oy w 

0 -1 1 -1 1 
0 ox ox oy oy 

For simplicity, the four clements (A:>i-'hj• (A!)i+'h.i• (A:)iJ-'h• and (A;')i.;+'h are neglected. 
Recall that the limiting coupling for this problem is the temperature-velocity, and omitting these 
tenns does not affect this. Effectively we are decomposing fl = H0+fl, where fl contains the 
neglected tenns, and then writing (5.20) in the fonn H04:>' = HCl>'+R and performing our iteration 
with the initial connection Cl>' = 0. In each mass control volume the task is to solve 

H04:>' = R. (5.38) 

The cells are swept over in a lexicographic ordering, which means that the interior velocity com
ponents are updated twice. The increased rate of convergence compensates for this extra arithmetic, 
and somewhat greater robustness is achieved. Set 

&T = (H12.Hn.H14.H1s.O) (5.39a) 

r,.T = (0,0, 1hRaPr, 1hR.aPr,0) (5.39b) 

1 T 
ex = -;<Ac)ij (5.39c) 

't = Cl>' 1 (5.39d) 

~T = (Cl>' z,Cl>' 3,Cl>' 4,Cl>' 5,4:>' ~ (5.39e) 

/=R1 (5.39f) 

e_T = (Rz,R3,R4,Rs.R~ (5.39g) 
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_l(A~); .... 'hj 0 0 
w 

0 
1 

0 -(A~i+'hj 
w 

B= 0 0 1 
-(A;);j-'h 
w 

0 0 0 

-1 +1 -1 
Sx Ox Sy 

Then Equation (5.38) has the bordered matrix form 

[~ ~][;] = [~] -
This equation implies 

[;] ~ [~ ~][~]. 
where the elements of the inverse are given by 

Thus, if we define i. and x by 

the system (5.41) is solved by 

13-1 = a-{tB-1t 

r.=-13B-lt 

(J.T =-l3~r8-1 

p = B-l+~B-lt&TB-1. 

13 = (a-{.Tx)-1 ' 

't = 13((-{.T z) ' 

~ =L-'tX' 

and therefore the correction vector for the (iJ)-lh cell is 

~·=[~). 

0 

0 

0 

1 
-;<A;>;j+'h 

+1 
Sy 

+1 
Sx 
-1 
Sx 
+1 
Sy 
-1 
Sy 

0 
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(5.40) 

(5.41) 

(5.42) 

(5.43a) 

(5.43b) 

(5.43c) 

(5.43d) 

(5.44a) 

(5.44b) 

(5.45a) 

(5.45b) 

(5.45c) 

(5.46) 

In this study, we scaled the vector &T in Equation (5.39a) with a specified parameter, and the 
parameter w was always used as an under-relaxation factor. 

As noted earlier, the block Gauss-Seidel type scheme described is an adaptation of the SCGS 
scheme introduced by Vanka (5). A further discussion of that scheme may be found in that refer
ence. It should be noted that SCGS-type schemes differ substantially from Brandt's Distributive 

.· ' 
·~... '>.'":: : • 

. · .. · . 
: .. 

.. 
.. 
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Gauss-Seidel (DGS) scheme. The SCGS-type schemes employ a simultaneous update of all the vari
ables; whereas DGS is a decoupled procedure which would correct all the momentum equations first 
and then go back to recorrect the velocities, pressure, and temperature to satisfy the remaining equa
tions. 

6. RESTRICTION AND PROLONGATION 

Recall that restriction procedures arc used for transferring fine grid values to a coarse grid; thus the 
operation of transferring from grid k to grid k-1 is denoted by 11-1• In this study, the variables are 
restricted in the same manner as the residual; hence 11-1 = 11-1 in Equations (3.3) and (3.4). The pro
longation operator 1z.._1 is used to transfer variables from a coarse grid to a fine grid and generally 

involves an interpolation procedure. 
In this study, the restriction operators are defined by the simplest average of nearby values. Let 

(icjc) and (ifjf) denote coarse and fine grid indices corresponding to grid k-1 and grid k, respec
tively. In this context, let ui+'hj be referred to as ui,; and Ui-Yz.i as ui-1,l with similar notation for v. 

Then if= 2(ic)-l, jf = 2(jc)-l, and 

uc(icjc) ~ <f )[i/(ifjf) + i/(ifJf-1)], (6.la) 

vc(icjc) = ( ~ )[../(ifjf) + ../(if-ljf)] • (6.lb) 

pc(icjc) = ( ! )f]/(if jf) + p(if-ljf) + p(ifJf-l) + p(if-lJf-1)] , (6.lc) 

and 

T'(icjc) = < ! )[P(if jf) + P(if-ljf) + P(if Jf-1) + P<if-lJf-l)l . (6.ld) 

Temperature and continuity equation residuals are associated with mesh centers, so that boundary 
values do not occur for these residuals. Momentum residuals are zero on the boundary since we 
have no slip and solid walls. Thus there is no fine-to-coarse transfer of residuals associated with the 
boundary. The restriction of boundary values of each variable requires separate consideration. The 
velocities are specified on the boundary, so no fine-to-coarse transfer is needed for boundary veloci
ties. The pressures are associated with cell centers, and no boundary conditions are imposed; thus no 
fine-to-coarse boundary transfer is needed for the pressure. On the -walls when the temperature is 
specified, no transfer is needed, and on the adiabatic walls the temperature in the border cells is set 
equal to the temperature in the adjacent cell. Note that in this study none of the restriction operators 
is of the full weighting type (cf. [2]). 

A crucial consEquence of Equation (6.lc), which is also used to restrict the continuity residuals, 
is that the continuity residual for a coarse-grid mass c9ntrol volume ·is proponional to the sum of the 
fine-grid continuity residuals contained in the coarse-grid control volume. Thus satisfaction of the 

discrete analogue of (2.1) on the fine grid forces satisfaction of this condition on all grids. This is 
necessary for a solution of the coarse grid equations to exist. (Recall that the operators are singular.) 

The coarse-to-fine (prolongation) operators 11_1 are based on bilinear interpolation. Thus the 

coarse-to-fine transfer of u-velocity values is defined as follows: 
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i/(if jf) = ( ! )(3u~ + u~ (6.2a) 

i/(ifj/+1) = ( ! )(ui + 3u~ (6.2b) 

(6.2c) 

,/(if+lj/+1) = ( ! >M + 3u~ + u~ + 3u~) , (6.2d) 

where 

(6.3a) 

(6.3b) 

At the top and bottom mesh cells, the above fonnulas are modified to reflect the fact that we associ
ate the velocities in the border mesh cells with the wall values. The fine-grid v-velocities are defined 
by analogous expressions. Since the pressure and the temperature values are associated with the 
mesh cell centers, the interpolation fonnulas have a different weighting from the velocities. At inte
rior mesh cells, the coarse-to-fine temperature transfers are given as follows: 

where 

rf(if jf) = < 1~ )(9rf + 3n + 3Tj + ~> 

P(if jf+t) = < 
1
1
6 

)(3rj + n + 9Tj + 3~) 

rf<if+tjf) = < 
1
1
6 

)(3rf + 9n + Tj + 3~) 

P(if+tj/+t) = < 
1
1
6 

><rf + 3n + 3Tj + 9~) • 

rj = i<(icjc); n = i<(ic+ljc); 

Tj = 'r(icjc+l); ~ = i<(ic+ljc+l) . 

(6.4a) 

(6.4b) 

(6.4c) 

(6.4d) 

(6.5a) 

(6.Sb) 

At the top and bottom walls a zem-derivative condition holds; thus, for example, bilinear interpola
tion for the top mesh cells would give 

where 

P(if jf) = < ! )(3rf + i<i> • 

'Jf(if+ljf) = ( ! )(rj + 3i<:i) ' 

rj = i<(icjc); ~ = (ic+ljc), 

(6.6a) 

(6.6b) 

(6.7) 

with corresponding expressions for the bottom mesh cells. At the left and right walls, the tempera
ture is specified; thus, for example, bilinear interpolation for the left mesh cells would give 
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where 

P(ifjf) = < ! )(3T'j + 371 + ~ + ~> 

1'(ifjf+l) = < ! ><T'i + n + 3~ + 3~). 

T'j = rc(icjc) =boundary value; n = rc(ic+ljc); 

~ = rc(icjc+l) =boundary value; ~ = rc(ic+ljc+l) 

(6.8a) 

(6.8b) 

(6.9a) 

(6.9b) 

with the corresponding expressions for the rightmost mesh cells. The interpolations in the comer . 
mesh cells are handled in the obvious way. The pressure is treated in a manner similar to the tem
perature except that a zero-derivative condition is assumed to hold on all boundaries. This approxi
mation is used only in the implementation of the prolongation operator; since the continuity eql!ation 
is satisfied in the relaxation phase, pressure boundary conditions are unnecessary. 

Notice that the prolongation operator /~-t which appears in Equation (3.4) is acting on ~hat is 
essentially a oorrection to the solution on the (k-1)-st grid. This is the operator we have been dis
cussing in this Section. In the present study we have used the same prolongation operator .for the 
corrections as for the solutions. 

It should be emphasized that in an FAS-type algorithm, the values on the coarse grid are not 
directly prolongated (see Equation (3.4)); rather, the changes from previously restricted values are 
prolongated. That is, 

(6.lOa) 

s: t-1 -k-1 /k-1 k uw- =w· - k Wold· (6.lOb) 

The operators defined in Equations (6.1)-(6.9) are applied to Swk-t. 

7. COARSEST GRID SOLUTION 

The relaxation sweeps described in Section 5 are used on every grid level except the coarsest grid 
k = ~- On this grid, where the dimension of the system represented in Equation (4.1) is small, we 
solve this system using a Newton-Raphson type procedure combined with a direct solution of the 
resulting linear system. The matrix for the linear system is generated from the Jacobian of the opera
tor appearing in Equation (4.1) on the coarsest grid. (As usual, the pressure non-uniqueness is elim
inated by defining a reference pressure at one point. This does not affect the rate of convergence of 
the multigrid cycle since it is applied only on the coarsest grid.) 

We will illustrate the nature of the Jacobian in the case of the temperature equation. Recall from 
Section 2 that the finite difference equation for the temperature has the following fonn when con
sidered at the (iJ) mesh cell: 

(7.1) 

where 
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Tc= T(iJ); Tw = T(i-lJ); T. = T(i+lJ); (7.2) 

T, = T(iJ-1); Tn = T(ij+l), 

and 

A~ = (A~)ij , etc. 

Setting 

Uc= U(i+'l2J); Uw = U(i-1hJ); u. = U(i+3hJ); (7.3) 

U, = U(i+1hJ-l); Un= U(i+1hJ+l) 

with similar notation for the v-velocities, we can write the defining relations for the coefficients as 
follows: 

A~= A~(Uc) = max(l!fu2,1Ucll2ox) - Uj2ox, 

AI'= AI'(V,) = max(l/oy,IV,l/2oy) + V J2oy , 

A~= A~(Vc) = max(l/oy,1Vcl/2oy) - VJ2oy. 

Thus we have the following dependencies: 

FI= FT(Tc,Tw,Te,Ts,Tn,Uw,Uc,Vs,Vc) . 

(7.4a) 

(7.4b) 

(7.4c) 

(7.4d) 

(7.5) 

The Jacobian is generated by using the partial derivatives of pT with respect to each of these vari
ables. In the case of the temperature dependence, we have, for example, 

dFT =AT+ AT+ AT+ AT= AT 
dTc w e s n c · (7.6) 

In the case of velocity dependence, for example Uw• we have 

(7.7) 

with similar expressions corresponding to lhe other variables. Then, as mentioned earlier, the result
ing linear system is solved by a direct melhod. 

8. RESULTS 

The algorithm described in Sections 3-7 has been applied to lhe laminar double-glazing problem. 
Streamlines and isolhenns are shown in Figures 2 and 3. The complex flow structures, which are 
introduced by the nonlinear coupling of the equaLions, can be seen clearly. Moreover, the fine detail 
present at the highest Rayleigh number means that small mesh spacing has to be used to resolve the 
boundary layers. The present version of our code uses unifonn meshes. This is not the most 
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efficient fonn to apply to this class of problem, but it does allow demonstration of the effectiveness 
of the algorithm on this system of equations. 

First, we consider the accuracy of solution method. We concentrate on the case with the highest 
Rayleigh number, which proved to be the most difficult. These results are typical. Table 1 compares 
two parameters from our calculations with those obtained- by Kessler and Oertel [11] and de Yahl 
Davis [10] from the bcnclunarking exercise mentioned earlier. (These solutions were judged particu
larly accurate [12].) The parameters are the maximum horizontal velocity component in the vertical 
mid-plane (with the vertical position shown in the second row) and the corresponding quantities in 
the horizontal mid-plane. Clearly, our results agree closely with those from the earlier studies. 
These quantities are those demanded in the original statement of the double-glazing problem and are 
reasonably sensitive to any errors in the solutions. Thus we have some confidence that a closer com
parison would reveal no anomalies. 

Providing some sort of error estimate is extremely useful for all numerical solution techniques. 
The additional infonnation available with multigrid algorithms facilitates this process. The simplest 
way (assuming an exact solution is not known) is to use the defect ('tf) which approximates the local 
truncation error. In Figure 4 we plot 'tf for each grid level in the 256><256 calculation. On the finest 
grids the slope shows that we are in the asymptotic regime and that the errors are behaving as O(h). 

On the coarse grids the errors are actually increasing. In fact, the thickness of the vertical boundary 
layer is about 1/30, so the discrete problem is a very poor approximation to the continuous one for 
h S 1132. To obtain estimates of the actual errors, we must solve some extra equations. This is 
beyond the scope of the present work. 

Table 2 shows the average rate of convergence and the times per cycle for the various 
Rayleigh-number/PrandU-number combinations for F(2,2) cycles. This is a conservative cycling stra
tegy, but it appears to be reasonably efficient. Moreover, experiments with different values of v, and 
v P show only small changes in total CPU time. As can be seen from Table 2, it proved necessary to 

introduce some under-relaxation to force convergence at the highest Rayleigh numbers (i.e., the prob
lems with largest Frechet derivative); this procedure was done as indicated in Equation (5.40). More
over, for the Ra= 106 case, it was necessary to increase the size of the coarsest grid from 2x2 
(which was adequate for the lower Rayleigh numbers) to 4x4. This situation was disappointing; a 
parameter-free algorithm would have been preferable. The convergence data displayed in Tables 2, 
3, and 4 indicate that this is a problem associated with our treatment of the nonlinearities, and various 
techniques are being considered to ameliorate the problem. However, it seems likely that more 
sophisticated handling of the nonlinearities will have a major overhead in computing time, and it is 
not clear that the new technique will prove worthwhile. 

The data presented in Table 3 show that the rate of convergence is sensitive to the under
relaxation factor and the cycle type. The behavior of the algorithm is complex because of the high 
degree of nonlinearity and the fact that hybrid differencing has been used. This difference scheme 
uses stable, upwind-differencing at high mesh-Reynolds numbers and more accurate, central 
differencing at low mesh-Reynolds numbers. Thus, the coarse grid operators are only fair approxi
mations to the fine grid ones. Moreover, at the highest Rayleigh numbers there is a large domain 
where very low velocities allow central differencing even on the coarse grids. The accuracy of the 
coarse grid correction is, therefore, somewhat varied and affects the convergence in a complex 
fashion. The amount of work that should be spent on the different grids is extremely difficult to 
predict because of this. Our experiments show that F-cycles are the most efficient. It is clear that 
V-cycles do not provide sufficiently good corrections. W-cycles are marginally better than F-cycles, 
in tenns of convergence rates for the same under-relaxation parameter (Table 3(b)), although the 
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TABLE 1. Accuracy of results - Double glazing problem 

r: 

t r. , • 

Maximum horizontal velocity in vertical mid-plane (with location) 
Maximum vertical velocity in the horizontal mid-plane (with location) 

(Rayleigh number: 106, Prandtl number: 0.71) 

Grid 322 642 1282 2562 Benchmark Results 

Umax(x=Q.5) 66.18 65.43 64.99 64.88 64.63(1) 65.21 <2> 
y= ,0.86 

' 
0.85 0.85 0.85 0.850 0.854 

V max(y:=0.5) 202.4 22i.6 217.9 220.8 . 219.36 220.4 
x= 0.047 0.039 . 0.043 0.037 0.0379 0.039 

Note: (1) de Yahl Davis [10) 
(2) Kessler and Oertel [ l 11 
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TABLE 2(a). Convergence rate as a function of Rayleigh number 

(Prandtl number: 0.71, F(2,2) cycles, 64x64 grid) 

Ra 1.0 10 102 1a3 104 10S 106 

(I) = 1.0 0.084 0.085 0.009 0.091 0.12 --- ---
(I)= 0.395 0.26 0.295 0.306 0.315 0.283 0.352 0.45 

TABLE 2(b). Convergence rate as a function of Prandtl number 

(Rayleigh number: 104, F(2,2) cycles, 64x64 grid) 

Pr 0.1 0.5 0.71 5.0 .. 

(I) = 1.0 0.47 0.15 0.12 0.12 
(I)= 0.395 0.47 0.32 0.28 0.32 

TABLE 3(a). Rate of convergence as a function of cycle type and under-relaxation factor 

(Rayleigh number: 106, Prandtl number: 0.71, grid: 642) 

(Calculations tcnninated when UResidualll < 10-4) 

F(2,2) cycles V(2,2) cycles W(2,2) cycles 

(I) #cycles (I) #cycles (I) #cycles 

0.3 31 0.15 73 0.30 31 
0.35 27 0.17 71 0.31 30 
0.36 26 0.18 74 0.32 29 
0.37 25 0.19 72 0.33 28 
0.38 24 0.20 72 0.34 27 
0.39 24 0.21 75 0.345 28 
0.395 23 
0.40 24 
0.4014 26 
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TABLE 3(b). Rate of convergence as a function of cycle type 

(Prandll number: 0.71, grid: 642) 

Rayleigh number 104
, co = 1.0 Rayleigh number 106

, co = 0.2 

F(2,2) 0.124 F(2,2) 0.68 
V(2,2) 0.427 V(2,2) 0.77 
W(2,2) 0.106 W(2,2) 0.67 

. 
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benefits are slight because of the hybrid differencing. Even in this case, the extra arithmetic in W
cyclcs makes them less efficient. Somewhat surprisingly, F-cycles have_ significantly better stability 
properties, allowing larger under-relaxation parameters and better convergence rates. 

In Table 4 we show the rate of convergence for the most difficult problem (Ra = 106) for a 
range of grid sizes. Linear multigrid theory predicts a rate independent of mesh size, and we see the 
same sort of behavior here. This fact is very encouraging: w_e are observing proper multigrid 
behavior and rates of convergence that arc extremely good for the lower Rayleigh number cases and 
that are still reasonable for the high Rayleigh number case, even though under-relaxation has been 
introduced. 

TABLE 4. Rate of convergence as a function of grid size 

(Prandll number: 0.71) 

Rayleigh number 106 Ra ~leigh number 104 

Grid Rate of Grid Rate of 
size (I) convergence size (I) convergence 

322 0.35 0.5 322 1.0 0.17 
642 0.395 0.45 642 1.0 0.12 

1282 0.395 0.367 1282 1.0 0.085 
2562 0.395 0.5 2562 1.0 0.077 

It is possible that the initial goal of finding a parameter-free algorithm that would be highly 
efficient over a very wide range of nonlinearities was overambitious, Almost all computational fluid 
dynamics codes employ such techniques, and the multigrid convergence rates that have been achieved 
are one or two orders of magnitude better than corresponding single-grid algorithms. 

9. CONCLUSIONS 

A novel multigrid algorithm has been presented for buoyancy-induced nows. The relaxation scheme 
avoids the introduction of Brunt-Vasaila oscillations which limit the performance of classical, segre
gated approaches. The new method appears to be reasonably efficient and robust, converging over a 
range of physical parameters from zero initial guess. 
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It is necessary to use some under-relaxation at the highest Rayleigh numbers. The reasons are 

being investigated. 
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