

Whavan

4
 \% 2
(2) 5K.

7坆納
\qquad
4ns a 2

ABSTRACT OF THESIS

PRESSURE GRADIENTS AND THE LOCATION OF THE NEUTRAL PRESSURE AXIS FOR LOW-RISE STRUCTURES UNDER PURE STACK CONDITIONS

A discharge coefficient equation was incorporated into a mass balancing procedure to compute the elevation of the nentral pressure axis (NPA) for a general distribution of openings. An equation was developed to compate tho discharge coofficient of an arbitrary opening as a function of the three dimensional geometry, the pressure, difference, the total minor loss coefficient, and the air properties.

A two cell environmental chamber was constracted to simalate the temperatare gradients across a wall and ceiling section of a two story residence. Idealized openings could be mounted in the wall at nine different elevations and one mounting location was provided in the ceiling section.

An experiment was designed to investigate the factors which influence the location of the NPA and to test the ∇ alidity of the mass balancing procedure. A total of eight opening distribations were defined. Four of these distributions included an opening placed in the ceiling section. The parameters variedwere: the total leakage area monnted in the test sections; the size of the individual openings, the geometry of the openings; the vertical placement and the mean temperature difference.

The results indicated that the location of the NPA depends on the relative size of the openings in a distribation, a variable discharge coefficient, and the vertical placement of the openings. The location of the NPA was not a function of the mean temperature difference and the observed degree of temperatore stratification had no effect on tho NPA. The location of the NPA was predicted within ± 2.22 percent of the eave height for each case using the mass balancing procedure.

Application of the mass balancing procedure to an actual structure would require a method to model the air flow through components of envelope leakage as an equivalent opening. A modeling equation was developed which could be used to determine the
cross sectional area and the three dimensional geanetry of an equivalent straight rectangalar opening which would provide the same air flow as the modeled component.

An experiment was performed to devel op the concept of modeling components of envelope leakage as an equivalent straight rectangalar opening. Differential pressure measurements were obtained for a group of straight openings which ranged in cross-sectional geometry from a near infinite rectangalar slot to a cylinder. The dimensionless flow length, z / D_{h}, of the openings was varied from 2.0 to 15.9.

It was apparent from the results that the equivalent opening areas were in close agreement with the actual areas of the defined openings. Also; the observed flow rates were predicted within the uncertainties of the measorements using a single mean total minor loss coefficient with the discharge coefficient equation and the equivalent opening parameters obtained by application of the modeling equation.

PRESSURE GRADIENTS AND THE LOCATION OF THE NEUTRAL PRESSURE AXIS FOR LOWH-RISE STRUCCURES
 UNDER PURE STACK CONDITIONS

Abstract

THESIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agrionltural Engineering at the University of Kentucky

By
John P. Chastain
Lexington, Kentucky
Director: Dr. Donald G. Colliver, Associate Professor of Agricaltural Engineering
Lexington, Kentucky
1987

PRESSURE GRADIENTS AND THE LOCATION OF THE NEUTRAL PRESSURE AXIS FOR LOW-RISE STRUCIURES UNDER PURE STACX CONDITIONS

By

John P. Chastain

(Director of Thesis)
(Director of Graduate Studies)

RULES FOR THE USE OF THE THESES

Unpublished theses submitted for the Master's and Doctor's degrees and deposited in the University of Kentucky Library are as a rale open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, bat quotations or sumaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part requires also the consent of the Dean of the Graduate School of the University of Kentucky.

A library which borrows this thesis for use by its patrons is expected to secure the signature of each user.

Name and Address
Date
\qquad

MASTER'S THESIS RELEASE

\qquad I authorize the University of Kentuck Libraries to reproduce this thesis in whole or in part for
\qquad parposes of research.
$\underline{ }$
I do not authorize the University of Kentucky Libraries to reproduce this thesis in whole or in part for parposes of research.

Signed:
Date:

THESIS

John P. Chastain

The Gradaate School
University of Kentucky
1987

ACXNOFFLEDGEMENTS

The author wishes to express sincere appreciation to the following individuals for their valuable contributions to this work.

To Dr. Donald Colliver for serving as the director of the thesis, for his advice and encouragement, and for his efforts on the design and installation of the refrigeration system.

To Dr. I. J. Ross for arranging the financial support for this research, for offering timely encouragement, and for soldering the pipe for the refrigeration system.

To Dr. Gerald White for his patience with all of the "one-minate'" questions which lasted hours and for serving on the examining committee.

To Dr. John Walker and Dr. James Funk for their valuable criticisms and advice while serving on the examining committee.

To Dr. Panl Cornelins for his advice concerning the statistical analysis.

To Joe Yecman for his willingness and patience in wiring the controls for the refrigeration system and for setting up the data logger.

To James Peman for wiring the two cell environmental chamber and for sharing his carpentry experience.

To Dean Roberts for loaning to me conntless number of tools and for sharing his expertise in carpentry and refrigeration systems.

To Steve Shipman for allowing me to use many tools and instruments, and for aiding in setting up the pressure transducer.

To Thomas Gettings, Robert Curtis, and Anthony Osborne for their excellent performance as stadent workers.

To Lee Rechtin for teaching me how to use the milling machine and answering my many questions.

To Carl King for his willigness to help and for sharing some of his expertise.

To Ruth Durham for her excellent work on typing and for her words of encouragement during times of critical hyperactivity.

To Buren Plaster for his patience and excellent work on the drawings.
To Wid Winner for the many valuable hours spent on discussion and for permitting the use of his test box.

To Nat Peters, Mike Bader, Mark Casada and others for giving valable insights and criticisms concerning 'how to do a thesis''.

To my wife, Kimberly, for her love, support and encouragement which were responsible for maintaining my sanity throughout the course of this thesis.

To. 似 parents who always encouraged me to strive for excellence in any endeavor.

TABLE OF CONTENTS

Page

ACXNOWLEDGEMENTS iii
LIST OF TABLES viii
LIST OF FIGURES x
Chapter 1 INTRODOCTION 1
Chapter 2 LITERATURE REVIEF 9
Differential Pressure Distribution Induced by the Stack Effect 9
Factors Which Influence the Position of the Neatral Pressure Axis 15
Review of Previous Methods to Determine the Location of the Neutral Pressure Axis. 17
Chapter 3 THEORETICAL DEVELOPMENT 24
Introduction. 24
Derivation of the Discharge Coofficient Equation 27
Physical Significance of the Area-Gamma Product 36
Variation of the Friction Coefficient with the Cross-Sectional Geometry 37
Variation of the Total Minor Loss Coefficient 37
The Procedure to Determine the Position of the Neutral Pressure Axis. 42
Chapter 4 DESCRIPTION OF THE EXPERIMENTAL APPARATUS. 46
Introduction 46
Construction of the Two Cell Environmental Chamber 46
The Cooling System 52
The Heating System 55
The Test Sections. 55
Fabrication and Description of the Idealized Openings 62
Instrmentation. 67
Chapter 5 SENSITIVITY ANALYSIS OF THE DISCHARGE COEFFICIENT EQUATION. 75
Chaptex 6 EXPERIMENTAL DESIGN AND PROCEDURE 88
Experimental Design 88
Erperimental Procedure 93Determination of the Elevation of the NPA and the MeanDensity Difference from the Observed Differential PressureProfiles.101
Page
Chapter 7 ANALYSIS AND RESULTS 103
Results of Regression on the Observed Differential Pressure Profiles 103
Variation of the No Cracks Treatments. 111
Variation of the NPA for the Original Sirteen Treatments 112
Observed Temperature Stratification. 118
Prediction of the Elevation of the NPA Neglecting the Backgroand Leakage 124
Modeling the Background Leakage 129
Prediction of the NPA Including the Effects of the Background Leakage 137
Computation of the Infiltration Rate 151
Initial Estimates of the Elevation of the NPA. 159
Chapter 8 THE EXPERIMENTAL VALIDATION OF THE DISGAARGE COEFFICIENT EQUATION AND THE APPLICATION OF THE THEORY TO THE MODEL ING OF ENVELOPE LEAKAGE 163
Introduction 163
Description of the Experiment. 164
Method of Data Analysis. 167
Results for the Rectangular Openings 170
Results for the Cylindrical Openings 177
Proposed Application to the Modeling of Structural Leakage 181
Chapter 9 SUMMARY AND CONCLUSIONS 192
Chapter 10 SUGGESTIONS FOR FURIHER RESEARCH 201
APPENDIX A NOMENQATURE 203
APPENDIX B SOLUTION OF THE NAVIER-STOKES EQUATION FOR LAMINAR FLOF BETTEEN INFINITE PARALLEL FLAT FLATES 205
APPENDIX C RELATIONSEIPS USED TO COMPUTE THE AIR PROPERTIES. 208
APPENDIX D SUMMARY OF THE REGRESSION COMPUTATIONS 211
APPENDIX E DATA AND REGRESSION RESULTS 214
APPENDIX F ERROR ANALYSIS 226
APPENDIX G DATA FOR THE VALIDATION OF THE DISCHARGE COEFFICIENT EQUATION 240
APPENDIX H THE TEGNIQUE USED TO DETERMINE THE BEST SET OF OPENING PARAMETERS. 250Page
REFERENGES 251
VITA 254

LIST OF TABLES

Table Page
4.1 Dimensions and Geometric Parameters of the Rectangalar Openings 65
4.2 Dimensions and Geometric Parameters of the Cylindrical Openings 65
6.1 Opening Groups and Pl acements Used to Investigate the Effects of Variation of $\overline{\Delta T}$ and the Placement of an Opening in the Ceiling 90
6.2 Opening Distributions and Placement of Four Treatments Defining Additional Variations of Opening Geometry and Placement 92
6.3 Combinations of Opening Group, P1acement, and Temperature Conditions 95
6.4 Total Time Allowed for Each Treatment to Reach Equilibrim and the Intervals Over Which the ΔP Profiles $\begin{aligned} & \text { rere Checked. }\end{aligned}$ 99
7.1 Observed Elevations of the NPA. 105
7.2 Analysis of Variance for the No Cracks Data 110
7.3 Analysis of Variance for All Treatments Excluding the No Cracks Data 110
7.4 Comparison of Select Treatment Means Using the Least Significant Difference Method. 115
7.5 Dimensions of the Pair of Openings to Model the Backgronnd Leakage as Determined by Trial and Error 135
7.6 The Equivalent Opening Parameters of the Hypothetical Openings Used to Model the Effects of the Background Leakage 136
8.1 Geometric Description of the Rectangalar Openings 165
8.2 Geometric Description of the Cylindrical Openings 165
8.3 Mean Total Minor Loss Coefficients for the Rectangular Openings 173
Table Page
8.4 Results of the Modeling Procedure 186
8.5 Dimensions of the Equivalent Straight Rectangalar Openings. 189
E. 1 Chronological Order of the Data 214
E. 2 Day Number on Which Each Set of Data were Taken. 214
E. 3 Data and Regression Results. 215
F. 1 Uncertainties in A and (Ay) for Each of the ; Defined Openings. 228
F. 2 Results of the Error Analysis on the Mass Balancing Procedure. 237
G. 1 Differential Pressure, Volumetric Flow, and Air Properties Data 241
G. 2 Total Minor Loss Coefficients. 248

LIST OF FIGURES

Figure Page
1.1 Pressure gradients due to the stack effect. 5
1.2 Pressure gradients due to the combined effects of the stack effect and wind. 5
2.1 Variation of the pressure difference due to the stack effect 11
2.2 The distance from the NPA defined in terms of the elevation of the NPA and the elevation of the point in question. 13
3.1 A typical straight rectangular opening. 33
3.2 Friction coefficients for laminar flow through channels of reotangalar cross-section 38
3.3 Comparison of the total minor loss coefficients for hydrodynamically developing 1 aminar flow in long rectangular ducts and circular pipes with well rounded inlets 41
3.4 The stack effect for a residence 43
4.1 The two cell enviromental chamber 47
4.2 Detail of the wall construction. 48
4.3 Cross-sectional view of the ceiling and wall joint 50
4.4 Cross-sectional view of the wall and floor joint 51
4.5 The refrigeration duct as seen from inside the cold room. 54
4.6 The heating system as viewed from inside the warm room. 56
4.7 Construction detail of the test wall. 58
4.8 Technique used for mounting pressure taps 58
4.9 Schematic of the test sections as viewed from the warm room 60
Figure Page
4.10 The test wall as seen from the cold room 61
4.11 Typical installation of mounting plate 63
4.12 Technique used to mount an opening in the test sections. 64
4.13 The experimental setrp as seen from the warm room. 69
4.14 Positions of the temperature measurements. 73
5.1 Variation of the discharge coefficient due to variations in the pressure difference and the area-gamma product 78
5.2 The influence of a large variation in the air properties on the discharge coefficient 81
5.3 Inflnence of the variation of the total minor loss coefficient on the discharge coefficient 82
6.1 A typical differential pressure profile observed for the background leakage 94
6.2 Variation of the differential pressure profile with respect to time after entering the warm room. 97
7.1 Differential pressure profiles for G1H1 107
7.2 Differential pressure profiles for G1H2 107
7.3 Differential pressure profiles for G2H1 108
7.4 Differential pressure profiles for G2 H 2 108
7.5 Differential pressure profiles for the No Cracks treatments. 109
7.6 Variation of the position of the NPA for the No Cracks treatments with respect to the day on which data were taken. 113
7.7 Variation of the NPA for the case of an opening in Group 1 placed in the ceiling 117
7.8 Variation of the NPA for the case of an opening in Group 2 placed in the ceiling 117
7.9 Temperature stratification for distribations without an opening in the ceiling. 119
\square
\square
\square
\square
\square
\squareFigurePage
7.25 Variation of the normalized infiltration rate with the mean temperature difference 156
7.26 Comparison of the infiltration rates compated from the data and the infiltration rates compated based upon the predicted NPA for the original sizteen treatments.. 157
7.27 Comparison of the infiltration rates compated from the measured pressure differences and the infiltration rates computed based upon the predicted NPA for the No Cracks treatments. 158
7.28 Error in the computed infiltration rate induced by the error in prediction of the position of the NPA 160
8.1 Comparison of the dimensionless fiction loss and the total minor loss coefficients for the rectangalar openings 171
8.2 Comparison of the measared and calculated flow rates for the rectangular openings 175
8.3 Comparison of the dimensionless fiction loss and the total minor loss coefficients for the cylindrical openings. 178
8.4 Comparison of the measured and calculated flow rates for the cylindrical openings 180
8.5 Comparison of the predicted flow rates with those ob- served using the equivalent opening parameters shown in Table $8.4\left(K_{s}=1.5\right)$ 187
B. 1 Laminar flow between infinite parallel plates. 205
F. 1 Uncertainty in the discharge coefficient for each of the defined openings 233
F. 2 Typical mass flow rates through the defined openings.. 234
F. 3 Uncertainty of the mass flow rate for each of the defined openings 235
H. 1 The error in the prediction of the flow rates for opening B using several choices of gamma and the areas determined by a least squares best fit of equation 8.3 250

work remains to be done to develop a complete onderstanding of the infiltration process.

Infiltration is a major source of heat loss during the heating season. It has been estimated that 33 to 50 percent of the total heat loss of a residence is due to infiltration (Sherman, 1980). A preliminary study at the Jniversity of Kentucky concluded that infiltration accomated for about one third of the heat loss for several all electric homes hich were classified as well insulated (R-11 walls and R-30 or greater ceilings) and weatherstripped (Colliver et al. 1982). It was also determined that the added heat loss due to a $16 \mathrm{~km} / \mathrm{hr}(10 \mathrm{mph})$ wind at an external temperature of $0^{\circ} C\left(32^{\circ} F\right)$ was equivalent to an additional temperature difference of $9.3^{\circ} \mathrm{C}\left(17^{\circ} \mathrm{F}\right)$.

The mass transport process associated mith infiltration is not only an important energy loss factor, but it is also a major factor in the maintenance of indoor air quality in residential structures. When the doors and windows are closed infiltrating air is the only source of fresh air for a dwelling. Fresh air is needed to replenish the oxygen supply and infiltrating air removes indoor air contaminants. Most of the indoor air contaminants in residences may be classified as products of combustion, chemical vapors from cleaning products and building materials, organic particulates, excess moisture, and radon (Diamond and Grimsrud, 1984; McNall, 1986). In very tight houses, without mechanical ventilation, the concentrations of several of these contaminants have been observed to reach levels which exceed the Environmental Protection Agency standards for out side air (Diamond and Grimsrud, 1984; McNall, 1986). It has been

the infiltration process. One of the major goals of infiltration research is to adequately describe the infiltration process so that responsible onergy conservation techniques may be developed which do not endanger the quality of the indoor environment.

The pressure differences mhich drive infiltration arise fram two components: the effects of thermal buoyancy and the manentom fram wind velocities. A temperatrye difference betmeen the interior and exterior of the structore results in a difference in aif density. In turn, the density difference induces a pressure difference. On a typical day during the heating season, the interal air of a stracture will be less dense than the external air. Therefore, the warm air will rise and exit the structure throngh the leaks in the upper portion of the eqvelope. The more dense outside air will flow into the bailding throngh the leakage of the lower portion of the envelope. The tro opposite directions of flow suggests that there most be a reverse in sign of the pressore difference across the eIvelope. In addition, there exists a 1 evel in the vertical plane Where the pressure difference is equivalent to zero (Emsiniler, 1926; and ASERAE, 1985, Ch. 22). This reference plane is termed the neutral pressure asis (NPA) (refer to Figure 1.1). The flow of air induced by the pressure gradients due to thermal buoyancy are similar to the draft associated with a chimney. Hence, the infiltration resulting from thermal gradients is called the stack effect (ASHRAE, 1985). During the cooling season the internal air is cooler than the exteranl air and the flow directions are reversed. The pressure gradients due to the stack effect are al so typically smaller in magnitude.

When w ind strikes the exterior of a stractare the momentum of the air molecales is dissipated and the kinetic energy is converted into a pressure. The induced pressure may be estimated by the velocity head term of Bernoulli's equation. Wind velocities are not uniform across the surface of the stractare and the magnitades of the Velocities that strike a residence depend on several site dependent parameters which are difficult to describe. Local shielding from nearby baildings and trees will tend to reduce the wind velocity or obstruct it entirely. The orientation of the building with respect to the prevailing winds will also inflnence the magnitudes of the wind pressures. Becarse of the extreme variability of actual wind

The pressure differences due to the wind and stack effect are independent. Therefore, the total differential pressore profile may be obtained by addition of the tro components (ASHRAE, 1985; Sherman, 1980). The volumetric fiow rates of each component do not add because the flow rate is a nonlinear function of the pressure differences. Also, the elevation of the netral pressure axis will
 sents an idealized differential pressure distribation across the walls of a residence due to the combined influence of the stack effect and wind. The pressure distribation resalting from the wind has been assumed to be aniform on each wall with the pressure on the windward side being positive and the leeward side being negative.

Tho total infiltration rate is defined as the total mass of outside air which enters a structure drivon by the pressure differences resulting from the stack effect and the wind velocities.
-8-
position of the nentral pressure axis for a residential structure under pare stack conditions has not been developed.

The primary objectives of this investigation are as follows:

1. To describe the differential pressure distribation across the envel ope of a residence due to the stack effect;
2. To identify and describe the factors which influence the el evation of the neutral pressure aris;
3. To develop a procedure to compate the location of the ne utral pressure anis (NPA) under pure stack conditions for distribations of openings considered characteristic of the enyel ope leakage common to residences; and
4. To devel op a method to model the leakage of a boilding component (such as a door or windon) as a single near infinite straight rectangular slot.

$$
\lfloor
$$

$$
\rfloor
$$

$$
\downarrow
$$

$$
1
$$

$$
J
$$

$$
1
$$

Equation 2.2 was integrated under the folloning assmptions.

1. The temperature of the air col man is oniform throughout. Therefore, the air density is constant.
2. The variation of the acceleration due to gravity is negligible.
3. The distance from the reference plane, H, is considered positive mhen measured downard fom the reference plane, $\boldsymbol{Y}_{\text {Ief }}$.

Equation 2.2, which mary refer to as the static fluid equation, only describes the variation of pressure in a single colmon air of constant density. The equation which represents the variation of the pressure difference induced by the effect of thermal booyancy (i.e. stack effect) may be developed by the direct application of the static fluid equation to the two vones of air inside and ontside of a structure.

The temperature within the stracture, T_{i}, is assumed to be greater than the outside temperature, T_{0} and both temperatures are assmed to be constant with respect to elevation. Application of the static fluid equation to the volumes of air inside and outside of the bailding yields the following pair of equations.

$$
\begin{align*}
& P_{i}=P_{r e f}+\rho_{i} g H \tag{2.3}\\
& P_{0}=P_{r e f}+\rho_{0} g H \tag{2.4}\\
& \text { Where; } \quad i=\text { inside, } \\
& 0=\text { outside, } \\
& P_{r e f}=\text { the barcmetric pressure at the reference plane. } \\
& \text { Reference to Figure } 2.1 \text { indicates that the pressure in each }
\end{align*}
$$

vol me of air will vary with the distance from the reference plane independently. The pressure difference due to the stack effect at a particular distance from the reference plane is the difference betreen the tno pressores P_{0} and P_{i}. At the reference plane the pressure difference is equal to zero. The nentral pressure axis (NPA) is defined as the el evation where the pressure difference across the errvel ope of a structure is zero. Therefore, the reference plane (shown in Figare 2.1) is the neutral pressure axis.

Since the external pressure $\left(P_{0}\right)$ is greater inmagnitade than the internal pressure (P_{i}) the expression for the variation of pressure difference with respect to elevation is obtained by simply subtracting equation 2.4 from equation 2.3 .

$$
\begin{equation*}
\Delta P=g \Delta \rho H \tag{2,5}
\end{equation*}
$$

Where; $\Delta P=$ the pressure difference due to the stack effect, and $\Delta \rho=\left(\rho_{0}-\rho_{i}\right)$.

In the above equation it can be seen that at the reference plane the pressure difference induced by the stack effect is the net pressuro difference owing to the density difference. The slope of the linear differantial pressure distribution is a function of the average densities of the two volumes of air and it is independent of the locstion of the neutral pressare axis (Emswiler, 1926; Lee et a1., 1985; Tamura and \boldsymbol{W} il son, 1966). Furthermore, pressure differences above the NPA are negative as a resilt of the sign converr tion.

If the floor of the structure is considered to be at an elevation of zero (refer to Figare 2.2) then the vertical distance fram the NPA to any point on the empelope may be redefined as:

Figure 2.2 The distance from the NPA definedin terms of the el evation of the NPA and the elevation of the point in question.

$\mathrm{T}_{\mathrm{i}}=$ intermal temperature ((\mathbb{K}).

As a result, the variation of the pressore difference due to the stack effect may be written as:

$$
\begin{equation*}
\Delta P=g \rho_{0}\left(\frac{\Delta T}{T_{i}}\right)(N-h) \tag{2.11}
\end{equation*}
$$

Factors Which Influence the Position of the Nentral Pressure Aris
The neqtral pressure axis is a structure dependent parameter Which has been observed to vary greatly betmeen baildings (ASERAE, 1985; Emswiler, 1926; Shaw, 1980; Shaw and Brown, 1982). The phencmenon of a variable plane of zero pressare difference is not confined to infiltration, but it is also a controlling factor in any natoral ventilation system. Much of the present kowledge concerning the factors which affect the location of the NPA are the result of Enswilers' (1926) original stady of natural ventilation in fonndries. The following conclusions pertaining to the structural dependency of the location of the neatral pressure axis onder pare stack conditions have been presented from Ensilers' analysis :

1. If the openings are miformly distributed throughont a building and there is no significant stratification of interal temperature then the vertical location of the NPA will be at the mid-height of the structure.
2. If a significant degree of internal temperature stratification exists then the NPA mould be expected to be slight1y displaced tomard the region of the greatest internal temperature.
3. If the majority of the openings are concentrated in a
particular region of atructure then the NPA will be located close to the elevation of that region.
4. The neatral pressure aris mill always be located at a position such that the flow of air into a bailding will equal the flow of air out.

A more recent study of the neatral pressure axis in model tall buildings further verified most of Emswiler's observations except for the effects of temperature stratification (Lee et al. 1985). Lee's experimental apparatus was constructed and controlled so as to el iminate temperatore stratification. Lee et al. (1985) verified experimentally that the horizontal distribution of the openings within a structure and the mean temperature difference were not significant factors in the location of the neutral pressure axis.

The presence of chimneys in residential structures al so infinences the position of the neutral pressure axis (ASMRAE, 1985). Shaw and Brown (1982) observed that during the heating season the presence of a gas furnace chimney tended to raise the level of the NPA significantly (also see ASHRAE, 1985, Ch 22. Figure 6). The pressures which drive the air filow through the chimney of any type of combustion appliance are not a result of the stack effect only. The pressure difference across a chimney will fluctuate with the operation cycle of the appliance. The description of the pressure differentials across a chimney is a complicated interaction of several variables which merits a separate investigation. It is believed that the additional pressures due to the draft of a chimney will cause the NPA to fluctuate in the vertical direction as the temperature of the chimney oscillates with the combustion of the appliance. The present
study shall focus upon the determination of the position of the neutral pressure axis as influenced by openings in the envelope of a residence. The only source of flow potential will be the stack effect. Once a practical procedure for locating the NPA for the envelope leakage of a residence has been developed, the effect of Wind pressures and the pressures from the draft of a chimney would be incorporated.

In general, a review of the literature suggests that the position of the neutral pressure axis for envelope leakage under pure stack conditions depends upon the relative size of the individual openings, their resistance to flow, their vertical distribution and to a lesser extent the degree of interior temperatare stratification (Emswiler, 1926; and Lee et al. 1985).

Review of Previous Methods to Determine The Location of the Nentral

Pressure Axis

The first procedure to determine the position of the neutral pressure axis for a particalar building was developed by Emswiler (1926). The procedure was based upon the assumption that the pressure difference at each opening will have a value such that the total volnetric air flow into the building will be identical to the total air flow out of the building. As a result, Emswiler's method to determine the position of the NPA consisted of a direct application of the continuity equation over the entire onvelope of the building. The air flow into the building was assumed to be positive, and the continuity equation was witten as;

$$
\begin{equation*}
\sum_{j=1}^{n} Q_{j}=0 \tag{2.12}
\end{equation*}
$$

where; $\quad Q_{j}=$ the volmetric flow rate through the $j^{\text {th }}$ opening, $n=$ the total number of openings in the natural ventilation system.

Since Emswiler was concerned with the natural ventilation of foundries, all of the openings in the shell of the building were similar to a large window and they were treated as large orffices. The volumetric flow rate was computed using the orifice equation with a discharge coefficient of 0.65 . The elevation of the neatral pressure axis was determined by iteration. For each elevation of the NPA chosen, the pressure difference due to the stack effect and the corresponding flow rates were computed. The correct position of the nentral pressure axis resulted when the continuity equation (equation 2.12) had been satisfied. This iterative procedure was referred to as the flow balancing procedure.

The flow balancing procedure was tested orian actual foundry. All of the openings used were on the leeward side of the brilding. The average internal temperature of the foundry was $59^{\circ} \mathrm{F}$ and the out side temperature was $20^{\circ} \mathrm{F}$. The 1 ocation of the NPA was determined for a distribution of four openings using the flow balancing procedure and the air flow through the lowest opening mas measured using an anemometer. The flow measured was 12,500 cfm whereas the flow computed by the orifice equation was $10,260 \mathrm{cfm}$. The agreement was within 18 percent. It was stated that for a second trial the calculated and the measured flow rates differed by only 7 percent.

Emswiler's procedure to determine the position of the neutral pressure axis for a building under pure stack conditions has been

Widely accepted for use in gatural ventilation systems but it has a fondamental error．In a closed system the mass of the air will be conserved and not the volume．Therefore，to be theoretically correct the continuity equation should be written in terms of the mass flow rate．This is particularly true when the air flowing into a bailding is much colder than the air flowing out．

The ASHRAE Handbook of Fundamentals（ASHRAE，1985，Ch．22）gives the following equation to compute the location of the nertral pressure axis f or the case of natural ventilation due to two openings．

$$
\begin{equation*}
h=\frac{H}{1+\left[\left(\frac{A_{1}}{A_{2}}\right)^{2} *\left(\frac{T_{i}}{T_{0}}\right)\right]} \tag{2.13}
\end{equation*}
$$

Where；$\quad H=$ the vertical distance between the two openings，
A_{1} and $A_{2}=$ the opening areas，
$h=$ elevation of the NPA measured from the lowest opening，
$T_{i}=$ internal temperature，and
$\mathrm{T}_{\mathrm{o}}=$ outside temperature．
Equation 2.13 cannot be applied to most cases of either natural ventilation or infiltration becanse of its 1 imitation to only two openings and the assumption that the discharge coefficients of the two openings are equal．Lee ot al．（1985）showed experimentally that even for the case of two openings equation 2.13 could only predict the elevation of the NPA $⿴ 囗 十$

Lee et al．（1985）developed a procedure to compute the position of the neutral pressure aris for a model tall building using the following asswiptions：

1．There are no internal partitions between floors；
2. The inside and out side temperatures do not vary with el evation;
3. The inside temperature is greater than the out side temperatore;
4. The only pressure gradients are due to the stack effect (i.e. no wind):
5. The openings are of circular cross-section; and
6. The flow through the openings is steady, smooth, 1 aminar and in hydrodynamic transition.

From the lav of conservation of energy the pressure drop across an opening was formulated as shown:

$$
\begin{equation*}
\Delta P_{k}=\frac{1}{2}\left[\rho \bar{v}^{2}\left(1+\mathbb{K}_{f 1}\right)+B \overline{\mathrm{~V}}\left(\frac{\underline{L}}{D^{2}}\right)\right]_{k} \tag{2.14}
\end{equation*}
$$

where; $\Delta P_{k}=$ the total pressure drop across the $k^{\text {th }}$ opening, $\overline{\mathrm{V}}=$ the average velocity, $B=64$, the 1 aminar friction coefficient for a circular cross-section, $L=$ the flow length, $D=$ the diameter, $K_{f 1}=$ the sum of the minor losses due to the entrance effects and any contractions or expansions, $\mu=$ the dynamic ∇ iscosity, and $\rho=$ the density.

The pressure difference due to the stack effect was oxpressed in the following form.

$$
\begin{equation*}
\Delta P_{\text {stack }}=K_{1}\left(\frac{1}{T_{\text {out }}}-\frac{1}{T_{i n}}\right)(N P A-Z) \tag{2.15}
\end{equation*}
$$

where; $\quad K_{1}=a \operatorname{constant}=\frac{g P_{0}}{R}$
$P_{0}=$ the standard atmospheric pressure,
NPA = the elevation of the nentral pressure axis, and
$Z=$ the elevation of the opening from the ground.
For each opening the pressure difference due to the stack effect Was equated to the total pressure drop across the opening (equation 2.14). The general equation to compute the el evation of the NPA for a building with n openings in the ervel ope was presented by Lee as follows:

$$
\begin{gathered}
\text { NPA }=\frac{H_{j}+\left(X_{j} / X_{i}\right) H_{i}}{1+\left(X_{j} / X_{i}\right)} \\
\text { Where; } \quad X_{i} \text { or } j^{=}\left[\left(\frac{P_{0}}{R T}\right) \bar{V}^{2}\left(1+\sum K_{f 1}\right)+\left(\frac{B \mu L}{D^{2}}\right) \bar{V}\right]_{i} \text { or } j \\
i-\text { denotes openings below the NPA, } \\
j-\text { denotes openings above the NPA. } \\
H_{i} \text { or } j=\text { the distance of a particular opening fram the bottom } \\
\quad \text { opening. }
\end{gathered}
$$

The solution to equation 2.16 for n openings involves a set of n non-linear equations to be solved iteratively in terms of velocity. The ouly explanation which the author gave for the solution of the equation is that ''a standard computational method available for computers' ' was employed (Lee et al. 1985, p. 4).

Lee's et al. (1985) experimental investigation was carried out using a model bailding that stood $18.2 \mathrm{~m}(59.71 \mathrm{ft}) \mathrm{high}$. There were no internal partitions of any kind within the model and sixidentical cylindrical openings were installed at four different olevations.

Two openings were placed at the top and the bottom of the model building. The remaining two openings were equally spaced above and below the mid-height of the bailding. All of the openings were in the side walls and each opening could be opened or closed independently.

Twenty individually controlled electrical heating elements were used throughout the height of the model building. A aniform temperature inside the model bailding was achieved by adjusting the power supply to each of the electrical heaters. The supply voltage, the current to each heater and the temperatore profile were monitored continuously. The maximum allowable temperature deviation betmeen points mas $3^{\circ} \mathrm{C}\left(5.4^{\circ} \mathrm{F}\right)$. By heating the interior of the model building, temperatare gradients fram $25^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{F}\right)$ to $60^{\circ} \mathrm{C}\left(108^{\circ} \mathrm{F}\right)$ were obtained.

Differential pressure measurements were obtained fram seven pairs of pressure taps placed at intervals of $3.0 \mathrm{~m}(9.84 \mathrm{ft})$. Each pair of pressure taps was connected to a single pressure transducer with an error of $\pm 0.2 \mathrm{~Pa}$.

The position of the NPA was observed for twelve different opening distributions and f ive different temperature differentials (250, 30°, $40^{\circ}, 50^{\circ}$ and $60^{\circ} \mathrm{C}$). No variation in the position of the NPA was observed over the entire range of mean temperature differentials. It was stated that the position of the NPA was predicted by equation 2.16 within 6 percent in all cases.

Overlooking the extreme complexities of applying Lee's method to a practical situation, three of the initial assumpions are unreasonable. First if the intended application is for high-rise
buildings, then several of the references indicate that the pressure of internal separations can greatly influence the location of the NPA in tall baildings (Shav and Tamura, 1977; Tamura and Shan, 1976; Tamora and Wil son, 1966; and Tamura and Wilson, 1967). The assumption that internal separations are absent is not a reasonable asstmption for a tall building. Secondly, the effects of temperature stratification needs to be addressed experimentally. Even in a residence an appreciable degree of stratification of internal temperature can occur. Finally, a visual inspection of the envelope leakage of a bailding suggests that most of the openings typical of infiltration are of a rectangular cross-section and not circular.

Up to this point only methods to actually compate the el evation of the NPA have been presented. Several empirically based mathematical models of infiltration are available that include the elevation of the NPA as one of the parameters. Usually the NPA is assumed to be located at the midheight of the structure or an elevation is assumed based apon a visual inspection of the distribution of known sources of leakage such as doors, windows, and penetrations for ductwork or plumbing (Liddament and Allen, 1983). A better estimate of the elevation of the NPA should be able to improve the estimates obtained from the empirical models.

Chapter 3

IHEORETICAL DEVELOPMENT

Introduction

The review of the literature revealed that the computation of the pressure differences which are induced by the stack effect depend upon the knowledge of the position of the neutral pressure axis (NPA). Furthermore, the position of the NPA is a structure dependent parameter which varies with respect to the relative size of the openings in the emvelope, their resistance to flow, and their vertical distribution (Emsmiler, 1926; Lee et al. 1985). Assuming that the out side temperature is invariant, stratification of temperatare within a stracture is believed to canse a slight displacement of the NPA towards the region of the greatest internal temperature (Emswiler, 1926). Temperature stratification is thought to be a minor factor that can be neglected, but its importance has not been ascertained experimentally.

The factor that influences the location of the NPA which is subject to the greatest ambiguity is the description of the flow resistance of small openings characteristic of the envelope leakage of residences. Due to the small size and the great number of openings in a structure, the leakage of a single component, or even the entire building envel ope is often modeled as a single equivalent orifice (ASHRAE, 1985; Keil et al. 1985). The flow resistance of an orifice may be defined as the product of the cross-sectional area and a discharge coefficient. The area and the discharge coefficient of
the equivalent orifice are 1 umped into a single parameter known as the effective leakage area, $A_{e}\left(m^{2}\right)$. The flow through the effective leakage area is defined by the following simplification of the orifice equation:

$$
\begin{equation*}
Q=A_{e} \sqrt{\frac{2 \Delta P}{\rho}} \tag{3.1}
\end{equation*}
$$

where; $\quad Q=$ the volumetric flow rate $\left(\pi^{3} / s\right)$, $\Delta P=$ the pressure difference (Pa), and $\rho=$ the air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.

To determine the effective leakage area of a bailding component (or an entire structure) the current practice involves the measurement of the volumetric flom rate throngh the component at several pressure differences in the range of 12.5 to 75 Pascals (ASTM, 1985). The data is then fitted to a power 1 aw of the following form:

$$
\begin{equation*}
Q=C(\Delta P)^{n} \tag{3.2}
\end{equation*}
$$

```
where; C = the flow coefficient (m
    n = the flow exponent.
```

The value of the flow exponent, n, is typically between 0.5 and 1.0. An exponent of 0.5 is believed to correspond to orifice $f 10$ w and an exponent of 1.0 is thought to represent fully devel oped 1aminar flow (Keil et al. 1985).

The effective leakage area is calcalated from the data by equating equation 3.1 to equation 3.2 and solving f or the effective leakage area at a given reference pressure drop (Keil et a1. 1985).

$$
\begin{equation*}
A_{e, r e f}=C\left(\frac{\Omega}{2}\right)^{0.5} \quad \Delta P_{r e f}^{(n-0.5)} \tag{3.3}
\end{equation*}
$$

The description of the leakage area and the flow resistance of a building component as an equivalent leakage area is inadequate for the following reasons:

1. The effective leakage area, A_{e}, will vary with the reference pressure drop used. Therefore, it lacks physical significance.
2. The flow exponent, n, and the flow coefficient, C, are merely products of regression and do not adequately describe the physics of the flow.
3. The dimensions are not homogeneous.
4. The pressure differences which are typical of the stack effect in residences are less than ten Pascals. Computation of an effective leakage area at pressure differences below the range of data is a statistically invalid procedure.
5. The use of an effective leakage area to model a building component is analogous to modeling the component as an equivalent orifice with a constant discharge coefficient over the entire range of data. As a result, the variation of the element of resistance due to the presence of a flow length is neglected.

A general survey of the leakage about doors and windows suggests that most of the openings common to infiltration approximate rectangular slots. It is believed that the flow length of the openings common to ervelope leakage contributes significantly to the flow resistance (Beavers et a1. 1970; Etheridge, 1977; Han, 1960; and

Hopkins and Hansford, 1974). As a result, the openings which are characteristic of infiltration should be modeled as rectangular slots and not orifices. Furthermore, previous work concerning fiow through small rectangalar slots with cross-sectional dimensions similar to envelope leakage concladed that the openings common to infiltration had hydranlic diameters (D_{h}) small enough to treat the flow as 1aminar (Etheridge, 1977; Hopkins and Hansford, 1974).

Beginning:with the solution to the Navier-Stokes equation for the idealized case of flow between infinite parallel plates, a semi-empirical equation to directly compote the discharge coefficient for laminar flow through an arbitrary rectangalar channel will be developed. The discharge coefficient may be viewed as a dimensionless flow resistance parameter which varies with the geometry of the channel as well as the pressure drop. The geometric component of the discharge coefficient may be described by the cross-sectional area and a geometric parameter, gamma, which takes into account the flow length and the dimensionless properties of the cross-section. By means of the general energy equation, the analysis will be extended to inclade openings of a circalar cross-section.

Once the discharge coefficient relationship has beon developed it shall be incorporated into a procedure to compute the position of the neutral pressure axis for any distribation of openings.

Derivation of the Discharge Coefficient Equation
The solution to the Navier-Stokes equation for the idealized case of flow between infinite parallel flat plates is provided in Appendir B. The solution is stated in terms of the volumetric flow per unit width as:

$$
\begin{equation*}
\frac{Q}{W}=\frac{d^{3} \Delta P}{12 \mu z} \tag{3.4}
\end{equation*}
$$

Where; $\quad Q=$ the volumetric flow rate $\left(m^{3} / s\right)$,
$\mathrm{d}=$ the channel thickness (m),
$z=$ the flow length (m),

* = the width (m) ,
$\mu=$ the dynamic viscosity ($\left.N^{*} s / m^{2}\right)$, and $\Delta \mathrm{P}=$ the pressure difference (Pa).

The following assumptions were applied to obtain equation 3.4:

1. The fluidis viscid and incompressible;
2. The flow is steady, fully developed and 1 aminar;
3. The velocity varies one dimensionally across the thickness (d);
4. The pressure varies linearly in the direction of flow;
5. The gravity effects are negligible;
6. There are no entrance or exit losses;
7. The no-slip boundary condition exists; and
8. A positive pressure difference yields a positive flow.

By dimensional analysis, equation 3.4 may be expressed in terms of the total dimensionless pressure drop.

$$
\begin{equation*}
\frac{2 \Delta P}{\rho \bar{V}^{2}}=\frac{96}{\operatorname{Re}}\left(\frac{z}{D_{h}}\right) \tag{3.5}
\end{equation*}
$$

For laminar flow the friction factor is defined by:

$$
\begin{equation*}
f=\frac{B}{R e} \tag{3.6}
\end{equation*}
$$

Therefore, equation 3.5 indicates the value of the friction coefficient, B, is 96 for infinite parallel flat plates. The

Reynolds number is given by:

$$
\begin{equation*}
\operatorname{Re}=\frac{\overline{\mathrm{V}} \mathrm{D}_{\mathrm{h}}}{\nu} \tag{3.7}
\end{equation*}
$$

 defined as:

$$
\begin{equation*}
D_{h}=\frac{4 \mathrm{~A}}{\text { wetted perimeter }} \tag{3.8}
\end{equation*}
$$

For rectangular cross-sections the hydradic diameter may be written in terms of the thickness, d, and the aspect ratio, a, (Fox and McDonald, 1978).

$$
\begin{equation*}
D_{h}=\frac{2 d}{(1+a)} \tag{3.9}
\end{equation*}
$$

Where the aspect ratio is given by:

$$
\begin{equation*}
\alpha=\frac{d}{w} \tag{3.10}
\end{equation*}
$$

For the case of infinite parallel flat plates, the aspect ratio is equal to zero and the hydraulic diameter becomes:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{h}}=2 \mathrm{~d} \tag{3.11}
\end{equation*}
$$

The mean velocity, \bar{V}, is defined by:

$$
\begin{equation*}
\overline{\mathrm{V}}=\frac{\mathbf{Q}}{\mathbf{A}} \tag{3.12}
\end{equation*}
$$

Substitution of the definition of the mean velocity into the definition of the Reynolds number in equation 3.5, and solving for the f10w rate gives:

$$
\begin{equation*}
Q=C_{d} A \sqrt{\frac{2 \Delta P}{p}} \tag{3.13}
\end{equation*}
$$

Where the discharge coefficient for idealized flow is defined by the expression:

$$
\begin{equation*}
C_{d}=\sqrt{\frac{D_{h} R e}{z B}} \tag{3.14}
\end{equation*}
$$

The general form of equation 3.13 has been used extensively to compute the fiow through rectangalar as well as circalar channels, bit equation 3.14 is not adequnte to compute the discharge coefficient for an actual situation. The inadequacy arises from the neglect of the losses at the entrance and exit of the flow channel. In order to apply the flow equation to an actual flow situation, the entrance and exit effects must be included in the discharge coefficient.

Another discharge coefficient which includes the entrance and exit losses is described by the following functional statement:

$$
\begin{equation*}
C_{z}=f\left(\frac{z}{D_{h}}, \frac{B}{\operatorname{Re}}, \underline{K}\right) \tag{3.15}
\end{equation*}
$$

The term, z / D_{h}, defines a dimensionless flow length and K is the total minor loss coefficient which represents the sum of the dimensionless pressure losses due to the entrance and exit effects. In addition to el iminating assmption 6, which was required to solve the Navier-Stokes equation, it will be shown later that the effects of undeveloped flow are also included in K (assumption 2).

Based upon the 1 am of conservation of energy, the general energy equation for 1 aminar flow through an arbitrary channel is given by:

$$
\begin{equation*}
\Delta P=\frac{1}{2} \rho \bar{V}^{2} B\left(\frac{z}{D_{h} \operatorname{Re}}\right)+\frac{1}{2} \rho \bar{V}^{3} K \tag{3.16}
\end{equation*}
$$

Assuming that the mean velocity is not zero and dividing equation 3.16 by the velocity head gives the equation for the total dimensionless pressure drop across an arbitrary channel.

$$
\begin{equation*}
\frac{2 \Delta P}{\rho \bar{V}^{2}}=B\left(\frac{z}{D_{h} R e}\right)+K \tag{3.17}
\end{equation*}
$$

Thus, the total dimensionless pressure drop is the sum of the friction loss, $B\left(z / D_{h} R e\right)$, and the total minor loss coefficient, K. Etheridge (1977), defined a discharge coefficient for straight rectangalar openings with a finite flow length as:

$$
\begin{equation*}
C_{z}=\frac{Q}{A} \sqrt{\frac{\rho}{2 \Delta P}} \tag{3.18}
\end{equation*}
$$

Substitution of the average velocity into the above equation and solving for the total dimensionless pressure drop yiel ds:

$$
\begin{equation*}
\frac{2 \Delta P}{\rho \bar{V}^{2}}=\frac{1}{C_{z}^{2}} \tag{3.19}
\end{equation*}
$$

Combining equations 3.17 and 3.19 gives the following 1 inear relationship between the squared inverse of the discharge coefficient and the term, ($\left.z / D_{h} R e\right)$ (Etheridge, 1977).

$$
\begin{equation*}
\frac{1}{C_{z}^{2}}=B\left(\frac{z}{D_{h} \operatorname{Re}}\right)+K \tag{3.20}
\end{equation*}
$$

The discharge coefficient, C_{z}, as defined by equation 3.18, was determined experimentally by Hopkins and Hansford (1974), for several straight slots. The slot thickness ranged fram about 1 mem (0.039 in) to $10 \mathrm{~mm}(0.394 \mathrm{in})$ and the flow length, z, ranged fram approximately $6 \mathrm{~mm}(0.25 \mathrm{in})$ to $50 \mathrm{~mm}(2 \mathrm{in})$. The aspect ratio was assumed to be zerofor all cases. Etheridge (1977) pooled all of the data into one linear regression. The results gave a mean friction coefficient (B) of 95.7 and a mean total minor loss coefficient (K) of 1.5. The technique presented by Etheridge (1977) to calculate the flow rate
for a rectangalar slot involved an iteration on the Reynolds number using equation 3.20 in conjunction with the following flow equation:

$$
\begin{equation*}
Q=C_{z} A \sqrt{\frac{2 \Delta P}{\rho}} \tag{3.21}
\end{equation*}
$$

Etheridge's analysis was confined to rectangular openings with near infinite cross-sections, sharp-edged inlets, and finite flow lengths. The following development is devoted to the derivation of an equation to compute the discharge coefficient directly and to expand the analysis to include rectangular cross-sections of any aspect ratio as well as openings with circular cross-sections. The analysis may be extended to include rectangular slots of any aspect ratio by using the expression for the hydraulic diameter presented in equation 3.9. A diagram of a typical rectangalar channel is shown in Figure 3.1.

Substitution of the definition of the mean veloctty into equation 3.17 and equating the expression to zero gives:

$$
\begin{equation*}
\frac{2 \Delta P A^{2}}{\rho Q^{2}}-\frac{\nu B Z A}{Q D_{h}^{2}}-K=0 \tag{3.22}
\end{equation*}
$$

Multiplication of equation 3.22 by the square of the flow rate, employing the expression for D_{h} given in equation 3.9, and simp lifying gives the following quadratic flow equation:

$$
\begin{equation*}
\frac{8 \Delta P A^{2}}{\rho}-\frac{Q \nu}{\gamma}-Q^{2} 4 K=0 \tag{3.23}
\end{equation*}
$$

Where the geometric parameter, gamma, for a rectangular cross-section is defined as:

$$
\begin{equation*}
\gamma=\frac{a}{B_{z}(1+\alpha)^{2}} \tag{3.24}
\end{equation*}
$$

The quadratic flow equation was solved by means of the quadratic

Figure 3.1 A typical straight rectangalar opening.
formala. The positive root was determined to be the only root ith physical significance.

$$
\begin{equation*}
\mathrm{Q}=\left(\frac{-\nu}{8 \mathrm{~K} \gamma}\right)+\left[\left(\frac{\nu}{8 \mathrm{~K} \gamma}\right)^{2}+\frac{2 \mathrm{~A}^{2} \Delta \mathrm{P}}{\mathrm{~K} \rho}\right]^{0.5} \tag{3.25}
\end{equation*}
$$

Substitution of equation 3.25 into the definition for the Reynolds number of equation 3.20 and simplifying gives the following equation for the squared inverse of the discharge coefficient:

$$
\begin{equation*}
\frac{1}{C_{z}^{2}}=\frac{2 K}{\left[1+(A \gamma)^{2} \frac{128 K \Delta P}{\rho \nu^{2}}\right]^{0.5}-1} \quad+K \tag{3.26}
\end{equation*}
$$

The above equation was derived under the assumption that the aspect ratio is greater than zero. Inspection of the definition of gamma (equation 3.24) reveals that for an aspect ratio of zero, gamma is equal to zero. This would cause the discharge coefficient equation (equation 3.26) to be come undefined.

This singularity was removed by rederiving, the discharge coefficient equation using a hydralic diameter of 2 d (i.e. $\alpha=0$) and a friction coefficient (B) of 96. The quadratic flow equation (Equation 3.23) was written in terms of the flow per unit width and solved to yield the following equation for the flow per unit width:

$$
\begin{equation*}
\frac{\underline{Q}}{W}=-12\left(\frac{z \nu}{K d}\right)+\left[144\left(\frac{z \nu}{K d}\right)^{2}+\frac{2 \mathrm{~d}^{2} \Delta \mathrm{P}}{\rho \mathrm{~K}}\right] 0.5 \tag{3.27}
\end{equation*}
$$

The discharge coefficient equation was found to be of exactly the same form as given in Equation 3.26. The only difference was in the expression for the area-gama product, ($\mathrm{A} \gamma$). If it is desired to compute the discharge coefficient using an aspect ratio of zero the following expression for (Ay) is to be used with Equation 3.26:

$$
\begin{equation*}
(A \gamma)=\frac{\mathrm{d}^{2}}{96 z} \tag{3.28}
\end{equation*}
$$

For very small aspect ratios the value of (Ay) determined from the cross-sectional area and the definition of gamma given by Equation 3.24 will approach the value determined by using Equation 3.28. The point at which the aspect ratio is small enough to be considered to be zero is dependent upon the application. In actuality, no rectangular channel is truly infinite. In the application of these concepts to the modeling of bailding components it is more descriptive to include the aspect ratio.

It should be noted that since the discharge coefficient equation was developed from the dimensionless energy equation (equation 3.17) the assumption that the mean velocity is not zero al so applies. Therefore the pressure difference cannot be zero. Furthermore, the square root requires the use of the absolute value of the pressure difference.

For a straight cylinder the total dimensionless pressore drop is of the same form as shown in equation 3.19 and the characteristic dimension is the diameter of the opening. Using the same analysis as for a rectangalar channel, the quadratic flow equation for a cylinder is the same as shown in equation 3.23. The geometric parameter, gamma, for a cylinder is defined as:

$$
\begin{equation*}
\gamma=\frac{1}{B \pi z} \tag{3.29}
\end{equation*}
$$

The discharge coefficient for a cylinder may be calculated by using equation 3.26 with the definition of gama for a cylinder (equation 3.29). The value of the friction coofficient for a
circular cross-section is 64 and it may be obtained in a manner analogous to that presented for infinite parallel flat plates (Currie, 1974; Fox and McDonald, 1978).

Physical Significance of the Area-Gamma Product

It has been show that the fiow through an arbitrary rectangular or circular channel is a function of the pressure difference, the cross-sectional area, gamma, the minor losses, and the air properties. The flow rate may be calculated directly either by equation 3.25 or by first determining the discharge coefficient by equation 3.26 and then computing the flow rate by equation 3.21. Either method yields the same result.

The discharge coefficient method is advantageous because it is able to provide additional insight concerning the factors which influence the flow rate. A closer $100 k$ at equation 3.26 indicates that the discharge coefficient describes the total resistance of a flow channel. For a particular set of air properties and a known total minor loss coefficient, the discharge coefficient is a function of the area-gamma product and the total pressure drop. Therefore, the term (Ay) describes the total geametric contribution to the resistance of the channel. The geometric parameter, gamma, inclades the contribation of the flow length, the friction coefficient, and a dimensionless constant that represents the cross-sectional geometry. For a cylinder the constant is $1 / \pi$ and f or a reotangular cross-section the constant is given by $\alpha /(1+\alpha)^{2}$. As a result, gamma may be viewed as a three dimensional scale factor of a channel.

An inspection of the work of Hopkins and Hansford (1974), and Etheridge (1977) suggest the effects of channel geometry on the
friction coefficient and the total minor loss coefficient need closer ezamination.

Variation of the Friction Coefficient with the Cross-Sectional

Geometry
A number of researchers (Beavers, et al. 1970; Fox and McDonald, 1978; Han, 1960; Kays and Crawford, 1980; Langhaar, 1942), agree that the friction coefficient is a parameter that is determined by the cross-sectional geanetry of the channel. A friction coefficient of 64 is almays used with a circular cross section. For rectangular cross sections, the friction coefficient is a function of the aspect ratio (Beavers et al. 1970; Han, 1960; Kays and Crawford, 1980). The curve presented in Figure 3.2 indicates that as the aspect ratio increases from zero the theoretical value of the friction coefficient decreases from 96 to a minimom of about 57 which corresponds to a square $(\alpha=1.0)$, (Kays and Crawford, 1980; Han, 1960). The following regression equation to compute the friction coefficient was obtained from a least squares best fit of this curve for aspect ratios from zero to 0.075 :

$$
\begin{equation*}
B=96.0-106.67 \alpha \tag{3.30}
\end{equation*}
$$

Variation of the Total Minor Loss Coefficient

The total minor loss coefficient (K) for any type of straight channel is an empirically determined value which is the som of the entrance and exit effects. The magnitude of the entrance effect can Vary considerably depending apon the inlet geometry and the degree of hydrodynamic devel opment. Also, two similar channels can have different values of K due to inaccuracies in fabrication. The variation of the components of the total minor loss coefficient $w i l l$ be

Figure 3.2 Friction coefficients for laminar flow through channels of rectangular cross-section (Kays and Cravford, 1980; Han, 1960).
presented in the following discussion. According to many fluidmechanics texts the kineticenergy is
considered to be completely dissipated when the fluiderits a pipe into an infinite expansion. As a result, the dimensionless pressure loss due to the exit (K_{ex}) is 1.0 for all cases (Fox and McDonald, 1978). The entrance effect is the sum of the losses induced by the inlet geometry ($K_{i n l e t}$) and the degree of hydrodynamic development (K_{hd}). The loss coefficient of the inlet can be expected to vary from about 0.04 for a mell rounded inlet to 0.5 for a sharp edged inlet (Fox and McDonald, 1978). For practical purposes the dimensionless pressure loss of a mell designed rounded inlet may be considered negligible (Beavers, et al. 1970; Fox and McDonald, 1978).

The loss coefficients for developing 1 aminar flow ($K_{h d}$) through long straight ducts of rectangular cross-section were determined by Beavers et al. (1970) for aspect ratios from 0.0196 to 1.0 . For this work the inlets of the ducts were well rounded and the inlet loss ($\mathrm{K}_{\mathrm{inl}} \mathrm{et}$) was considered to be zero.

Beavers et al. (1970) observed that the value of K_{hd} was zero at the inlet and increased to a maximum value at a point downstream and then remained constant. The distance from the inlet to the point Where $K_{h d}$ attained a maximum was defined as the entrance length of the duct $\left(L_{e}\right)$. It was al so determined that the flow may be treated as fully developed when $K_{\text {hd }}$ attains 95 percent of the fully devel oped value (Beavers et al., 1970).

The fully developed values of $K_{h d}$ varied linearly for aspect ratios (a) from 0.0196 to 0.50 . The fully developed ∇ al ue of K_{hd} was 0.6 for an a of 0.0196 and 1.1 for an a of 0.50 . For a square (α
$=1.0$) the fully developed value of $K_{h d}$ was 1.2 .
The total minor loss coefficient (K) for fully developed 1 aminar flow in a long circular pipe with a well rounded inlet was determined to be 2.2 by Langhaar (1942). In this case the total minor loss coefficient was equal to the sum of the losses due to hydrodynamic development and the exit ($\mathrm{K}_{\mathrm{e} x}=1$). By subtracting the exit loss from the total minor loss coefficient it was observed that the fully developed value of $K_{h d}$ for a long circular pipe was 1.2. The entrance length for a long circular pipe was defined in the same manner as discussed previously for a rectangular duct.

The variation of the total minor loss coefficient, $K=\left(X_{h d}+\right.$ \mathbb{K}_{ex}), for developing 1 aminar flow through long rectangalar ducts and oircular pipes has been compared in Figare 3.3. The exit loss was added to the data presented by Beavers et al. (1970) to facilitate comparison with the values for a long circalar pipe (Langhaar, 1942). It should be noted that the best estimate of the total minor loss coefficient for developing 1 aminar flow in long pipes with sharp edged inlets mould be obtained by adding the inlet loss ($\mathrm{K}_{\text {inlet }}=0.5$) to the values presented in Fignre 3.3.

Any type of straight channel may be classified as either (1) a long pipe, (2) a short pipe or (3) an orifice based upon a comparison of the magnitudes of the dimensionless friction loss and the total minor loss coefficient (refer to Figure 3.3 and Equation 3.17). A long pipe has a flow length (z) which is much longer than the required entrance length to insure fully developed laminar flow (L_{e}). In this case $B\left(z / D_{h} R e\right)$ is much larger than K. That is, the dimensionless friction loss is the greatest component of the

Figure 3.3 Comparison of the total minor loss coefficients for hydrodyramically developing laminar flow in long rectangular ducts and circular pipes mith well rounded inlets.
total dimensionless pressure drop across a long pipe. A short pipe has a flow length that is less than or equa to the required entrance length. The flow is not fully developed or the profile may devel op just before the fluidexits the pipe. If the flow length is less than the required entrance length, then the total minor loss coefficient is the greatest component of the total dimensionless pressure drop. If z is equal to L_{e} then the dimensionless friction loss will be approximately equal to K. The magnitude of the total minor loss coefficient will depend upon the degree of hydrodynamic development and will vary with the Reynolds number. An orifice does not have a flow length and the dimensionless firction loss is zero. The total minor loss coefficient for an orifice is simply the sum of $K_{\text {inlet }}$ and $K_{e x}$. Also, K is equal to the total dimensiunless pressure drop which varies $\begin{aligned} & \text { ith the mean velocity. }\end{aligned}$ The Procedure to Determine the Position of the Neutral Pressure Axis

The simplest and most fundamental approach to compute the location of the neqtral pressure axis is a direct application of the conservation of mass for a closed system. The system is defined as a residential structure and the surrounding atmosphere subject to the following constraints (refer to Figure 3.4):

1. There is no wind impending upon the structure (i.e. pare stack conditions exist);
2. The openings are oharaoterized as straight openings with cross-sectional dimensions similar to those found in a dwelling;
3. The flow through the openings is characterized as steady, smooth and 1 aminar:

Figure 3.4 The stack effect for a residence.
4. The inside and outside temperatures (T_{i} and T_{0}) are constant with respect to el evation;
5. The discharge coefficient does not depend on the direction of flow through the openings;
6. The only openings which exist are in the walls, floor and ceiling of the structure (i.e. no chimneys); and
7. There are no internal partitions which significantly obstruct the flow of air.

The pressore difference induced by the stack effect may be determined by the following equation.

$$
\begin{aligned}
\Delta P_{j} & =g \Delta \rho\left(N-h_{j}\right) \\
\Delta P_{j} & =\text { the pressure difference (Pa), } \\
N & =\text { elevation of the NPA above the floor of the structure } \\
& (m),
\end{aligned}
$$

$h_{j}=$ the elevation of the $j^{\text {th }}$ opening above the floor (m), and,
$\Delta \rho=$ the mean density difference $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
Under the assumption that mass flow into the structure is positive the continaity equation is stated as:

$$
\sum_{j=1}^{n}=\dot{m}_{j}=0
$$

where; $\dot{m}_{j}=$ the mass flow rate through the $j^{\text {th }}$ opening (kg / s), and $n=$ the total number of openings.

Maltiplication of the volumetric flow rate equation (equation 3.21) by the density of the air flowing through the opening gives the
following equation for the mass flow rate through an opening:

$$
\begin{equation*}
\dot{m}_{j}=\left(C_{z} A\right)_{j} \sqrt{2 \Delta P_{j} \rho_{j}} \tag{3.33}
\end{equation*}
$$

where; $C_{z}=$ the discharge coefficient of the $j^{\text {th }}$ opening (computed by equation 3.26 using ρ_{j} and ν_{j}),
$A=$ the cross-sectional area of the $j^{\text {th }}$ opening $\left(m^{2}\right)$,
$\Delta P_{j}=$ the absolute value of the pressure difference at the el evation of the $j^{\text {th }}$ opening, $(P a)$, and $\rho_{j}=$ the density of the air flowing throagh the $j^{\text {th }}$ opening $\left(\rho_{0}\right.$ or $\left.\rho_{i}\right),\left(k_{g} / m^{3}\right)$.

The position of the nentral pressure axis for an arbitrary distribution of openings in the envelope of a residence may be determined by the following mass balancing procedure.

1. Select an initial elevation of the NPA, N.
2. Compute the pressure difference across each opening using equation 3.31.
3. Determine the discharge coefficient from equation 3.26 and the mass flow rate from equation 3.33 for each opening using the absolute value of the pressure difference.
4. Using the sign of the pressure drop across each opening compate the sum of the mass flow rates.
5. If the som of the mass flows is not z ero then select another elevation for the NPA and repeat the process matil equation 3.32 is satisfied.

Chapter 4
 DESCRIPTION OF THE EXPERIMENTAL APPARATUS

Introduction

A two cell enviromental chamber was constracted to simalate the temperature gradients across the envel ope of a structure. The facility was bailt as air tight as possible and it is capable of producing temperatme differences as great as $60^{\circ} \mathrm{C}\left(108^{\circ} \mathrm{F}\right)$ across a thermal barrier. The thermal barrier consis'ts of two removable test sections which can simulate a tro story wall with a ceiling. The wall section has nine different locations where an idealized opening may be mounted into the wall to simulate structural leakage. The ceiling section has one mounting plate for an idealized openiug and a circular mounting plate which will enable the study of a chimney at a later date. Eight straight rectangalar openings and six cylindrical openings were fabriouted of acrylic sheet (often referred to as ' ${ }^{\prime}$ plexiglass' ').

Constraction of the Two Cell Enviromental Chamber

The base of the chamber has outside dimensions of 4.343 m (14.25 $\mathrm{ft})$ by $5.918 \mathrm{~m}(19.42 \mathrm{ft})$ and the external height is 5.944 m (19.5 ft) (refer to Figure 4.1). The walls are of double stud construction With a thickness of $31.75 \mathrm{~cm}(12.5 \mathrm{in})$. The insulation value of the wall is approximately R -42. A construction detail of a typical wall section is provided in Figare 4.2. A continuous polyethylene vapor barrier was installed beneath the exterior plymood of each of the four walls. The vapor barrier of each of the walls was overlapped a

Figure 4.1 The two cell environmental chamber.

Figure 4.2 Detail of the wall constraction.
minimum of $1.22 \mathrm{~m}(4 \mathrm{ft})$ at the corners and sealed with an adhesive sealant. A second continuous vapor barrier was formed on the interior of the chamber by sealing all of the seams and nail holes in the foil faced foam board insulation with foil tape. The interior vertical joint at the corners was al so sealed using foil tape. The use of the foil faced rigid insalation provided a highly reflective finish on the interior of all of the permanent walls. To minimize the number of penetrations in the walls, all electrical outlets, switches, and conduit were surface mounted on plywood bases. Any penetrations that were made were sealed with silicone carlk.

The ceiling was al so insulated to a value of $R-42$. A detail of the placement of the ceiling insulation and the ceiling-wall joint is presented in Figure 4.3. A single sheet of polyethylene plastic was spread over the outside 1 ayer of ceiling insulation and the edges nere lapped $1.22 \mathrm{~m}(4 \mathrm{ft})$ over all four sides of the chamber and sealed to the vapor barriers of each of the walls. The interior vapor barrier was made complete by taping the joint between the ceiling and the walls. The seams and nail holes in the rigid insulation used on the interior of the ceiling were al so taped.

The floor of the enviromental chamber was constructed of 2×6 lunber (16 in. $0 . C$) on a concrete floor (refer to Figare 4.4). The cavities between the floor joists were insulated with R-19 fiberglass insolation. The floor section beneath the test wall and the mounting col mons (refer again to Figure 4.1) was designed and built to support the dead load of a concrete block wall. The cavities in this floor section were insulated using extraded polystyrene foam board to provide a thermal break with an R value of about 50. The thermal

Figure 4.3 Cross-sectional view of the ceiling and wall joint.

Figure 4.4 Cross-sectional view of the wall and floor joint.
break was installed to prevent excessive heat flow underneath the test wall. A continnous vapor barrier was placed between the floor joists and the plywood floor. The edges of the vapor barrier were sealed to the exterior vapor barrier of the walls in the same fashion as described for the ceiling. In order to prevent the leakage of air underneath the bottom plate of the walls, two strips of rabber weatherstripping were placed between the bottam plate of the walls and the floor. Also, the joint between the rigid foam insulation on the walls and the floor was sealed with silicone carlk. The joints in the plymood floor were caulked and then the floor was painted with three coats of polyurethane varnish to prevent moisture uptake by the wood and to complete the internal vapor barrier.

An insulated steel access door was furnished for each side of the environmental chamber. The doors had a foam insulation core which was rated $\mathrm{R}-14$ by the manufacturer and each door was equipped with magnetic seals. An additional 4 inches of foam insalation was added to the access door of the cold room by gluing polystyrene foam board to the inside surface.

The Cooling System

The temperature of the cold room was capable of being controlled between $-32^{\circ}\left(-25^{\circ} \mathrm{F}\right)$ and $18^{\circ} \mathrm{C}\left(65^{\circ} \mathrm{F}\right)$. The cooling was provided by a five ton R-502 refrigeration system with a water cooled shell-in-trbe condensing unit. The refrigeration system was designed to provide $7.03 \mathrm{KT}(24,000 \mathrm{BTU} / \mathrm{hr})$ of heat removal at a room temperature of $-32^{\circ} \mathrm{C}\left(-25^{\circ} \mathrm{F}\right)$.

The air handling unit was equipped with a fan that delivered the design air flow rate of $2.12 \mathrm{~m}^{3} / \mathrm{s}(4,500 \mathrm{cfm})$. This was equivalent
to 2.6 complete air changes perminute. The fan, the duct work and the evaporator were insulated with rigid foam insolation ($\mathrm{R}=3.8$). The entire air handling system was housed in a wooden frame constructed of 2×61 mber and insulated with fiberglass batts ($\mathrm{R}=$ 19). The motor which drives the fan was mounted out side of the housing.

The refrigerated air entered the cold room by way of a penetration in the wall and the air was discharged into a duct with a cross-section of $0.30 \mathrm{~m}(1 \mathrm{ft})$ by $1.83 \mathrm{~m}(6 \mathrm{ft})$. The air flow was directed upwards by means of a turning vane. At the point of discharge into the plenom, the air supply duct was as wide as the interior of the building and the cross-sectional dimensions mere 0.15 m (0.5 ft) by $3.66 \mathrm{~m}(12 \mathrm{ft})$. The plenam was permanently built into the ceiling and it measured $1.83 \mathrm{~m}(6 \mathrm{ft})$ by $3.66 \mathrm{~m}(12 \mathrm{ft})$ by 0.61 m (2 ft) deep. A front view of the air supply duct is shom in Figure 4.5. The air supply duct and the plenum were constructed of 2×2 framemork with $3 / 8$ in plywood forming the interior surface. All of the wood was covered with three coats of polyurethane varnish to prevent the absorption of moisture. The bottom of the plenum consisted of an air diffusing grid fabricated of sheets of 1.27 cm (0.5 in) polyester fiber filter material stapled to a mooden frame. Two circalar fiberglass ducts extended horizontally fram the front of the plenum to directly supply cooling air to the space above the ceiling of the test section (refer to Figare 4.1).

The air flow into the plenum was made uniform across the width of the building by means of two large manually adjustable baffles which were positioned in the air supply duct below the point of discharge

Figure 4.5 The refrigeration duct as seen from inside the cold room.
into the plenum. The effect of the plenum was to receive the refrigerated air at an average velocity of $3.8 \mathrm{~m} / \mathrm{s}(750 \mathrm{fpm})$ in the horizontal direction and to discharge the air flow in the downard direction at a face velocity of about $0.5 \mathrm{~m} / \mathrm{s}(100 \mathrm{fpm})$ or less.

The return duct extended the width of the interior of the cold room and it had a cross sectional area of $0.557 \mathrm{~m}^{2}\left(6 \mathrm{ft}^{2}\right)$. The face of the return was covered with a wire screen.

The Heating System

The warm room was equipped with an electric heater which could maintain a room temperature from $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ to $29^{\circ}\left(84^{\circ} \mathrm{F}\right)$. A small blower was mounted at the base of the heater duct. The blower was operated contiguously at an air flow rate of about $0.061 \mathrm{~m}^{3} / \mathrm{s}$ (130 cfm). Four resistance heating elements were mounted downstream fram the blower and the heating elements cond be either controlled by the thermostat or manually. Under manual operation room temperatures of $43^{\circ} \mathrm{C}\left(110^{\circ} \mathrm{F}\right)$ could be obtained. The output power of the heater could be varied infinitely from 0 to 880 W by means of four small variable voltage transformers (one for each element). A reflective metal shield was mounted around the heating elements and perpendicular to the direction of air fiom to protect combustible materials from the radiant heat. The air flow was directed towards the ceiling where the heated air could be uniformly distributed by means of a variable speed padd1e fan. The heating system is shomin in Figure 4.6 .

The Test Sections

A removable wall section and ceiling section were constructed between the two permanent mounting colums within the environmental chamber. Ercept for the dimensions, the test sections were

Figure 4.6 The heating system as viewed from inside the warm room.
constracted in the same fashion. The wall section was 3.05 m (10.0 ft) wide by $4.969 \mathrm{~m}(16.27 \mathrm{ft}) \mathrm{tall}$. The ceiling sectionmeasured $3.71 \mathrm{~m}(12.17 \mathrm{ft})$ wide by $2.79 \mathrm{~m}(9.17 \mathrm{ft})$ in 1 ength. Referring back to Figare 4.1, it can be seen that the ceiling section is supported by the two mounting colmins as well as two 2×6 beams which are as wide as the interior of the chamber. The beam supporting the end of the ceiling section opposite the test wall is fastened to the framing of the chamber wall along its entire length. The other beam is positioned about $0.76 \mathrm{~m}(2.5 \mathrm{ft})$ from the test wall. The ends of this beam penetrate the wall finish and they are bolted to the frame of the chamber wall. The joints between the test ceiling and the permanent chamber walls were sealed on all sides using silicone cank and foil tape. On the cold side of the test ceiling an $R-23$ insulation barrier was placed at about $0.91 \mathrm{~m}(3 \mathrm{ft})$ back from the test wall. The test ceiling was insulated in manner similar to that shown below for the test wall.

The construction of the test wall has been presented in Figare 4.7. A11 of the cavities, except for the center cavity, were insulated to a value of $\mathrm{R}-23$ as shown. Both sides of the center section of the wall (and the ceiling) were covered with removable foam insulation panels. The panels on the warm side were cut into two pieces. The smaller pieces were hinged to the test wall by means of foil tape and they were used to access the center cavity once the other panels were in place. The center section of the wall and ceiling were fabricated in this manner to facilitate the mounting of pressure taps.

An enlarged cross-section of the center wall section and the

Figure 4.7 Construction detail of the test wall.

Figure 4.8 Technique used for mounting pressure taps.
technique emploged to mount the pressure taps is presented in Figure 4.8. The insulated panels were formed by glaing two layers of 0.5 inch foam board around a single 1 ayer of 0.75 inch extruded polystyrene foam insulation. The three layers of insulation board were al so taped together on all edges.

Once the constraction of the wall was complete the joint between the test wall and the floor was sealed on both sides with a generous application of silicone cand. Any large gaps between the mounting colmons and the test wall were filled with sprayable foam insulation. Then the joints between the colums and the test wall were sealed on both sides using silicone carlk. The vapor barrier on the warm side of the test sections was made continuous by sealing all penetrations With silicone and sealing all seams in the foil faced insulation with foil tape.

The test sections were built in such a way as to allow an idealized opening to be mounted in ten vertical locations. Nine of the ten mounting locations were in the test wall and one was in the test ceiling. A circular mounting plate for a chimney was al so provided in the ceiling for a future study.

In order to measure the pressure difference across the test sections as a function of elevation, pairs of pressure taps were positioned at twenty different locations. A schematic of the test sections depicting the positions of the mounting plates and the differential pressure measurements is given in Figare 4.9. The pairs of pressure taps mounted in the ceiling were considered to be at an el evation of $4.959 \mathrm{~m}(16.27 \mathrm{ft})$. A view of the test wall from the cold room is shown in Figure 4.10.

Figure 4.9 Schematic of the test sections as viewed from the warm room.

Figure 4.10 The test wall as seen from the cold room.

Figure 4.11 provides a detailed illustration of the method used to install the mounting plates for the idealized openings. The technique used to clamp an opening to the mounting plate has been depicted in Figure 4.12. Inspection of both of these figures reveals that the openings were clamped to the mounting plate using six carriage bolts. The tightening of the plymood clamps not only held the centerline of the opening at the correct elevation bat al so created a seal between the plymood plate and the idealized opening by compressing the foam rubber weatherstripping. The foam rubber was glned around the perimeter of the opening in the mounting plate. Extra pieces of weatherstripping were overlapped at the seams to attempt to create a continuous seal. The el evation to mount the centerline of an opening was marked on each end of the mounting plates. Using these marks as a gaide, the centerline of the idealized openings could be consistently placed at the correct el evation to within approximately $\pm 0.318 \mathrm{~cm}(0.125 \mathrm{in})$. The joints between the mounting plates and the test sections were sealed as noted in the illustrations.

Fabrication and Description of the Idealized Openings

Eight straight rectangalar openings and six cylindrical openings were fabricated for use in the experimental investigation of the nertral pressure axis. All of the openings were fabricated of 6.25 $\mathrm{mm}(0.246 \mathrm{in}, 1 / 4 \mathrm{in}$ nominal) acrylic sheet. The uncertainty of the dimensions was approximately $\pm 0.25 \mathrm{~mm}(0.01 \mathrm{in})$.

A detailed description of the rectangalar openings is shown in Table 4.1. The slot thickness, d, ranged fram $0.8 \mathrm{~mm}(0.03 \mathrm{in})$ to $16.0 \mathrm{~mm}(0.63 \mathrm{in})$ and the f (m lengths, z , were in the range of 12.7

Figare 4.11 Typical installation of mounting plate.

Figure 4.12 Technique used to monnt an opening in the test sections.

Table 4.1
Dimensions and Geometric Parameters of the Rectangular Openings

ID.	$\begin{gathered} d \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} z \\ (\mathrm{~mm}) \end{gathered}$	(mm)	$\begin{aligned} & \mathrm{A} \\ & \left(\mathrm{~cm}^{2}\right) \end{aligned}$	a	B	$10^{-4}\left(m^{-1}\right)$	$\begin{gathered} (\mathrm{A} \gamma) \\ 10^{-5}(\mathrm{~m}) \end{gathered}$	z / D_{h}
A	0.8	25.4	500.1	4.00	0.0016	95.8	6.55	0.026	15.9
B	1.7	50.8	500.1	8.50	0.0034	95.6	6.95	0.059	14.9
C	2.0	12.7	500.1	10.00	0.0040	95.6	32.68	0.327	3.2
D	3.3	44.5	500.1	16.50	0.0066	95.3	15.36	0.253	6.7
E	6.3	88.9	499.3	31.45	0.0126	94.7	14.60	0.459	7.2
F	12.9	50.8	498.5	64.31	0.0259	93.2	51.98	3.343	2.0
G	13.4	152.4	500.1	67.01	0.0268	93.1	17.91	1.200	5.8
H	16.0	123.8	500.1	80.02	0.0320	92.6	26.21	2.097	4.0

Table 4.2
Dimensions and Geometric Parameters of the Cylindrical Openings

ID.	Number of Openings	$\begin{gathered} \text { D } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} z \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} A \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{array}{r} \gamma \\ \times 10^{-4}\left(\mathrm{~m}^{-1}\right) \\ \hline \end{array}$	$\begin{gathered} (\mathrm{A} \gamma) \\ \times 10^{-5}(\mathrm{~m}) \end{gathered}$	z / D_{h}
X	2	6.4	50.8	0.32	979.05	0.313	7.9
Y	2	12.7	50.8	1.27	979.05	1.243	4.0
Z	2	50.8	50.8	20.27	979.05	19.845	1.0

mm (0.5 in) to $152.4 \mathrm{~mm}(6.0 \mathrm{in})$. All of the openings had a width, w, of about $500 \mathrm{~mm}(19.685 \mathrm{in})$.

These dimensions gave a range of aspect ratio, α, from 0.0016 to 0.032 and a range of dimensionless flow length, z / D_{h}, from 2.0 to 15.9. As was stated previously, the aspect ratio describes the cross-sectional geometry of a rectangalar opening. The magnitude of the dimensionless flow length is an indicator of the relative importance of the contribution of the flow length to the total dimensionless pressure drop (refer to equation 3.17). An opening with a very small dimensionless flow length would be expected to contribute a negligible friction loss and behave as an orifice. Openings with relatively large values of z / D_{h} would contribute a more significant fitction loss characteristic of laminar flow through a pipe. Furthermore, the openings with small aspect ratios (slots A through D) are considered the most characteristic of structural leakage in a residence. The rectangular slots with larger aspect ratios (and smaller z / D_{h}) are more representative of natural ventilation. In particular slot $F\left(\alpha=.0259 ; z / D_{h}=2.0\right)$ may be expected to behave in manner similar to a window which has been slightly raised.

A typical profile of the construction of a rectangular opening Was presented previously in Figure 3.1. The sawn edges of the acrylic sheet were milled to produce a smooth edge as well as to even up the dimensions. It should be noted that the onds of the slots are closed.

Even though the majority of the openings in the envelope of a structure are of rectangular cross-section, a few cylindrical
openings were included in the study. The dimensions and the geometric parameters of the cylindrical openings are presented in Table 4.2. Three different diameters (D) were used and all of the openings had a flow length equal to $50.8 \mathrm{~mm}(2.0 \mathrm{in})$. As a result, the dimensionless flow length, z / D_{h}, was in the range of 1 to 7.9.

The cylinders identified as X and Y were fabricated by drilling successively larger holes in a block of laminated acrylic sheet until the desired diameter was obtained. To obtain a diameter of 50.8 mm (2.0 in), a pilot hole was drilled in a laminated block of plexiglass and the diameter was enlarged on a milling machine using a boring tool. Two openings were fabricated for each diameter to give a total of six cylindrical openings. The openings $\mathbb{X} 2$ and $Y 2$ were drilled side by side in the same block of material.

Instrmentation

In order to test the validity of the mass balancing procedure to compate the location of the neutral pressure aris, the differential pressure profile due to the stack effect and the psychrometric data to compute the air properties were measored. The air properties required to compute the mass flow rate through an idealized opening are the density, the dyamic viscosity and the kinematic viscosity. The dynamic viscosity, μ, is a function of the air temperature alone. The density, ρ, is a function of the local barometric pressure, the temperatare and the moisture content of the air. The Kinematic ∇ iscosity, ν, may be determined from the dynamic ∇ iscosity and the density. To calculate the air propertios, the measurements required were the local barometric pressare, the dry-bulb temperature, and the wet-bulb temperature (for the warm air) or the
dempoint (for the cold air). The relationships used to compute the air properties from the data are provided in Appendix C. The experimental setup is shown in Figure 4.13. All of the measurements were taken from the warm side

Twenty pairs of static pressure taps were installed in the test sections at the elevations indicated. The pressure taps were about $50.8 \mathrm{~mm}(2.0 \mathrm{in})$ in 1 ength and they were fabricated of $3.18 \mathrm{~mm}(0.125$ in nominal, O.D.) copper tubing. All rough edges caused by catting the trbing were filed smooth. A long piece of flexible, clear, PVC tubing with an outside diameter of about $3.18 \mathrm{~mm}(0.125 \mathrm{in})$ was pushed onto the end of the pressure taps (refer to Figare 4.8). The PVC tubing fit the copper tubing very tightly and the tubes for each pair of pressure taps were of the same length. Each pair of tubes was 1 ightly twisted together and taped at several intervals. This enabled a pair of tubes to be routed together and any variations of Lemperatare in the enviroment surrounding the tubes would not affect the differential pressure reading. Each pair of tubes came out of the test wall cavity (rofer to Figure 4.7) at the elevation of placement (refer to Figure 4.9) by way of a small hole in the insulated panel on the warm side of the test wall. The tobes were routed down the surface of the test wall to the pressure transducer. The penetrations in the insulation panel were sealed around the tubes With silicone cank and the tubes were taped to the test wali with foil tape.

Initially, the tubes were routed to the pressure transducer individually within the cavity of the test wall. The temperature variations within the wall cavity interfered with the pressure

Figure 4.13 The experimental setup as seen from the warm room.
measurements so they were moved to the warm side of the test wall.
A single differential pressure transducer was used to measure the pressure difference at each el evation. Eighteen of the twenty pairs of tubes were attached to the transdacer by means of a manaal switching valve (Scanivalve Type W1260 Flaid Wafer Switch) . The remaining two pairs of tubes were attached directly to the transducer when a measorement was desired. The differential pressure measurements mere taken using an MKS Baratron (type 77H10) pressure meter Which has a resolution of $0.013 \mathrm{~Pa}(0.0001 \mathrm{~mm} \mathrm{Hg}), 0.027 \mathrm{~Pa}(0.0002$ mm Hg) and $0.133 \mathrm{~Pa}(0.001 \mathrm{~mm} \mathrm{Hg})$ on the three scales used.

The standard barometric pressure was obtained on an hoorly basis from the Kentucky Weather Wire Service, Bluegrass Airport, Lexington, Kentrany located approximately 11 miles fram the test chamber. The el evation of the laboratory in the Agricultural Engineering bailding is $304.8 \mathrm{~m}(1000 \mathrm{ft})$ above sea 1 evel . The local barometric pressure Was determined by subtracting 3556 Pa (1.05 in Hg) fram the standard barometric pressure reading.

According to the 1 iterature cited (ASHRAE, 1985; Enswiler, 1926; Lee et al. 1985), the mean internal and external temperatures are sufficient to estimate pressure differences due to the stack effect if the elevation of the neutral pressure axis is known (refer to equation 2.11). Emswiler (1926) theorized that if the temperatore Within a building increased with el evation then the NPA mould be displaced slightly towards the ceiling. Therefore, it was desired to not only take measurements to estimate the mean temperature of each room but also to measure the variation of temperature with respect to el evation. A temperature measuring cable was suspended about 0.76 m

-71-

(2.5 ft) from the center section of each side of the test wall. A total of nineteen individal temperature measurements were taken Which allowed the compatation of ten temperature differences. Thermocouple number 9 was used with number 18 to determine the temperature difference at the height of $4.877 \mathrm{~m}(16.0 \mathrm{ft})$ and with number 19 to determine the temperature difference across the test ceiling. Thermocouple number 19 was suspended from the ceiling of the chamber and was used to measare the cold air temperatore above the test ceiling. Thermocouples 1 and 10 measured the temperatures near the floor at an elevation of approximately $5.08 \mathrm{~cm}(2.0 \mathrm{in})$. The remaining eight pairs were equally spaced at intervals of about $0.610 \mathrm{~m}(2.0 \mathrm{ft})$. The thermocouplemires from the cable in the cold room were passed throgh a single penetration in the insulated panels to the warm room where all nineteen temperatmes were recorded using an Esterline Angus model PD2064 programmable data logger. The uncertainty of the temperature measarements was estimated to be $\pm 0.6^{\circ} \mathrm{C}\left(1^{0} \mathrm{~F}\right)$. The thermocouple penetration through the test wall was sealed on both sides \quad ith silicone cank.

In addition to the roon temperatare measurements previously described, two additional thermocouples were installed in each room. In the warm room, a thermocouple was taped near the center of the wall across from the door (refer to Figure 4.1) at about 2.43 m (8 $f t$) above the floor. A second thermocouple was placed directly above the access door and about $0.61 \mathrm{~m}(2 \mathrm{ft})$ below the ceiling. The other two thermocouples were installed in the cold room in approximately the same corresponding locations. The wires were routed in the same fashion as described for the other temperature measurements in the
cold room. All four pairs of thermocouple leads were passed throngh a small hole in the wall of the warm chamber next to the access door and sealcd. The four temperature measarementswere read out side of the two cell enviromental chamber using an Omega 2176 multipoint digital thermometer.

Originally, the thermocouples to measure the two room temperatures as a function of evation weremounted in the test sections in a manner similar to that described for the pressore taps. The main difference was that the thermocouple balbs protruded about $5.08 \mathrm{~cm}(2.0 \mathrm{in})$ out from the wall on each side. During the testing of the instromentation it was determined that these thermocouples mere significantly influenced by the heat transfer through the wall. Comparison of the temperatures indicated by the digital thermoneter ith the measurements very near the test sections showed that the measurements on the warm side of the test walls were consistently less than the average room temperature. The measurements on the cold side of the test wall were consistently greater than the mean room temperature. As a result, the thermocouples monnted on the cables mere substituted.

During operation of the refigeration system, the air exiting the evaporator coils is very close to saturation. Therefore, a thermocouple placed downstream from the evaporator wouldindicate a close approximation of the dempoint temperature (Figure 4.14). Recalling that the air handling system provides 2.6 complete air changes per minate, the dew point measured downstream fram the evaporator is al so a close estimate of the dempoint within the cold room. If the barametric pressure, the dry balb temperature and the

Figare 4.14 Positions of the temperature measurements.
dewpoint temperature are known then the air properties may be calcalated (ASHRAE, 1985). The dempoint temperature was read with the Omega digital thermoneter.

The wet-bulb temperature was required to calculate the air properties of the warm air. The wet-bulb temperature was determined for the warm room using a mechanical wet-bulb psychrometer. The uncertainty of the measurement was $\pm 0.6^{\circ} \mathrm{C}\left(\pm 1^{\circ} \mathrm{F}\right)$.

Chapter 5

SENSIIIVITY ANALYSIS OF THE DIS CHARGE COEFFICIENT EQUATION

Abstract

A detailed sensitivity analysis mas performed on the discharge coefficient equation which was derived from the dimensionless energy equation for 1 aminar flow through any type of rectangalar or cylindrical opening (equation 2.17). The discharge coefficient equation was given in equation 3.26 and it has been restated below along with several defining expressions for convenience.

Where; $\quad C_{z}=$ the discharge coefficient for real laminar flow,
$(A y)=$ the area-gamma product (m),
$A=$ the cross-sectional area (m^{2}),
$\gamma=a \operatorname{gemetric} p a r a m e t e r$ which describes the three dimensional scale of an opening (m^{-1}), $\Delta P=$ the total pressure drop across an opening (Pa), $K=$ the total minor loss coefficient, $\rho=$ the f1uid density ($\mathrm{kg} / \mathrm{mu}^{3}$), $\nu=\mu / \rho=$ the kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$, and $\mu=$ the dynamic ∇ iscosity $\left(N * s / m^{2}\right)$.

The definition of gamma for a rectangular cross-section of any aspect ratio was given in equation 3.24 as:

$$
\gamma=\frac{\alpha}{B z(1+\alpha)^{2}}
$$

where; $a=\frac{d}{d}=$ the aspect ratio,
$B=$ the friction coefficient $=96.0-106.67 a(e q .3 .30)$,
$\mathrm{d}=$ the thickness (m)
w = the width (m), and
$z=$ the flow length (m).
Equation 3.29 gave the definition of gamma for a circular cross-section as follows:

$$
\begin{aligned}
& \gamma=\frac{1}{B \pi z} \text { and } \\
& B=64 .
\end{aligned}
$$

The discharge coefficient (C_{z}) may be viewed as a total dimer sionless flow resistance and is described by the following functional statement :

$$
C_{z}=f[(A \gamma), \Delta P, K, \mu, \rho]
$$

The total geometric contribrtion to the flom resistance of an opering may be described by the area-gama product (Ay). It can al so be shown that the dimensionless friction loss, $B\left(z / D_{h} R e\right)$, may be written as follows:

$$
\text { Dimensionless friction loss }=B\left(\frac{z}{D_{h} R e}\right)=\frac{\nu}{4 Q_{\gamma}}
$$

As a result, the geometric component of the dimensionless friction loss of an opening may be described by the geametric parameter gamma. Furthermore, for a given total minor loss coefficient and set of air properties, any two openings which have the same value of (Ay) would al so have the same discharge coefficient for a particular pressure drop.

Discharge coefficients were computed for a large range of (A \boldsymbol{f}) at pressure differences which are typical of infiltration in rosidences. A total minor loss coefficient of 1.5 was used based upon the experimental results presented by Etheridge (1977). The variation of the discharge coefficient with respect to (Ay) and the pressure difference has been shown in Figure 5.1. The following observationsmay be confirmed from the figure and the defining equations of gamma.

1. As the value of (Ay) decreases the discharge coefficient al so decreases. This indicates a greater resistance to f10w.
2. The dimensionless energy equation was given in terms of the squared inverse of the discharge coefficient (equation 3.20) as:
$\frac{1}{C_{z}^{2}}=B\left(\frac{z}{D_{h} \operatorname{Re}}\right)+K$.
For the case of an orifice $(z=0)$ the $\nabla a l$ ue of $1 / C_{z}{ }^{2}$ is equal to the total minor loss coefficient. Inspection of the discharge coefficient equation indicates that as the value of (Ay) increases the first term on the right side of the equation approaches zero which yields the same result. Consequently, a total minor loss coefficient of 1.5 sets the maximam value of the discharge coefficient at 0.816. Theref ore, openings with large values of (Ay), such as $10.0 \times$ $10^{-5} \mathrm{~m}$, behave 1 ike an orifice.
3. If the cross-sectional geqetry of an opening is held constant then the magnitude of (Ay) will decrease as the flow length increases. As a result, small values of (Ay), such as

Figare 5.1 Variation of the discharge coefficient due to variations in the pressure difference and the area-gamma product ($\mathrm{T}=-25^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right) ; \rho=1.380 \mathrm{~kg} / \mathrm{m}^{3}$; $\nu=1.150 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s} ; \mathrm{K}=1.5$).
$0.010 \times 10^{5} \mathrm{~m}$, indicate 1 aminar pipe flow.
4. Values of ($\mathrm{A} \gamma)$ between 10.0×10^{-5} and 0.010×10^{-5} m represent short pipes which are at various points of transition between a long pipe and an orifice.
5. If the area and the flow length of a rectangrlar opening are held constant then the magnitude of (Ay) will decrease as the aspect ratio decreases. Hence, long thin rectangalar slots have a greater resistance to flow due to their cross-sectional geametry than square or cylindrical openings.
6. For pressure differences between one and fifteen Pascals the discharge coefficient can vary by as much as a factor of three for a particular value of (Ay).
7. If the opening beneath an exterior entrance is modeled as a rectangular slot with a thickness (d) of $2.1 \mathrm{~mm}(0.0827 \mathrm{in})$, a width (w) of $91.44 \mathrm{~cm}(3 \mathrm{ft})$, and a fl ow length (z) of 4.445 cm (1.75 in) then the area-gamma product is $0.10 \times 10^{-5} \mathrm{~m}$. The discharge coefficient for the opening would range from 0.34 at a pressure drop of 1.0 Pa to 0.64 at a pressure drop of 15.0 Pa . The effective leakage area as given in equation 3.1 is equal to the product of the discharge coefficient and the area. As a result, the effective leakage area of this opening would vary fram $6.60 \mathrm{~cm}^{2}$ to $12.21 \mathrm{~cm}^{2}$ (a factor of 1.85) over the range of differential pressures commion to residences. Therefore, the concept of an effective leakage area is not adequate to describe the flow resistance of a building component. The inadequacy arises from the neglect of the flom length.

The variation of the discharge coefficient indaced by a large variation in the air properties is presentedin Figure 5.2. The difference in the air properties indicated in the fignre corresponds to a variation in air temperature from approzimately $-25^{\circ} \mathrm{C}(-13 F)$ to $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$. This $48^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$ increase in temperature was equivalent to a 19.8 percent decrease in density and a 27.4 percent increase in kinematic viscosity.

The greatest change in C_{z} was for the opening described by an (Ay) of $0.026 \times 10^{-5} \mathrm{~m}$. At a pressore difference of 15.0 Pa , the large decrease in air properties resaltedina decrease in C_{z} from 0.346 to 0.292 (15.6%). For an (A $)$ of 0.459×10^{-5} m the variation in the air properties resulted in a decrease in C_{z} which ranged from 1.7 percent at 2.0 Pa to 1.3 percent at 15.0 Pa . Since openings w ith small values of (Ay) have a significant friction loss, it was concluded that the degree of variation in C_{z} with respect to a change in the air properties is directly proportional to the relative importance of the friction loss. A variation in the air properties would have no effect on the discharge coofficient of an orifice $\left(B\left(z / D_{h} R e\right)=0\right)$. Furthermore, it was concluded that small changes in the air properties would have an insignificant effect on the magnitude of C_{z}.

The influence of the variation of the total minor loss coefficient (K) on the discharge coefficient has beon describedin Figure 5.3. The discharge coefficients were computed over a range of (Ay) fiom 0.025 I 10^{-5} to $25.0 \times 10^{-5} \mathrm{~m}$. For a square odged orifice the minimum value of K would be expected to be 1.5 . The total minor loss coefficient was varied from 1.5 to 1.8 to \bar{y} ielda 20 percent variation in K. The variation of the total minor loss coefficient was normal ized
 coefficient.

Figare 5.3 Inflaence of the variation of the total minor loss coefficient on the discharge coofficient ($\mathrm{T}=-6^{\circ} \mathrm{C}\left(21^{\circ} \mathrm{F}\right) ; \rho=1.277 \mathrm{~kg} / \mathrm{m}^{3} ; \nu=1.319 \mathrm{x}$ $10^{-5} \mathrm{~m}^{2} / \mathrm{s}$).
as the percent difference from K equal 1.5. The resulting variation in the discharge coefficient was normalized as the percent difference from C_{2} computed using K equal 1.5. Pressure differences of 1.0 and 8.0 Pascals were chosen because it was clear from Figore 5.1 that the greatest variation of the discharge coefficient occurred for pressure differences in this range. Al so, it was estimated (using equation 3.31) that the pressare differences induced by the stack effect would be within this range for a two story residence.

It was determined that a 20 percent variation in the total minor loss coefficient could induce a variation in the discharge coefficient from 0.3 to 8.7 percent depending upon the magnitude of (A) and the pressure difference. The following additional observations are apparent fram the results presented in Figure 5.3.

1. As the total minor loss coefficient was increased the discharge coefficient decreased.
2. The greatest variation of C_{z} occurred for the opening described by an (Ay) of $25.0 \times 10^{-5} \mathrm{~m}$. This opening represented an orifice and the discharge coefficient was primarily a function of K (i.e. $C_{z}=\sqrt{1 / K}$).
3. As the value of (Ay) was decreased from $25.0 \times 10^{-5} \mathrm{~m}$ to $0.025 \times 10^{-5} \mathrm{~m}$ the degree which the discharge coefficient Was affected by a variation in K decreased. The magnitude of the pressure difference al so began to influence the variation of C_{z} as (Ay) was decreased. Therefore, openings with relatively large friction losses are less influenced by variations in the total minor loss coefficient andmore influenced by variations in the pressure difference.
4. The magnitude of the pressure difference exerted the greatest influence on the variation of C_{z} for an (Ay)) of $0.25 \times$ $10^{-5} \mathrm{~m}$. Reference to Figure 5.1 indicated that this opening had the sharpest increase in the discharge coefficient with respect to ΔP.

The only parameter in the discharge coefficient equation which could not be obtained from measurements was the total minor loss coefficient (K). Therefore, an appropriate value was selected based upon the values presented in the literature and judgement.

The dimensions and geometric parameters of the rectangalar openings nsed in the experiments mere given in Table 4.1. The dimensionless flow length (z / D_{h}) of the rectangalar openings ranged from 2.0 to 15.9 and the $v a l u e s$ of $(A \gamma)$ ranged $f r a m 0.026 \times 10^{-5}$ to $3.343 \times$ $10^{-5} \mathrm{~m}$. It was stated previously that Etheridge (1977), oxperimentally determined that the average value of K was 1.5 for a set of near infindte straight rectangalar openings. The data used by Etheridge was presented earlier by Hopkins and Hansford (1974) and the only slot dimensions given were the thickness (d) and the flow length (z). The aspect ratio ($\alpha=d / w$) was assumed to be zero and the width, W, was not reported. Using the dimensions given and an aspect ratio of zero, it was determined that the minor loss coefficient of 1.5 was determined from a set of rectangnlar slots with dimensionless flow lengths fran 0.3 to $25\left(D_{h}=2 d\right)$. The relationship to compute the area gamma product for the case of zero aspect ratio was given in equation 3.27 as:

$$
(A \gamma)=\frac{d^{2}}{96 z}
$$

As a resalt, the slots used by Etheridge had values of (Ay) in the approximate range of 0.021×10^{-5} to $17.36 \times 10^{-5} \mathrm{~m}$. Therefore, a total minor loss coefficient of 1.5 was used for all of the rectangular openings in this study.

From Table 4.2, it can be seen that the largest cylindrical opening (Z) had a dimensionless flow length of 1.0 and an (A $)$ of $19.845 \times 10^{-5} \mathrm{~m}$. It is clear fram the sensitivity analysis that this cylindrical opening closely approximates an orifice. The total minor loss coefficient of an orifice is best estimated as the sum of the inlet and exit losses. Since this opening had a square edged inlet the total minor loss coefficient was assumed to be 1.5 (Fox and McDonald, 1978; ASHRAE, 1985).

The dimensionless flow lengths for openings X and Y were 7.9 and 4 respectively and the values of (Ay) were 0.313×10^{-5} for X and 1.243×10^{-5} for Y. No experimentally determined $v a l u e s$ for the total minor loss coefficients were found in the literatore that were directly applicable to these two openings. Theoretically the total minor loss coefficients of these tro openings would be the sum of the minor losses due to the inlet and exit losses plus the losses due to hydrodynamic devel opment. Since all of the openings have square edged inlets the total minor loss coefficients of these tro openings would be 1.5 plus any loss due to hydrodynamic development.

The magnitudes of (AY) for the openings X and Y indicates that they may be classified as very short pipes. It is doubtful that a significant degree of hydrodynamic development would occur for either opening. Furthermore, the greatest amount of development would occur at the 1 owest pressure differences. At the 1 on pressures associated
with infiltration due to the stack effect, a 20 percent error in the estimate of the total minor loss coefficient would not be expected to indace a significant error in the calculation of the mass flow rate for very small openings.

The results of the sensitivity analysis given in Figare 5.3 indicated that f or values of (Ay) between $0.250 \geq 10^{-5}$ to $2.50 \times$ $10^{-5} \mathrm{~m}$ a 20 percent error on the total minor loss coefficient would yield a decrease in the discharge coefficient in the range of 7 to 8 percent. Therefore the computed mass flow rate would be overpredicted by 7 to 8 percent.

The mass flow rate was computed using a K of 1.5 for openings X, Y, and Z at a pressure difference of $4.0 \mathrm{~Pa}\left(\rho=1.2767 \mathrm{~kg} / \mathrm{m}^{3} ; \nu=\right.$ $\left.1.3193 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$. The resalting mass flow rates are given as follows:
for $X \quad \dot{m}=7.04 \times 10^{-5} \mathrm{~kg} / \mathrm{s}(0.12 \mathrm{cfm})$;
for $Y \quad \dot{m}=3.174 \times 10^{-4} \mathrm{~kg} / \mathrm{s}(0.53 \mathrm{cfm})$; and
for $Z \quad \dot{m}=5.275 \times 10^{-3} \mathrm{~kg} / \mathrm{s}(8.75 \mathrm{efm})$.
Considering the magnitudes of the mass flow rates for \bar{X} and Y, a 7 or 8 percent overprediction of the mass flow rate would not constitute an appreciable error. Comparison of the size of the mass flow rates through openings X and Y relative to the mass flow through opening Z suggested than an 8 percent overprediction of the mass flows through X and Y wold not induce a significant orror in the prediction of the elevation of the NPA using the mass balancing procedure.

From the sensitivity analysis it was determined that the two parameters which cause the greatest variation in the discharge
coefficient are the pressure difference and the area-gamma product. The variation of the air properties induced the least variation in the magnitude of the discharge coefficient. Based upon the resalts presentod in Figure 5.3 and the information available in the literature cited, a total minor loss coefficient of 1.5 was chosen to be used with all of the cylindrical and rectangular openings in the mass balancing procedure. Furthermore, the properties of the air flowing through each opening ill be computed fram the temperature data at the el evation of each opening.

EXPERIMENTAL DESIGN AND PROCEDURE

Experimental Design
A series of experiments were performed in the two cell emviromental chamber to farther investigate the factors which influence the location of the neutral pressure axis (NPA) and to test the mass balancing procedure of computing the position of the NPA. As was discrased in the revien of the 1 iterature, the main factors Which affect the location of the NPA for a particular opening distribution are the relative size of the individual openings, their vertical distribution and their resistance to flow (Emswiler, 1926; Lee et al. 1985). The effect of internal temperature stratification was only addressed by Emswilcr (1926) on an analytical basis and in previous experimental studies it was neglected entirely. Furthermore, the variation of the mean temperature and the horizontal distribution of the openings are not believed to influence the el evation of the NPA for a particalar opening distribution (Lee et al. 1985). A potential factor which has not been included in a previous investigation is the orientation of an opening in the ceiling which discharges air into a semi-enclosed space such as an attic. The opening in the test ceiling has beon included to simalate this type of situation. If the air flow from the warm room significantly marms the space above the test ceiling then the elevation of the nertral pressure axis may be affected.

In an offort to make the present investigation as comprehensive
as possible, the parameters varied were: the total leakage area monntedin the test sections, the vertical distribution of the openings, the size of the individual openings, the geonetry of the openings, and the mean temperatore difference. The geometry of the openings used varied according to the cross-sectional geanetry and the flow length as shown in Tables 4.1 and 4.2. It has been shown that a variation in the geometry as well as the total pressure drop across an opening induces a variation in the flow resistance, or discharge coefficient, of an opening (Chapter 5). The stratification of temperatore on both sides of the test sections was observed via the temperatures measured with the thermocouples indicated in Figure 4.14.

Several groups of openings at various vertical placements and differential temperatore conditions were incladed in the study. A total of sixteen treatmonts were defined. The design of trelve of the treatments is described in Table 6.1. There were two primary purposes of the experimental design. The first objective was to determine if the variation of the mean temperature difference across the test sections has an influence on the position of the neutral pressure axis. Three mean temperature conditions classified as high, medim and 1 on were used. Ranges of mean differential temperatures Were used instead of exact temperature differences due to the limitations of the heating and cooling controls. The second objective was to ascertain if the placement of an opening in the ceiling has any intrinsic offect on the position of the NPA. In addition, it can be seen in Table 6.1 that the total opening area of the opening distribution identified as Group $2(G 2)$ is roughly three

Table 6.1
Opening Gronps and P1acements Used to Investigate the Effects of Variation of $\overline{\Delta T}$ and the Placement of an Opening in the Ceiling.

GROUP 1 - G1			GROOP 2 - G2			PLACEMENT	PLACEMENT
	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\times 10^{(\mathrm{A} \gamma)}\left(\mathrm{m}^{-1}\right)$		$\begin{gathered} A \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{gathered} (\mathrm{A} \gamma) \\ \times 10^{-5}(\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~m}) \end{gathered}$
B	8.50	0.059	E	31.45	0.459	4.877	3.658
E	31.45	0.459	H	80.02	2.097	2.438	4.959*
D	16.50	0.253	F	64.31	3.343	0.152	0.152
$\Sigma A=56.46 \mathrm{~cm}^{2}$			$\Sigma \mathrm{A}=175.78 \mathrm{~cm}^{2}$				

*An opening placedin the ceiling.
NOTE: Each of the defined opening groups were combinedwith the two vertical placements. Also, each opening group and placement combination was used with three ranges of ΔT. This gave tvelve treatments.
times greater than the total opening area of Group 1 (G1).
The other four treatments are defined by the opening groups and placements presented in Table 6.2. All of these experiments.were performed at a mean differential temperature of about $35-40^{\circ} \mathrm{C}$ ($63-75^{\circ} \mathrm{F}$). The objective was to test the application of the mass balancing procedurefor a wide range of opening distributions, geametries, and total opening areas.

The tro opening groups presented in Table 6.2a (REC1 and REC2) only differ by one opening. The cross-sectional area of opening F is greater than opening A by a factor of about 16. Comparison of the results of these two treatments should indicate the importance of the relative size of the openings in a distribution.

The opening distributions displayed in Table 6.2 b provide a direct comparison of geometric extremes. The distribution labeled CYI contained cylindrical openings exclusively. The treatment 1abeled CYLREC consisted of openings $\begin{aligned} & \text { ith circalar cross sections and }\end{aligned}$ rectangular openings of small aspect ratio (0.004 and 0.0066). Another mique olement of these treatments is the positioning of two openings at the same elevation. The cylindrical openings $X 2$ and $Y 2$ were drilled side by side in the same 1 aminated block of acrylic. Also, the total opening areas of each of these distributions were very small.

During the initial testing of the instrumentation, several trials of differential pressure profiles were taken of the test sections alone. Each mounting location on the test section was covered with an insulated plywood plag plate. The plugs were mounted using a method analogous to that shown in Figare 4.12. For each trial a

Table 6.2
Opening Distributions and Placement of Four Treatments Defining Additional Variations of Opening Geometry
and Placement.

Table 6.2a
$\overline{\Delta T}=35-40^{\circ} \mathrm{C}$

*An opening placed in the ceiling.

Table 6.2b
$\overline{\Delta T}=35-40^{\circ} \mathrm{C}$

CYI				CYLREC			
ID.	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{gathered} (\mathrm{A} y) \\ \times 10^{-4}(\mathrm{~m}) \end{gathered}$	h (m)	ID.	$\begin{gathered} \mathrm{A} \\ (\mathrm{~cm})^{2} \end{gathered}$	$\begin{aligned} & (\mathrm{A} \gamma) \\ & \times 10 \end{aligned}$	h (m)
X2	0.32	0.313	4.877	C	10.00	0.327	4.877
Y2	1.27	1.243	4.877	Y1	1.27	1.243	3.658
Y1	1.27	1.243	3.658	D	16.50	0.253	2.438
X1	0.32	0.313	2.438	Y2	1.27	1.243	0.152
Z1	20.27	19.845	0.152	X2	0.32	0.313	0.152
$\Sigma \mathrm{A}=23.45 \mathrm{~cm}^{2}$				$\Sigma \mathrm{A}=29.36 \mathrm{~cm}^{2}$			

Note: $X 2$ and $Y 2$ were drilled in the same block of plexiglass.
ne utral pressure axis was observed at an elevation above the floor. This gave evidence of leakage in the facility. Many attempts were made to locate the source of leakage and eliminate it. Extra foil tape was applied at seams in the interior finish which appeared to have palled anay from the surface. The access door of the cold room was covered with a sheet of polyethylene plastic and sealed to the exterior with duct tape. Likewise, each opening mounting location was covered with a piece of heavy plastic and sealed to the test wall (or ceiling) with foil tape whenever it was not in use. This can be seen in Figure 4.13. All attempts to totally eliminate the leakage in the enviromental chamber were unsuccessful. The only effect was to vary the position of the NPA observed. The position of the NPA changed as the leakage characteristic of the environmental chamber Was changed by the attempts to completely seal the facility. The leakage inherent to the two cell enviromental chamber was termed the background leakage. A typical differential pressure profile when a ΔT of $30^{\circ} \mathrm{C}$ existed across the test sections is shown in Figure 6.1.

In order to take the background leakage into account in the prediction of the NPA by the mass balancing procedure, four treatments were added to the experiment. The differential pressure profile of the background leakage was observed at the four ranges of differential temperature conditions used by the other 16 treatments. These treatments were termed the no cracks situation (NC). The twenty treatments have been sumarized in Table 6.3. Each of the twenty treatments was replicated three times.

Experimental Procedure

The presence of the background leakage was not the only

Figure 6.1 A typical differential pressure profile observed for the background leakage.

Table 6.3
Combinations of Opening Group, P1acement, and
Temperature Conditions
TEMPERATURE CONDITIONS

* NC - No Cracks

Note: Three replications were made for each treatment to give a total of 60 observations.
complication that was discovered during the initial trials. Entering the warm room disturbed the differential pressure profile in two ways. Opening the access door cansed a suction on the warm side and the warm side was pressurized when the door was closed (both access doors opened to the outside). The excess pressure then bled out of the chamber through the cracks around the access door. As a resolt, a period of time was required for the differential pressure profile to redevelop. The profile became stable again once the air flow through the openings mounted in the test sections reached equilibrim.

The measurcment of consecutive differential pressure profiles immediately after entering the chamber revealed that while the air flow between the tro rooms was equilibrating the position of the NPA would tend to either rise or fall and the distribution of the pressure differences tended to become more 1 inear. It was assumed that the system attained equilibriom when the el evation of the ne utral pressure axis remained constant. It was found that the time required for the system to equilibrate was a function of the total opening area placed in the test sections and the mean temperature difference between the two rooms. The opening distribotions w ith the larger total opening areas mould reach steady conditions more rapidly than the distributions with smaller opening areas. The treatments performed at the relatively high differential temperatores (i.e. $\overline{\Delta T}=$ $40-45^{\circ} \mathrm{C}$) al so tended to equilibrate faster. The data presented in Figures 6.2 a and 6.2 b allow a comparison between trials for the opening groups G1 mounted at the elevations defined by placement H2 at the two extreme differential conditions (T1 and T3).

Figure 6.2a.

Figure 6.2b.

Figure 6.2 Variation of the differential pressure profile with respect to time after entering the warm room.

Table 6.4 indicates the length of time allowed for each treatment to attain equilibrim and the time intervals used for the measarement of the differential pressure profiles and the temperatures. These intervals were determined from trial rans and were used to ensure that equilibrium was obtained.

Reference to Figure 4.9 shows that a total of twenty pairs of static pressure taps were installed in the test sections. Eighteen pairs were mounted in the wall and two sets of pressure taps were mounted in the ceiling. After several days of maintaining the cold room at about $-25^{\circ} \mathrm{C}\left(-13{ }^{\circ} \mathrm{F}\right)$ the two pressure taps on the cold side of the test ceiling became clogged with ice. The only way to remove the ice was to warm the cold side until the ice melted and then remove the moisture from the tubes by means of a small hand operated vacum pump. This procedure proved to be futile because the taps would freeze again after just a fem days of operation. As a result, only the eighteen pars of pressure taps mounted in the test wall were used. In order to prevent the freezing of pressure taps on the cold side of the test wall, all of the remaining pressure taps were evacuated of moisture twice a day using a hand operated vacum pump.

Considering the complications discussed, the experimental procedure for each replication of each treatment is sumarized as follows.

1. The openings were mounted in the test sections at the appropriate elevations.
2. The mounting plates that were not used were covered with a piece of heary plastic and sealed to the surface of the test sections using foil tape.

Table 6.4
Total Time Allowed for Each Treatment to Reach
Equilibrium and the Intervals Over Which the AP Profiles
were Checked

\&		
TEST ID.	TOTAL TIME ALLOWED (min.)	MEASUREMENT INTERVAL (min.)
G1 H1 T1	25	5
G1 H1 T2	50	10
G1 H1 T3	50	10
G1 H2 T1	25	5
G1 H2 T2	50	10
G1H2 T3	50	10
G2 H1 T1	20	5
G2 $\mathrm{H1} 12$	40	10
G2H1T3	40	10
G2 H2 T1	20	5
G2 H2 T2	40	10
G2 H2 T3	40	10
REC1	25	5
REC2	30	5
CYL	40	10
CYLREC	30	10
NCTI	30	5
NCI2	80	20
NCT3	80	20
NC35*	40	10

*Indicates ΔT range used with REC1, REC2, CYL and CYLREC.
3. The sheet of polyethylene plastic covering the door to the cold room was periodically checked. If the tape had pulled anay from the exterior of the ervironmental chamber then more tape was applied.
4. The mean temperatures of the warm room and the cold room were monitored from the exterior using the digital thermoneter.
5. Once the desired mean differential temperature was attained, the dew point of the cold room was measured using the thermocouple placed downstream from the evaporator (see Figure 4.14).
6. The refrigeration system was turned off.
7. Upon entering the warm room, the door was olosed, the timer was started and the heating system and the paddle fan were torned off.
8. The mechanical psychrometer was started (3 minates of operation was required for a reading).
9. The interior of the door to the warm room was covered with polyethylene plastic and sealed with foil tape to a strip of cloth duct tape around the perimeter of the door. It should be noted that the time required to begin the wet bulb measurement and to tape the plastic over the access door was more than adequate for the excess pressure in the warm room to bleed out throagh the cracks around the door.
10. The wet bulb temperatore was recorded.
11. Differential pressure measurements were taken at the time intervals shown in Table 6.4 according to the following
procedure.
a. The data logger was manually activated to scan all thermocouples.
b. The differential pressure profile was measured (approximately 4 min required).
c. The data logger was again manaally activated to scan all thermocouples.
d. The starting and ending temperatare measurements were averaged to give a single temperature profile for each room.
12. Once the final set of differential pressure and temperature data was obtained the heating and cooling systems were reactivated.
13. Several hourly barmetric pressure readings were obtained during the period over which data was taken. All of the barametric pressure readings for a particular day were averaged and the mean was used to compute the air properties for all of the replications performed on that day. Determination of the Elevation of the NPA and the Mean Density Difference from the Obseryed Differential Pressore Profiles

The differential pressure data for each replication was fitted to a linear equation of the following form:

$$
\begin{equation*}
y=a+b x \tag{6.1}
\end{equation*}
$$

Where, the independent variable was the elevation and the dependent variable was the pressare difference. It can be seen that the slope (b) and the y-intercept (a) have physical significance by expanding
equation 3.31 to give:

$$
\begin{equation*}
\Delta P=\Delta \rho g N-\Delta \rho g h \tag{6.2}
\end{equation*}
$$

Where; $\Delta P=$ the differential pressare (Pa),

$$
\mathrm{h}=\text { the el evation (m), }
$$

$\Delta \rho=$ the mean density difference ($\mathrm{kg} / \mathrm{m}^{3}$),
$N=$ the elevation of the NPA (m), and
$g=$ the acceleration due to gravity (m / s^{2}).
Comparing equation 6.2 to 6.1 indicates that the slope of the regression equation is always negative and it is equal to the prodnct of the acceleration due to gravity and the mean density difference. Therefore, the mean density difference may be estimated by:

$$
\begin{equation*}
\Delta \rho=|b / g| \tag{6.3}
\end{equation*}
$$

In the same manner, the elevation of the NPA may be computed from the constants of the regression equation by:

$$
\begin{equation*}
N=|a / b| \tag{6.4}
\end{equation*}
$$

The relationships used to compute the slope, the y-intercept, the coefficient of determination, and the respective 95 percent confidence intervals are presented in detail in Appendix D.

Chapter 7

ANALYSIS AND RESULTS

Results of Regression On the Observed Differential Pressure Profiles

The differential pressure and temperature measurements, the computed mean air properties and the results of the regression procedure for each replication of all of the treatments are presented in Appendix E. Sixty differential pressure profiles were obtained (20 treatments x 3 replications). As was expected, there was a high degree of 1 inear correlation between the pressure difference measurements and the el evation of measurement. The coefficients of determination (r^{2}) of 59 of the 60 profiles observed were between 0.99916 and 0.99992 . These high levels of correlation yielded 95 percent confidence intervals for the positions of the NPA from ± 0.7 cm ($\pm 0.276 \mathrm{in}$.$) to \pm 2.5 \mathrm{~cm}(\pm 0.984 \mathrm{in}$.$) . The corresponding range of$ 95 percent confidence intervals of the slope of the regression equation $(\mathrm{Pa} / \mathrm{m})$ was ± 0.47 to ± 1.53 percent. The lowest coefficient of determination was for the third replication of NCT3 in which the Value of T^{2} was 0.99861 and the 95 percent confidence intervals were $\pm 3.1 \mathrm{~cm}(\pm 1.220 \mathrm{in}$.$) for the N P A$ and ± 1.98 percent for the slope. In summary, the location of the NPA was known to within $\pm \mathbf{3 . 1}$ cm (± 1.22 in) for all cases.

The range of 95 percent confidence intervals for the slope of the regression equation have been expressed as percentages because the confidence interval of the mean density difference (as computed by equation 6.3) is equivalent to the confidence interval of the slope
in percent. The regression procedure was the only practical way to "'observe' the elevation of the NPA and the slope of the regression equation yielded the best estimate of the mean density difference between the cold and warm rooms. Therefore, the confidence intervals for the NPA and the mean density difference were considered analogous to uncertainties of measurement. Each of the 95 percent confidence intervals are based upon an estimate of the variance about each individual regression 1 ine with siateen degrees of freedom (refer to Appendix D).

The elevations of the NPA for each treatment along with the treatment means and standard deviations are presented in Table 7.1. A survey of the data in the table affords several important observations.
a. The relative size of the openings in a group and the vertical distribution of the openings induced a large variation in the el evation of the NPA.
b. A comparison of all the treatments involving opening groups G1 and G2 indicated that the variation in the elevation of the NPA was greater when the openings were distriboted according to placement $H 2$ than placement HI. The primary difference between the tro placements was an opening was placed in the test ceiling for H 2 . In addition, the greatest variability occurred for the three treatments involving G1H2.
c. Comparison of the No Cracks (NC) treatments with the original sixteen treatments indicates that in general the variability of the No Cracks data was greater than all other troatments.

Table 7.1
Observed Elevations of the NPA (cm)

*Placements with an opening mounted in the test ceiling.
NOTE: For $T 1 \quad \Delta T=40-45^{\circ} \mathrm{C}$
For $\mathrm{T} 2 \quad \Delta \mathrm{~T}=25-30^{\circ} \mathrm{C}$
For $T 3 \quad \Delta T=15-20^{\circ} \mathrm{C}$
For T35 $\Delta T \cong 35^{\circ} \mathrm{C}$

Sample differential pressure profiles for G1H1, GIR2, G2H1, G2H2 and NC have been presented in Figures 7.1 through 7.5. For clarity only the data for tro of the three replications for each range of mean temperature difference are shown. The replications with the highest and lowest mean temperature differences were chosen since the third replication was between these two extremes.

The data in the 5 figures indicated that the variation of the mean temperature difference had ittle if any effect on the position of the NPA. It can al so be seen that the slope of the differential pressure profiles, and in turn the magnitudes of the pressure differences, were a fonction of the mean temperatore differences. The additional variation of the elevation of the NPA for the placement H_{2} may be clearly seen by comparison of the profiles given in Figures 7.1 through 7.4. In addition, a comparison betreen all five figures provides further evidence that the variance of the location of the NPA for the No Cracks treatments and the other sixteen treatments were different. As a result, the original sixteen treatments and the No Cracks treatments were considered to be two independent blocks of data.

In order to determine if the observed differences in the treatment means were significant, a one-way analysis of variance was performed on each block of data independently. The results of the analysis of variance for the No Cracks data has been displayedin Table 7.2 and the analysis of variance for the original sixteen treatments has been shown in Table 7.3.

The overall variance of the No Cracks treatments was shown to be significantly greater than the overall variance of the original
 Figure 7.1 Differential pressure profiles for G1H1.

Figure 7.2 Difforential pressure profiles for G1H2.

Figure 7.4 Differential pressure profiles for G2 H_{g}.

Figure 7.5 Differential pressure profiles for the No Cracks treatments.

Table 7.2
Analysis of Variance for the No Cracks Data

Source of Variation	df	SS	MS	F
Treatment	3	1880.4367	626.8122	1.799 ns
Error	8	2818.2733	$352.2842=s^{\text {y }}{ }^{2}$	
Total	11	4698.7100		

ns - Not significant.
$\mathrm{s}_{\mathrm{y}}=18.7692 \mathrm{~cm}$
Standard Error $=\sqrt{s_{J}^{2} / I}=10.8364 \mathrm{~cm}$
Grand Mean NPA $=279.5 \mathrm{~cm}$
95\% Confidence Interval $= \pm 25 \mathrm{~cm}$

Tab1e 7.3
Analysis of Variance for All Treatments Excluding the No Cracks Data

			SS	F
Source of Variation	df			
	15	294558.6123	19637.2408	3968.0011
Treatment	32	158.3667	$4.9489=s_{y}{ }^{2}$	
Error	47	294716.9790		
Total				

** - Significant to the . 01 level.
$s_{y}=2.2246 \mathrm{~cm}$
Standard Error $=\sqrt{\mathrm{s}_{\mathrm{y}}^{2} / \mathrm{r}}=1.2844 \mathrm{~cm}$
95 Confidence Interval $= \pm 2.6 \mathrm{~cm}$
sizteen other treatments by performing a twotailed F-test on the variances of the two blocks of data. The estimate of the variance (s^{2}) of each of the populations is equivalent to the mean square (MS) of the error in the respective analysis of variance tables. The F-statistic was computed as follows (Steel and Torrie, 1980):

$$
F=\frac{\text { the larger } \mathrm{s}_{\mathrm{y}}^{2}}{\text { the smaller } \mathrm{s}_{\mathrm{y}_{\mathrm{a}}^{2}}^{2}}=71.18
$$

The degrees of freedom for the numerator and the denominator were equivalent to the error degrees of freedom associated with each variance. The tabolated F-statistic was found to be:

$$
F_{0.005(8,32)}=3.53
$$

Since the computed F was greater than the tabulated value the two variances were significantly different at the 1 percent level. Therefore, it would be incorrect to pool the No Cracks treatment with the other sizteen treatments.

The conclusions from the two analysis of variance tables as well as the factors which cansed the variation in the position of the NPA Will be discussed independently in the following sections.

Variation of the No Cracks Treatments

The analysis of variance of the observed positions of the NPA for the No Cracks data indicated that the difference betmeen the treatment means was not significant. The mean of all twelve elevations of the NPA was 279.5 cm and the 95 percent confidence interval about the grand mean was $\pm 25 \mathrm{~cm}$.

Ezamination of the differential prossure profiles gave no indication of any type of systematic error. Likenise, the
temperature data for each room was examined and nothing unusual was found.

It was concluded that the variation of the position of the NPA for the No Cracks data was due to a variation of the background leakage of the two cell enviromental chamber. A plot of the position of NPA for all of the No Cracks treatments with respect to time has been presented in Figure 7.6. The unit of time used was the day on which data were taken (a table relating day number to the date is given in Appendix E).

The variation of the elevation of the NPA shown in the figure was the result of the variation of the leakage of the tro cell environmental chamber (or background leakage). Probably the greatest source of variation was the result of not being able to exactly replicate the sealing of the mounting plates that mere not in use. The plywood monnting plates mere generally much colder than the temperature of the marm room. As a result, condensation periodically formed on the mounting plates, ran down the test wall, and caused the duct tape which created the seal between the plastic covering the mounting plate and the test wall to loosen. The next most likely source of variation in the background leakage was the loosening of the duct tape wich held the plastic cover over the exterior of the cold room door. The balloon action cansed by the cold air attempting to flow out of the cold room caused the tape to pall anay. Whenever this occurred the tape was replaced.

Variation of the NPA for the Original Sixteen Treatments

The analysis of variance shown in Table 7.3 indicated that the difference between the treatment means was highly significant. A 95

Figure 7.6 Variation of the position of the NPA for the No Cracks treatments with respect to the day on which data were taken.
percent confidence interval about any treatment mean was determined from the standard error to be $\pm 2.6 \mathrm{~cm}$.

The least significant difference method (Steel and Torrie, 1980) was used to determine if there was a significant variation of the NPA With respect to the mean temperature difference. The comparisons between the treatment means of G1H1, G1H2, G2H1 and G2H2 have been given in Table 7.4.

From the comparisons between the selected treatment means it was observed that:
a. When both opening groups (G1 and G2) were mounted in the test wall at the elevations defined by placement H1 no significant variation of the NPA with respect to the mean temperaturu difference was observed;
b. When one of the Group 1 openings was mounted in the test ceiling as defined by placement $H 2$ the differences between the three treatment means were significant to the 1 percent level; and
c. When the Group 2 openings were mounted in the test sections according to placement $H 2$ the only significant difference was between the means of the treatments G2H2T1 and G2H2T2 (high and medim ΔT).

The position of the NPA varied significantly with variation of the mean temperature difference only for the cases when an opening Was mounted in the test ceiling (placement H2). Therefore, it was concluded that the placement of an opening in the test ceiling had some influence on the position of the NPA.

Table 7.4
Comparison of Select Treatment Means Using the Least Significant Difference Method (LSD)

$$
\begin{gathered}
\text { LSD }=t_{a / 2} \text { (error df) } \sqrt{2 s_{y}^{2} / r} \\
\operatorname{LSD}(.05)=3.7 \mathrm{~cm} \text { LSD(.01)=5.0 cm } \\
*-\text { Significant to the } 5 \% \text { Level } \\
* *-\text { Significant to the } 1 \% \text { Level }
\end{gathered}
$$


```
Note: For TI }\DeltaT=40-45\mp@subsup{5}{}{\circ}\textrm{C
    For T2 \DeltaT = 25-300}\textrm{C
    For T3 \DeltaT = 15-20' C
```

Examination of the treatment means in Table 7.4 indicated that when an opening was located in the test ceiling the NPA tended to assume a higher elevation at the 1 ower mean temperature differences. The only exception was for the treatment G2 H2 T3 where the mean of the three replications was slightly lower than for G2 H2 T2.

Noting that the direction of air flow is upward for an opening in the ceiling, it was hypothesized that the weight of the air above an opening in the ceiling woald induce a body force in the direction opposite to the flow of air. Such a force would cause an additional flow restriction for an opening placedin the test ceiling. Al so, the magnitude of the body force would be directly proportional to the density of the air above the test ceiling. According to theory, the NPA assumes a position such that the mass flow into themarm room is equal to the mass flow out. In order to maintain continuity of mass flow, the position of the NPA would be expected to move slightly downard as the density above the ceiling increased. The downward shift of the NPA would compensate for the added flow restriction in two ways. A lower NPA would result in a higher pressure difference across the ceiling to overcome the effects of the body force and lower pressure differences below the NPA would reduce the total mass flow into the warm room. The position of the NPA would be expected to be lower for the higher temperature differences.

The variation of the elevation of the NPA with respect to the air density above the test ceiling for the opening group and placement conditions of G1F2 and G2H2 have been presented in Figures 7.7 and 7.8, respectively. The density of the air above the ceiling was computed from the barametric pressure and temperature data for each

Figure 7.7 Variation of the NPA for the case of an opening in Groop 1 placed in the ceiling.

Figure 7.8 Variation of the NPA for the case of an opening in Group 2 placed in the ceiling.
replication using the relationships provided in Appendiz C. Each of the observed elevations was labeled to de signate the temperature difference range and the replication number. The two figares saggest that the variation of the density of the air above the test ceiling was the source of the significant differences between the treatment means indicated in of Table 7.4.

Observed Temperature Stratification

To observe the stratification of temperature of both rooms the differences between the mean room temperature and the individual temperature measurements on the cable were plotted against the elevation of measurement. The greatest amount of temperature stratification was observed for the opening group G2 at the greatest temperature differences (T1). A sample plot for each of the placement conditions (H l and H 2) have been presented in Fignres 7.9 and 7.10, respectively. An opening was placed at 0.152 m (0.5 ft) for each of the sizteen original tratments. The cold air which entered the warm room would settle near the floor. Consequently the temperature near the floor of the warm room was generally considerably cooler than the temperature observed at any other elevation. As would be anticipated, the warmest temperatores observed in the cold room were near the top of the test wall and in the space above the test coiling (thermocouple number 18 and 19 in Figure 4.14). The space above the test ceiling was significantly warmer whenever an opening was mounted in the test ceiling as indicated by the data in Figure 7.10.

Figure 7.9 represents the typical temperature variation observed for all of the treatments that did not include an opening placed in

Figure 7.9 Temperatare stratification for distribations without an opening in the ceiling.

Figure 7.10 Temperature stratification for distribations with an opening in tho ceiling.
the ceiling. Figure 7.10 describes the typical variation of temperature for all of the treatments for which an opening was mounted in the ceiling. Since the cases presentedhere are for high differential temperature conditions most of the differences between the mean room temperature and individual temperature measurements were less than those show.

In order to determine if the observed degree of temperatore stratification had a significant influence on the prediction of the differential pressures the following computations were performed on each of the sinty sets of differential pressure and temperature data:

1. The differential pressures were predicted using the regression equations and compared with the measured values;
2. A 95 percent prediction interval (refer to Appendir D) was computed about each predicted value of ΔP;
3. The residuals were compared with the prediction intervals; and
4. The density difference was computed at each elevation of temperature measurement.

It was found that only 8 (0.7%) of the 1080 (60×18) data points were outside of the 95 percent prediction intervals. A typical plot of the residuals and the 95 percent prediction intervals has been providedin Figure 7.11.

Based mpon a detailed inspection of the variation of $\Delta \rho$ with respect to elevation, and the high levels of linear correlation of the differential pressure measurements with respect to elevation it was determined that the observed degree of temperature stratification did not have a significant influence on the differential pressure

[^0]profiles. As a result, it was concluded that the mean density difference betmeen the tro rooms, as opposed to the variation of Δp with el evation, was the primary cause of the mass exchange between the tro rooms.

The mean density difference may be determinedfram the data by the following three equations:

$$
\begin{align*}
& \bar{\Delta}_{\rho_{r e g}}=|\mathrm{b}| / \mathrm{g} \tag{7.1a}\\
& \bar{\Delta} \rho=\left(\bar{\rho}_{\mathrm{c}}-\bar{\rho}_{\nabla}\right) \tag{7.1b}\\
& \bar{\Delta}_{\rho}=\bar{\rho}_{\mathrm{c}}\left(\overline{\Delta T} / \overline{\mathrm{T}}_{\nabla}\right) \tag{7.1c}
\end{align*}
$$

Where; $T_{W}=$ the warm room temperatore (K).
The best estimate of the density difference available was $\Delta \rho_{\text {reg, }}$ but in a practical situationeither equation $7.1 b$ or 7.1 c would be used. Equation 7.1c is of ten used because of its simplicity of applicztion. Tho mean donstty difference was compated using equations 7.1 b and 7.1 c for all sirty sets of data. The tromethods of computing the mean density difference fran the air properties have been compared with those obtained by equation 7.1 a in Figure 7.12 .

Comparison of the mean density difference computed by equation 7.1c with $\Delta p_{r e g}$ indicates that equation 7.1c tends to underpredict the mean density difference. In fact, 62 percent of the differences were in the range of 0 to $0.004 \mathrm{~kg} / \mathrm{m}^{3}$ while 95 percent of the differences ranged from -0.004 to $0.008 \mathrm{~kg} / \mathrm{m}^{3}$.

Similarly, equation 7.1b tended to overpredict the mean density differonce. It was determined that 72 percent of the differences were in the range of -0.004 to $-0.012 \mathrm{~kg} / \mathrm{m}^{3}$ and only 65 percent of

Figure 7.12 Comparison of the two methods of computing the mean density difference with the mean density difference obtained by regression.
the prediction agreed w ithin +.004 to $-0.008 \mathrm{~kg} / \mathrm{m}^{3}$. Therefore, the data of Figure 7.12 indicated that equation 7.1c is the preferred method of computing the mean density difference between the interior and the exterior of a structure. The predictions are skewed towards underprediction because the term $\left(\Delta T / T_{m}\right)$ imposes the assumption that the humidity ratio ($\mathbb{T}^{=} \mathrm{kg} \mathrm{H}_{2} 0 / \mathrm{kg}$ dry air) was the same for the warm air as the cold air. The use of equation 7.1c had the advantage that the density of cold air was easier to estimate than the density of warm air.

Prediction of the Elevation of the NPA Neglecting the Backgronnd

Leakage

The elevation of the neutral pressure axis was determined for each replication of the siateen original traatments using the mass balancing technique. The mean density difference was determined from the slope of the differential pressure profile as described previously. The properties of the air (ρ and ν) flowing through a particular opening were determined from the measurements of the barometric pressure, the wet bulb temperatare or dewpoint (depending upon direction of air flow) and the temperature measurement at the elevation of the opening (Appendix B). The only exceptions were for the Iow temperature difference cases (T3). In order to reach the relatively high cold room temperatures in a reasonable amount of time, heat mas added to the cold room by means of 1500 Watts of electric heat placed down stream fram the evaporator coils. As a result, the dempoint measurement was lost. Therefore, the cold room air density was computed assming the air was at 75 percent of saturation. This assumption was based upona few dempoint

$$
-125-
$$

measurements that were obtained at the 1 ow temperature difference conditions (T3) during the initial trials. Also, a relatively large variation in the moisture content of cold air does not induce a large change in density.

A comparison between the observed and the predicted elevations of the NPA have been presented in Figare 7.13. The differences between the observed and the predicted elevations of the NPA ranged fram -0.5 $\mathrm{cm}(0.2 \mathrm{in})$ to $55.9 \mathrm{~cm}\left(22.0^{\mathrm{in}} \mathrm{in}\right)$.

The two opening groaps with the largest total leakage areas (refer to Tables 6.1 and 6.2) were G2 and REC1. For the seven treatments (7 through 13) involving opening groups G2 and REC1, all of the predictions were within $\pm 7.0 \mathrm{~cm}(2.8 \mathrm{in})$. The greatest amonnt of error was for the treatment CYL (treatment number 15) which had the smallest total leakage area. For this case, the predicted NPA was on the average $54.3 \mathrm{~cm}(21.4 \mathrm{in})$ too 1 ow .

The data in Figare 7.13 suggested that a relationship existed betreen the size of the openings mounted in the test sections and the amount of disagreement between the observed and the predicted positions of the NPA. It was believed the presence of the background leakage was the source of the greater error in the prediction of the NPA for the smaller opening distributions (G1, REC2, CYI and CYLREC). Furthermore, it was likely that the degree which the background leakage influenced the position of the NPA depended apon the size of the individual openings in a distribution.

The influance of the background leakage was further inspected by computing the sum of the mass flow rates for each distribution using the observed position of the NPA and the observed pressure

Figure 7.13 Comparison of the observed and predicted values of the NPA for the original sixteen treatments when the background leakage was not included.
differences. Theoretically, the sum of the mass flow rates should equal zero. Due to the various errors of measurement and the use of an assumed mean total minor loss coefficient, none of the mass flows of any distribation were expected to sum to zero. However, it was expected that the degree of imbalance mould give some indication of the relative influence of the mass exchange between the two rooms resulting from the background leakage.

The sums of the mass flow through the defined openings for each of the treatments have been shown in Figare 7.14. Fran the data in the figure the following observations may be made:
a. The magnitude of the imbalance in the sum of the mass flow rates are the greatest for the smallex opening groaps G1, REC2, and CYI,
b. The magnitudes of the imbalance generally decreases as the mean temperature decreases; and
c. The variation of the sum of the mass flows about zero followed the same pattern as the variation of the differences between the observed and the predicted elevations of the NPA (Figare 7.13).

The data presented in both figares implied that the background leakage of the tro cell emviromental chamber conld be the factor Which influenced the position of the NPA for the sixteen original treatments. In order to test this observation, the presence of the background leakage was included in the mass balancing procedure by modeling the effect of the background leakage as two hypothetical openings.

Figure 7.14 Sum of the mass flow rates throngh the defined openings of the sixteen original treatments excluding the influence of the background leakage.

Modeling the Background Leakage

The known primary sources of significant leakage were: the leaks around the mounting plates in the test sections; the leaks around the accoss door to the cold room; and the leaks in the ducts of the air handling system. The temperatare of the warm room was maintained at about the same temperature as the 1 aboratory in which the two cell enviromental chamber was located. Therefore, the leakage between the warm room and the 1 aboratory was not considered to be significant.

To facilitate the inclusion of the effects of the background leakage in the mass balancing technique the following assumptions were made:

1. The background 1 eakage is uniformly and exclusively distributed across the ceiling and wall sections;
2. The mass flow through the 10 er portion of the test wall is equal to the mass flow out through the apper portion of the test wall and test ceiling; and
3. The background leakage may be modeled as two equivalent straight rectangular openings placed above and below the mean value of the NPA observed for the No Cracks treatments.

It was determined experimentally that the differential pressure varies linearly with el evation and the location of the NPA does not vary with the mean temperature of the two rooms. As a result, the elevations for the two hypothetical openings were determined from a general differential pressure profile for the No Cracks data as shown in Figure 7.15. The NPA was considered to be at $2.795 \mathrm{~m}(9.17 \mathrm{ft})$ which was the overall mean of the No Cracks treatments (refer to Table 7.2). In Figure 7.15 it can be seen that two right triangles

[^1]are formed by the intersection of the differential pressure profile and the test wall. The tmo model openings were considered to be positioned at the elevations of the differential pressure measurements closest to the centroids of these two triangles. The equivalent opening placed at $4.267 \mathrm{~m}(14.0 \mathrm{ft})$ was identified as $B G H$ (Background High) and the model opening positioned at 0.914 m (3.0 ft) was BGL (BackGround Low).

The tirst assumption suggests that the relative size of the two model openings is approximately proportional to the surface areas which they represent. The surface area (on the warm side) of the test wall and the test ceiling above the NPA was $12.153 \mathrm{~mm}^{2}$ and the surface area of the portion of the test wall belom the NPA was 8.519 m^{2}. A ratio of these two surface areas indicated that BGH would be expected to be larger than BGL by a factor of about 1.4.

The modeling of the background leakage involved the determination of the equivalent opening parameters (A and γ) for both BGH and BGL such that assumption two is satisfied for the No Cracks treatments.

An equation to determine the equivalent opening parameters of a model opening was obtained by al gebraic manipalation of the expression for the total pressure drop across a straight rectangular opening as given by equation 3.16:
$\Delta P=\frac{1}{2} \rho \bar{V}^{2} B\left(\frac{z}{D_{h} \operatorname{Re}}\right)+\frac{1}{2} \rho \bar{V}^{2} K$

The mean velocity and the Reynolds number were defined in terms of the mass flow rate as follows:

$$
\begin{equation*}
\overline{\mathrm{V}}=\frac{\dot{\mathrm{m}}}{\rho \mathrm{~A}} \quad ; \mathrm{and} \tag{7.2a}
\end{equation*}
$$

$$
\operatorname{Re}=\frac{\dot{\mathrm{m}} \mathrm{D}_{\mathrm{h}}}{\rho \mathrm{\rho A} \nu}
$$

Substitution of these definitions into equation 3.16 gave an equation for the pressure drop across an opening of the following form :

$$
\begin{equation*}
\Delta \mathrm{P}=\frac{\dot{\mathrm{m}} \nu \mathrm{BzA}_{2}}{2 \mathrm{~A}^{2} \mathrm{D}_{\mathrm{h}}^{2}}+\frac{\dot{\mathrm{m}}^{2} \mathrm{~K}}{2 \rho \mathrm{~A}^{2}} \tag{7.3}
\end{equation*}
$$

The definition of the hydraulic diameter was given in equation 3.9 as:

$$
D_{h}=\frac{2 d}{(1+\alpha)}
$$

Utilizing the equation for the hydranlio diameter gave the following expression f or the term A / D_{h}^{2} in equation 7.3 :

$$
\begin{equation*}
\frac{A}{D_{h}^{2}}=\frac{(1+\alpha)^{2}}{4 a} \tag{7.4}
\end{equation*}
$$

Combining equations 7.3 and 7.4 and using the definition of gamma for a rectangular opening (equation 3.24) yielded the following modeling equation:

$$
\begin{equation*}
\Delta P=b X \tag{7.5}
\end{equation*}
$$

where;
$X=\left[\frac{\dot{m} \nu}{8 \gamma}+\frac{\dot{m}^{2} K}{2 \rho}\right] \quad\left(N * m^{2}\right)$,
$b=\left(1 / A^{2}\right)\left(m^{-4}\right) ;$ and
$\gamma=\frac{a}{B z(1+a)^{2}}$
The air properties (ρ and ν) used in equation 7.5 were the properties of the air flow ing through the modeling subject (i.e. cold air properties for BGL and marm air propertios for BGH). A value of
1.5 was used for the total minor loss coefficient (K).

If the actual differential pressure and mass flow rates through the background leakage were know, then the area (A) and gama (γ) of the model opening would be determined by the following procedure.

1. Successive approximations of γ would be made and the corresponding value of A would be determined by application of a least squares best fit to equation 7.5 .
2. The mass flow rates mould be predicted using the discharge coefficient method (equation 3.26 and 3.33) for each value of γ and its corresponding A.
3. The pair of opening parameters, A and γ, which best predicted the observed mass flow rates would be choser to model the leakage of the modeling subject.

The equivalent opening parameters, A and γ, world describe the three dimensional geametry of the straight rectangular opening which would provide the same mass flow rates as the modeling subject under the same pressure differences.

Since the mass flow rates for the background leakage in this study were unknown, equation 7.5 could not be directly applied to determine the equivalent opening parameters of both BGH and BGL. Instead, it was required to set the dimensions of the 1 ower opening (BGL) and compute the mass flow rates into the warm room using the pressure differences observed at an elevation of 0.914 m for the twelve replications of the No Cracks treatments. To maintain equilibrim, the same mass of air would be required to flow out through the upper opening (BGH) at the pressure differences observed at an elevation of 4.267 m . This process would generate a mass flow
versus pressure curve for $B G H$, which could be used with the modeling equation to determine the equivalent opening parameters for BGH .

This procedure to estimate the geametry of the two openings to model the effects of the backgrond leakage had an infinite number of pairs of openings which could satisfy the continuity requirements for the No Cracks data. Not all of the solutions would be adequate to describe the influence of the background leakage for the sixteen original treatments. For example, if an extremely small opening was chosen for BGL the modeling procedure would result in an equivalent opening for BGH which was also very small. This pair of openings would be adequate to model the effects of the background leakage on the NPA for the No Cracks treatments, but they mould have mass fiow rates so small that their influence would be insignificant when includedwith the defined openings of the other sixteen treatments. Therefore, the first step was to determine a set of dimensions for the 1 ower openigg (BGL) that would be usefol in describing the effects of the backgroand leakage on the NPA for all twenty treatments.

Several pairs of hypothetical openings (BGL and BGH) of various sizes were arbitrarily defined. Each pair of hypothetical openings were included w ith the dofined opening groups G1, REC1 and REC2. Using the data of the treatments G1H1T1, GIH1T3, REC1, and REC2, the sum of tho mass flows was computed using the measored differential pressures and air properties. The elevation of the NPA was then predicted using the mass balancing procedure. By trial and orror different pairs of hypothetical openings were used until a pair was found that provided the greatest improvent in the prediction of tho
elevation of the NPA as mell as the sum of the mass flows (refer to Figures 7.13 and 7.14). The dimensions of the ''best'' pair of hypothetical openings are presented in Table 7.5. The only dimension varied was the thickness, d.

Table 7.5
Dimensions of the Pair of Openings to Model the Background Leakage as Determined by Trial and Error

ID	d (cm)	C (cm)	A (cm)	z (cm)	γ $\left(x 10^{-4} \mathrm{~m}^{-1}\right)$	El evation ${ }^{2}$ $(\mathrm{~m})$
BGH	0.20	50.0	10.0	5.08	8.173	4.267
BGL	0.17	50.0	8.5	5.08	6.9507	0.914

So that only the No Cracks data would be used in the modeling of the background leakage, the BGH opening given in Table 7.5 was not used to actually model the effects of the background leakage. Instead, another set of equivalent opening parameters were determined for BGH from the No Cracks data as outlined below.

1. The mass flow rates throngh BGL $\left(A=8.5 \mathrm{~cm}^{2}\right.$ and $\gamma=$ $6.9507 \times 10^{-4} \mathrm{~m}^{-1}$) were computed fram the observed pressore differences at an elevation of 0.914 wior each of the twelve replications of the No Cracks condition (using equations 3.26 and 3.33 with $K=1.5$).
2. The twelve mass flow rates computed from BGL were paired with the appropriate differential pressares (at 4.267 m) to give a pressure difference versus mass flow carve for BGH.
3. The value of gamma for BGH was assumed to be equal to that of BGL. That is, gamma was set at $6.9507 \times 10^{-4} \mathrm{~m}^{-1}$.
4. The air properties used were the average of the mean air properties of the warm room for all of the No Cracks treatments. The average density was $1.1456 \mathrm{~kg} / \mathrm{m}^{3}$ ($\mathrm{s}=$ 0.0011). The average kinematic viscosity was 1.5886 x $10^{-5} \mathrm{~m}^{2} / \mathrm{s}\left(\mathrm{s}=0.00207 \times 10^{-5}\right)$.
5. The cross-sectional area for BGH was determined to be 11.0 cm^{2} from a least squares best fit of equation 7.5. The coefficient of determination (\mathbf{r}^{2}) was 0.795 . The 95 percent confidence interval about the estimation of the area was $\pm 4.0 \mathrm{~cm}^{2}(\pm 36 \%$, ith 10 degrees of freedom).

The equivalent opening parameters of the two hypothetical openings used to model the effects of the background leakage on the position of the NPA are given in Tablc 7.6. It is interesting to note that the area of BGH is greater than the area of BGL by a factor of 1.3. Previous1y, it was estimated that BGH would be larger than BGI. by a factor of 1.4 bascd upona ratio of surface areas. This gave more credence to the assuption that the background leakage was uniformly distributed across the test sections.

Table 7.6
The Equivalent Opening Parameters of the Hypothetical Openings Used to Model the Effects of the Background Leakage

ID	A $\left(\mathrm{cm}^{2}\right)$	γ $\left(\mathrm{m}^{-1}\right)$	Ar (m)	El evation (m)
BGH	11.0	6.9507×10^{-4}	7.6458×10^{-5}	4.267
BGL	8.5	6.9507×10^{-4}	5.9081×10^{-5}	0.914

The comparison of the mass flow rates computed using the
equivalent opening parameters of BGH (given in Table 7.6) with the mass flows used to determine A and γ for BGH has been shown in Figure 7.16. Given the 1 arge scatter in the mass flow rates generated from the 10 ex opening ($B G L$, in step 1), the equivalent opening parameters determined for BGH adequately predicted the mass flows from the warm room to the cold room.

The elevation of the NPA was predicted for the No Cracks treatments using the:mass balancing procedure with the tro hypothetical openings (Table 7.6). The differences between the observed and the predicted elevations of the NPA are shown in Figure 7.17. The mean of all of the predicted elevations was 284.7 cm with a standard deviation of 5.086 cm . The difference between the predicted overall mean NPA and the observed grandmean NPA (279.5 from Table 7.3) was 5.2 cm . Considering the variability of the No Cracks data, the equivalent openings (BGH and BGL) were believed to be adequate to describe the background leakage for the No Cracks treatments.

Prediction of the NPA Including the Effects of the Background Leakage
The elevation of the NPA as well as the sum of the mass flow rates were recomputed using the two hypothetical openings BGH and BGL to include the effect of the background leakage. A comparison of the errors in the prediction of the NPA before and after the effect of the background leakage was included has been presented in Figure 7.18. The corresponding errors in the sum of the mass flow rates have been given in Figure 7.19. Examination of these tro figures indicated a great improvement in the prediction of the NPA and the degree of imbalance in the sum of the mass flow rates.

Figure 7.16 Comparison of the mass flows used with equation 7.5 to determine the equivalent opening parameters of BGH with the computed mass flows using BGH (pressure differences at 4.267 m$)$.

Figure 7.17 Comparison of the observed and predicted positions of the NPA for the No Cracks treatments.

 loakage was included.

In particular, the results shown in Figare 7.18 indicated that When BGH and BGL were included with the defined openings the el evation of the NPA was predicted within $\pm 5.0 \mathrm{~cm}(\pm 1.97$ in) for all but four of the 48 observed differential pressure profiles. The four caseswith an error in prediction greater than $\pm 5.0 \mathrm{~cm}$ were all treatments involving opening gronp G1. Three of these four cases were treatments for which the G1 openings were distributed according to placement H1. The greatest amount of error was $-11.0 \mathrm{~cm}(4.33 \mathrm{in})$ for the third replication of G1H2T2 for which one of the openings was placed in the ceiling.

The additional scatter in the prediction of the NPA and the sum of the mass flows for the treatments involving opening group GI was believed to be the result of the large variation of the backgrond leakage. The variation of the NPA with respect to the day on wich data were taken (refer to Figare 7.6) indicated that 67 percent of the No Cracks data were obtained on days 12 through 19. Examination of the laboratory records (refer to Appendix E) showed that 94 percent of all of the data for G1H1, G1H2, G2H1, and G2H2 (at any mean temperature difference) were taken before the twelfth day and 72 percent of the data were taken on days 2 through 9. The data for treatments REC1, REC2, CYL and CYLREC were obtained on days 14 through 18. The backgrond leakage was modeled based upon the grand mean of all observed elevations of the NPA for the No Cracks case. Therefore, the two openings used to model the infinence of the background leakage over the entire oxperiment best described the effects of the background leakage which existed between days 12 and 19.

This indicated a problem $\begin{aligned} & \text { ith the experimental design. The No }\end{aligned}$ Cracks data should have been taken at uniform time increments throughout the data taking period, bat the importance of the variation of the background leakage was not realized until the analysis of the data was begun.

Additional evidence of this observation may be seen by comparing Figure 7.6 with Figure 7.17. It can be seen that the positions of the NPA for NCT1, taken on days 1,4 , and 9 , were consistiently overpredicted whereas the other differences were scattered about the mean.

An analysis of the propagation of the errors in measurement was performed on the sumation of the mass flow rates and the mass balancing procedure for predicting the elevation of the NPA (NPA. PRED). A detailed sumary of the compatations as well as the tabulated results has been provided in Appendix F.

Theoretically, the sum of the mass flow rates should be zero. Due to the errors in measurement and the variation of the total minor loss coefficient (K) between openings the mass flow rates did not sum to zero for any opening distribution. The total minor loss coefficient was not measured. Theref ore, the analysis only included measurement errors associated w ith opening dimensions, differential pressures, temperatures, and air properties. It al so should be noted that the hypothetical openings, BGL and BGH, were not included in any estimation of uncertainty.

The uncertainty in the sumation of the mass flom rates ($\mathrm{I} \dot{\mathrm{m}}$) was computed (see Appendix F) for each replication of the sixteen original treatments. The sum of the mass flow rates ($\Sigma \dot{m}_{j}$) has been
comparedwith $u \Sigma \dot{m}$ in Figure 7.20. The uncertainty in the sumation of the mass flow rates was about the same for each replication. Hence, only the largest values of u mave been shown (refer to Table F.2).

It was observed that the mass flow rates balanced within the uncertainty of the sumation of the mass flow rates for all but 7 of the 48 differential pressure profiles. Five of the cases for which the mass flow rates did not balance within the uncertainty of the measorements werefor treatments taken on days 3 through 12. Consequently, the additional variation in these treatments was believed to be the result of the variation of the background leakage. The other two points that fell outside the band of uncertainty were for two of the three replications of treatment CYL. Reference to Table 6.2 b and Figare $F .2$ (Appendim F) indicates that this was the smallest opening group. Also, all of the openings in this group were cylindrical openings. Therefore, the error in selecting a total minor loss coefficient of 1.5 was probably the greatest for this treatment.

The manctainty in the prediction of the NPA due to nacertainties in the measurements was expressed in terms of an uncertainty interval (U. I.) about NPA. PRED. The elevation of the NPA was computed by iteratively balancing the sum of the mass flow rates to within five decimal places (i.e. zero $\equiv \pm 0.000004 \mathrm{~kg} / \mathrm{s}$). The uncertainty in the prediction of the NPA was a function of the uncertainty of the summation of the mass flows for oach replication of each distribation. The upper and 1 ower 1 imits of the uncertainty interval for the prediction of the NPA were determined by iteratively solving for

Figure 7.20 Comparison of the sum of the mass flow rates with the oncertainty in the sumation of the mass flow rates.
the two elevations of the NPA which satisfied the following expression:

$$
\begin{equation*}
\sum_{j=1}^{n} \dot{m}_{j}= \pm{ }^{n} \sum_{\Sigma \dot{m}} \tag{7.6}
\end{equation*}
$$

where; $u \sum_{\dot{m}}=$ the uncertainty in the sumation of the mass flow rates for a particular case.

A 95 percent confidence interval (C. I.), based upon the variance about the regression 1 ine (Appendiz D), was computed for each observed elevation of the NPA (NPA. DATA). The observed and predicted values of the NPA along with the corresponding confidence intervals and uncertainty intervals have been compared for the sirteen original treatments in Fignae 7.21. The data shown indicates that the confidence intervals of the observed values and the uncertainty intervals of the predicted values overlap for all but two cases (Figure 7.21a). These two cases were the first replication of G1H1 T2 and the third replication of G1H1T3. It is apparent from Figare $7.21 a$ and Table 7.1 that the elevations of the NPA for these two replications were considerably higher than the other replications.

A general comparison of the scatter in the observed positions of the NPA indicated that there was generally less scatter associated with REC1, REC2, CYL and CYLREC than with the twelve treatments involving opening groups G1 and G2. The additional scatter in these observations (G1, G2) was believed to be the result of greater variation in the backgronnd leakage between the replications of these twelve treatments.

The differences between the observed and the predicted elevations

Figure 7.21 Comparison of the observed and predicted positions of the NPA along with their respective estimates of error (C.I. = 95\% confidence interval; U.I. = uncertainty interval).
-148-

Figure 7.21c.

-149-

Figure 7.21e.

Figure $7.21 f$.

Figure 7.21g.

Figare 7.21h.
of the NPA were normalized with respect to the eave height of the test sections (eave height $=4.959 \mathrm{~m}$). It was found that 91.7 percent of the predicted values were within ± 1 percent of the eave height: 97.9 percent were predicted within ± 2.0 percent of the eave height; and all of the elevations of the NPA were predicted within ± 2.22 percent of the eave height. Furthermore, the elevation of the NPA was predicted to within ± 1 percent of the eave height for 95.8 percent of the cases mhich included an opening placed in the test ceiling (G1H2, G2 $\mathrm{H} 2, \mathrm{REC1}$, and REC2).

Computation of the Infiltration Rate
The infiltration rate is defined, for the purpose of this discussion, as the total mass exchange between the interior and exterior of a structure resulting from the stack effect. By the continuity equation (equation 3.32), the infiltration rate may be computed as either the sum of the mass flow into a building or the sum of the mass flow out of a building. Due to the observed imbalance in the sum of the mass flows, the mean infiltration rate was compated by the following relationship:

$$
\begin{aligned}
& \sum_{j=1}^{n} 1 \dot{m}_{j} 1 \\
& \text { IR }=\frac{j=1}{2} \\
& \text { where; } I R=\text { the infiltration rate (kg/s), } \\
& \left|\dot{m}_{j}\right|=\text { the absolute value of the mass flow through the } j \text { th } \\
& \text { opening (kg/s), and } \\
& n \text { - the total number of openings. }
\end{aligned}
$$

The computed infiltration rates for all replications of the
sixteen original treatments and the No Cracks treatments using the measured pressure differences have been displayed in Figares 7.22 and 7.23, respectively. Excluding the No Cracks situation, the minimum infiltration rate was $0.0017 \mathrm{~kg} / \mathrm{s}$ for treatment Gl $\mathrm{Hl} \mathrm{TB}^{\mathrm{T}}$ (replication 3) and the maximum infiltration rate was $0.0225 \mathrm{~kg} / \mathrm{s}$ for G2H2TI (replication 2). Therefore, the infiltration rate varied by a factor of 13.2 depending $u p o n$ the relative size of the openings, the distribution of the openings, and the mean temperature difference. The infiltration rate computed for the No Cracks data was found to vary by a factor of 2.4 depending upon the mean temperature difference.

The contribution of each of the hypothetical openings, BGH and BGL, to the infiltration rate has been presented in Figure 7.24 for each replication of each treatment. In general, the contribution of the background leakage was a function of the size of the openings in a particular distribution. Comparison of Figure 7.24 with Figare 7.20 indicates that in general the cases for which the som of the mass flows fell outside the band of uncertainty were al so cases for which the contribation of the background leakage to the infiltration rate was the most important. The background leakage made the largest contribution to the infiltration rate of treatment CYL which had the smallest opening distribution.

The infiltration rates were normalized with respect to the warm room volume ($V_{W r}$) and the mean warm room density (ρ_{W}). The vol we of the warm room was calculated to be $48.580 \mathrm{~m}^{3}$ and ρ_{n} of all sixty data sets was $1.1520 \mathrm{~kg} / \mathrm{m}^{3}$ ($\mathrm{s}=0.0017$). The normalized infiltration rates worc expressed in terms of air changes per hoar

Figure 7.22 Infiltration rates for the original sizteen treatments computed from the measured differential pressures.

Figure 7.23 Computed infiltration rates for the No Cracks treatments.

Figure 7.24 Contribation of the two hypothetical openings to the infiltration rate (a positive value indicates flow into the warm room and a negative value indicates flow out).
(ach) as follows:

$$
\begin{equation*}
I R_{N}=I R * \frac{3600}{\rho_{W} V_{W I}}=I R * 64.327 \tag{7.8}
\end{equation*}
$$

Where: $\quad I R_{N}=$ the normalized infiltration rate (ach); and $\mathrm{IR}=$ the infiltration rate (kg/s). The infiltration rates ranged from 0.109 to 1.447 ach for the original sirteen treatments and from 0.028 to 0.075 ach for the No Cracks treatment.

Examination of all of the treatments for which the mean temperature difference was varied (G1H1, G1H2, G2H1, G2H2 and NC) suggested that the infiltration rate varied linearly with the mean temperature difference. The normalized infiltration rates correlated highly with the mean temperature difference as shown in Figure 7.25.

An important question which has not been addressed is: What influence does the error in the prediction of the NPA have on the prediction of the infiltration rate? In an attempt to answer this question the infiltration rate was calculated by equation 7.7 using the differential pressures computed based upon the predicted elevations of the NPA (NPA. PRED). The differences between the infiltration rates computed from the measured pressure differences (IR. DATA) and the infiltration rates computed based upon the predicted elevations of the NPA (IR. PRED) have been shown for all sizty cases in Figure 7.26 and 7.27. The uncertainty in the sumation of the mass flow rates ($\quad \mathrm{I} \dot{\mathrm{m}}$) is also the uncertainty in the calculation of the infiltration rate for the original sixteen treatments. The data of Figare 7.26 indicates that all bat four

Figure 7.25 Variation of the normalized infiltration rate with the mean temperature difference.

Figare 7.26 Comparison of the infiltration rates computed from the data (IR. DATA) and tho infiltration rates computed based upon the predicted NPA (IR. PRED) for the original sixteon treatments.

Figure 7.27 Comparison of the infiltration rates compated from the méasured pressure differences (IR. DATA) and the infiltration rates computed based upon the predicted NPA (IR. PRED) for the No Cracks treatments.
infiltration rates agreed within the uncertainties due to the propagation of the errors in measarement (Appendix F).

The results for the original sixteen treatments, provided in Figure 7.26 , indicated that 89.6 percent of the errors were within $\pm 0.0002 \mathrm{~kg} / \mathrm{s}(\pm 0.013 \mathrm{ach})$. The greatest error was $-0.00032 \mathrm{~kg} / \mathrm{s}$ (-0.021 ach) for G1 H1 T2 (replication 1). This largest difference represented 11.9 percent of the total flow. The greatest consistent error was 8.0 percent for the distribution containing all cylindrical openings (CY; $0.00024 \mathrm{~kg} / \mathrm{s}, 0.016 \mathrm{ach}$). It is believed that the consistent error for CYL resulted from the use of a mean total minor loss coefficient of 1.5

The results for the No Cracks treatments (Figure 7.27) showed that all of the differences were within $\pm 0.000024 \mathrm{~kg} / \mathrm{s}$ ($\pm 0.002 \mathrm{ach}$) or ± 4.5 percent of the infiltration rate. Therefore, the seemingly large amount of error in the prediction of the NPA f or the No Cracks treatments did not induce a vexy significant variation in the compated infiltration rates.

A direct comparison between the error in the prediction of the NPA and the error induced in the computed infiltration rate has been provided for the sixteen original treatments in Figare 7.28. From this figure it can be concluded that an error in the prediction of the NPA equal to ± 1 percent of the eave height resulted in a variation in the computed infiltration rate of ± 3.0 percent for 81.3 percent of the 48 cases. The errors in the computation of the infiltration rate were within ± 5.0 percent for all but five cases. Initial Estimates of the Eleyation of the NPA

The application of the mass balancing procedure required an

Figure 7.28 Error in the compated infiltration rate induced by the error in prediction of the position of the NPA.
initial estimate of the elevation of the NPA. Obviously, the number of iterations required to determine the predicted value of the NPA was a function of the quality of the initial estimate.

It was determined from the experimental investigation and from the 1 iterature cited (Emswiler, 1926; Lee et al., 1985) that the most important factors affecting the position of the NPA were the relative size of the openings in a distribution and their vertical placement. The factors which influenced the relative size of the openings were the cross-sectional area and the discharge coefficient. Based upon these observations the following empirical relationship was developed to provide an initial estimate of the NPA without iteration:

$$
\begin{equation*}
N_{e s t}=\sum_{j=1}^{n} h_{j}\left(C_{z} A_{j}\right)^{k} / \sum_{j=1}^{n}\left(C_{z j} A_{j}\right)^{k} \tag{7.9}
\end{equation*}
$$

where; $\mathrm{N}_{\text {est }}=$ the estimated elevation of the NPA,
$h_{j}=$ the elevation of the $j^{\text {th }}$ opening,
$C_{z}=$ the discharge coefficient of the $j^{\text {th }}$ opening compoted
at a ΔP of 4.0 Pa (using $\rho=1.2236 \mathrm{~kg} / \mathrm{m}^{3}, \nu=1.4364 \mathrm{x}$ $\left.10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{T}=7.3^{\circ} \mathrm{C}\left(45^{\circ} \mathrm{F}\right)\right)$,
$A_{j}=$ the cross-sectional area of the $j^{\text {th }}$ opening, and $k=a n$ empirical exponent of 1.24 .

The exponent of 1.24 was determined as follows:

1. The overall average elevation of the observed NPA ($\overline{\mathrm{N}}$) was computed for each opening group and placement combination (i.e., G1H1, G1H2, G2H1, G2H2, REC1, REC2, CY1, CYLREC, and NC) ;
2. The best value of k for each of these nine distributions was
iteratively determined by setting their respective val nes of \bar{N} equal to equation 7.9; and
3. The average of these nine values of was determined to be $1.24(\mathrm{~s}=0.645)$.

The values of $N_{\text {est }}$ were computed by equation 7.9 (with $k=$ 1.24) for each defined opening groap and placement combination. These 9 estimates were compared \boldsymbol{w} ith the 48 observed elevations of the NPA (NPA. DATA). The average error in the estimates was -0.12 percent of the eave height ($0.6 \mathrm{~cm} ; 0.24 \mathrm{in}$) and the maximum error was ± 5.2 percent of the eave height $(\pm 25.8 \mathrm{~cm}: \pm 10.2 \mathrm{in})$. The overall average NPA of the No Cracks treatments was estimated within -4.6 percent of the eave height.

If the mass flow rates were balanced within $\pm 0.000004 \mathrm{~kg} / \mathrm{s}$, then the initial estimation of the NPA obtained by equation 7.9 enabled the predicted elevation of the NPA to be determined by only 4 or 5 iterations. If the mass flow rates were balanced within ± 0.00004 kg / s, then $\mathrm{N}_{\text {est }}$ enabled the predicted olevation of the NPA to be obtained in 2 or 3 iterations.

Chapter 8

THE EXPERIMENTAL VALIDATION OF THE DIS GBARGE COEFFICIENT EQUATION AND THE APRIICATION OF THE THEORY TO THE MODELING OF ENVELOPE LEAKAGE

Introduction

The application of the mass balancing procedure to determine the el evation of the neutral pressure axis (NPA) of an actual structure would require a complete description of the vertical placement and the flow characteristics of the openings in the building envelope. Obviously, any attempt to locate and describe each individual opening would soon prove to be futile. Amore feasible approach would be to model the fiow through a building component, such as a window, as an equivalent opening. The equivalent opening would most likely be assigned to the elevation of the centroid of the modeled component. It may be necessary to model tall components as two equivalent openings placed at the el evations of the centers of the upper and lower halves of the actual component. If all of the components of the building envelope could be modeled in this manner then the el evation of the NPA and the resulting infiltration rate could be estimated f ram a blueprint.

The current practice (as described in chapter 3) consists of modeling structural components as an equivalent orifice with a constant discharge coefficient. The modeling parameter is termed the effective leakage area (equation 3.1) which is equivalent to the product of the cross-sectional area and a mean discharge coefficient. The results of the sensitivity analysis (chapter 6) indicated that
-164-
for small openings, which are similar to envelope 1 eakage, the discharge coefficient varied considerably with the relative size of the flow length. This suggests that the presence of the flow length should not be neglected.

Motivated by the conclusions of the sensitivity analysis and the measure of success experienced in modeling the influence of background leakage a supplementary experiment was performed to satisfy the following objectives:
a. To experimentally determine the importance of the flow length (i.e. friction loss) for small rectangalar and cylindrical openings;
b. To experimentally validate the use of the discharge coefficient equation to compute the flom throngh small rectangalar openings; and
c. To demonstrate the potential for the modeling of envelope leakage as an equivalent straight rectangular opening.

Description of the Experiment

An experiment was set up to validate the use of the discharge coefficient equation for the computation of laminar flow throngh short openings. Differential pressure measurements over a given range of volumetric flow rates were obtained for a gronp of rectangalar and cylindrical openings. Flows to produce Reynolds numbers up to 3500 were used. All of the openings included in the experiment were short pipes with dimensionless flow lengths, z / D_{h}, fram 2.0 to 15.9.

A description of the rectangalar and cylindrical openings usedin the experimental investigation has been presented in Tables 8.1 and

Table 8.1.
Geametric Description of the Rectangular Openings

ID.	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} z \\ (\mathrm{~mm}) \end{gathered}$	(mm)	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	a		$\times 10^{-4}\left(\mathrm{~m}^{\gamma}\right)$	$\begin{gathered} (\mathrm{A} \gamma) \\ \times 10^{-5}(\mathrm{~m}) \end{gathered}$	$\begin{gathered} D_{h} \\ (\mathrm{~mm}) \end{gathered}$	z / D_{h}
A	0.8	25.4	500.1	4.00	0.0016	95.8	6.55	0.026	1.6	15.9
B	1.7	50.8	500.1	8.50	0.0034	95.6	6.95	0.059	3.4	14.9
C	2.0	12.7	500.1	10.00	0.0040	95.6	32.68	0.327	4.0	3.2
D	3.3	44.5	500.1	16.50	0.0066	95.3	15.36	0.253	6.6	6.7
E	6.3	88.9	499.3	31.45	0.0126	94.7	14.60	0.459	12.4	7.2
F	12.9	50.8	498.5	64.31	0.0259	93.2	51.98	3.334	25.1	2.0
G	13.4	152.4	500.1	67.01	0.0268	93.1	17.92	1.201	26.1	5.8

Table 8.2 .
Geometric Description of the Cylindrical Openings

ID.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Openings } \end{aligned}$	$\begin{gathered} \text { D } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} z \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \gamma \\ \times 10^{-4}\left(m^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} (\mathrm{A} \gamma) \\ \times 10^{-5}(\mathrm{~m}) \end{gathered}$	z / D_{h}
I	2	6.4	50.8	0.32	979.05	0.313	7.9
\mathbf{Y}	2	12.7	50.8	1.27	979.05	1.243	4.0

Abstract

8.2. respectively. The seven rectangalar openings have been divided into two classifications based upon the thickness of the opening (d) and the flow length (z). The openings 1 abeled A through D are considered the most characteristic of structaral leakage in a residence. The remaining openings are more representative of natural ventilation. In particular, slot F may be expected to behave in a manner similar to a window which has been slighty raised. Two different diameters of cylindrical openings were included and two openings of each size were fabricated to give a total of four openings. The construction of all of the openings used in this experiment was described previously in Chapter 4.

The dimensionless flow length, z / D_{h}, is shown for each of the rectangular and cylindrical openings. The size of the dimensionless flow length is an indicator of the relative importance of the contribution of the flow length to the total dimensionless pressure drop. An opening with a very small dimensionless flow length would be expected to contribute a negligible friction loss and behave as an orifice. Openings with relatively large values of z / D_{h} would contribute a significant friction loss characteristic of laminar flow through a pipe.

Four replications of air flow and differential pressure data were taken for each test specimen. For each replication the air properties were determined fram a measorement of the local barometric pressure, and the wet-balb and dry-balb temperatures (Appendix C). The met-balb and dry-balb temperatures were measured by means of a mechanical psychrometer and the barometric pressure reading was taken from a metallic coil barometer which was checked against a standard.

The experimental investigation was carried out in an airtight test box. The test box had a length of $1.54 \mathrm{~m}(60.5 \mathrm{in})$ and a cross-section of $0.93 \mathrm{~m}(36.63 \mathrm{in})$ by $0.63 \mathrm{~m}(24.63 \mathrm{in})$. In order to obtain an airtight test chamber with a smooth surface on the interior, the walls were constructed of plexiglass and all of the seams were sealed with silicone. The test chamber was tested for leakage and sealed where the leaks were found. An air diffuser, made of polyester filter material, was located 0.305 m (1 ft) downstream from the air supply inlet. A mounting plate for the test specimens was located $0.58 \mathrm{~m}(22.5 \mathrm{in})$ downstream from the air diffuser. The test openings were monnted within the test chamber by several bolts and gaps between the mounting plate and the openings were sealed with Vacuam grease. Four 6.35 mm (0.25 in) copper tubing pressure taps were installed around the perimeter of the test chamber on each side of the mounting plate. Each set of four pressure taps were connected in parallel using copper tubing of 1 ike diameter. The mean static pressure drop across the openings was measured nsing a micromanometer that could be read within ± 0.125 Pascals (0.0005 in of $\mathrm{H}_{2} 0$).

The air flow was supplied by a variable speed, positive displacement blower. The air flow was measured by variable area flow meters which were accurate to within ± 2.0 percent of full scale. For flow rates below $800.0 \mathrm{~cm}^{3} / \mathrm{s}(1.7 \mathrm{cfm})$ the flow meter was calibrated against a positive displacement flow indicator.

Method of Data Analysis
All of the openings included in the experiment were classified as short pipes. A review of the literature indicated that the total minor loss coefficient (K) was an empirical value which can vary

$$
-168-
$$

considerably between short pipes according to the degree of hydrodynamic development ($K_{h d}$) and the sharpness of the inlet ($K_{\text {inlet }}$). The value of $K_{h d}$ for a particular short pipe will also vary with the Reynolds number and thus will vary with the flow rate. The magnitude of the variation of the minor loss coefficients in a particalar opening is considerable for low flow rates.

The four replications of differential pressure and air properties data were averaged for each flow rate tested to give one flow versus pressnte drop curve for each opening. A distributinn of total minor loss coefficients was determined for each opening by applying the following relationship at each mean data point:

$$
\begin{equation*}
K=\left(K_{i n l a t}+K_{h d}+K_{\theta x}\right)=\frac{2 \Delta p}{\rho \bar{V}^{2}}-B\left(\frac{z}{D_{h} \operatorname{Re}}\right) \tag{8.1}
\end{equation*}
$$

The friction coofficient, B, was determined for the rectangalar openings from equation 3.30. A friction coefficient of 64 was used for each of the cylindrical openings. The importance of the flow length for each of the openings was determined by a comparison of the magnitudes of the dimensionless friction losses and the total minor loss coefficients.

A mean total minor loss coefficient (K) was determined for each Opening by averaging the minor loss coefficients obtained (using equation 8.1) over the entire range of pressure differences. In a practical sitartion it would be desirable to simplify the compatation of a discharge coefficient by using a mean value of K over as a wide range of pressure differences as possible. Using the mean total minor loss coefficient (K) for each opening, the flow rates were
computed using the discharge coefficient method (equation 3.26 with equation 3.21) and compared with the measured flow rates.

The purpose of this portion of the analysis was not to endorse the use of a particular val ue of K. Instead, the purpose was to determine if the discharge coefficient method is a reliable technique to compute the flow through a short opening provided the proper value of K is known.

The sensitivity analysis (Chapter 6) demonstrated that a 20 percent error in K would only induce a 0.3 to 8.7 percent error in the discharge coefficient depending apon the magnitude of (Ay) and the pressure difference. The error in the discharge coefficient would render the same percentage of error in the computation of the flow rate. Based upon the capabilities of the instromentation, the uncertainty of the flow measurements ranged from ± 2.0 percent (at foll scale) to ± 10.0 percent and the estimated error in the differential pressure measurements ranged from ± 0.2 to ± 8.9 percent. The uncertainty associated \boldsymbol{n} ith the measurement of the cross-sectional dimensions of the openings was the source of the greatest consistent error. An analysis of the propagation of error in computing the area of the openings indicated that the greatest percentage of error was in the measurement of the slot thickness, d for the rectangolar openings and the diameter (D) for the cylindrical openings (Appendiz F). Also, the percentage of uncertainty in the calculation of the area for the rectangular openings was identical to the percentage of uncertainty in the measurement of the slot thickness. Recalling that the uncertainty of the measorement of the opening dimensions was $\pm 0.25 \mathrm{~mm}(0.01 \mathrm{in})$, the uncertainty of the
area of each rectangular opening may be determined from Table 8.1. The monertainty of the areas ranged from 1.9 to 31.7 percent. The ancertainty in the area for openings X and Y werc ± 8 and ± 4 percent respectively. For most of the openings the flow prediction error associated with a 15 to 20 percent error in the estimation of K wald be less than the errors associated with the air flow, differential pressare and opening dimension measarements.

The distribation of the total minor loss coefficients and the comparison of the measured and the computed volumetric flom rates are presented separately for the rectangular and cylindrical openings in the following sections. The data for each opening and the total minor loss coefficients for each opening are presented in Appendix G.

Results for the Rectangular Openings

For the rectangalar openings A and B the Reynolds numbers ranged from 19 to 777. It was observed that for Reynolds numbers less than 400 the scatter of the values of K greatly increased as the Reynolds number continued to decrease.

The Reynolds number may be interpreted as the ratio of the inertia forces to the ∇ iscous forces and at large Reynolds numbers the $\begin{aligned} & \text { scous forces are considered negligible. The increase in scatter }\end{aligned}$ Was believed to be related to the greater importance of the ∇ iscous forces at very 10 m Reynolds numbers. As a result, only data points with Reynolds numbers greater than 400 were used with equation 8.1 .

In order to determine the relative importance of the dimen sionless flow length, the total minor loss coefficients for each rectangular openigg were plotted against the term $B\left(z / D_{h} R e\right)$ (refer to Figure 8.1). As was expected, the dimensionless flow length,

z/Dh, may be used to make a distinction among the different openings. The slots with the largest dimensionless flow lengths, namely A and B, provided a friction loss that was greater than the total minor loss coefficient at every point. This suggested that the flows in these two openings may have developed near the exit of the slots. The flow length is clearly not negligible. It was specalated that the decrease in K for these two openings was a result of the very low Reynolds numbers where the viscous forces became more important.

The remaining five slots had values of z / D_{h} ranging from 2.0 to 7.2. For all of these openings the minor loss coefficients were greater than the dimensionless friction loss at every point and the importance of the friction loss varied with the Reynolds number.

The relative importance of the flow length for this group of openings may be readily demonstrated by a closer examination of the data of slots $D\left(z / D_{h}=6.7\right)$ and $F\left(z / D_{h}=2.0\right)$. A comparison at the extreme values of Reynolds number (refer to Figure 8.1 and Table 8.3) indicated that the dimensionless fiction loss of slot D contriboted about 40 percent of the total pressure drop at a Reynolds number of 573 and 11 porcent of the total pressure drop at Re equal to 3440. Even though the contribution of the dimensionless friction loss Varied by a factor of 3.6, neglect of the flow length would incar significant error. For slot F the presence of the flow length accounted for 3.8 percent (at $\operatorname{Re}=3356$) to 5.3 percent (at $R e=$ 2013) of the total dimensionless pressure drop. Therefore, slot F behaved the most 1 ike an orifice and over the range of data considered, the flow length could probably be neglected.

Table 8.3.
Mean Total Minor Loss Coefficients for the Rectangalar Openings

| ID. | z / D_{h} | $\overline{\mathrm{~K}}$ | Std.
 Dev. | Marimum | Minimum | Range of Re |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| A | 15.9 | 1.42 | 0.023 | 1.45 | 1.39 | 426 to 581 |
| B | 14.9 | 1.49 | 0.071 | 1.56 | 1.35 | 427 to 777 |
| C | 3.2 | 1.33 | 0.059 | 1.42 | 1.26 | 574 to 2524 |
| D | 6.7 | 1.67 | 0.088 | 1.80 | 1.55 | 573 to 3440 |
| E | 7.2 | 1.97 | 0.149 | 2.23 | 1.81 | 680 to 3400 |
| F | 2.0 | 1.58 | 0.042 | 1.62 | 1.53 | 2013 to 3356 |
| G | 5.8 | 1.65 | 0.038 | 1.70 | 1.62 | 2014 to 3347 |

In general, the pressure loss induced by the presence of the flow length should not be neglected for dimensionless flow lengths greater than 2.0. Furthermore, the slots which are the most characteristic of structural leakage (A through D) had dimensionless flow lengths ranging from 3.2 to 15.9 . The data strongly implied that for the modeling of leakage characteristic of infiltration the effect of the flow length should be incladed.

The average total minor loss coefficients for each rectangolar opening are presented along with the standard deviations andextremes in Table 8.3. Inspection of the magnitudes of the standard deviations reveals that they are all below 0.15 and the majority are below 0.10. Based on a reviem of literature pertaining to flow throngh reotangular chamels, (Beavers ot al. 1970; Ethoridge, 1977; Fox and McDonald, 1973; Han, 1960) the observed variation of the total minor loss coefficients was not considered excessive. Furthermore, the subtractive process used to determine the individual values of K tended to accentuate the variation. Therefore, the flow rates were predicted over the ontire range of observed pressure differences f or each opening using its respective value of $\overline{\mathbf{K}}$.

The flow rates predicted by the equations have been compared in Figure 8.2 with the observed flow rates. The flow measurement range was $77.7 \mathrm{~cm}{ }^{3} / \mathrm{s}(0.16 \mathrm{cfm})$ to $14160 \mathrm{~cm}{ }^{3} / \mathrm{s}(30.0 \mathrm{cfm})$ and the correspording range of pressure drops was $1.4 \mathrm{~Pa}\left(.0056\right.$ in $\mathrm{H}_{2} 0$) to 83.4 $\mathrm{Pa}\left(0.3349\right.$ in $\left.\mathrm{H}_{2} 0\right)$. An equal range of flow and pressure differentials for each slot was not possible due to the limitations of the equipment or the occurrence of Reynolds numbers greater than 3500 at the higher pressure differentials.

Figure 8.2 Comparison of the measured and calcalated flow rates for the rectangular openings (using the average K values given in Table 8.3).

The majority of the flow predictions for the rectangalar openings were within ± 4.0 percent of the measured values. A total of eight points were out side this band. Six of these points were from the data of slot A and they were measored using the same flom meter. The scatter of the data presented in Figure 8.2 implies that part of the error associated with these sim points was due to an unknown systematic error. It is believed that the source of this error was in the flow measurement since the flows measured at differential pressures greater than 25 Pa used a different flow meter and the errors were less than 1 percent. In addition, tho relatively low flow measurements for these points correspond to a range of Reynolds numbers from 95 to 197. It was stated previously that values of K were only determined from data at Reynolds numbers greater than 400.

The data point with the greatest percentage of error (-6.5 percent) was in the prediction of the flow rate for slot at a pressure droy of 22.3 Pa . The f1 om measurement was $799.4 \mathrm{~cm}^{3} / \mathrm{s}$ (1.69 cfm) and the error was $52.3 \mathrm{~cm}{ }^{3} / \mathrm{s}(0.11 \mathrm{cfm})$. The maximom absolute difference occurred for the prediction of flow through slot E at a ΔP of 22.9 Pa and a flow measurement of $14160 \mathrm{~cm} \mathrm{~m}^{3} / \mathrm{s}(30.0$ cfm). The absolute difference was $516.4 \mathrm{~cm}^{3} / \mathrm{s}$ (1.09 cfm) which corresponds to an error of 3.6 percent. The wncertainty of the flow measurements ranged fran ± 2.0 percent (at full scale) to ± 10.0 percent. The estimated error in the differential pressure measurements based upon the capabilities of the instrument ranged from ± 0.15 to ± 8.9 percent. The uncertainty of the areas ranged from $\mathbf{3 1 . 2}$ percent for slot A to 1.9 percent for slot G.

Taking into consideration the errors discussed, it was concluded
that the discharge coefficient method was able to predict the measured flow rates within the uncertainty of the measured quantities using a mean total minor loss coefficient. In particular, the resolts for slots A, C, and D indicated that a mean total minor loss coefficient may be applied over a differential pressure range as large as 1.5 to 80 Pascals for short rectangular channels with aspect ratios in the range of 0.0016 to 0.0066 . In addition, the comparisons for slots A and B suggest that an average total minor loss coefficient which has been determined at Reynolds nombers greater than 400 may be applied relatively well for Reynolds numbers as 10 as 19. The resilts for slots F and C indicated that the discharge coefficient equation may be applied to rectangalar openings With very small dimensionless flow lengths.

Results for the Cylindrical Openings

The sum of the minor loses and the losses induced by the flow length have been compared in Figure 8.3. As was true for the rectangular openings, each point shown represents four replications of data.

The distribotion of the total minor loss coefficients for the cylindrical openings differ fram the rectangular openings in two respects. The minor loss coefficients for the cylindrical openings increased with $B\left(z / D_{h} R e\right)$ at approximately threo times the rate of the rectangalar openings over a comparable range of $B\left(z / D_{h} R e\right)$ and z / D_{h}. Also, the distribation of the K values for all of the cylindrical openings appears to be monotonic. The contribution of the dimensionless friction loss to the total dimensionless pressure drop varied with the Reynolds number fran 4.6 percent to mariman of 19
 coefficients for the cylindrical openings.
percent. Theref ore, the contribution of the dimensionless frictional loss should not be neglected.

Due to the great variability, the total minor loss coefficients of all four of the cylindrical openings were averaged over two ranges of the dimensionless friction loss. For values of $B\left(z / D_{h} R e\right) f r a n$ 0.18 to 0.53 the flow rates were predicted by the discharge coefficient method using a $\overline{\mathrm{K}}$ of 2.0 (std. dev. $=0.162$). For values of $B\left(z / D_{h} \operatorname{Re}\right)$ less than 0.18 a \bar{K} of 1.69 (std. dev. $=0.048$) was used. The minimum friction 1 oss was 0.08 . The criterion used for the selection of the ranges was the magnitude of the standard deviation of the mean total minor loss coefficients. It was de sired to minimize the magnitudes of the standard deviations and thereby maximize the ranges of application. The comparison of the measured flows With those predicted have been presented in Figure 8.4. The residuals in percent were plotted against the dimensionless friction loss (Figure 8.4) to facilitate comparison with Figare 8.3.

For openings $X 1$ and $X 2$ the range of measured flow rates was 77.7 $\mathrm{cm}^{3} / \mathrm{s}(0.16 \mathrm{cfm})$ to $307.2 \mathrm{~cm}^{3} / \mathrm{s}(0.65 \mathrm{cfm})$. The corresponding pressure drops ranged from $9.3 \mathrm{~Pa}\left(0.0373\right.$ in $\left.\mathrm{H}_{2} 0\right)$ to 60.9 Pa (0.2446 in $H_{2} 0$). The measured flow rates for Y 1 and $Y 2$ varied from $158.2 \mathrm{~cm}^{3} / \mathrm{s}(0.34 \mathrm{cfm})$ to $549.0 \mathrm{~cm}^{3} / \mathrm{s}(1.16 \mathrm{cfm})$ ith differ ential pressure measurements of $2.0 \mathrm{~Pa}\left(0.0080\right.$ in $\left.\mathrm{H}_{2} 0\right)$ to 18.4 Pa (0.0739 in H_{2}) . All of the flow rates were measured with the same f10w meter which had anerror of $\pm 15.7 \mathrm{~cm}^{3} / \mathrm{s}(0.03 \mathrm{cfm})$. The number of data points obtained was limited by the capabilities of the flow meter and the occurrence of Reynolds numbers greater than 3500 at pressure drops greater than the upper limits indicated.

Figure 8.4 Comparison of the measured and calculated flow rates for the cylindrical openings (using values of \bar{K} presented in Figure 8.3).

The majority of the flow rates measured were prodicted within \pm 4.0 percent and the points with errors greater than 4.0 percent were Within the uncertainty of the measured quantities. The flow prediction with the greatest percentage of error was for X2. The flow measurement was $77.7 \mathrm{~cm}^{3} / \mathrm{s}$ (at $\Delta P=9.3 \mathrm{~Pa}$) and the error in prediction was -5.9 percent which is equivalent to an absolute difference of $4.6 \mathrm{~cm}^{3} / \mathrm{sec}$. The maximm absolute difference was $10.3 \mathrm{~cm}^{3} / \mathrm{s}\left(\right.$ for $\left.Y 1, Q=232.6 \mathrm{~cm}^{3} / \mathrm{s} ; \Delta P=3.8 \mathrm{~Pa}\right)$.

Proposed Application to the Modeling of Structural Leakage

In order to compute the air flow throngh an opening at a given pressure difference and set of air properties the parameters that are required are A, γ and K. The same requirements apply to the modeling of structural leakage. It is proposed that if an appropriate average total minor loss coefficient is mown, then the leakage of a building component may be modeled as a single equivalent opening. This would be accomplished by the empirical determination of an area (A_{m}) and a gamma (γ_{m}) which best describe the air flow characteristic of the building component. A straight rectangular opening with a small hydranic diameter would be the most suitable type of opening for the following reasons.

1. A general observation of the leakage around doors and windows suggests that a rectangular cross-section with a small D_{h} would be the most appropriate.
2. The results of the experimental investigation indicated the following:
a. The air flow through straight rectangular openings with dimensions most typical of infiltration (A through D)
may be predicted over a range of differential pressures as great as 1.5 to 72 Pascals using a single mean total minor loss coefficient; and
b. The fiow through straight rectangular openings with hydranlic diameters in the range of 1.6 mm to 6.6 mm may be expected to remain 1 aminar for differential pressures which greatly exceed those typical of infiltration.

The primary requirement to model a building component as an equivalent straight rectangular opening is to determine a mean total minor loss coefficient for modeling structural leakage, K_{s}. Fram Table 8.3, the value of K_{s} was determined to be 1.5 (std. dev. $=$ 0.14) by averaging the mean total minor loss coefficients of openings A, B, C, and D. Referring to Table 8.1, it can be shown that the corresponding mean aspect ratio was 0.0039 . Using an aspect ratio of 0.0039 sets the mean friction coefficient, B, at 95.6 (from Table 8.1 or equation 3.30). These values of $\mathbf{K}_{\mathbf{s}}$ and B were in close agreement with the results presented by Etheridge (1977) for straight rectangular slots with dimensions typical of infiltration.

Rearranging the terms in equation 3.23 and setting K equal to K_{s} the dimensionless energy equation may be written in the following form:

$$
\begin{equation*}
\frac{2 \Delta P}{\rho \bar{V}^{2}}=\frac{2 \Delta P A^{2}}{\rho Q^{2}}=\frac{\nu}{4 Q \gamma_{m}}+E_{s} \tag{8.2}
\end{equation*}
$$

where:

$$
\frac{\nu}{4 Q_{\gamma_{m}}}=B\left(\frac{z}{D_{h} R e}\right)=\text { the dimensionless friction loss }
$$

The equation to be used for modeling a building component as an equivalent straight rectangalar opening was obtained by solving equation 8.2 for the pressure drop, ΔP.

$$
\text { where; } \begin{align*}
\Delta P & =b X \tag{8,3}\\
\quad X & =\left[\frac{\mu Q}{8 \gamma_{m}}+\frac{\rho K_{S} Q^{2}}{2}\right] \quad\left[N * m^{2}\right\rfloor \\
b & =\frac{1}{A_{m}^{2}}\left[m^{-4}\right]
\end{align*}
$$

The air flow through a building component would be modeled as a straight rectangalar opening by determining the equivalent opening parameters (A_{m} and γ_{m}) according to the following procedure.

1. The pressure drop, ΔP, across the component and the corresponding flow rate, Q, would be measured over a wide range and the air properties would be determined.
2. Successive approximations of $\gamma_{\text {m }}$ would be made and the corresponding A_{m} would be determined by application of a 1 east squares best fit to equation 8.3.
3. The fion rates would be predicted using the discharge coefficient method for each γ_{m} and its corresponding A_{m}.
4. The A_{m} and γ_{m} which best predicts the observed volmetric flow rates would be chosen to model the leakage of the component.

In equation 8.2 it was shown that the total dimensioness pressure drop across any opening or bailding component is the sum of the dimensionless pressure drops given by the dimensionless friction loss, $\nu / 4 Q \gamma_{m}$, and the total minor loss coefficient, X_{s}. In essence, the modeling procedure involves the assignment of a value
for the total minor loss coefficient, and then iterating on the three dimensional scale of the equivalent opening ontil a val re of gama, γ_{m}, is determined such that the sum of $\nu / 4 Q \gamma_{m}$ and K_{s} is equivalent equivalent to $2 \Delta P / \rho \bar{V}^{2}$ over the range of data. If the total minor loss coefficient of the actual building component is greater than $K_{\text {s }}$ then the additional pressure drop world be compensated by a smaller value of γ_{m} which would yield a greater dimensionless friction loss. From the definition of gamma foria rectangular opening (equation 3.24) it can be seen that a decrease in gamma would be the result of an increase in the flow length (z) or a decrease in the aspect ratio.

Op to this point the discussion has been devoted exclusively to the modeling of subjects which have straight flow paths. The actual flow paths of the leakage of a structure are of ten characterized by expansions, contractions and bends. The presence of these sources of minor loss can add fram 0.2 to 1.3 to the total minor loss coefficient (ASHRAE, 1985; Fox and McDonald, 1978). Due to the extreme variability of these types of pressure losses, the more predictable situation of a near infinite straight rectangular opening is preferred. It is theorized that the increased pressure drop due to contractions, expansions, and bends would also be compensated by a decrease in the value of gamma of the equivalent straight rectangular opening.

For 1 aminar flow the friction factor, $B / R e$, is not a function of the surface roughness of the opening (Fox and McDonald, 1978). For turbulent flows the surface roughness causes the fiction factor to increase which in torn causes the dimensionless friction loss to
increase. If the modeling procedure was applied to flows in the turbulent regime it is believed that the value of gamma of the equivalent rectangalar opening would decrease to compensate for the increase in the dimensionless friction loss.

For the parpose of demonstration, the modeling procedure has been applied to the data of openings A, B, C. D, E, and Y1. SIots A through D were chosen because their cross-sectional dimensions were the most characteristic of infiltration. Slot E was selected because it was the rectangular opening with the largest value of $\overline{\mathbb{K}}$ as well as the greatest variability (refer to Table 8.3). The opening Yl was included to determine if a cylindrical opening cond be modeled as an equivalent straight rectangular opening with a constant total minor loss coefficient.

It was determined that the easiest method to determine when the best pair of opening parameters (A_{m} and γ_{m}) had been obtained was by comparing the average error in the prediction of the flow rates. The pair of equivalent opening parameters that gave a mean error closest to zero was chosen. A plot depicting the use of this technique has been provided in Appendix H.

The results of the modeling procedure have been presented in Table 8.4 and the comparison of the flows using the equivalent opening parameters with the data have been shown in Figare 8.5. All but four of the predicted flow rates agreod with the measored flow rates within ± 3.0 percent and the error in each of the predictions was within the uncertainty of the measurements. Also, the average error in the prediction of flow was within ± 0.6 percont for all of the openings.

Table 8.4
Results of the Modeling Procedure

Opening ID	$\begin{gathered} A_{m} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{gathered} \left(A-A_{m}\right) \\ \% \end{gathered}$	$\begin{gathered} \gamma_{m} \\ \times 10^{-4}\left(m^{-1}\right) \end{gathered}$	$\left(\boldsymbol{\gamma}-\gamma_{\mathrm{m}}\right)$	$\left(\overline{\mathrm{K}}-\mathrm{K}_{\mathrm{s}}\right)$		
				\%	$=10^{-5}\left(\mathrm{~m}^{-1}\right)$	\%	r^{2}
A	4.29	-7.3	5.5	16.0	0.024	-5.3	0.9994
B	8.35	1.8	7.87	-13.2	0.066	-0.7	0.9997
C	11.07	-10.7	20.0	38.8	0.221	-11.3	0.9999
D	16.44	0.4	12.0	21.9	0.197	11.3	0.9997
E	29.61	5.9	10.0	31.5	0.296	31.3	0.9997
Y1	1.26	0.8	400.0	59.1	0.504	N/A	0.9999

Note: Values of $\overline{\mathbf{K}}$ are from Table 8.3.

Figure 8.5 Comparison of the predicted flow rates with those observed using the equivalent opening paramoters shown in Table $8.4\left(K_{s}=1.5\right)$.

Comparison of the equivalent opening parameters (Table 8.4) with the actual values (shown in Tables 8.1 and 8.2) indicated that the magnitude of the percent difference in area ranged from 0.4 to 10.7 percent while the magnitude of the difference in γ ranged fram 13.2 to 59.1 percent. Theref ore, the three dimensional scale of the model slot varied more than the cross-sectional area. Furthermore, the only cross sectional area which was not predicted within the uncertainty of the measurements mas for opening E. The uncertainty in the area f or opening E was ± 4.0 percent. The additional error in the prediction of A for this opening was believed to be related to the larger magnitude of K for opening E. This al so implied that the values of A_{m} had a relatively good degree of physical significance.

Comparison of the values of K in Table 8.3 with K_{s} indicated that the percent differenoo betwecn γ and γ_{m} was the greatest when the percent difference between \bar{K} and K_{s} was the greatest. Consequontly, for the cases when K_{S} was less than the actual total minor loss coefficient the additional pressure drop required was provided by a smaller value of gamma. The smallest magnitude of percent difference between γ and γ_{m} was for opening B. Opening B had a mean total minor loss coefficient which was almost identical to $\mathbf{K}_{\mathbf{s}}$.

The dimensions of the model slots were determined by using an average aspect ratio of 0.0039 and a \bar{B} of 95.6 and they are presented in Table 8.5. The flow length was determined by solving the defining equation of gamma for a rectangalar opening (equation 3.24) for z. The thickness, d, was calculated by:

$$
\begin{equation*}
\mathrm{d}=\sqrt{A_{m} \alpha} \tag{8.4}
\end{equation*}
$$

Table 8.5
Dimensions of the Equivalent Straight Rectangular Openings

$$
\bar{\alpha}=0.0039 \quad \bar{B}=95.6 \quad K_{s}=1.5
$$

Opening	d				
ID.	(mm)	w (mm)	z $(\mathrm{~mm})$	D_{h} $(\mathrm{~mm})$	$z / \mathrm{D}_{\mathrm{h}}$
A	1.3	330.0	74.1	2.6	28.6
B	1.8	463.9	51.3	3.6	14.3
C	2.1	527.1	20.5	4.2	4.9
D	2.5	657.6	33.4	5.0	6.7
E	3.4	870.9	40.6	6.8	6.0
Y1	0.7	180.0	1.0	1.4	0.7

The hydranlic diameter (D_{h}) and the dimensionless flow length, (z / D_{h}), were determined fram the appropriate defining equations.

Noting that the resistance of a rectangular opening may be increased by either decreasing a or increasing z, comparison of the dimensions and parameters given in Table 8.5 ith the physical measarement (Tables 8.1 and 8.2) allows the following general observations.

1. If the actual aspect ratio was greater than the a assumed then the values of D_{h} and (Ay) of the model slot wefe 1 ess than the actual values.
2. A straight cylindrical opening has very little resistance due to the cross section relative to a near infinite rectangular opening. As a result, the greatest reduction in $D_{h},\left(A_{\gamma}\right)$ and z occurred for opening Y1.

It must be emphasized that even though an average aspect ratio of 0.0039 was used for demonstration, this is not meant to imply that a value of 0.0039 should always be nsed. The actual modeling and computation of the flow characteristic of an opening depends entirely upon the magnitudes of the parameters A_{m} and γ_{m}. The assmption of an aspect ratio was only required to estimate the dimensions of the equivalent straight rectangular opening.

It is believed that the leakage of structural componentsmay be modeled as an equivalent straight roctangular opening. Using a mean total minor loss coefficient for modeling structural leakage (K_{s}), the equivalent opening parameters A_{m} and γ_{m} would be determined by the outlined procedure. The advantages of using the modeling procedure described are:

1. The dimensions of the modeling equation (equation 8.3) are homogene ous.
2. The effect of the flow length as well as the dimensionless properties of the cross-section may be included.
3. The variation of the discharge coefficient with (Ay) as well as ΔP may be taken into account.

The modeling of structural leakage as an equivalent straight rectangnlar opening has been presented in concept only. In order to apply the modeling procedure to actual structural leakage the modeling procedure needs to be experimentally validated for act ual building components. The effects of bends, contractions, and turbalent flow need to be experimentally determined al so.

Chapter 9

SUMMARY AND CONCLUSIONS

A review of the literature indicated that the position of the ne utral pressure axis (NPA) for envelope leakage under pure stack conditions is primarily dependent apon the relative size of the individual openings, their xesistance to flow and their vertical distribution. The factor subject to the greatest ambigaity was the description of the flow resistance of relatively short openings common to infiltration.

A semi-empirical equation to directly compute the discharge coefficient was developed fram the general energy equation for laminar flow through a straight channel of arbitrary cross-section. The discharge coefficient may be viewed as a dimensionless flow resistance described by the following functional statement:
$C_{z}=f[(A \gamma), \Delta P, K, \mu, \rho]$
The area-gamma product (Ay), represents the total geametric contribation to the flow resistance of an opening. The geanetric parameter, gamma, is a three dimensional scale factor which represents the resistance due to the geanetry of the cross section and the flow length. The total minor loss coefficient (K) ropresents the losses due to the inlet geometry, the degree of hydrodynamic development, and the exit. Hence, the total minor loss coefficient is the empirical portion of the equation.

The discharge coefficient equation was incorporated into a procedure to predict the olevation of the NPA for general
distribations of rectangular or cylindrical openings. The procedare to predict the elevation of the NPA was an iterative technique based upona direct application of the continuity equation mritten in terms of the mass flow rate.

A two cell enviromental chamber was constracted to simalate the temperature gradients across the shell of a two story residence. An insulated wall and ceiling section divided the chamber into a cold room and a marm room. Idealized openings could be mounted in the test wall at nine different locations. The ceiling section had one location for mounting an opening and a circular mounting plate to facilitate the study of a chimney at a later date.

Several idealized straight rectangular and cylindrical openings Were constructed of acrylic sheet. The dimensionless flow length $\left(z / D_{h}\right)$ ranged f rom 1.0 to 15.9 .

A collection of experiments wore performed to investigate the factors which infinence the location of the NPA and to test the validity of the mass balancing procedure of determining the elevation of the NPA. The parameters varied were: the total leakage area mounted in the test sections; the size of the individual openings; the geanetry of the openings; the vertical placement and the mean temperature difference. The differential pressure across the test sections was measured as a function of elevation for six opening groups, five opening distribations and four ranges of temperature difference. The elevation of the NPA and the mean density difference were determined from each differential pressure profile using a regression technique. The observed elovations of the NPA ranged from 15.2 to 73.7 percent of the eave height of the test wall. The
temperature was al so measured with respect to evation in each room to observe ary stratification which may occar.

It was determined that a significant amount of unidentifiable and uncorrectable leakage existed in the two room envirommental chamber. As a result, the chamber leakage (or background leakage) was treated as an additional opening group. Twelve replications of data were taken for the background leakage at several differential temperature conditions: The average elevation of the NPA was observed to be at 56.4 percent of the eave height. Tn facilitate inclusion of the effects of the background 1 eakage in the mass balancing procedure, the leakage was modeled as two hypothetical openings based upon the differential pressure profiles observed for the emviromental chamber.

The following results concerning the description of the pressure differences due to the stack effect were established fran the linear regression on the observed differential pressure profiles.

1. The coefficients of determination (x^{2}) of the 60
differential pressure profiles observed were all greater than 0.9986 .
2. These high levels of correlation yielded 95 percent confidence intervals for the el evations of the NPA from ± 0.7 $\mathrm{cm}(\pm 0.26 \mathrm{in}) \mathrm{to} \pm 3.1 \mathrm{~cm}(\pm 1.22 \mathrm{in})$.
3. The mean density difference betmeen the two rooms was al so determined from the regression. The 95 percent confidence intervals were f rom ± 0.47 to ± 1.98 percont.
4. It was found that 99.3 percent of the observed differential pressares were within the 95 percent prediction interval
about each regression 1 ine. Therefore, the variation of the density difference with elevation induced by the observed degree of temperature stratification did not have a meaningful influence on the prediction of the differential pressures.

The following results were found concerning the factors which influence the position of the NPA.

1. A variation of the mean temperature difference from $16^{\circ} \mathrm{C}$ $\left(28.8^{\circ} \mathrm{F}\right)$ to $48.4^{\circ} \mathrm{C}\left(87.1^{\circ} \mathrm{F}\right)$ had no significant effect on the position of the NPA.
2. The observed degree of temperature stratification had no distinguishable effect on the position of the NPA.
3. The elevation of the NPA was observed to vary by as mach as 27 percent of the eave height depending apon the vertical placement of openings in a distribation (G1H1 and G1H2).
4. The elevation of the NPA was observed to vary by as much as 30.7 percent of the eave height due to a variation of the opening gronp used for a particular vertical placement (RECI and REC2).
5. The elevation of the NPA was observed to vary by as much as 56.2 percent of the eave height depending upon the combined variation of the opening groups and the vertical placements.
6. For the cases with an opening placed in the test ceiling ([2) the NPA was observed to vary with the density of the cold air above the test ceiling. This variation was determined to induce a variation in the elevation of the NPA which was equivalent to 0.75 percent to 2.8 percent of the
eave height.
The prediction of the elevation of the NPA by means of the mass balancing procedure (including the effects of the background leakage) Fielded the following results.
7. It was determined that the el evation of the NPA was predicted within the uncertainties of the measured quantities and the errors in regression for 95.8 percent of the cases which involved openings placed in the test sections.
8. For all of the treatments which involved openings placed in the test sections, the elevations of the NPA were predicted Within ± 1.0 percent of the eave height for 91.7 percent of the observations; within ± 2.0 percent of the eave height for 97.9 of the observations; and within ± 2.22 percent of the eave height for all observations.
9. The elovation of the NPA was predicted within ± 1.0 percent of the eave height for 95.8 percent of the cases which included an opening placed in the ceiling.
10. The mean elevation of the NPA for the backgronnd leakage was predicted within ± 1.05 percent of the eave height using the two model openings.
11. It was found that the infiltration rate varied linearly with respect to the mean temperature difference.
12. It was determined that an error in the prediction of the NPA equivalent to $\pm \mathbf{2 . 2 2}$ percent of the eave height, resultedin an error in the compoted infiltration rate within $\pm \mathbf{5 . 0}$ percent (± 0.013 ach) for all but f ive cases.

The following conclusions were developed based upon the results of the experiment.

1. The differential pressures due to the stack effect varied linearly with el evation.
2. The slope of the differential pressure distribution was a function of the mean density difference of the air in the two rooms.
3. 'The slope of the differential pressure profile was independent of the location of the NPA.
4. The el evation of the NPA was primarily a function of the relative size of the openings in a distribation, a variable resistance to flow (discharge coefficient) and the vertical placement.
5. The position of the NPA was not a function of the mean temperature difference.
6. The density of the aif above an opening placed in the test ceiling induced a small variation in the position of the NPA.
7. The observed degree of temperature stratification had no effect on the position of the NPA.
8. The mass balancing procedure was able to predict the position of the NPA within ± 2.22 percent of the eave height for each of the opening distributions.
9. The two largest sources of error in the prediction of the NPA were: the inability to describe the variation of the background leakage in the two cell enviromental chamber and the use of a single total minor loss coefficient for all of
the openings.
Application of the mass balancing procedure to compate the el evation of the NPA for an actual structure would require a method to model the air flow through a building component (such as a window) as an equivalent opening. A supplementary experiment was performed to develop the concept of modeling components of envelope leakage as an equivalent straight rectangalar opening.

Differential pressure measurements over a specified range of flow rates were obtained for a group of straight openings which ranged in cross-sectional geanetry from a near infinite rectangalar slot to a cylinder. The dimensionless flow length, z / D_{h}, of the openings was varied from 2.0 to 15.9. Furthermore, flows to produce Reynolds numbers up to 3500 were used.

A distribation of total minor loss coefficients, K, was determined for each opening by subtracting the dimensionless friction loss, $B\left(z / D_{h} R e\right)$, from the total dimensionless pressure drop, $2 \Delta P / \rho \bar{V}^{2}$. A comparison of the magnitudes of $B\left(z / D_{h} R e\right)$ and $K y i e l d e d$ the following observations.

1. The total minor loss coefficient varied fram 1.26 to 2.23 for the rectangalar openings depending upon the cross-sectional geanetry and the degree of hydrodynamic devel opment.
2. The rectangalar openings with cross-seational dimensions most characteristic of structural leakage had dimensionless flow lengths from 3.2 to 15.9 and aspect ratios from 0.0016 to 0.0066. Over a differential pressure range of about 1.5 to 80 Pascals the contribution of tho dimensionless fiction
loss to the total dimensionless pressare drop ranged from 8.7 to greater than 70 percent. Thus, the presence of the flow length should be included in the modeling of envel ope leakage.
3. The total minor loss coefficient varied from 1.64 to 2.26 for the cylindrical openings depending opon the degree of hydrodynamic devel opment.
4. It was determined that the contribution of the flow length to the total dimensionless pressure drop was not negligible for openings of any cross section with dimensionless flow lengths greater than 2.0 .

A mean total minor loss coofficient was determined for each rectangular opening and the flow rates mere predicted using the discharge coefficient method (equations 3.26 and 3.21). It mas found that a mean value of K was adequate for use with the discharge coefficient equation over the range of data obtained.

The total minor loss coefficient of the cylindrical openings varied with the degree of hydrodynamic development three times as much as rectangular openings with similar magnitudes of $B\left(z / D_{h} R e\right)$. As a result, it mas concluded that a rectangalar cross-section mould be preferred for modeling structural leakage.

In order to model the air flow through a bailding component as an equivalent straight rectangalar opening the parameters required are: an equivalent crossectional area (A_{m}): an equivalent gama $\left(\gamma_{\text {m }}\right)$; and a mean total minor loss coefficient for modeling structural leakage ($\mathrm{K}_{\mathbf{s}}$). The value of \mathbf{K}_{s} was determined to be 1.5 by averaging the mean total minor loss coefficients of four
rectangular openings which had cross sectional dimensions most similar to those foand about doors and windows of a residence. A modeling equation (equation 8.3) was developed from the dimensionless energy equation which, when applied according to the outlined procedure, could be used to determine the values of A_{m} and γ_{m} of the equivalent straight rectangalar slot.

The modeling procedure was applied to the data of six openings to demonstrate its use. Openings with cross-sections ranging from a near infinite rectangular slot to a circular cross section were used.

The modeling of the six defined openings as an equivalent near infinite straight rectangular slot provided the following results and conclusions.

1. The cross-sectional areas of the equivalent slots (A_{m}) agreed with the actual areas within the uncertainty of the measurements for all but one case. Therefore, the cross sectional area of the equivalent rectangular slot had a good degree of physical significance.
2. The gammas of the equivalent slots (γ_{m}) differed fram the actual gammas depending apon the agreement between the actual mean total minor loss coefficient of the particular opening and the value of K_{s} used in the modeling equation. Therefore, the three dimensional scale of the equivalent slot was not the same as the actual opening.
3. Using a single ∇ alne K_{s} and the equivalent opening parameters (A_{m} and γ_{m}), the measured fiow rates were predicted within the uncertainties of the measurements for each of the dofined openings.

Chapter 10

SUGGESTIONS FOR FURTHER RESEARCH

From the results of the experiments of the present study it was concluded that the mass balancing procedure can be used to determine the elevation of the nentral pressure axis (NPA) for any distribation of straight rectangalar or cylindrical openings. Furthermore, the results of modeling the background leakage and a few of the fabricated openings as equivalent straight rectangular openings suggests that the leakage of individual building components may al so be modeled as equivalent straight rectangular openings. Therefore, application of the mass balancing procedare to the envelope leakage of an actual building would require the farther developaent of the modeling technique to describe the various sources of leakage in a residence. Several of the sources of leakage which would need to be included are doors, windows, penetrations for duct work and pl wing, electrical outlets and switches, and structural joints.

In addition, the appropriate elevation for an equivalent rectangular opening needs to be determined for each of the various types of leakage components. For most equivalent openings the elevation of the centroid of the actual component would probably be satisfactory. For sources of leakgge that are much taller than they are wide it may be necessary to model the leakage as two equivalent openings. The openings wouldmost likely be placed at the elevations of the centers of the upper and 1 ower halves of the actual component.

The present study has only considered leakage in the emel ope of
a structore. One of the 1 argest sources of infiltation that is not part of the shell of a structure is a chimney. The pressure drop across a chimney is a combination of the pressure difference due to the stack effect and a pressure difference resulting fram the much higher temperatures at the base of a chimney. In order to inclade a chimney in the mass balancing procedare, a reliable method of computing the total pressure drop across a chimney must first be devel oped.

The other source of potential for infiltration which needs a large amount of study is the pressure distribution across the surface of a structure due to wind velocities. In general, wind pressures on the windmard side of a structure are positive and pressures on the leeward side are negative. The pressures on the other surfaces of the structure can floctuate from positive to negative depending upon the incident wind angle, fluctuations in the $\begin{aligned} & \text { ind } s p e e d, ~ a n d ~ t h e ~\end{aligned}$ shape of the bailding. If the three dimensional distribution of wind pressures could be determined for a design wind velocity, then the total three dimensional differential pressure profile across the shell of a structure would be obtained by simply adding the wind pressures to the differential pressures due to the stack effect. The total infiltration rate would be obtained by adding the magnitudes of the mass flows through all of the sources of infiltration and dividing by two. A practical method of computing the distribution of wind pressures across a structure is currently not available.

APPENDIX A

NOMEN $\mathcal{L} A T U R E$

A_{e}	- equivalent leakage area
A	- cross-sectional area
$A_{\text {m }}$	- cross-sectional area of an equivalent rectangular opening
B	- friction coefficient
C	- flow coefficient ($\mathrm{mr}^{3} / \mathrm{s} * \mathrm{~Pa}^{\mathrm{n}}$)
C_{d}	- discharge coefficient for idealized 1 aminar flow
C_{2}	- discharge coefficient for real 1 aminar flow
D	- diameter of a cylindrical channel
D_{h}	- hydraulic diameter
d	- thickness of a rectangular channel
h	- elevation
IR	- infiltration rate
K	- total minor loss coefficient
$K_{\text {inlet }}$	- inlet loss coefficient
K_{hd}	- Loss due to hydrodynamic devel opment
$\mathrm{K}_{\mathbf{e x}}$	- exit loss coefficient
$\mathbf{k}_{\mathbf{s}}$	- mean total minor loss coefficient for modeling structural leakage
L_{e}	- the entrance length of a long pipe or duct
血	- mass flow rate (kg/s)
NPA	- neutral pressure axis
N	- el evation of the NPA
$\Delta \mathbf{P}$	- pressure difference (Pa)
Q	- Volumetric flow rate ($\mathrm{m}^{3} / \mathrm{s}$)

Re	- Reynolds number
s	- standard deviation
$\overline{\mathrm{V}}$	- average velocity (m/s)
W	- humidity ratio ($k g_{\nabla} / \mathbf{k} g_{a}$)
ต	- width of a rectangular channel
z	- flow length
z / D_{h}	- dimensionl ess flow length
α	- aspect ratio
γ	- geometric parameter (m^{-1})
$\gamma_{\text {m }}$	- geometric parameter for an equivalent straight rectangular opening
($\mathrm{A} \boldsymbol{\gamma}$)	- area-gamma product (m)
$(\mathrm{A} \boldsymbol{\gamma})_{\mathrm{m}}$	- area gamma product for an equivalent straight rectangalar opening
ρ	- density (kg/m ${ }^{\text {a }}$
ν	- kinematic viscosity (m² ${ }^{2}$)
μ	- dynamic $\mathrm{viscosity}^{(N * s / m} \mathrm{m}^{2}$)

APPENDIX B

SOLUTION OF THE NAVIER-STOKES EQUATION FOR LAMINAR FLOW BETHEEN INFINITE PARALLEL FLAT FLATES

The case of fully developed laminar flow between two infinite parallel plates separated by a distance, d, is shown in Figare B. 1.

Figure B.1. Laminar flow between infinite parallel plates.

Using the coordinates as defined in the figure, the velocity vector is:

$$
\begin{aligned}
& \vec{V}=(v, w, u) \\
& \rho\left(\frac{\partial u}{\partial t}+v \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial y}+u \frac{\partial u}{\partial z}\right)=-\frac{\partial P}{\partial z}-\rho g+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \\
& \text { where; } P=\text { pressure, } \\
& t=\text { time, } \\
& \rho=\text { density, } \\
& \mu=\text { dynamic viscosity, and } \\
& g=\text { gravity. }
\end{aligned}
$$

The Navier-Stokes equation may be simplified by application of the following assomptions:

1. The fluid is viscid and incompressible;
2. The flow is 1 aminar and fully developed;
3. The velocity is steady and in the z-direction only ($\partial u / \partial t=$ $0 ; v=\omega=0) ;$
4. The velocity varies in the y-direction only ($u=f(y))$;
5. The pressure varies linearly and in the direction of flow (P $=f(z))$;
6. The gravity effects are negligible ($\rho g=0$);
7. There are no entrance or exit losses; and
8. The full no-slip boundary condition exists $(u(0)=0$; $u(d)=$ 0).

Application of assumptions 3, 4 and 6 gives the following simplified Navier-Stokes equation.

$$
\begin{equation*}
0=-\frac{d P}{d z}+\mu\left(\frac{d^{2} u}{d y^{2}}\right) \tag{B.3}
\end{equation*}
$$

 integrating the simplified Navier-Stokes equation twice with respect to y. The generalized velocity profile is given by:

$$
\begin{equation*}
u(y)=\frac{1}{\mu}\left(\frac{d P}{d z}\right) \frac{y^{2}}{2}+A y+B \tag{B.4}
\end{equation*}
$$

The constants of integration, A and B, may be determined by application of the boundary condition at each interior surface of the flow ch annel.

$$
\begin{align*}
& u(0)=0 \text { requires that } B=0 \\
& u(d)=0 \text { gives; } \quad A=-\frac{1}{\mu}\left(\frac{d P}{d z}\right) \frac{d}{2} \tag{B.5}
\end{align*}
$$

Substitution of A and B into the general velocity profile gives the equation for the velocity distribution for fully developed laminar flow.

$$
\begin{equation*}
u(y)=\frac{1}{2 \mu}\left(\frac{d P}{d z}\right) \quad y(y-d) \tag{B.6}
\end{equation*}
$$

The flow equation may be obtained by integrating equation B. 6 across the cross-section of the channel.

$$
\begin{equation*}
Q=\int_{0}^{w} \int_{0}^{d} u(y) d y d x \tag{B.7}
\end{equation*}
$$

The resalting equation for the flow per unit width is:

$$
\begin{equation*}
\frac{Q}{W}=\frac{-d^{3}}{12 \mu}\left(\frac{d P}{d z}\right) \tag{B.8}
\end{equation*}
$$

Based upon the assumption that the pressure gradient is 1 inear in the direction of flow (assumption 5), the variables may be separated and integration of equation $B .8$ gives:

$$
\begin{equation*}
\frac{Q}{w}=\frac{-d^{3} \Delta P}{12 \mu z} \tag{B.9}
\end{equation*}
$$

Equation B. 9 is identical to equation 3.4 except for the sign. The classical derivation of the full Navier-Stokes equation assumes that a negative pressure gradient yields a positive flow (Currie, 1974). The negative sign has beon dropped in oquation 3.4 because in many practical situations the sign convention used assmes that a positive pressure drop produces a positive flow. Furthermore, the air flow into a residence has been assumed to be positive and the result of a positive differential pressure (refer to equation 2.8).

APPENDIX C

RELATIONSHIPS USED TO COMPUTE AIR PROPERTIES

The dynamic or absolate viscosity of air is a function of the temperature only under normal atmospheric conditions. The dynamic viscosity of air was computed using the following empirical equation (Fox and McDonald, 1978):

$$
\begin{equation*}
\mu=\frac{b \sqrt{T}}{1+S / T} \tag{C.1}
\end{equation*}
$$

Where: $b=1.458 \times 10^{-6}\left(\mathrm{~kg} / \mathrm{m} * \mathrm{~s} * \mathrm{~K}^{1 / 2}\right)$,
$S=110.4(\mathrm{~K})$,
$T=$ the dry bulb temperature (K), and
$\mu=$ the dynamic ∇ iscosity, ($N^{*} s / m^{2}$).
The density of the air, ρ, is equivalent to the inverse of the specific volume of a moist air mixture. The specific volume was computed from the following relationship (ASHRAE, 1981, Ch. 5):

$$
\begin{equation*}
\nabla_{s p}=\frac{R_{a} T}{B P}(1+1.6078 \mathrm{~W}) \tag{C.2}
\end{equation*}
$$

Where; $R_{a}=$ the gas constant for dry air $=287.055$ ($\mathrm{J} / \mathrm{kg}_{\mathrm{g}} \mathrm{K}_{\mathrm{K}}$),
$B P=$ the barometric pressure (Pa) ,
$W=$ the humidity ratio $\left(\mathrm{kg}_{\mathrm{W}} / \mathrm{kg}_{\mathrm{a}}\right)$, and
$\mathbf{v}_{\mathrm{sp}}=$ the specific volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$.
For the air in the warm room, the humidity ratio was determined from the equation given in ASHRAE (1981, Ch. 5) as:

$$
\begin{equation*}
W=\frac{\left(2501-2.381 T_{w b}\right) W_{s}^{*}-\left(T-T_{w b}\right)}{\left(2501+1.805 T-4.186 T_{w b}\right)} \tag{C.3}
\end{equation*}
$$

```
Where; \(T_{w b}=\) the wet bulb temperatore \(\left({ }^{\circ} \mathrm{C}\right)\),
    \(T=\) the dry bulb temperature ( \(\left.{ }^{\circ} \mathrm{C}\right)\),
    \(W_{s}^{*}=\) the humidity ratio corresponding to sataration at \(T_{w b}\)
    \(\left(k_{w} / k_{a}\right)\).
```

The values of \mathbb{W}_{s}^{*} were determined from the following regression equations:

$$
\begin{align*}
& \text { For } T_{W b}=289 \mathrm{~K} \text { to } 300 \mathrm{~K} \\
& \ln \left(\mathbb{W}_{S}^{*}\right)=-109.41153+18.51963 \ln \left(T_{W b}\right) \tag{C.4a}\\
& \text { For } T=283 \mathrm{~K} \text { to } 289 \mathrm{~K} \\
& \ln \left(\mathbb{T}_{S}^{*}\right)=-112.13592+19.00025 \ln \left(T_{W b}\right) \tag{C.4b}
\end{align*}
$$

These two equations were detemined from a linear regression on the psychrometric data given in the ASHRAE Fundamentals Handbook (1981, Table 1 pg 6.3).

For the air in the cold room, the humidity ratio (W) was set equal to the homidity ratio corresponding to the dew point temperature (T_{dp}). The values of W_{s} were determined from the following regression equations which were determined in the same manner as described previously.

$$
\begin{align*}
& \text { For } T_{d p}=274 \mathrm{~K} \text { to } 283 \mathrm{~K} \\
& \ln \left(W_{\mathrm{s}}\right)=-115.10110+19.52567 \ln \left(T_{\mathrm{dp}}\right) \tag{C.5a}\\
& \text { For } \mathrm{T}_{\mathrm{dp}}=258 \mathrm{~K} \text { to } 273 \mathrm{~K} \\
& \ln \left(\mathbb{W}_{\mathrm{s}}\right)=-135.75649+23.20829 \ln \left(T_{\mathrm{dp}}\right) \tag{C.5b}\\
& \text { For } T_{\mathrm{dp}}=243 \mathrm{~K} \text { to } 258 \mathrm{~K} \\
& \ln \left(\mathbb{W}_{\mathrm{s}}\right)=-143.86171+24.66858 \ln \left(T_{d p}\right) \tag{C.5c}
\end{align*}
$$

The kinematic viscosity, ν, is defined by the following expression:

$$
\begin{equation*}
\nu=\mu / \rho\left(\mathrm{m}^{2} / \mathrm{s}\right) \tag{C.6}
\end{equation*}
$$

APPENDIX D
 SUMMARY OF THE REGRESSION OOMPUTATIONS

The el evation of the netral pressure aris and the mean density difference between the warm and the cold room were determined fram each differential pressure profile by fitting the data to a linear equation of the following form:

$$
\begin{equation*}
y=a+b z \tag{D.1}
\end{equation*}
$$

```
where; \(y=\Delta P(P a)\),
    x = elevation (m),
    \(\mathrm{b}=-\mathrm{g} \overline{\Delta \rho}(\mathrm{Pa} / \mathrm{m})\),
        \(\mathrm{a}=\mathrm{g} \overline{\Delta \rho} \mathrm{N}(\mathrm{Pa})\),
        \(N=|a / b|=\) elevation of the NPA (m),
    \(\overline{\Delta \rho}=|b / g|=\left(\mathrm{kg} / \mathrm{m}^{3}\right)\).
```

The equations to compute the slope, y-intercept, coefficient of determination $\left(r^{2}\right)$, and the 95 percent confidence intervals for the slope and the elevation of the NPA (N) are outlined in the following steps (Steel and Torrie, 1980; Younger, 1979).

1. Corrected Sums of Squares and Cross Products

$$
\begin{align*}
& S_{X X}=\Sigma_{x^{2}}-\left(\Sigma_{x}\right)^{2} / n \tag{D.2a}\\
& S_{Y Y}=\Sigma_{y^{2}}-\left(\Sigma_{y}\right)^{2} / n \tag{D.2b}\\
& S_{X Y}=\Sigma_{X Y}-\left(\Sigma_{x}\right)\left(\Sigma_{y}\right) / n \tag{D.2c}
\end{align*}
$$

Where; $n=$ total nomber of ordered pairs $=18$
2. Calcalation of the slope and y-Intercept

$$
\begin{align*}
& \mathrm{b}=\mathrm{S}_{\mathrm{XY}} / \mathrm{S}_{\mathrm{XX}} \tag{D.3}\\
& \mathrm{a}=\overline{\mathrm{Y}}-\mathrm{b} \overline{\mathrm{X}} \tag{D.4}
\end{align*}
$$

where; $\bar{x}=$ the mean of all elevations

$$
\vec{Y}=\text { the mean of all pressure differences }
$$

3. Calculation of the Coefficient of Determination
$r^{2}=\left(S_{X Y}\right)^{2} / S_{X X}\left(S_{Y Y}\right)$
4. Estimation of the Variance About the Regression Line
${ }_{s_{Y . ~}}{ }^{2}=S_{Y Y}{ }^{2}-\left[\left(S_{X Y}\right)^{2} / S_{X X}\right]$
5. The 95 Percent Confidence Interval for the Slope
95% C.I. $=b \pm t_{\alpha / 2(n-2)} \sqrt{s_{y . x}^{2} / S_{X X}}$
where; (n-2) = the error degrees of freedom.

$$
t_{0.025(16)}=2.12
$$

6. The 95 Porcont Confidenoe Intorval About the Elevation of the

NPA.
The y-intercepl of the regression equation was equal to the product of the slope and the elevation of the NPA. As a result, a straight forward method of computing a 95 percent confidence interval about the elevation of the NPA (N) was not available. Instead a confidence interval for the difference between a particular value of x (elevation) and \bar{x} was computed from the following formala (P. L. Cornelius, personal communication, Feb. 1986; Snedecor and Cochran, 1980):

$$
(x-\bar{x})=\frac{1}{\left(1-c^{2}\right)}\left[\hat{x} \pm \frac{t}{a / 2(n-2)^{s} y . x} \sqrt[b]{\frac{\left(1-c^{2}\right)}{n}+\frac{\hat{x}^{2}}{\sum_{x}^{2}}}\right] \text { (D.8) }
$$

Where; $c^{2}=\frac{1}{\Sigma_{x}^{2}}\left(\frac{t_{\alpha / 2(n-2)^{s} s_{Y . I}}}{b}\right)^{2}$, and

$$
\hat{x}=(x-\bar{x}) .
$$

For the case at hand, the $v a l$ ue of x that is of interest is the elevation of the NPA, N. Therefore, a confidence interval was computed for the difference $(N-\bar{x})$. The resulting confidence interval for N was determined by simply adding \bar{x} to the two final values.
7. The 95 Percent Confidence Interval About An Individual Prediction of the Pressure Difference (y_{i}).

$$
\begin{gather*}
y_{i}=t .025(n-2)^{s} y . x \sqrt{1+\frac{1}{n}+\left(x_{i}-\bar{x}\right)} \tag{D.9}\\
\text { where; } y_{i}=\text { the predicted pressure difference, and } \\
x_{i}=\text { the corresponding elevation for } Y_{i} .
\end{gather*}
$$

This type of confidence interval is generally called a prediction interval (Younger, 1979).

APPENDIX E

DATA AND REGRESSION RESULTS

Table E. 1 Chronological Order of the Data

DAY NUMBER	DATE (1986)
1	$1 / 30$
2	$1 / 31$
3	$2 / 3$
4	$2 / 5$
5	$2 / 6$
6	$2 / 7$
7	$2 / 8$
8	$2 / 12$
9	$2 / 13$
10	$2 / 14$
11	$2 / 15$
12	$2 / 18$
13	$2 / 19$
14	$2 / 21$
15	$2 / 23$
16	$2 / 24$
17	18

Table E. 2
Day Number on Which Each Set of Data Were Taken
dAY NUMBER

TREATMENT	REPI	REP2	R2P3
G1H1T1	2	4	8
GH1T2	5	6	10
G1 1123	3	7	12
G1月2T1	2	4	8
G1 122	3	6	10
C1H2T3	3	7	11
G2H1T1	2	4	8
G2H1T2	3	6	9
G2 173	3	7	12
G2\%2T1	2	4	9
G2日2T2	2	6	10
G\% 213	3	7	10
RECI	14	15	15
REC2	14	15	15
CYL	16	16	17
CYLREC	17	17	18
NCTI	1	4	9
NCT2	12	18	19
NCI3	4	12	19
NC35	13	13	16

Table E. 3 Data and Regression Results

Definition of terms used in Table E. 3
BP - Local barometric pressure, Pa
C - Temperature, Celsius
C.I. - 95\% confidence interval (Appendix D)
den. - density
DP - Pressure difference

DT - Mean temperature difference
k.vis. - kinematic viscosity

Tc - cold room temperatore

Tdp - den point temperatore

Tn - warm room temperatare
Twb - wet balb temperature
Dderrag - the mean density difference determined from the regression equation (Appendix D)

Dden-temp - gpo (DT/Tm) (Tm in absolute scale)

NOTE: The cold roan air properties for temperature condition three (T3) were computed assuming the air was 75\% saturated.

Table E.3a

	Rep 1			Rep 2			Rep		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\begin{aligned} & \mathrm{DP} \\ & (\mathrm{~Pa}) \end{aligned}$	Tw	$(C)^{T C}$	$\begin{aligned} & \mathrm{DP} \\ & (\mathrm{~Pa}) \end{aligned}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$
0.052	4.80	18.8	-28.8	4.27	17.8	-26.0	4.27	15	-25.9
0.305	4.27			3.87			3.80		
0.610	3.50	20.9	-28.8	3.33	19.8	-25.7	3.20	17.3	-25.9
0.914	2.93			2.67			2.60		
1.219	2.20	20.5	-28.5	2.00	19.4	-25.7	2.00	17.0	-25.8
1.524	1.53			1.10			1.40		
1.829	0.85	21.4	-27.7	0.81	20.4	-24.7	0.80	18.1	-25.3
2.134	0.12			0.17			0.17		
2.438	-0.53	22.0	-27.5	-0.43	20.9	-24.4	-0.14	18.8	-25.1
2.743	-1.24			-1.07			-1.07		
3.048	-1.93	22.3	-27.2	-1.73	21.3	-24.2	-1.67	19.0	-25.1
3.353	-2.60			-2.33			-2.33		
3.658	-3.27	22.1	-27.1	-2.93	21.0	-23.8	-2.93	18.7	-24.8
3.962	-4.00			-3.53			-3.53		
4.267	-4.53	22.1	-26.4	-4.20	20.9	-23.6	-4.13	18.9	-24.7
4.572	-5.20			-4.80			-4.67		
4.877	-5.87	22.6	-25.1	-5.33	21.6	-22.2	-5.33	19.4	-23.6
4.959	-6.27		-23.1	-5.73		-19.9	-5.60		-21.5
MEANS	-->	$\begin{aligned} & 21.4 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -27.0 \\ 48.4 \mathrm{C} \end{array}$		$\begin{aligned} & 20.3 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -24.0 \\ 44.3 \mathrm{C} \end{array}$		$\begin{aligned} & 18.0 \\ & \text { DT }= \end{aligned}$	$\begin{array}{r} -24.7 \\ 42.8 \mathrm{C} \end{array}$

Mean Alr Propertles

1	99617.8	12.2	1.1621	0.00001566	-31.2	1.4017	0.00001126
2	97324.6	14.4	1.1414	0.00001589	-29.4	1.3610	0.00001171
3	98238.9	9.1	1.1686	0. 00001543	-31.5	1.3781	0.00001154

Regresaion Results Using the Mode! $D P=a+\left(b^{\circ} h\right)$
 Rep NPA C.l. Slope C.I. $\mathbf{r}^{\text {² }}$ Dden-reg Dden-temp (m) C.1. Pa (Pa/m) (kg/m ${ }^{\wedge} 3$)

1	2.205	0.013	-2.2360	0.0186	0.99975	0.2279	0.2304
2	2.211	0.015	-2.0341	0.0191	0.99969	0.2073	0.2056
3	2.238	0.009	-2.00510 .0121	0.99987	0.2044	0.2026	

Table E. 3 b

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{\mathrm{Tc}}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$
0.052	2.67	20.8	-8.1	2.40	20.7	-5. 4	2.53	17.	-8.3
0.305	2.40			2.13			2.20		
0.610	2.00	21.8	-8.0	1.80	21.8	-5.6	1.87	19.5	-8.
0.914	1.60			1.47			1.17		
1.219	1.27	21.2	-7.9	1.20	21.0	-5.5	1.15	19.2	-8.0
1.524	0.87			0.80			0.79		
1.829	0.53	22.0	-7.3	0.40	22.0	-4.8	0.43	20.0	-7.4
2.134	0.13			0.11			0.0 ?		
2.438	-0.13	22.6	-7.0	-0.27	22.6	-4.7	-0.2\%	20.7	-7.4
2.743	-0.60			-0.60			-0.64		
3.048	-0.93	22.8	-7.0	-0.87	22.9	-4.5	-1.00	21.0	-7.2
3.353	-1.33			-1.27			-1.35		
3.658	-1.73	22.6	-7.0	-1.60	22.5	-4.1	-1.73	20.7	-7.1
3.962	-2.13			-2.00			-2.13		
4.267	-2.53	22.5	-6. 7	-2.33	22.7	-4.3	-2.47	20.6	-6.8
4.572	-2.80			-2.67			-2.8c		
4.878	-3.20	22.9	-6.0	-3.00	23.1	-3.8	-3.20	21.3	-6.2
4.959	-3.40		-5.0	-3.13		-2.7	-3.33		-5.2
MEANS	\cdots DT= 29.1 -7.0				$\begin{aligned} & 22.1 \\ & \text { DT }=26.7 .5 \\ & \hline \end{aligned}$			$\begin{aligned} & 20.1 \quad-7.1 \\ & \text { DT }=27.2 \mathrm{C} \end{aligned}$	

Mean Alr Properties
\qquad

Rep	$\underset{(\mathrm{Pa})}{\mathrm{BP}}$	$\begin{aligned} & \text { Twb } \\ & \text { (c) } \end{aligned}$	den. ($\mathrm{kg} / \mathrm{m}^{\wedge} 3$)	$)^{k}\left(m^{\prime}+2 / s\right)$	$\begin{aligned} & \text { Tdp } \\ & \text { (C) } \end{aligned}$	$\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right)$	$\begin{aligned} & \text { loom } \\ & (\mathrm{m} \\| \mathrm{v} / \mathrm{s} . \\ & (\mathrm{m}) \end{aligned}$
1	96985.9	13.9	1.1329	0.00001609	-9.6	1.26650	0.0000
2	97663.2	13.3	1.14180	0.00001596	-6.6	1.26300	0.0000
	99525	10.0	1.1763	0.00001541	9	,	0.0000

Regression Results Using the Model $D P=a+(b * h)$

Rep NPA C.I. Slope C.I. r^2 Dden-reg Dden-temp

	(m)		$(\mathrm{Pa} / \mathrm{m})$			$\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right)$	
1	2.249	0.017	-1.2270	0.0137	0.99956	0.1251	0.1248
2	2.216	0.015	-1.1285	0.0111	0.99965	0.1150	0.1142
3	2.186	0.011	-1.1837	0.0083	0.99982	0.1207	0.1208

Table E. 3c

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$		$(\mathrm{C})^{\mathrm{Te}}$
0.052	1.73	20.8	1.5	1.73	21.4	2.7	1.47	22.3	6.6
0.305	1.60			1.47			1.28		
0.610	1.33	21.7	1.3	1.27	22.3	2.3	1.09	23.6	6.6
0.914	1.08			1.05			0.88		
1.219	0.84	21.1	1.4	0.80	21.7	2.4	0.67	23.0	6.7
1.524	0.59			0.55			0.48		
1.829	0.35	22.0	2.1	0.32	22.5	3.0	0.29	24.2	7.5
2.134	0.08			0.07			0.03		
2.438	-0.15	22.4	2.2	-0.16	23.0	3.1	-0.11	24.2	7.
2.743	-0.39			-0.40			-0.32		
3.048	-0.67	22.1	2.2	-0.67	23.2	3.2	-0.53	24.4	8.1
3.353	-0.92			-0.91			-0.72		
3.658	-1.17	22.4	2.2	-1.15	22.9	3.0	-0.92	24.0	8.0
3.962	-1.47			-1.40			-1.12		
4.267	-1.67	22.5	2.2	-1.60	23.0	3.2	-1.31	24.1	8.3
4.572	-1.93			-1.87			-1.53		
4.877	-2.20	23.0	2.5	-2.13	23.4	3.7	-1.73	24.5	8.8
4.959	-2.27		2.6	-2.27		4.3	-1.87		10.2
MEANS	---)	$\begin{aligned} & 22.0 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} 2.0 \\ 20.0 \stackrel{C}{C} \end{array}$		$\begin{aligned} & 22.8 \\ & D T=1 \end{aligned}$	$\begin{array}{r} 3.1 \\ 19.5 \mathrm{C} \end{array}$		$\begin{aligned} & 23.8 \\ & \text { DT }= \end{aligned}$	$\begin{array}{r} 7.8 \\ 15.9 \mathrm{C} \end{array}$

列 \quad DT $=15.9 \mathrm{C}$

Mean Alr Propertlea
 e:

Warm Room
Warm Roo
Cold hoom
Rep

Regreaston Reaulls Using the Model DPrat (b*h)

Rep	NPA (m)	C. 1 .	$\begin{aligned} & \text { Slope } \\ & (\mathrm{Pa} / \mathrm{m}) \end{aligned}$	C. I.	${ }^{\sim}$	$(k$	$\begin{aligned} & \text { den-t emp } \\ & \text { 3) } \end{aligned}$
1	2.229	0.014	-0.8241	0.0075	0.99971	0.0840	0.0841
2	2.213	0.018	-0.7982	0.0089	0.99955	0.0814	0.0815
3	2.249	0.019	-0.6632	0.0081	0.99947	0.0676	0.0653

Table E. 3d

			Mean Als	Propert			
						cold	oom
Rep			den.	k.vis	Tdp	den.	k.vi
	(Pa)	(C)	$\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right)$) (m²/s)	(C)	($\mathrm{kg} / \mathrm{m}^{-3}$)	$)\left(\mathrm{m}^{+} 2 / \mathrm{s}\right)$
1	99017.8	12.2	1.16090	0.00001569	-28.9	1.38710	0.00001147
2	97324.6	14.4	1.14150	0.00001589	-30.2	1.36410	0.00001166
3	98238.9	11.1	1.16240	0.00001556	-30.2	1.38040	0.00001150

Regression Resulls Using the Model $D P=a+(b) h)$
............. Rep

	3.492	0.014	-2.1530	0.0179	0.99975	0.2195	0.2174
1	3.502	0.012	-2.1114	0.0151	0.99982	0.2152	0.2085
2	3.502	0.0 .1					

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\operatorname{DP}_{\left(\mathrm{Pa}_{\mathrm{a}}\right)}$	Tw	$(c)^{T c}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(\mathrm{C})^{\mathrm{Tc}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$		$\text { (c) }{ }^{T c}$
0.052	4.40	18.7	-10.5	4.00	20.5	-5.4	4.00	18.8	-6.8
0.305	4.13			3.73			3.67		
0.610	3.80	20.0	-9.9	3.40	21.6	-5.7	3.33	20.0	-7.0
0.914	3.17			3.13			2.93		
1.219	3.07	19.8	-9.8	2.67	21.1	-5.7	2.67	19.4	-6.9
1.524	2.67			2.40			2.27		
1.829	2.27	20.7	-9.0	2.07	21.9	-5.1	1.93	20.2	-6. 3
2.134	1.80			1.87			1.67		
2.438	1.40	21.3	-9.0	1.33	22.6	-4.8	1.23	20.8	-6. 2
2.743	1.05			1.00			0.87		
3.048	0.83	21.6	-8. 9	0.73	22.9	-4.5	0.51	21.1	-8. 2
3.353	0.24			0.27			0.19		
3.658	-0.13	21.2	-8.8	0.00	22.3	-4.6	-0.19	20.8	-5.9
3.962	-0.52			-0.33			-0.51		
4.267	-0.93	21.3	-8.7	-0.80	22.5	-4.5	-0.88	20.8	-5.9
4.572	-1.33			-1.20			-1.28		
4.877	-1.73	21.8	-7.9	-1.47	23.0	-3.9	-1.60	21.1	-5.3
4.953	-1.93		-1.4	-1.60		0.2	-1.73		-1.1
MEANS	-->	20.7	$\begin{array}{r} -8.4 \\ 29.1 \mathrm{C} \end{array}$		22.0	$\begin{array}{r} -4.1 \\ 26.1 \mathrm{C} \end{array}$		$\begin{aligned} & 20.3 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -5.8 \\ 28.1 \mathrm{C} \end{array}$

Re	$\begin{gathered} \mathrm{BP} \\ (\mathrm{~Pa}) \end{gathered}$	Warm Room			Cold Room										
		(C)	$\underset{(\mathrm{kg} / \mathrm{m}}{\operatorname{den}}$	$\begin{aligned} & k \times 18 \\ & \left(m^{2} / s\right) \end{aligned}$	$\begin{aligned} & \text { Tdp } \\ & \text { (C) } \end{aligned}$	$\underset{\left(\mathrm{kg} / \mathrm{m}^{\text {den }}\right.}{ }$	$\begin{aligned} & k \cdot v \mid \\ & \left\{\mathrm{m}^{2} \mid\right. \end{aligned}$								
1	8238.9	1.4	1509	0.00001578	15.	1.2913									
2	97663.2	13.9	1.1410	0.00001597	-6.2	1.2620	0.0								
3	99525.7	10.6	.1745	0.00001545	-7.	. 2932	-								
:---	---:	---:	---:	---:	---:	---:									
3	99525.7	10.6	1.1410	0.00001597	-6.2	1.2620									

Regression Results Using the Model DP=a+(b*h)
-*P NPA C.I. Slope C.I. C.1. r_{2} Dden-reg Dden-tenp

	3.5399	0.021	-1.2954	0.0166	0.99942	0.1320	0.127ε
2	3.602	0.025	-1.1425	0.0175	0.99916	0.1165	0.1130
3	3.496	0.015	-1.1580	0.0107	0.99969	0.1180	0.115 c

Mean Air Properties

			Mean Air	r Propert			
			Roo			Cold Ro	oom
Rep		Twb	den.	k.vis.	Tdp	den.	k.vis
	(Pa)	(C)	($\mathrm{kg} / \mathrm{m}^{\wedge} 3$)) (ma/s)	(c)	$\left(\mathrm{kg} / \mathrm{m}^{-3}\right)$) (m-2/s)
1	98238.9	13.9	1.1486	0.00001586	75\%	1.2464	0.00001377
2	98306.6	13.3	1.15100	0.00001582	Sat	1.23900	0.00001392
3	99525.7	12.8	1.16570	0.00001562		1.23420	0.00001414

Regression Results Using the Model $D P=a+(b \cdot h)$
Rep NPA

Rep	NPA (m)	C.1.	$\begin{aligned} & \text { Slope } \\ & (\mathrm{Pa} / \mathrm{m}) \end{aligned}$	C. I .	$\mathrm{r}^{\text {2 }}$	$\begin{array}{r} e n-r e \\ \quad(\mathrm{~kg} \end{array}$	$\begin{aligned} & \text { 2den- } \\ & \text { (3) } \end{aligned}$
1	3.515	0.017	-0.8905	0.0089	0.99964	0.0908	0.0908
2	3.816	0.011	-0.8257	0.0056	0.99984	0.0842	0.0827
3	3.655	0.019	-0.6365	0.0073	0.99953	0.0649	0.0663

TableE. $\mathbf{3}^{\mathbf{g}}$
Table E.3h

Mean Air Propertles

	99085.5	11.1	1.1687	0.00001552	-29.6
1	9.3866				
2	97324.6	13.9	1.1451	0.00001581	-29.4
3	9.3622	0.000001149			
3	98238.9	9.4	1.1723	0.00001534	-31.5
		1.3785	0.0000169		

$.41 .17230 .00001534-31.51 .37850 .00001153$
Regression Resulis. Using the Model DP $=a+(b * h)$

Re	$\begin{aligned} & \text { NPA } \\ & (\mathrm{m}) \end{aligned}$	C. I .	Slope $(\mathrm{Pa} / \mathrm{m})$	C. I	$r^{\text {² }}$	en-r	dden-t emp 3)
1	2.062	0.015	-2.0783	0.0200	0.99967	0.2119	0.2100
2	2.079	0.016	-2.0410	0.0206	0.99964	0.2081	0.2036
3	2.090	0.014	-1.9707	0.0179	0.99971	0.2009	0.1984

Mean Air Properties
Mean air Properties Warm Room Cold Room

1	98238.9	12.2	1.1506	0.00001584	-9.4	1.2678	0.00001338
2	97663.2	12.8	1.1438	0.00001592	-8.8	1.2659	0.00001335
3	98916.2	11.1	1.1681	0.00001551	-8. 2	1.3010	0.00001284

Regression Results Using the Model $D P=a+(b * h)$

Rep	$\begin{aligned} & \text { NPA } \\ & (\mathrm{m}) \end{aligned}$	C.I.	$\begin{aligned} & \text { Slope } \\ & \left(\mathrm{P}_{\mathrm{a}} / \mathrm{m}\right) \end{aligned}$	C.1.	$\mathrm{r}^{\text {2 }}$	len-r	Dden- (3)
1	2.110	0.017	-1.1080	0.0117	0.99960	0.1129	0.1114
2	2.075	0.015	-1.1341	0.0107	0.99968	0.1156	0.1153
3	2.078	0.011	-1.2515	0.0090	0.99982	0.1276	0.1275

Table E. 31

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	T\%	$(\mathrm{C})^{\mathrm{Te}}$
0.053	1.53	19.8	1.5	1.17	20.7	3.2	1.40	21.7	5.6
0.305	1.33			1.28			1.23		
0.610	1.12	21.3	2.0	1.07	21.7	3.1	1.03	23.0	5.2
0.914	0.89			0.83			0.80		
1.218	0.67	21.2	2.1	0.60	21.1	3.2	0.57	22.5	5.5
1.524	0.47			0.39			0.37		
1.828	0.19	22.2	2.8	0.16	22.0	4.0	0.16	23.9	6.2
2.134	-0.01			-0.07			-0.03		
2.438	-0.27	22.5	2.8	-0.27	22.8	4.2	-0.25	24.0	6.7
2.743	-0.53			-0.49			-0.45		
3.048	-0.77	23.1	3.1	-0.75	22.8	4.5	-0.67	24.3	7.0
3.353	-1.01			-0.97			-0.85		
3.858	-1.20	22.6	3.2	-1.19	22.5	4.5	-1.07	23.8	7.3
3.962	-1.47			-1.40			-1.27		
4.26%	-1.73	22.7	3.5	-1.60	22.6	1.8	-1.47	23.9	7.6
4.572	-2.00			-1.87			-1.67		
4.817	-2.20	23.2	1.0	-2.07	23.2	5.5	-1.87	24.5	8.4
4.959	-2.27		5.0	-2.13		6.7	-1.93		10.0
means	---> $22.019 .0{ }^{3.0}$			22.1		$\begin{array}{r} 17.3 \\ 17.8 \mathrm{C} \end{array}$		23.5	6.9
					DT $=1$		16.6 C		

Mean Alr Propertles

Rep	$\begin{gathered} \mathrm{BP} \\ (\mathrm{~Pa}) \end{gathered}$	Twb (C)	$\begin{aligned} & \text { Warm Room } \\ & \text { den. } k . v / s, \\ & \left(\mathrm{~kg} / \mathrm{m}^{-3}\right)(\mathrm{m} 2 / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \text { Tdp } \\ & \text { (C) } \end{aligned}$	Cold Ho den. ($\mathrm{kg} / \mathrm{m}^{-3}$)	
1	98238.9	12.8	1.14980 .00001585	75\%	1.23300	0.00001403
2	98306.6	13.9	1.14830 .00001587	Sat	1.22720	0.00001415
3	98713.0	14.4	1.14760 .00001594	**	1.21940	0.00001435

Regression Results Using the Mode! $\mathrm{DP}=\mathrm{a}+(\mathrm{b} \boldsymbol{\mathrm { H }} \mathrm{h})$ Rep NPA C.l. Slope C.I. $r^{\wedge} 2$ Dden-reg Dden-temp

2.063	0.018	-0.7790	0.0087	0.99955	0.0794	0.0796
2.050	0.009	-0.7333	0.0040	0.99990	0.0717	0.0740
2.092	0.011	-0.6721	0.0047	0.99983	0.0690	0.0682

Table E. 3 j

	Rep 1			Rep 2			Rep 3		
$\begin{gathered} \text { Elev. } \\ (\mathrm{m}) \end{gathered}$	${\underset{(\mathrm{Pa}}{\mathrm{DP}}}^{(\mathrm{Pa}}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\begin{aligned} & \mathrm{DP} \\ & \left(\mathrm{~Pa}_{\mathrm{a}}\right) \end{aligned}$	Tw	$(C)^{\mathrm{T}}$	$\begin{aligned} & \mathrm{DP} \\ & (\mathrm{~Pa}) \end{aligned}$		$(C)^{\mathrm{Te}}$
0.052	6.00	12.9	-26.1	6.40	12.1	-27.4	6.13	11.7	-26.7
0.305	5.50			5.87			5.60		
0.610	5.07	17.0	-25.8	5.20	16.2	-27.6	5.07	16.0	-26.9
0.914	4.40			4.53			4.53		
1.219	3.80	18.1	-25.7	4.00	17.6	-27.1	3.87	17.1	-26.7
1.524	3.20			3.40			3.33		
1.829	2.60	19.4	-24.6	2.73	18.9	-26.5	2.67	18.2	-25.8
2.134	2.00			2.13			2.00		
2.438	1.40	20.1	-24.1	1.47	19.7	-25.9	1.47	19.0	-25.5
2.743	0.76			0.85			0.83		
3.048	0.17	20.8	-23.8	0.21	20.3	-25.4	0.23	19.6	-25.2
3.353	-0.43			-0.41			-0.41		
3.658	-1.07	20.3	-23.3	-1.07	19.9	-25.1	-1.00	19.2	-24.6
3.962	-1.67			-1.67			-1.60		
1.267	-2.27	20.5	-22.3	-2.27	20.0	-23.8	-2.27	19.2	-23.7
4.572	-2.87			-2.93			-2.80		
4.877	-3.40	21.3	-18.0	-3.53	20.7	-19.7	-3.40	20.0	-19.3
4.959	-3.60		-3.4	-3.67		-5.7	-3.60		-4.6
MEANS		$\begin{aligned} & 18.9 \\ & \text { DT }= \end{aligned}$	$\begin{array}{r} -21.7 \\ 40.6 \mathrm{C} \end{array}$		$\begin{aligned} & 18.4 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -23.4 \\ 41.8 \mathrm{C} \end{array}$		$\begin{aligned} & 17.8 \\ & \text { DT }= \end{aligned}$	$\begin{array}{r} -22.9 \\ 10.6 \mathrm{C} \end{array}$

Mean Air Propertles

$$
\begin{array}{llllll}
\\
990855.5 & 10.0 & 1.1749 & 0.00001538 & -28.0 & 1.3728 \\
97324.6 & 11.1 & 1.1538 & 0.00001561 & -30.6 & 1.3578 \\
0 & 0.000011770
\end{array}
$$ $98916.28 .91 .17850 .00001529-28.61 .37700 .00001162$

Tablo E. $3 k$
Table E. 31

	Rep 1			Rep 2			Rep ${ }^{3}$		
$\begin{gathered} \text { Elev. } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { DP } \\ & (\mathrm{Pa}) \end{aligned}$	Tw	$(C)^{T}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{T}}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{T c}$
0.052	3.80	14.1	-13.4	3.33	17.7	-5.1	3.33	17.5	9
0.305	3.53			3.07			3.13		
0.610	3.20	17.2	-11.7	2.80	19.8	-5.2	2.80	19.7	-5.9
0.914	2.87			2.53			2.53		
1.219	2.47	17.4	-11.6	2.13	20.0	-5.1	2.20	19.8	-5. 8
1.524	2.17			1.87			1.87		
1.829	1.73	18.6	-10.6	1.47	20.8	-4.6	1.47	20.8	-5.1
2.134	1.31			1.19			1.17		
2.438	0.83	19.3	-10.4	0.17	21.5	-4.3	0.83	21.5	. 6
2.143	0.55			0.19			0.48		
3.048	0.17	19.8	-10.1	0.19	22.0	-4.1	0.17	22.0	-4.5
3.353	-0.23			-0.13			-0.16		
3.658	-0.57	19.5	-9.9	-0.48	21.4	-3. 9	-0.52	21.4	-4.4
3.962	-0.95			-0.77			-0.84		
4.267	-1.33	19.5	-9.3	-1.12	21.5	-3.1	-1.17	21.6	-4.0
4.572	-1.73			-1.47			-1.53		
4.877	-2.13	20.2	-6.8	-1.73	22.2	-1.7	-1.87	22.3	-1.8
4.959	-2.27		2.7	-1.87		5.5	-2.00		5.2
MEANS		$\begin{aligned} & 18.4 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -9.1 \\ 27-1 \mathrm{C} \end{array}$		$\begin{aligned} & 20.8 \\ & D T=2 \end{aligned}$	$\begin{array}{r} -3.2 \\ 23.9 \mathrm{C} \end{array}$		$\begin{aligned} & 20.7 \\ & \mathrm{DT}=2 \end{aligned}$	

Mean Alr Properties
-***** Narm Room Cold Room
 Twb den.

BP
(Pa) (C)

1	99085.5	9.1	1.1775	0.00001533	-9.0	1.3042	0.00001281
2	97663.2	12.2	1.1482	0.00001582	1.0	1.2567	0.00001352
3	99525.7	11.7	1.1713	0.00001551	-7.8	1.2832	0.00001323

Regression Resultis Using the Model DP=at (b* h)
******* $\begin{array}{lll}\text { Rep } & \begin{array}{l}\text { NPA } \\ (\mathrm{m})\end{array} & \text { C.I. }\end{array} \begin{gathered}\text { Slope } \\ (\mathrm{Pa} / \mathrm{m})\end{gathered} \mathrm{C.I}. \quad \mathrm{r}^{\wedge 2} \begin{gathered}\text { Dden-reg Dden-temp } \\ \left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right)\end{gathered}$

1	3.181	0.015	-1.2425	0.0117	0.99968	0.1267	0.1229
2	3.225	0.016	-1.0664	0.0106	0.999965	0.1087	0.1024
3	3.185	0.018	-1.0948	0.0122	0.99956	0.1116	0.1064

Mean Air Properties

> Warm Room . Cold Room

Rep \qquad Twb den.
k.vis. Tdp den. (Pa) (C) $(\mathrm{kg} / \mathrm{m}-3)(\mathrm{m} 2 / \mathrm{s})$

Regression Results Usling the Model DP=a+(beh)

** | Rep | $\begin{array}{c}\text { NPA } \\ (\mathrm{m})\end{array}$ | C.I. | $\begin{array}{c}\text { Slope } \\ (\mathrm{Pa} / \mathrm{m})\end{array}$ | C.I. | $r^{\wedge} 2$ | $\begin{array}{c}\text { Dden-reg Dden-temp } \\ (\mathrm{kg} / \mathrm{m} / 3)\end{array}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3.206 | 0.014 | -0.7182 | 0.0065 | 0.99971 | 0.0732 | 0.0706 |

1	3.206	0.014	-0.7182	0.0065	0.99971	0.0732	0.0706
2	3.171	0.018	-0.8293	0.0094	0.99955	0.0845	0.0804
3	3.184	0.012	-0.6476	0.0049	0.99979	0.0660	0.0648

	Rep 1			Rep 2			Rep 3		
$\underset{\substack{\text { Elev. } \\(\mathrm{m})}}{ }$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{T c}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	(C)	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(C)^{T c}$
0.052	2.27	19.8	3.5	2.53	17.1	-0.3	2.00	19.5	5.3
0.305	2.07			2.40			1.87		
0.610	1.87	20.9	3.4	2.13	19.3	-0.2	1.67	20.8	4.7
0.914	1.60			1.87			1.47		
1.219	1.17	20.7	3.4	1.60	19.3	-0.2	1.28	20.6	4.8
1.524	1.20			1.33			1.09		
1.829	0.99	21.7	4.2	1.13	20.4	0.2	0.89	22.5	5.4
2.134	0.77			0.88			0.68		
2.438	0.57	22.3	4.2	0.63	21.1	0.4	0.47	22.0	5.5
2.713	0.35			0.37			0.29		
3.048	0.12	22.5	4.4	0.12	21.4	0.6	0.09	22.3	5.7
3.353	-0.09			-0.13			-0.12		
3.658	-0.32	22.2	1.4	-0.40	20.9	0.8	-0.29	21.9	5.8
3.962	-0.53			-0.64			-0.48		
4.267	-0.75	22.3	4.8	-0.88	21.0	1.0	-0.69	21.9	5.9
4.572	-0.99			-1.15			-0.92		
1.877	-1.23	22.8	5.5	-1.47	21.5	2.4	-1.09	22.4	6.8
4.959	-1.28		9.5	-1.53		7.9	-1.17		10.9
means		$\begin{aligned} & 21.7 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} 4.7 \\ 17.0^{C} \end{array}$		$\begin{aligned} & 20.2 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} 1.2 \\ 19.0 \mathrm{C} \end{array}$		${ }_{\text {DT }} \mathbf{2 1 . 5}$	$15.5 \mathrm{C}$

Table E．3：

	Rep 1			Rep 2			Rep 3		
Elev． （m）	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(\mathrm{C})^{\mathrm{Tc}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{\mathrm{Tc}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$		$\text { (C) }{ }^{\mathrm{Te}}$
0.052	4.40	17.7	－14．5	4.10	17.7	－14．9	4.53	18.0	－15．6
0.305	4.00			4.17			4.27		
0.610	3.67	19.7	－14．8	3.67	19.9	－15．3	3.73	19.8	－15．8
0.914	3.20			3.20			3.20		
1.219	2.80	19.7	－14．6	2.80	20.0	－15．1	2.80	19.8	－15．8
1.534	2.27			2.27			2.40		
1.819	1.87	20.9	－13．9	1.87	21.0	－14．3	1.87	21.1	－15．1
2.134	1.33			1.33			1.33		
2.438	0.92	21.6	－13．8	0.92	21.5	－14．0	0.93	21.6	－14．6
2.743	0.45			0.45			0.40		
3.048	0.03	21.9	－13．2	－0．01	21.8	－13．5	0.00	21.9	－14．2
3.353	－0．45			－0．47			－0．53		
3.658	－0．89	21.4	－12．9	－0．88	21.5	－13．2	－1．00	21.6	－13．8
3.962	－1．33			－1．33			－1．47		
4.257	－1．80	21.7	－12．1	－1．87	21.5	－12．5	－1．87	21.7	－13．2
4.512	－2．27			－2．27			－2．27		
4.897	－2．87	22.2	－9．4	－2．67	22.3	－9．9	－2．73	22.2	－10．5
4.959	－2．80		－6． 2	－2．80		－7．7	－2．93		－8．4
MEANS		$\begin{aligned} & 20.7 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -12.5 \\ 33.2 \mathrm{C} \end{array}$		$\begin{aligned} & 20.8 \\ & \text { DT } x \end{aligned}$	$\begin{array}{r} -13.0 \\ 33.8 \mathrm{C} \end{array}$		$\begin{aligned} & 20.8 \\ & \text { DT } \end{aligned}$	$\begin{array}{r} -13.7 \\ 34.5 \mathrm{c} \end{array}$

Mean Alr Properties

Meno．0．0．0．0．0．0．0．0．Mean Alr Propertles

Warm Room Cold Room
Rep BP
(Pa) （C）$(\mathrm{kg} / \mathrm{m}-3)\left(\mathrm{m}^{\mathrm{K}} 2 / \mathrm{s}\right)$
 $\begin{array}{llllll}97019.8 & 14.4 & 1.1365 & 0.00001598 & -17.6 & 1.2958 \\ 96748.9 & 13.3 & 1.1354 & 0.00001275 \\ 960001600 & -18.2 & 1.2947 & 0.00001275\end{array}$ $96748.9 \quad 13.31 .13520 .00001600-16.71 .29780 .00001261$

Regression Resulis Using the Model DP＝a＋（b＊h）
Rep NPA C．I．Slope C．I．$r^{\boldsymbol{\circ} 2}$ Dden－reg Dden－t emp

1	3.059	0.013	-1.4787	0.0120	0.99977	0.1507	0.1467
2	3.056	0.013	-1.4851	0.0121	0.99976	0.1514	0.1489
3	3.042	0.018	-1.5287	0.0170	0.99956	0.1558	0.1523

Table E．3n

Warm Room Cold Room

97019.8	13.9	1.1359	0.00001601	-17.8	1.2924	0.00001281
96748.9	14.1	1.1314	0.00001608	-18.2	1.2979	0.00001269
96748.9	12.8	1.1379	0.00001594	-16.7	1.2980	0.00001269

Regression Results Using the Model $\quad D P=a+\left(D^{\circ} h\right)$
 Rep NPA C．l．Slope C．I．$r^{\text {² } 2 ~ D d e n-r e g ~ D d e n t e m p ~}$

	(m)		$(\mathrm{Pa} / \mathrm{m})$			$\left(\mathrm{kg} / \mathrm{m}^{4} 3\right)$	
1	1.552	0.017	-1.4663	0.0148	0.999964	0.1495	0.1454
2	1.522	0.013	-1.5403	0.0118	0.999979	0.1570	0.1544
3	1.511	0.018	-1.5230	0.0165	0.99958	0.1553	0.1504

	Rep 1			Rep 2			Rep 3		
$\begin{gathered} \text { Elev. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{T e}$	$\underset{(\mathrm{Pa})}{\mathrm{DP}_{2}}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{\mathrm{Tc}}$
0.052	1.20	18.5	-19.1	1.31	18.8	-19.1	1.24	17.4	-21.6
0.305	0.80			0.80			0.79		
0.610	0.27	20.5	-19.5	0.33	20.5	-10.4	0.24	19.6	-21.6
0.914	-0.23			-0.20			-0.24		
1.219	-0.80	19.9	-19.5	-0.73	19.9	-19.4	-0.84	19.0	-21.6
1.524	-1.40			-1.33			-1.40		
1.829	-1.87	20.9	-19.0	-1.87	20.8	-18.8	-2.00	20.1	-20.9
2.134	-2.40			-2.40			-2.53		
2.438	-2.93	21.6	-18.8	-2.93	21.5	-18.5	-3.07	20.8	-20.9
2.743	-3.47			-3.47			-3.67		
3.048	-4.00	21.8	-18.5	-1.00	21.8	-18.4	-4.27	21.1	-20.4
3.353	-4.53			-4.53			-4.80		
3.658	-5.07	21.3	-18.4	-5.07	21.4	-18.4	-5.33	20.5	-20.4
3.962	-5.60			-5.60			-5.87		
4.267	-6.13	21.2	-18.2	-6.13	21.5	-17.8	-6.53	20.7	-20.3
4.572	-6.67			-6.67			-7.07		
4.877	-1.20	22.0	-17.5	-7.20	21.9	-17.2	-7.80	21.2	-19.7
4.959	-7.47		-15.3	-7.47		-15.0	-7.87		-17.8
means	--->	$\begin{aligned} & 20.8 \\ & \mathrm{Dr}= \end{aligned}$	$\begin{array}{r} -18.4 \\ 39.2 \mathrm{C} \end{array}$		20.9	$\begin{array}{r} -18.2 \\ 39.1 \mathrm{C} \end{array}$		20.0	-20.5 40.5

Mean Air Properlies
Warm Room Cold Room

Regression Resulls: Using the Model DP=a+(b*h)

Rep	$\begin{aligned} & \text { NPA } \\ & \text { (m) } \end{aligned}$	C.I.	Slope (Pa / m)	C. 1 .	$\mathrm{F}^{\text {-2 }}$	$\begin{gathered} \text { Dden-reg } \\ \text { (kg/i } \end{gathered}$	$\begin{aligned} & \text { Dden-t emp } \\ & n^{3} 31 \end{aligned}$
1	0.760	0.012	-1.7538	0.0114	0.99985	0.1788	0.1786
2	0.785	0.011	-1.7671	0.0105	0.99987	0.1802	0.1776
3	0.753	0.014	-1.8482	0.0138	0.99980	0.1884	0.1871

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{\mathrm{Tc}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(\mathrm{C})^{T e}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(C)^{\mathrm{T}}$
0.052	5.07	19.2	-21.6	5.30	19.4	-20.8	5.07	19.4	-20.8
0.305	4.80			4.80			4.67		
0.610	1.27	19.9	-21.7	4.27	20.4	-21.0	4.13	20.3	-20.9
0.914	3.73			3.67			3.60		
1.219	3.20	19.3	-21.8	3.13	19.8	-21.1	3.07	19.5	-21.0
1.524	2.67			2.60			2.53		
1.829	2.00	20.2	-21.2	2.07	20.7	-20.5	2.00	20.5	-20.4
2.134	1.47			1.47			1.47		
2.438	0.93	20.8	-20.9	0.93	21.3	-20.1	0.92	20.9	-20.3
2.743	0.35			0.37			0.37		
3.048	-0.23	21.1	-20.7	-0.16	21.6	-19.9	-0.19	21.3	-20.0
3.353	-0.79			-0.75			-0.76		
3.658	-1.33	20.7	-20.7	-1.33	21.1	-19.9	-1.33	21.0	-19.9
3.962	-1.87			-1.87			-1.87		
4.267	-2.47	20.1	-20.5	-2.40	21.3	-19.7	-2.40	21.0	-19.6
4.572	-3.07			-2.93			-2.93		
4.877	-3.60	21.3	-19.5	-3.60	21.7	-18.5	-3.60	21.6	-18.9
4.959	-3.87		-16.3	-3.87		-15.5	-3.87		-15.5
means	-->	20.3	-20.5		20.8	-19.7		20.6	-19.7
		DT $=$	40.8 C		DT $=$	40.4 C		DT $=$	40.3 C

Mean Air Properties

 Warm Room
Cold Room
\qquad Twb den .
(C)
$(\mathrm{kg} / \mathrm{m}$
v(s.

1	98137.3	14.4	1.1509
2	98137.3	12.2	0.1537

Regression Results Using the Model DP=a+(b*h) Rep NPA C.I. Slope C.I. r² Dden-reg Dden-t**

	$\begin{aligned} & \text { NPA } \\ & \text { (m) } \end{aligned}$	C.1.	Slope	C.l.		$\begin{aligned} & n-r e \\ & \text { (kg } \end{aligned}$	den. 3)
1	2.922	0.020	-1.8386	0.0229	0.99945	0.1874	0.1883
2	2.933	0.015	-1.8310	0.0174	0.99968	0.1866	0.1851
3	2.916	0.018	-1.8034	0.0212	0.99951	0.1838	0.1850

Table E. 3 q

	Rep 1			Rep 2			Rep 3		
$\begin{gathered} \text { Elev. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{T c}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$	$\begin{gathered} \text { DP } \\ (\mathrm{Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{\mathrm{Te}}$
0.052	5.60	17.3	-29.8	5.33	20.6	-26.5	5.47	21.4	-27.0
0.305	5.07			4.80			4.93		
0.610	4.53	18.0	-29.9	4.13	21.0	-26.5	4.40	22.1	-26.5
0.914	3.87			3.60			3.80		
1.219	3.13	17.1	-29.8	2.93	20.4	-26.	3.20	21.3	-26.8
1.524	2.47			2.27			2.33		
1.828	1.80	18.1	-28.9	1.60	21.0	-25.8	1.80	22.1	-26.3
2.134	1.07			0.93			0.99		
2.438	0.43	19.1	-28.1	0.33	21.7	-25.7	0.41	22.6	-28.1
2.743	-0.24			-0.40			-0.27		
3.048	-0.93	19.3	-28.8	-1.00	22.0	-25.3	-0.83	22.9	-25.9
3.353	-1.60			-1.73			-1.80		
3.658	-2.33	18.0	-28.4	-2.33	21.6	-25.	-2.40	22.5	-25.8
3.962	-2.93			-3.07			-3.07		
4.267	-3.60	18.8	-28.2	-3.60	21.8	-25.0	-3.73	22.8	-25.8
4.572	-4.40			-4.27			-4.40		
4.877	-5.01	19.5	-27.2	-4.93	22.3	-24.8	-5.07	23.2	-24.8
4.959	-5.33		-24.9	-5,33		-21.8	-5.33		-22.8
MEANS		$\begin{aligned} & 18.5 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -28.4 \\ 46.9 \mathrm{C} \end{array}$		$\begin{aligned} & 21.4 \\ & \text { DTI } \end{aligned}$	$\begin{array}{r} -25.3 \\ 46.6 \mathrm{C} \end{array}$		$\begin{aligned} & 22.3 \\ & 0 T= \end{aligned}$	

Mean Air Propertiea
Warn Warm Room Cold Room

1	99153.2	9.4	1.1779	0.00001533	-33.0	1.1119	0.00001113
2	97324.6	13.3	1.1402	0.00001595	-31.0	1.3681	0.00001160
3	98916.2	12.2	1.1581	0.00001575	-30.8	1.3932	0.00001138

Regression Resulls Using the Model $D P=a+(b * h)$
Rep NPA CI Slope Cim

Rep	$\begin{aligned} & \mathrm{NPA} \\ & (\mathrm{~g}) \end{aligned}$	C. 1.	$\begin{aligned} & \text { Slope } \\ & (\mathrm{Pa} / \mathrm{m}) \end{aligned}$	C.1.	r 2	$\begin{aligned} & \text { en-ri} \\ & i k i \end{aligned}$	$\begin{gathered} \text { Dden } \\ 3 \mathrm{~B}) \end{gathered}$
1	2.619	0.014	-2.2286	0.0202	0.99971	0.2272	0.2273
2	2.562	0.016	-2.1495	0.0214	0.99965	0.2191	0.2168

Table E. 3 r
Test ID. $=$ NCT 2
Data at Time $=80 \mathrm{~min}$.

	Rep			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(C)^{T e}$	$\begin{aligned} & \mathrm{DP} \\ & (\mathrm{~Pa}) \end{aligned}$	Tw	$\text { (C) }{ }^{T c}$	$\operatorname{DP}_{(\mathrm{Pa})}$		$(\mathrm{C})^{\mathrm{Tc}}$
0.052	3.20	23.	-3. 3	3.20	20.0	-10.8	3.07	21.0	-7.2
0.305	3.00			2.93			2.93		
0.610	2.73	23.3	-3.1	2.53	20.8	-10.2	2.53	21.6	-7.1
0.914	2.33			2.13			2.13		
1.219	2.00	22.6	-3.0	1.73	19.9	-10.1	1.80	20.7	-7.1
1.524	1.73			1.33			1.40		
1.829	1.40	23.6	-2.1	0.93	20.6	-9.1	1.00	21.7	-6.6
2.134	1.03			0.53			0.67		
2.438	0.69	23.7	-2.1	0.13	21.2	-9.4	0.27	22.1	-6.3
2.743	0.40			-0.27			-0.07		
3.048	0.09	24.1	-2.2	-0.53	21.5	-9.3	-0.40	22.3	-6.5
3.353	-0.27			-0.93			-0.80		
3.658	-0.53	23.8	-2.0	-1.33	21.0	-9.3	-1.20	22.0	-6.4
3.962	-0.93			-1.73			-1.47		
4.267	-1.20	23.8	-1.8	-2.13	21.2	-9.2	-1.93	22.2	-6.2
4.572	-1.60			-2.53			-2.20		
4.877	-1.93	24.1	-1.4	-2.93	21.7	-8.8	-2.80	22.4	-5. 7
4.959	-2.07		0.2	-3.07		-7.3	-2.80		-4. 5
MEANS	DT $=25.6 \mathrm{C}$			20.9DT $=30.2 .4$c			$\begin{aligned} & 21.8 \\ & \mathrm{DT}=28.1 \mathrm{C} \end{aligned}$		

Mean Air Properties
Warm Room Cold Room

Rep BP Twb den. \quad k.vis. Tdp den. k.vis.

	$\begin{gathered} \mathrm{BP} \\ (\mathrm{~Pa}) \end{gathered}$	Twb	$(\mathrm{kg} / \mathrm{m}-3)$	$\begin{aligned} & k \cdot v i s ; s) \\ & \left(\mathrm{m}^{2} / \mathrm{s}\right) \end{aligned}$	$\begin{aligned} & \text { Tdp } \\ & \text { (C) } \end{aligned}$	$\underset{(\mathrm{kg} / \mathrm{m}}{\mathrm{den}}$	$\text { 3) } \begin{aligned} & k . v i s \\ & (m-2 / s) \end{aligned}$
1	98713.0	12.2	1.1517	0.000015	. 8	1.2654	0.00001347
2	98103.4	12.2	1.1531	0.00001576	-9.4	1.2928	0.00001291
3	97595.5	12.8	1.1432	0.00001593	. 9	1.2716	0.0000132

Regression Results Using the Model $D P=a+(b * h)$

Rep NPA C.I. Slope C.l. $\mathrm{P}^{\wedge} 2$ Dden-reg Dden-temp

1	3.102	0.020	-1.0744	0.0133	0.99946	0.1095	0.1093
2	2.581	0.014	-1.2730	0.0115	0.99971	0.1298	0.1330
3	2.689	0.020	-1.2007	0.0155	0.99941	0.1224	0.1212

Table E. 3a
Test ID. $=$ NCT3
Dala al Time 80 min .

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$\text { (C) }{ }^{T e}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$\text { (C) }{ }^{T}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$		$\text { (C) }{ }^{\mathrm{Tc}}$
0.052	2.47	22.0	0.4	2.53	23.1	1.7	2.27	21.2	-0.4
0.305	2.27			2.40			2.13		
0.610	2.00	22.6	0.4	2.13	23.6	1.8	1.87	21.8	-0.8
0.914	1.73			1.87			1.60		
1.219	1.47	21.9	0.1	1.60	22.8	2.0	1.33	21.0	-0.6
1.524	1.17			1.33			1.07		
1.829	0.88	22.5	0.9	1.07	24.0	2.4	0.80	21.8	-0.1
2.134	0.65			0.80			0.53		
2.438	0.41	23.0	1.1	0.53	24.0	2.7	0.27	22.1	0.1
2.743	0.13			0.27			0.00		
3.048	-0.13	23.4	1.1	0.00	24.3	2.9	-0.27	22.8	0.2
3.353	-0.49			-0.20			-0.53		
3.658	-0.73	22.9	1.2	-0.47	23.8	2.9	-0.73	22.1	0.2
3.962	-0.99			-0.73			-1.07		
4.267	-1.27	23.1	1.2	-1.00	23.9	2.7	-1.33	22.2	0.2
4.572	-1.53			-1.27			-1.60		
4.877	-1.87	23.4	1.2	-1.53	24.4	3.1	-1.81	22.7	0.4
4.959	-1.93		1.5	-1.67		4.4	-2.13		0.6
MEANS	---->	$\begin{aligned} & 22.7 \\ & \mathrm{DT}=21.8 \mathrm{C} \end{aligned}$			$\begin{aligned} & 23.7 \\ & \mathrm{DT}=21.1^{2.6} \mathrm{C} \end{aligned}$			$\begin{aligned} & 21.9-0.0 \\ & \mathrm{DT}=22.0 \mathrm{C} \end{aligned}$	

Mean Alr Propertiea
Warm Room
Warm Room k,vis. Tdp Cold Room

l $97324.6 \quad 14.41 .13390 .00001610 \quad 75 \% 1.23170 .00001396$ | 2 | 98713.0 | 15.0 | 1.1458 | 0.00001598 | Sat |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 97595.5 | 12.8 | 1.1427 | 0.00001594 | 0.00001393 |

Regression Resulis Using the Model DP=a+(b*h)
Rep NPA C. Slope C. 1 .
 $\begin{array}{lllllll}2.844 & 0.017 & -0.8984 & 0.0097 & 0.99958 & 0.0914 & 0.0908\end{array}$ $\begin{array}{llllllll}2 & 3.078 & 0.017 & -0.8557 & 0.0091 & 0.99959 & 0.0872 & 0.0883 \\ 3 & 2.729 & 0.031 & -0.8787 & 0.0174 & 0.99861 & 0.0896 & 0.0924\end{array}$

Table E. 3 t

	Rep 1			Rep 2			Rep 3		
Elev. (m)	$\underset{(\mathrm{Pa})}{\mathrm{DP}}$	Tw	$(\mathrm{C})^{\mathrm{Tc}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	Tw	$(\mathrm{C})^{\mathrm{Te}}$	$\begin{gathered} \mathrm{DP} \\ (\mathrm{~Pa}) \end{gathered}$	T_{w}	$(\mathrm{c})^{\mathrm{Tc}}$
0.052	4.53	20.8	-14.9	4.40	21.8	-15.5	4.27	21.3	-15.0
0.305	4.27			4.00			4.00		
0.610	3.87	21.4	-14.8	3.53	22.1	-15.2	3.80	21.9	-15.0
0.914	3.40			3.00			3.07		
1.219	3.00	20.3	-15.0	2.53	21.4	-15.1	2.60	20.9	-14.9
1.524	2.53			2.07			2.00		
1.829	2.07	21.3	-14.2	1.60	22.0	-14.5	1.47	21.8	-14.2
2.134	1.47			1.07			1.00		
2.438	1.07	21.1	-14.1	0.60	22.6	-14.3	0.53	22.3	-14.0
2.743	0.60			0.07			0.00		
3.048	0.07	22.0	-13.9	-0.33	22.9	-14.2	-0.40	22.7	-13.8
3.353	-0.33			-0.87			-0.93		
3.658	-0.80	21.6	-13.8	-1.33	22.5	-14.1	-1.33	22.3	-13.9
3.962	-1.27			-1.87			-1.73		
4.267	-1.73	21.6	-13.5	-2.33	22.6	-13.9	-2.27	22.4	-13.8
4.572	-2.27			-2.80			-2.80		
4.877	-2.67	22.2	-13.6	-3.33	23.0	-13.2	-3.27	23.0	-13.1
4.959	-2.93		-10.8	-3.47		-11.1	-3.40		-11.0
MEANS	---->	$\begin{aligned} & 21 \cdot 1 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -13.8 \\ 35.2 \mathrm{C} \end{array}$		$\begin{aligned} & 22.3 \\ & \mathrm{DT}= \end{aligned}$	$\begin{array}{r} -14.1 \\ 36.1 \mathrm{C} \end{array}$		22.1	$\begin{array}{r} -13.8 \\ 35.9 \mathrm{C} \end{array}$

Mean A1r Properties
Warm Room
Cold Room
Rep $\quad \mathrm{BP}$ Twb den. k.vis. Tdp den. k.vis
 $97324.6 \quad 13.31 .14020 .00001596-17.61 .30650 .00001280$ $3 \quad \begin{array}{lllllll}97324.6 & 15.0 & 1.1341 & 0.00001608 & -18.4 & 1.3079 & 0.00001258 \\ 97832.5 & 15.0 & 1.1408 & 0.00001598 & -18.4 & 1.3135 & 0.000001253\end{array}$ Regression Resulls Using the Model DP=a $+\left(b{ }^{\circ} h\right)$
 Rep NPA C.I. Slope C.I. $r^{\wedge} 2$ Dden-reg Dden-temp

1	3.120	0.023	-1.5322	0.0223	0.99925	0.1562	0.1564
2	2.808	0.008	-1.8001	0.0078	0.99991	0.1631	0.1612
3	2.806	0.022	-1.5834	0.0226	0.99928	0.1614	0.1598

APPENDIX F

ERROR ANALYSIS

An analysis of the propagation of the errors in measurement was performed for the calcalation of the mass flow rate through each of the defined openings (\dot{m}_{j}), the summation of the mass flow rates (Σ \dot{m}_{j}), the calculation of the infiltration rate (IR), and the prediction of the elevation of the NPA (NPA. PRED). The uncertainty analysis mas based upon the methods presented by Holman (1978). Uncertainty of the Cross-Sectional Area and the Area-Gamma Product.

The cross-sectional area (A) of the rectangalar openings was simply the prodact of the thickness, d, and the width, W. Therefore, the uncertainty in computing the area from the measared dimensions was founded by:

$$
\begin{equation*}
u_{A}=\sqrt{\left(u_{d} \frac{\partial A}{\partial d}\right)^{2}+\left(u_{W} \frac{\partial A}{\partial w}\right)^{2}} \tag{F.1}
\end{equation*}
$$

The uncertainty in the measurement of each of the cross-sectional dimensions (u_{d} and $u_{\|}$) was ± 0.254 mm ($\pm 0.01 \mathrm{in}$). The resalting equation for the uncertainty in the area was given by:

$$
\begin{equation*}
u_{A}=\sqrt{\left(u_{d}\right)^{2}+\left(u_{\nabla} d\right)^{2}} \tag{F.2}
\end{equation*}
$$

If was found that u_{A} was $\pm 1.27 \mathrm{~cm}^{2}$ for all of the rectangalar openings. The greatest source of error was the uncertainty associated mith the slot thickness. Also, it mas determined that the uncertainty of A in percent was almost identical to the uncertainty of d in percent. That is,

$$
\begin{equation*}
u_{A}=\left(u_{d} / d\right) \not 100 \tag{F.3}
\end{equation*}
$$

The uncertainty in the area of the cylindrical openings was only a function of the uncertainty in the measurement of the diameter D. The uncertainty of D was also ± 0.254 mm. As a result, $u_{A} f o r$ the cylindrical openings was computed as follows:
$u_{A}=u_{D}|\partial A / \partial D|=u_{D}(\pi D / 2)$
The equation for the uncertainty of the area-gamma product for both the rectangular and the cylindrical openings was:
$u_{(A \gamma)}=\sqrt{\left(a_{A} \gamma\right)^{2}+\left(u_{\gamma} A\right)^{2}}$
The geometric parameter, gamma, for a rectangalar opening was defined in equation 3.24 as;

$$
\gamma=\frac{\alpha}{B z(1+\alpha)^{2}}
$$

Where; $\alpha=d / \omega$ (equation 3.10), and

$$
B=96-106.67 a \text { (equation 3.3). }
$$

The uncertainties of gamma for the rectangalar openings were determine by the following equation:

$$
\begin{aligned}
u_{\gamma} & =\sqrt{\left(u_{\alpha} \frac{\partial \gamma}{\partial \alpha}\right)^{2}+\left(u_{z} \frac{\partial \gamma}{\partial z}\right)^{2}+\left(\begin{array}{l}
u_{B} \\
\\
\frac{\partial \gamma}{\partial B}
\end{array}\right)^{2}} \\
\text { where; } u_{\alpha} & =\sqrt{\left[u_{d}(1 / \omega)\right]^{2}+\left[u_{W}\left(-d / w^{2}\right)\right]^{2}}= \pm 5.08 \times 10^{-4} \\
u_{z} & = \pm 2.54 \times 10^{-4} \mathrm{~m}, \text { and } \\
u_{B} & =u_{\alpha} * 106.67= \pm 0.054 .
\end{aligned}
$$

The uncertainties in gamma for the rectangalar openings ranged from ± 5 percent for opening H (the 1 argest opening) to ± 31.6 percent for opening A (the smallest opening). The greatest source of error was ${ }^{n_{\alpha}}$.

The defining equation of gama for the cylindrical openings was given in equation 3.29 as:

$$
\gamma=\frac{1}{B \pi z}
$$

Where, the value of B was equal to 64 and z was equal to 5.08 x $10^{-2} \mathrm{~m}$ for each of the cylindrical openings. Consequently, the uncertainty in γ was a constant for all of the cylindrical openings given by:

$$
\begin{equation*}
u_{z}=u|\partial \gamma / \partial z|= \pm 4.89 \times 10^{-4} \mathrm{~m}^{-1} \tag{F.7}
\end{equation*}
$$

where; $u_{z}= \pm 2.54 \times 10^{-4} \mathrm{~m}$.
Since, all of the cylindrical openings had a value of γ equal to $979.05 \times 10^{-4} \mathrm{~m}^{-1}$ the oncertainty in γ was ± 0.5 percent.

The uncertainties in the cross-sectional area (A) and the area-gamma product (Ay), for all of the defined openings have been presented in Table F.1.

Table F. 1
Uncertainties in A and (Ay) for Each of the Defined Openings

Opering ID.	$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~cm}^{2}\right) \end{gathered}$	$\begin{aligned} & u_{A} \\ & \left(\%_{0}\right) \end{aligned}$	$\begin{gathered} (\mathrm{A} \gamma) \\ \times 10^{-5}(\mathrm{~m}) \end{gathered}$	${ }^{u}(A \gamma)$ (\%)
A	4.00	31.7	0.026	44.8
B	8.50	14.9	0.059	21.1
C	10.00	12.7	0.327	18.0
D	16.50	7.7	0.253	10.9
E	31.45	4.0	0.459	5.6
F	64.31	2.0	3.343	2.8
H	80.02	1.6	2.097	2.2
X	0.32	8.0	0.313	8.0
Y	1.27	4.0	1.243	4.0
Z	20.27	1.0	19.845	1.1

Uncertainty in the Calculation of the Air Properties

The equations used to compute the dynamic viscosity (μ), the density (ρ) and the kinematic viscosity (ν) have been provided in Appendix C.

Equation C. 1 indicates that the dynamic viscosity is a function of the dry-bulb temperature of the air (T_{db}). It was assumed that the thermocouples used to measure the dry bulb temperature had an
 error in $T_{d b}$ would result in an mertainty of μ equal to $\pm 3.0 x$ $10^{-8}\left(\mathrm{~N}^{*} \mathrm{~s} / \mathrm{m}^{2}\right)$.

The density was computed by inverting the specific volume ($\nabla_{s p}$) of the air as computed by equation C.2. The uncertainty in the specific volume in percent was equal to the meertainty in the density in percent. The mocertainty in the specific volume was computed from the following relationship:

$$
\begin{equation*}
u_{v_{s p}}=\left[\left(u_{T_{d b}} \frac{\partial v_{s p}}{\partial T_{d b}}\right)^{2}+\left(u_{W} \frac{\partial v_{s p}}{\partial W}\right)^{2}+\left(u_{B P} \frac{\partial v_{s p}}{\partial B P}\right)^{2}\right]^{1 / 2} \tag{F.8}
\end{equation*}
$$

Where; $u_{B P}=$ uncertainty in the local barometric pressure, and
$u_{W}=$ uncertainty in the humidity ratio.
Since the mean barametric.pressure was used for each day on which data were taken the uncertainty in the barometric pressure was assumed to be ± 1.0 percent based npon the means and standard deviations of the individual readings. The humidity ratio (W) of the air in the warm room was computed using equation C. 3 and the uncertainty in W for the air in the warm room was determined by:

$$
\begin{equation*}
u_{W}=\sqrt{\left(u_{T_{d b}} \frac{\partial W_{d b}}{\partial T_{d b}}\right)^{2}+\left(u_{T_{w b}} \frac{\partial W}{\partial T_{w b}}\right)^{2}+\left(u_{W *} \frac{\partial W_{s}}{\partial W_{s}}\right)^{2}} \tag{F.9}
\end{equation*}
$$

Where; $a_{T_{w b}}=$ the uncertainty of the wet-bulb temperatare,
$0_{W} *=$ the ancertainty of the humidity ratio corresponding to saturation at $T_{\text {wb }}$ 。

The uncertainty in the wet-bulb temperature measorement was assumed to be $\pm 1.0^{\circ} \mathrm{C}$. The uncertainty in W_{s}^{*} corresponding to a $1.0^{\circ} \mathrm{C}$ error in $T_{w b}$ was determined to be ± 7.0 percent fram the regression equations given by equation C. 4 .

The humidity ratio of the air in the cold room was equal to the humidity ratio corresponding to the denpoint temperatare (T_{dp}) . The error in $T_{\text {dp }}$ was assumed to be $\pm 1.0^{\circ} \mathrm{C}$. The uncertainty in the humidity ratio (\mathbb{T}_{S}) corresponding to a $1.0^{\circ} \mathrm{C}$ error in T_{dp} was determined from the regression equations given by equation C. 5 to be ± 10.0 percent.

The resulting uncertainty in the density (ρ) of both the wam and the cold air was ± 1.03 percent. The greatest source of error was due to the uncertainty of the baranetric pressure measurements.

The kinematic viscosity, V, was defined in equation C. 6. The uncertainty in was found to be ± 1.04 percent.

Uncertainty in the Calculation of the Discharge Coefficient

The discharge coefficient equation was given as (equation 3.26):

$$
\begin{aligned}
& \quad \frac{1}{C_{z}^{2}}=\frac{2 K}{\left[1+(A \gamma)^{2} \frac{128 K \Delta P}{\rho V^{2}}\right]^{0.5}-1}+K \\
& \text { Where; } K=1.5 .
\end{aligned}
$$

The uncertainty in the squsred inverse of the discharge
coefficient $\left(1 / C_{z}^{2}\right)$ was compated by the following expression:

$$
\begin{aligned}
u_{1 / C_{z}^{2}} & =\left[\left(u_{(A \gamma)} \frac{\partial 1 / C_{z}^{2}}{\partial(A \gamma)}\right)^{2}+\left(u_{\Delta P} \frac{\partial 1 / C_{z}^{2}}{\partial \Delta P}\right)^{2}+\left(u_{\rho} \frac{\partial 1 / C_{z}^{2}}{\partial \rho}\right)^{2}\right. \\
& \left.+\left(u_{\nu} \frac{\partial 1 / C_{z}^{2}}{\partial \nu}\right)^{2}\right] 1 / 2
\end{aligned}
$$

where; $v_{\Delta P}=$ the oncertainty in the differential pressure
measurement.
The three scales used on the pressure transducer (MKS Baratron) had resolutions of $0.0001 \mathrm{~mm} \mathrm{Hg}(f a l l$ scale $=0.003 \mathrm{~mm} \mathrm{Hg}), 0.0002 \mathrm{~mm}$ Hg (full scale $=0.010 \mathrm{~mm} \mathrm{Hg}$) and 0.001 mm Hg (full scale $=0.03 \mathrm{~mm}$ Hg). Due to fluctuations in these very low differential pressure measarements, the smallest scale could only be read to the nearest $\pm 0.0002 \mathrm{~mm} \mathrm{Hg}(\pm 0.027 \mathrm{~Pa})$. As a result, two uncertainties were used for the differential pressure measurements as defined below:
for $\Delta P<1.33 \mathrm{~Pa} \quad_{\Delta P}= \pm 0.027 \mathrm{~Pa}(\pm 0.0002 \mathrm{~mm} \mathrm{Hg})$
for $\Delta P \geq 1.33 \mathrm{~Pa} \quad_{\Delta P}= \pm 0.133 \mathrm{~Pa}(\pm 0.001 \mathrm{~mm} \mathrm{Hg})$
It was desired to know the uncertainty in the discharge coefficient, C_{z} not $1 / C_{z}^{2}$. Therefore, the discharge coefficient, C_{z}, was expressed as follows:

$$
\begin{equation*}
c_{z}=\sqrt{1 / \lambda} \tag{F.11}
\end{equation*}
$$

where; $\lambda=1 / C_{z}^{2}$
The uncertainty in the discharge coefficient resulting from the propagation of uncertainties in measurements was determined by:

$$
\begin{equation*}
u_{C_{z}}=\left|n_{1 / C_{z}^{2}}\left(-\frac{1}{2} \lambda^{3 / 2}\right)\right| \tag{F.12}
\end{equation*}
$$

It was determined that the greatest source of error in the calculation of C_{z} (or $1 / C_{z}^{2}$) was due to the uncertainties associated with (Ay). The nert most important error was $\mathrm{u}_{\Delta \mathrm{P}}$.

The variation of the uncertainty of the discharge coefficient with respect to the pressure difference has been presented for each of the defined openings in Figure F.1.

Uncertainty of the Calculation of the Mass Flow Rate

The equation to compute the mass flow rate through an individual opening was given in equation 3.33 as:

$$
\dot{m}_{j}=\left(C_{z} A\right)_{j} \sqrt{2 \Delta P_{j} \rho_{j}}
$$

Where; $\dot{m}_{j}=$ the mass $f 10 w$ rate through the j th opening. Typical mass flow rates through each of the defined openings have beon provided in Figure F. 2 .

The uncertainty in the mass flow rate was determined as follows;

$$
\begin{equation*}
u_{\dot{m}}=\sqrt{\left(u_{A} \frac{\partial \dot{m}}{\partial A}\right)^{2}+\left(u_{c_{z}} \frac{\partial \dot{m}_{z}}{\partial \dot{C}_{z}}\right)^{2}+\left(u_{\Delta p} \frac{\partial \dot{m}_{m}}{\partial \Delta P}\right)^{2}+\left(u_{\rho} \frac{\partial \dot{m}}{\partial \rho}\right)^{2}} \tag{F.13}
\end{equation*}
$$

The variation of the uncertainty in the mass flow rate with respect to the pressure difference for each of the defined openings has been presented in Figure F.3. It was found that the greatest source of error in the computation of the mass flow rate was due to the uncertainty in the cross-sectional area. The next largest source of error was the uncertainty of C_{z}.

Uncertainty of the Sum of the Mass F1 on Rates

Theoretically, the NPA assumes an elevation such that the mass flow into a structure is equal to the mass flow out. Due to the errors of measurement the sum of the mass flow rates was not zerofor a magnitude of the uncertainty in the summation of the mass fiows due to the propagation of the uncertainties in measurement. The

Figure F.1a.

Figure F.1b.

Figure F. 1 Oncertainty in the discharge coefficient for each of the defined openings.

Figure F.2a.

Figure F. 2 Typical mass flow rates through the defined openings.

Figure F. 3 a.

Figure F.3b.

Figure F. 3 Uncertainty of the mass flow rate for each of the defined openings.
uncertainty of the sum of the mass flow rates about zerofor an opening distribution was estimated as follows:

$$
u_{\Sigma_{\text {un }}}=\left[\sum_{j=1}^{n}\left(\begin{array}{ll}
\mathrm{n} & \dot{m}_{j} \tag{F.14}
\end{array}\right)^{2}\right]^{1 / 2}
$$

Where; $\boldsymbol{n}_{\Sigma_{\dot{m}}}=$ the uncertainty in the sum of the mass flow rates for n openings,
 individual opening in the distribution (eq. F.13).

The infiltration rate was compated for each opening distribution as follows (equation 7.7):

$$
I R=\frac{\sum_{j=1}^{n}\left|\dot{m}_{j}\right|}{2}
$$

Therefore, the uncertainty in the sum of the mass flow rates was al so the estimate of the uncertainty in the calculation of the infiltration rate.

The sum of the mass flow rates, the uncortainty in the sum of the mass flow rates, and the infiltration rate using the measured differential pressures (IR. DATA) for each replication of each treatment have been presented in Table F. 2 (also refer to Figares 7.20 and 7.26). It was determined that the sum of the mass flow rates ($\Sigma \dot{m}_{j}$) was greater than $\sum_{i n}$ in only 7 of the 48 observations.

It should be noted that the mass flow rates of the hypothetical openings BGH and BGL are included in the values of $\Sigma \dot{m}_{j}$ and IR. DATA. The uncertainty in the sumation of the mass fiow rates

Table F. 2
Results of the Error Analysis on the Mass Balancing Procedure

- - Cases for which the 95\% confidence Interval (C.I.) and the uncertainty interyal (U.I.) did not overlap.
opening distribation.

Uncertainty of the Mass Balancing Procedure to Prodict the Elevation

 of the NPA.The meertainty of the sum of the mass flow rates was al so the means by which the uncertainty in the prediction of the NPA (NPA. PRED) due to the propagation of the errors of measurement could be estimated. The elevation of the NPA mas determined by iteratively balancing the sum of the mass flow rates to five decimal places (i.e. zero $\equiv \pm 0.000004 \mathrm{~kg} / \mathrm{s}$). An uncertainty interval (U.I.) about NPA. PRED was determined by iteratively balancing the sum of the mass flow rates until the sum of the mass flow rates was equal to the uncertainty in the sum of the mass flow rates. That is, until the following rolationship was satisfied (equation 7.6):

$$
\sum_{j}^{n} \dot{m}_{j}= \pm_{\Sigma \dot{m}}
$$

The upper limit of the uncertainty interval on NPA. PRED was the elevation of the NPA which corresponded to $\Sigma \dot{m}_{j}=-\mathrm{q} \sum_{\text {m }}$ and the lower limit was the elevation of the NPA which corresponded to $\sum \dot{m}_{\mathrm{j}}$ $=+u \Sigma \dot{\underline{m}}$.

As was shown in Appendix D, a 95 percent confidence interval (C. I.), based upon the variance about the regression 1 ine, was compated about each observed NPA (NPA. DATA). The values of NPA. DATA and NPA. PRED along with the corresponding confidence intervals (C.I.) and uncertainty intervals (U. I.) for the original sixteen treatments have al so been presented in Table F. 2 (also refer to Figares 7.21a throngh 7.21h). The only two cases for which the 95 percent
confidence interval (C. I.) of NPA. DATA and the uncertainty interval of NPA. PRED did not overlap were for G1H1T2 (Rep 1) and G1H1T3 (Rep 3). In each of these cases the observed elevation of the NPA was considerably higher than the other replications. The additional error for the two cases was believed to be due to the results of the variation of the background leakage.

APPENDIX G

DATA FOR THE VALIDATION OF THE DISCHARGE COEFFICIENT EQUATION

```
Definition of the symbols used in the tables
    BP - Local barometrio pressure, Pa
    C - Temperature, degree Celsius
    DYN.VISC - Dyramic viscosity, N*s/m
    KIN.VISC - Kinematic viscosity, m2/s
    Tdb - Dry bulb tempesatore
    Q - Volumetric flow rate, m}\mp@subsup{|}{}{3/s
    Re - Reynolds number
    STD - Standard deviation
    C.V. - Coefficient of variation, %
    W - Hmmidity ratio, kg.m/kg
    (1/C C ^ 2) - Total dimensionless presenure drop
    B(z/D DRe) - Dimensionless friction loss
    K - Total minor loss coefficient
```

Table G. 1 Differential Pressure, Volumetric Flow, and Air Properties Data

Table G.1a

DATA FOR OPENING A		$A R E A=4.00\left(\mathrm{Cra}^{-2}\right)$$\text { CAMMA }=6.55 \times 10^{-}-4\left(m^{\wedge}-1\right)$				
REP	BP (Pa)	Tab (C)	Twb (C)			
1	97951.03	24.4	12.2			
2	97849.44	25.3	13.3			
3	97883.31	25.6	13.3			
4	97883.31	25.8	13.3			
MEAN	97891.78	25.3	13.1			
STD	52.26	. 6	.56			
C. V-\%	. 05	2.37	4.26			
REP	$\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}$	$\begin{gathered} \text { DENSITY } \\ \mathrm{kg} / \mathrm{m}^{\wedge} 3 \end{gathered}$	DYN.VISC N* $\mathrm{S} / \mathrm{m}^{\wedge}{ }^{2}$	$\begin{array}{r} \text { XIN.VISC } \\ \mathrm{m}^{2} 2 / \mathrm{s} \end{array}$		
1	. 0039189	1.1394	. 0000183	. 0000161		
2	. 0046946	1.1337	. 0000184	. 0000162		
3	.0045822	1.1332	. 0000184	.0000162		
4	. 0044698	1.1324	. 0000184	.0000163		
MEAN	.0044164	1.1347	. 0000184	.0000162		
STD	.0003441	. 0032	$2.917 e-8$	$7.068 e^{-8}$		
C.V. -1	7.79	. 28	.16	. 44		
			PRESSURE D	DIFFERENCE	(Pa)	
Q (mash)	Re	REP1	REP2	REP3	REP4	MEAN
.0000777	19	1.74	1.92	1.57	1.97	1.80
. 0001582	39	3.54	3.87	3.52	3.82	3.68
.0002326	57	5.46	5.76	5.31	5.76	5.57
.0003072	76	7.40	7.65	7.15	7.70	7.47
.0003835	95	9.50	9.81	9.29	9.72	9.58
.0004703	116	11.96	12.38	11.81	12.13	12.07
. 0005490	135	14.23	14.72	14.15	14.58	14.42
.0006306	155	16.74	17.17	16.57	17.12	16.90
.0007134	176	19.31	19.86	18.98	19.46	19.40
.0007994	197	22.12	22.77	22.07	22.32	22.32
.0009439	233	25.43	25.33	25.01	25.18	25.24
.0011012	271	30.42	30.62	29.99	30.31	30.33
. 0012585	310	35.55	35.82	34.87	35.35	35.40
. 0014159	349	41.00	41.40	40.30	40.93	40.91
.0015732	388	46.38	46.78	45.66	46.41	46.31
. 0017305	426	53.03	53.16	51.76	52.78	52.68
. 0018878	465	59.86	59.76	58.34	59.48	59.36
.0020451	504	66.36	66.46	64.89	65.86	65.89
.0022024	543	72.53	73.10	72.11	71.61	72.34
.0023597	582	80.00	81.65	79.06	80.95	80.42

Table G.1b

DATA POR	OPENING B	AREA=8.50 ($\left.\mathrm{cm}^{2} 2\right)$ CAMMA $6.95 \times 10^{-}-4\left(m^{n}-1\right)$				
REP	BP (Pa)	rdb (c)	Twb (C)			
1	98120.36	25.0	13.9			
2	98221.94	25.6	13.3			
3	98425.13	24.4	13.3			
4	98289.68	25.6	14.4			
MEAN	98264.28	25.14	13.75			
STD	122.55	. 53	. 53			
C.V. ${ }^{\text {\% }}$. 13	2.12	3.87			
REP	$\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}$	$\begin{aligned} & \text { DENSITY } \\ & \mathrm{kg} / \mathrm{to}^{\wedge} 3 \end{aligned}$	$\begin{gathered} \text { DYN. VIGC } \\ \mathrm{N}^{*} \mathrm{~s} / \mathrm{m}^{-} 2 \end{gathered}$	$\begin{array}{r} \text { RIN. VISC } \\ m=2 / 5 \end{array}$		
1	. 0053820	1.1366	. 0000184	. 0000162		
2	. 0045822	1.1371	. 0000184	. 0000162		
3	. 0050322	1.1429	.0000183	. 0000161		
4	. 0057442	1.1358	. 0000184	. 0000162		
MEAN	.0051852	1.1381	. 0000184	. 0000161		
STD	.0004961	. 0032	$2.433 \mathrm{e}-86$	$6.608 e^{-8}$		
C.V.-8	9.57	. 28	.13	. 41		
			PRESSURE DI	DIFEERENCE	(Pa)	
Q (mash ${ }^{4}$)	Re	REP1	REP2	REP3	REP4	MEAN
.0003072	76	1.18	1.42	2.40	1.57	1.39
.0003835	95	1.54	1.77	1.77	1.94	1.75
.0004703	116	2.09	2.24	2.27	2.39	2.25
.0005490	135	2.49	2.79	2.82	2.89	2.75
.0006306	156	2.97	3.22	3.29	3.27	3.18
.0007134	176	3.42	3.67	3.74	3.87	3.67
.0007994	197	3.89	4.28	4.33	4.43	4.23
.0009439	233	4.61	4.98	4.93	5.11	4.91
.0011012	272	5.78	6.08	6.01	6.18	6.01
. 0022585	311	6.95	7.12	7.05	7.05	7.04
.0014159	349	8.10	8.17	8.20	8.27	8.18
. 0015732	388	9.15	9.32	9.32	9.27	9.26
.0017305	427	10.49	10.71	10.71	10.66	10.64
. 0018878	466	11.98	12.23	12.11	12.18	12.12
. 0020451	505	13.48	13.63	13.30	13.50	13.48
. 0022024	544	14.90	15.27	14.77	15.10	15.01
. 0023597	582	16.62	17.07	16.77	16.72	16.79
. 0025171	621	18.18	18.43	18.41	18.36	18.34
. 0026744	660	19.85	20.28	19.95	20.05	20.03
. 0028317	699	21.40	22.15	21.80	21.65	21.75
.0029890	738	23.34	23.89	23.36	23.51	23.52
.0031463	777	25.46	25.90	25.41	25.26	25.51

Table G.Ic

DATA FOR O	OPENING C	AREA=10.00 ($\left.\mathrm{cm}^{\wedge} 2\right)$ GAMMA $=32.68 \times 10^{-1}-4\left(m^{n}-1\right)$				
REP	BP (Pa)	Tdb (C) Twb (C)				
1	97951.03	24.4	20.6			
2	98594.46	26.1	21.7			
3	98560.59	26.1	22.2			
4	98594.46	25.0	21.1			
MEAN STD C.V. -8	$\begin{array}{r} 98425.12 \\ 317.86 \\ .32 \end{array}$	$\begin{array}{r} 25.4 \\ .83 \\ 3.28 \end{array}$	21.4			
			. 72			
			3.35			
REP	W	$\begin{gathered} \text { DENSITY } \\ \mathrm{kg} / \mathrm{m}^{2} 3 \end{gathered}$	$\begin{array}{rr} \text { DYN.VISC } & \text { RIN.VISC } \\ N^{\star} \mathrm{s} / \mathrm{m}^{\wedge} 2 & \mathrm{~m} \end{array}$			
	kg.w/kg					
1	. 0136627	1.1220	. 0000183	. 0000164		
2	. 0145503	1.1215	.0000184	. 0000164		
3	. 0153712	1.1197	. 0000184	. 0000165		
4	. 0142131	1.1263	. 0000184	.0000163		
MEAN STD C.V. -8	. 0144493	$\begin{array}{r} 1.1223 \\ .0028 \\ .25 \end{array}$	$\begin{array}{r} .0000184 \\ 3.989 e-8 \\ .22 \end{array}$	$\begin{array}{r} .0000164 \\ 6.664 e-8 \\ .41 \end{array}$		
	.0007153					
	4.95					
Q (ma/s ${ }^{\text {a }}$)	Re	PRESSURE DIFFERENCE (PA)				MEAN
		REPI	REP2	REP3	REP4	
.0023597	574	5.81	5.91	5.88	5.86	5.86
. 0028317	688	8.02	8.25	8.15	8.20	8.15
.0033036	803	10.91	11.19	10.86	11.19	11.04
.0037756	918	13.50	14.23	14.05	14.15	13.98
.0042475	1033	16.42	17.36	17.06	17.31	17.04
.0047195	1147	19.43	21.28	19.81	20.35	20.21
.0056634	1377	27.68	28.27	27.85	28.35	28.03
.0066073	1606	35.32	37.29	35.92	37.41	36.48
.0075512	1836	44.16	47.35	46.28	47.40	46.30
. 0084951	2065	54.92	58.96	57.24	58.98	57.52
.0094390	2295	66.88	71.53	69.07	71.23	69.68
. 0103829	2524	78.11	88.92	82.44	84.29	83.44

Table G.1d

DATA POR OPENING D
AREA=16.50 ($\mathrm{cm}^{\text {n }} 2$) $G A M M A=15.36 \times 10^{-}-1\left(\mathrm{~m}^{-}-1\right)$

	REP	BP (Pa)	Tdb (c)	Twb (C)
	1	98086.49	24.4	21.7
	2	98492.86	25.6	22.2
	3	98594.46	24.4	22.2
	4	98628.31	25.0	21.1
mean		98450.53	24.9	21.8
STD		247.87	. 5	. 53
C.V.-i		. 25	2.14	2.44

	REP	$\underset{\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}}{\mathrm{H}}$	DENSITY	DYN. VISC N* $\mathrm{B} / \mathrm{m}^{\text {² }}$	$\begin{array}{r} \text { KIN. VISC } \\ -2 / 8 \end{array}$
	1	. 0152472	1.1207	. 0000183	. 0000164
	2	. 0156038	1.1206	. 0000184	. 0000164
	3	. 0160697	1.1251	. 0000183	. 0000163
	4	. 0142131	1.1267	. 0000184	. 0000163
MEAN		. 0152835	1.1233	. 0000184	. 0000164
STD		. 0007890	. 0031	2.433e-8	5.441e-8
C.V.-1		5.16	. 28	. 13	. 33

	URE DIPference (Pa)					
Q (m^3/8)	Re	REP1	REP2	REP3	REP4	mean
. 0023597	573	3.27	3.02	3.49	3.29	3.27
. 0028317	688	4.19	4.06	4.58	4.46	4.32
. 0033036	803	5.53	5.61	6.08	6.03	5.81
. 0037756	917	7.05	7.15	7.72	7.57	7.37
. 0042475	1032	8.52	8.82	9.29	9.22	8.96
. 0047195	1147	10.29	10.44	11.01	10.84	10.64
. 0056634	1376	13.93	14.37	15.02	14.85	14.54
. 0066073	1606	18.96	18.76	19.36	19.61	19.17
. 0075512	1835	24.29	23.54	24.16	24.36	24.09
. 0084951	2064	28.32	29.19	29.27	30.09	29.22
. 0094390	2294	33.11	34.30	35.07	36.31	34.70
. 0103829	2523	39.20	40.13	41.65	42.79	40.94
. 0113268	2752	44.96	47.45	48.80	49.14	47.58
. 0122707	2982	53.10	55.22	55.89	58.01	55.56
. 0132146	3211	61.15	61.92	64.41	66.43	63.47
. 0141585	3411	69.07	71.16	73.46	74.65	72.08

Table G.1e

DATA FOR OPENING E \quad AREA=31.45 (cm²) GAMRA=14.60×10-4 (mn-1)

	REP	BP (Pa)	Tdb (C)	Twb (C)
	1	98391.28	26.1	22.8
	2	98594.46	26.1	22.2
	3	98526.72	26.1	22.2
	4	98594.46	26.1	22.8
MEAN		98526.72	26.1	22.5
STD		104.51	. 00	. 32
C. $\mathrm{v}-\mathrm{B}$. 11	. 00	1.43

	HEP	$\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}$	$\begin{gathered} \text { DENSITY } \\ \mathrm{kg} / \mathrm{m}^{-3} \end{gathered}$	$\begin{gathered} \text { DYN. VISC } \\ N^{\star} s / m^{-2} \end{gathered}$	$\begin{array}{r} \text { KIN. VISC } \\ m=2 / 8 \end{array}$
	1	. 0162129	1.1163	. 0000184	. 0000165
	2	. 0153712	1.1200	. 0000181	. 0000165
	3	. 0153712	1.1193	. 0000184	. 0000165
	1	. 0162129	1.1186	.0000184	. 0000165
mean		. 0157921	1.1185	. 0000184	. 0000165
STD		. 0004860	. 0016	0	$2.508 \mathrm{e}-8$
c.v.-1		3.08	. 15	. 00	. 15

| | PRESSURE DIFFERENCE (Pa) | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Q $\left(\mathrm{M}^{\wedge} 3 / \mathrm{S}\right)$ | Re | REP1 | REP2 | REF3 | REP4 | MEAN |
| .0028317 | 680 | 1.35 | 1.64 | 1.44 | 1.42 | 1.46 |
| .0047195 | 1133 | 3.24 | 3.47 | 3.39 | 3.29 | 3.35 |
| .0066073 | 1587 | 5.73 | 6.33 | 5.88 | 6.16 | 6.02 |
| .0084951 | 2040 | 8.95 | 9.68 | 9.64 | 9.37 | 9.41 |
| .0103829 | 2493 | 12.78 | 12.98 | 13.10 | 13.58 | 13.11 |
| .0122707 | 2947 | 17.02 | 17.34 | 17.177 | 18.06 | 17.39 |
| .0141585 | 3400 | 22.62 | 22.54 | 22.69 | 23.76 | 22.90 |

Table G. 1 f

dATA FOR OPENING P
AREA=64.31 ($\left.\mathrm{cm}^{\wedge} 2\right)$
Twb (C)

	REP	BP (Pa)	Tdb (C)	Twb (C)
	1	98594.46	26.7	22.8
	2	98628.31	26.1	22.2
	3	98594.46	26.1	22.2
	4	98594.46	27.8	21.7
MEAN		98602.92	26.7	22.2
STD		16.91	. 8	. 5
C.V.-1		. 02	2.9	2.0

	REP	$\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}$	DENSITY kg/m ${ }^{\text {^ }}$	DYN.VISC $\mathrm{N}^{*} \mathrm{~B} / \mathrm{m}^{\mathrm{m}} 2$	$\begin{array}{r} \text { RIN. VISC } \\ \text { m^2/8 } \end{array}$
	1	. 0159799	1.1169	. 0000185	. 0000165
	2	. 0153712	1.1204	. 0000184	. 0000164
	3	. 0153712	1.1200	. 0000184	. 0000165
	4	. 0138552	1.1165	. 0000185	. 0000166
MEAN		. 0151443	1.1185	. 0000185	. 0000165
STD		. 0009061	. 0021	3.7e-8	6.114e-8
C.V.-1		5.98	. 19	. 20	. 37

	UURE DIFPERENCE (Pa)					
$0(\mathrm{ma} 3 / \mathrm{s})$	Re	REP1	REP2	REP3	REP4	hean
. 0084951	2014	1.74	1.57	1.72	1.57	1.65
. 0103829	2461	2.59	2.37	2.44	2.27	2.42
. 0122707	2909	3.32	3.19	3.32	3.19	3.25
. 0141585	3356	4.33	4.16	4.33	4.09	4.23

Table G.1g

DATA FOR OPENING G AREA=67.01 ($\left.\mathrm{cm}^{\wedge} 2\right)$

	REP	BP (Pa)	Tdb (C)	Twb (C)
	1	97781.72	26.7	21.1
	2	98594.46	25.0	21.1
	3	98662.18	25.6	22.2
	4	98662.18	26.1	21.7
mean		98425.13	25.8	21.5
STD		429.33	. 7	. 53
C.V.-		. 44	2.78	2.47

	REP	kg.w/kg	$\begin{gathered} \text { DENSITY } \\ \mathrm{kg} / \mathrm{m}^{-3} \end{gathered}$	$\begin{gathered} \text { DYN. VISC } \\ N^{*} s / m^{\wedge} 2 \end{gathered}$	$\begin{array}{r} \text { KIN. VISC } \\ \operatorname{m}^{\wedge} 2 / 8 \end{array}$
	1	. 013518	1.1120	. 0000185	. 0000166
	2	.0142131	1.1263	. 0000184	. 0000163
	3	. 0156038	1.1225	.0000184	. 0000164
	4	.0145503	1.1223	. 0000184	. 0000161
MEAN		.0144714	1.1207	. 0000184	. 0000164
STD		. 0008686	. 0062	3.441e-8	. 0000001
C.V.-1		6.00	. 55	. 19	. 72

	NCE (Pa)					
0 ($\mathrm{m}^{-3 / 8}$)	Re	REP1	REP2	REP 3	REP4	mean
. 0084951	2014	1.74	1.64	1.82	1.89	1.77
. 0103829	2462	2.42	2.57	2.57	2.57	2.53
. 0122707	2910	3.34	3.27	3.47	3.52	3.40
.0141585	3357	4.38	4.28	4.63	4.51	4.45

DATA FOR OPRNING XI
AREA=0.32 (cm-2
CAMMA $=979.05 \times 10^{\wedge}-1\left(m^{\wedge}-1\right)$

	REP	BP (Pa)	Tdb (C)	Twb (c)
	1	97849.44	24.4	13.6
	2	97883.31	25.8	13.9
	3	97951.03	26.1	16.1
	4	97951.03	26.4	13.3
mean		97908.71	25.7	14.2
STD		52.26	. 86	1.27
C.V.-8		. 05	3.36	8.92

	REP	kg.w/kg	$\begin{aligned} & \text { DENSITY } \\ & \mathrm{kg} / \mathrm{m}^{\prime}{ }^{\text {a }} \end{aligned}$	$\begin{aligned} & \text { DYN.VISC } \\ & N^{\star}+\mathrm{B} / \mathrm{m}^{-} 2 \end{aligned}$	KIN.VISC - ${ }^{-2 / s}$
	1	. 0053183	1.1357	. 0000183	. 0000162
	2	. 0050440	1.1313	. 0000184	. 0000163
	3	. 0073625	1.1269	. 0000184	. 0000164
	4	. 0042451	1.1315	. 0000184	. 0000163
mean		. 0054925	1.1313	. 0000184	. 0000163
STD		. 0013272	. 0036	3.989e-8	$8.297 e-8$
C.V.-t		24.16	. 32	. 22	. 51

Q (mas a	PRESSURE DIPFERENCE (Pa)					
	Re	REP1	REP2	REP3	REP4	mean
. 0000777	958	9.15	9.20	9.37	9.24	9.24
. 0001582	1950	30.69	31.49	31.11	30.76	31.01
. 0002326	2867	62.92	62.80	62.12	61.32	62.29

DATA FOR OPENING X2

		BP (Pa)	Tdb (c)	Twb (C)
	1	97917.18	24.4	14.4
	2	97815.59	24.4	13.9
	3	97883.31	25.6	14.2
	1	97883.31	25.8	16.7
meam		97874.84	25.1	14.8
STD		36.95	. 73	1.27
C.V.-1		. 04	2.91	8.59

	REP	$\underset{\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}}{\mathrm{~W}}$	DENSITY $\mathrm{kg} / \mathrm{m}^{\wedge}$	DYN. VISC $\mathrm{N}^{*} \mathrm{~s} / \mathrm{m}^{\wedge} 2$	kin.visc m ${ }^{\text {A }}$ /s
	1	. 0061961	1.1349	. 0000183	. 0000162
	2	. 0056075	1.1348	. 0000183	. 0000162
	3	. 0054488	1.1317	. 0000184	. 0000163
	4	. 0081199	1.1258	. 0000184	. 0000164
mean		. 0063431	1.1318	. 0000184	. 0000162
STD		. 0012274	. 0043	$3.387 \mathrm{e}-8$	$8.982 \mathrm{e}-8$
C.V.-		19.35	. 38	. 18	. 55

	PRESSURE DIPPERENCE (?a)					
Q (man ${ }^{\text {a }}$)	Re	REP1	REP2	REP3	REP4	mean
. 0000777	960	10.71	8.80	8.75	8.84	9.27
. 0001582	1953	31.98	29.32	29.37	30.19	30.21
.0002326	2872	62.47	58.39	58.23	58.56	59.41

Table G．15

DATA FOR OPENING YI
AREA＝1．27（Cm²）
GAMMA $=979.05 \times 10^{2}-4\left(\mathrm{~m}^{\mathrm{n}}-1\right)$

	REP	BP（Pa）	Tab（c）	Twb（c）
	1	97849．44	25.3	12.5
	2	97917.18	25.6	12.8
	3	97951.03	26.1	12.2
	4	97951.03	27.2	13.1
mean		97917.18	26.0	12.6
STD		36.95	． 86	． 36
c．v．－8		． 04	3.30	2.84

	REP	$\mathrm{kg} \cdot \mathrm{w} / \mathrm{kg}$	$\begin{aligned} & \text { DENSITY } \\ & \mathrm{kg} / \mathrm{m}^{-} 3 \end{aligned}$	$\begin{gathered} \text { DYN. VISC } \\ N^{*} \mathrm{~B}^{2} / \mathrm{m}^{-2} 2 \end{gathered}$	$\begin{array}{r} \text { KIN.VISC } \\ =2 / 8 \end{array}$
	1	． 0038559	1.1352	． 0000184	． 0000162
	2	． 0040203	1.1346	． 0000184	． 0000162
	3	． 0032467	1.1343	． 0000184	． 0000162
	4	． 0036265	1.1294	． 0000185	． 0000164
mean		． 0036873	1.1334	． 0000184	． 0000163
STD		． 0003352	． 0026	3．989e－8	7．376e－8
C．V．－8		9.09	.23	． 22	． 45

	URE DIFPERENCE（Pa）					
Q（m＊3／8）	Re	REP1	REP2	REP3	REP4	mean
． 0001582	976	1.82	1.99	1.92	2.02	1.93
． 0002326	1435	3.74	3.99	3.89	3.64	3.82
． 0003072	1895	6.03	6.21	6.23	6.08	6.14
． 0003835	2366	9.17	9.52	9.22	9.24	9.28
． 0004703	2901	13.45	13.78	13.48	13.50	13.55
． 0005490	3386	18.01	18.48	18.31	18.01	18.20

Table G．1k
dATA FOR OPENING Y2

```
AREA \(=1.27\left(\mathrm{~cm}^{\wedge} 2\right)\)
GAMMA \(=979.05 \times 10^{\wedge}-1\left(\mathrm{~m}^{\wedge}-1\right)\)
```

REP BP（Pa）Tab（C）TYb（C）

	197883.31	25.6	12.2
	297815.59	25.6	13.9
	397849.44	24.4	12.2
	497883.31	25.6	12.5
MEAN	97857.91	25.3	12.7
STD	32.43	.56	.80
C．V．－	.03	2.20	6.28

	REP	kg.w/kg	$\begin{gathered} \text { DENSITY } \\ \mathrm{kg} / \mathrm{m}^{-1} 3 \end{gathered}$	$\underset{N^{*} 5 / m^{\wedge} 2}{\text { DYN. VISC }}$	$\begin{array}{r} \text { KIN. VISC } \\ -2 / 8 \end{array}$
	1	． 0034705	1.1352	． 0000184	． 0000162
	2	． 0051566	1.1314	． 0000184	． 0000163
	3	． 0039189	1.1383	． 0000183	． 0000161
	4	． 0037438	1.1347	． 0000184	． 0000162
mean		． 0040724	1.1349	． 0000184	． 0000162
STD		． 0007460	． 0028	$2.508 \mathrm{e}-8$	6．022e－8
C．v．－8		18.32	． 25	． 14	． 3

	SORE DIPFERENCE（Pa）					
$0\left(m^{\wedge} 3 / 6\right)$	Re	REP1	REP2	REP3	REP4	hean
． 0001582	979	2.19	2.56	1.79	1.97	2.13
． 0002326	1439	4.09	4.71	3.59	3.82	4.05
． 0003072	1901	6.43	7.25	5.73	6.16	6.39
． 0003835	2374	9.54	10.69	8.77	9.24	9.56
． 0004703	2910	13.78	15.07	12.98	13.45	13.82
． 0005490	3397	18.41	19.85	17.76	17.99	18.50

Table G. 2 Total Minor Loss Coefficients.
opening c
Table G.2c
,

Re	$\left(1 / C_{2}{ }^{-} 2\right)$	$\left(z / D_{h} R e\right)$	$B\left(z / D_{h} \mathrm{Re}\right)$	K
574	1.8759	.00556	.53137	1.34
688	1.8121	.00463	.44249	1.37
803	1.8022	.00397	.37941	1.42
918	1.7482	.00347	.33163	1.42
1033	1.6834	.00309	.29531	1.39
1147	1.6177	.00278	.26568	1.35
1377	1.5581	.00232	.22172	1.34
1606	1.4897	.00198	.18923	1.30
1836	1.4474	.00174	.16629	1.28
2065	1.4209	.00154	.14718	1.27
2295	1.3941	.00139	.13284	1.26
2524	1.3798	.00126	.12042	1.26

OPENING B

Re	$\left(1 / C_{z}-2\right)$	$\left(z / D_{h} \mathrm{Re}\right)$	$\mathrm{B}\left(z / \mathrm{D}_{\mathrm{h}} \mathrm{Re}\right)$	K
427	4.6583	.03455	3.30402	1.35
466	4.4597	.03167	3.02860	1.43
505	4.2235	.02923	2.79526	1.43
544	4.0556	.02715	2.59635	1.46
582	3.9527	.02534	2.42326	1.53
621	3.7953	.02375	2.27121	1.52
660	3.6715	.02236	2.13829	1.53
699	3.5550	.02111	2.01875	1.54
738	3.4515	.02000	1.91260	1.54
777	3.3778	.01900	1.81697	1.56

OPENING D
Table G.2d

Re	$\left(1 / C_{z}{ }^{\wedge} 2\right)$	$\left(z / D_{h} R e\right)$	$B\left(z / D_{h} R e\right)$	K
573	2.8413	.01184	1.12823	1.71
688	2.6132	.00986	.93956	1.67
803	2.5811	.00845	.80520	1.78
917	2.5078	.00740	.70515	1.80
1032	2.4083	.00658	.62701	1.78
1147	2.3168	.00592	.56412	1.75
1376	2.1982	.00493	.46978	1.73
1606	2.1289	.00423	.40308	1.73
1835	2.0483	.00370	.35257	1.70
2064	1.9632	.00329	.31350	1.65
2294	1.8884	.00296	.28206	1.61
2523	1.8415	.00269	.25633	1.59
2752	1.7985	.00247	.23537	1.56
2982	1.7892	.00228	.21726	1.57
3211	1.7626	.00211	.20106	1.56
3441	1.7436	.00197	.18772	1.56

APPENDIX H

THE TECHNIQUE USED TO DETERMINE THE BEST SET OF OPENING PARAMETERS

Figure H. 1 The error in the prediction of the flow rates for opening B using several choices of gamma and the areas determined by a least squares best fit of equation 8.3.

REFERENCES

ASHRAE, 1981: ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigerating and AirConditioning Engineers, Inc., Atlanta.

ASHRAE, 1985. ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta.

ASTM, 1985. ASTM E779-81: Standard Practice for Measuring Air Leakage By the Fan Pressurization Method. ASTM, Philadelphia, PA.

Beavers, G. S., Sparrow, E. M. and Magnuson, R. A. 1970. ''Experiments on Hydrodynamically Developing Flow in Rectangalar Ducts of Arbitrary Aspect Ratio.' ' International Journal of Heat and Mass Transfer, vol. 13, pp. 689-702.

Colliver, D. G., Walton, L. R. and Parker, B. F. 1982. ''Wind Speed Effect on Residential Energy Usage.' ${ }^{\prime \prime}$ ASAE Paper No. 82-4521, ASAE, St. Joseph, Michigan 49085.

Currie, I. G. 1974. Fundamental Mechanics of Fluids. McGraw-Hi11, Inc.

Diamond, R. C., and Grimsrud, D. T., 1984. Manual On Indoor Air Quality. Electric Power Research Institute, pp. 2-1 to 2-9.

Emswiler, J. E. 1926. ''The Neutral Zone in Ventilation.'" Transactions American Society of Heating and Ventilating Engineers, vol. 32, pp. 59-74.

Etheridge, D. W.. 1977. "Crack Flow Equations and Scale Effect."' Building and Environment. vol. 12, pp. 181-189. Pergamon Press, Great Britain.

Fox, R. W. and McDonald, A. T., 1973. Introduction to Fluid Mechanics. Second edition, John Wiley and Sons, Inc.

Han, L. S., 1960. ''Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts.' ' Journal of Applied Mechanics, Transactions of ASME, pp. 403-405. Sept.

Holman, J. P., 1978. Experimental Methods for Engineers. pp. 44-50, McGraw-Hi11, Inc.

Hopkins, L. P. and Hansford, B., 1974. ' 'Air F1 ow Throngh Cracks.' ' Building Service Engineer, vol. 42, pp. 123-131, Sept.

Indoor Air Quality Research Strategy, 1984. U. S. Interagency Committee on Indoor Air Quality, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

Kays, W. M. and Crawford, M. E., 1980. Convective Heat and Mass Transfer. McGraw-Hill, Inc.

Keil, D. E., Wilson, D. J. and Sherman, M. H., 1985. ''Air Leakage Flow Correlations for Varying House Construction Types." ASHRAE Transactions, vol. 91 (2A), pp. 560-575.

Langhaar, H. L., 1942. ''Steady Flow in the Transition Length of a Straight Tabe.' ${ }^{\prime}$ Transactions of the ASME, pp. A-55 to A-58, June.

Lee, K. H., Lee, T. and Tanaka, H., 1985. ''Thermal Effect on Pressure Distribution in Simulated High Rise Buildings: Experiment and Analysis." ASHRAE Transactions, vol. 91(2).

Liddament, M. and Allen, C. 1983. The Validation and Comparison of Mathematical Models of Air Infiltration. International Energy Agency, Air Infiltration Center, Sept, Great Britain.

McNa11, P. E., 1986. ''Indoor Air Quality.'' ASHRAE Journal, pp. 39-48, June.

Nazaroff, W. W., Boege1, M. L., Hollowell, C. D. and Roseme, G. D., 1981. 'The Use of Mechanical Ventilation with Heat Recovery for Controliing Radon and Radon-Daughter Concentrations in Houses."' Atmospheric Environment, vol. 15, pp. 263-270. Pergamon Press, Great Britain.

Nero, A. V., 1986. ''The Indoor Radon Story.'' Technology Review, vol. 89, pp. 28-40, January.

Office of Technology Assessment. 1979. Residential energy conservation. OTA-E-92. J. S. Government Printing Office, Washington, D.C.

Shaw, C. Y. and Tamura, G. T., 1977. 'The Calculation of Air Infiltration Rates Cansed by Wind and Stack Action for Tall Buildings.' ASHRAE Transactions, vol. 82(2), pp. 145-157.

Shaw, C. Y., 1980. ''Wind and Temperature Induced Pressure Differentials and An Equivalent Pressure Difference Model for Predicting Air Infiltration in Schools.' ASHRAE Transactions, vol. 86(1), pp. 268-278.

Shaw, C. V. and Brown, W. C., 1982. ''Effect of a Gas Furnace Chimney on the Air Leakage Characteristic of a Two-Story Detached House.' ' Proceedigns of the 3 rd IEA Conference of the Air Infiltration Centre, London.

Sherman, M. H., 1980. ''Air Infiltration in Buildings.'' University of California, Berkeley. Ph. D. Thesis, University Microfilms International.

Snedecor, G. W. and Cochran, W. G., 1980. Statistical Methods. seventh edition. The Iowa State University Press, Ames, Iowa.

Steel, R. G. D. and Torrie, J. H., 1980. Principles and Procedures of Statistics, A Biometrical Approach. second edition, McGraw-Hill, Inc.

Tamura, G. T. and Shaw, C. Y., 1976. ' 'Studies on Exterior Wall Air Tightness and Air Infiltration of Tall Buildings.' ' ASHRAE Transactions, vol. 82(1), pp. 122-134.

Tamura, G. T. and Wilson, A. G., 1966. ''Pressure Differences for a Nine-Story Building as a Result of Chimney Effect and Ventilation System Operation." ASHRAE Transactions, vol. 82(1), pp. 122-134.

Tamura, G. T. and Wilson, A. G., 1967. ''Building Pressures Cansed by Chimney Action and Mechanical Ventilation." ASHRAE Transactions, vol. 73(2).

Younger, M. S., 1979. A Handbook for Linear Regrossion. Duxburg Press, Massachusetts.

John Perkins Chastain

Born: October 2, 1960, Atlanta, Georgia
Education:
B.S. Agricaltural Engineering, University of Georgia, 1982
M. S. Agricultural Engineering, University of Kentucky, 1987

Professional Positions:
Research Specialist, Agricaltaral Engineering Department, University of Kentucky, October 1986 to present

Research Assistant, Agricultural Engineering Department, University of Kentucky, January 1984 to October 1986

Instructor and Agricultural Consultant, Champhawi Christian Training and Raral Development Center, Tanania, East Africa, September 1982 to September 1983

Student Research Technician, Agricultaral Engineering Department, University of Georgia, June 1981 to August 1982

Scholastic and Professional Honors:
Phi Eta Sigma
E. G. Dawson Scholarship, 1980

Hugar F. Wilkes Scholarship, 1981
Engineer in Training, 1982
Alpha Epsilon
Tau Beta Pi
Gamma Sigma Delta
\because 品
\qquad
\qquad
\qquad
田

.
π
ก
T
7
7
7
78

(i)

U
U
[]
$\underset{\sim}{V}$

[^0]: Figure 7.11 Comparison of the observed and predicted differential pressures for a typical case (DP x pressure difference; P.I. = prediction interval: G1H1M Rep 3).

[^1]: Figare 7.15 The general differential pressore profile for the No Cracks data.

