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DESIGN MODELS TO HANDLE
RADIATIVE AND CONVECTIVE
EXCHANGE IN A ROOM

M.G. Davies

ABSTRACT

The traditional method of handling heat exchange in a room for design purpuses wos to suppose
that all heat from the plant, radiative as well as convective, was input at o so called "air
temperature”. This is an evident misnomer, since air temperature as such cannot drive
longwave radiation as the model actually assumed. The "environmental temperature” (t.,)
concept has been introduced in the UK to get round the difficulty. This pdper presents an
analysis of when an approach along these lines may be logically acceptable. The surtace-to-
surface system of radiant exchange is first reduced to a surface-to-star point (T.) exchange
by a least squares fit,. It is then shown that the space-averaged observable radiant
temperature T, . can be approximated by the value of the temperature generated at T. when the
radiant output from heating appliances and casual gains is taken to act at T, (Strictly
speaking, this 1s not possible, since T, is only a convenient fiction.) : Now it 1is
normally assumed that convective gains can be treated as though input at the space averaged
air temperature, T,. Thus we can set up a "binary star” model, formed trom the radiant
star pattern centred on T, and the convective star pattern centred on T., can be set up. It
provides an attractive model for the internal exchange of heat in a room. An equivalence
theorem can be demonstrated, and 1t serves to show that the binary star system, based on T.
and T., can, in certain well-defined conditions, be replaced by a single star system, centered

on an index temperature, T.., <(the "rad-air" temperature). T.a 1n fact serves the same
function as did as "ailr temperature” in the old fashioned sense. The model based on T,
is workable but it i1s physically unattractive, and a model that handles convection and
radiation separately may provide a better design procedure, Environmental temperature

(ta,) 1s a form of T,.., but the loglc of setting it up is seriously tlawed.

INTRODUCTION

The four walls of a room together with its floer and ceiling can be regarded as a control
volume, Outside it lies the fabric of the bullding which provides resistance to and
storage for the flow of heat, the ventilation process and the external environment.
Within it, convective and longwave heat transfer mechanisms serve to move heat between the
varlous sources - radiators, lighting, equipment, and occupants - and the air and walls of the
room. This article is concerned with the interplay of mechanisms within the control volume
Further, the treatment {s presented at a level appropriate to design methods for sizing
heating and cooling equipment in a room; these processes can be modeled with any degree of
detail using & computer model, but such treatment is unnecessarily complicated in a design
context,

The traditional standpoint is set out in ftor example the 1963 ASHRAE Guide and Data
Handbook, Fundamentals and Equipment, and also the 1965 IHVE Guide. Calculations centered
around a global room temperature, T, say, termed "air temperature”. To express the heat
flow to the inner surface of an outer wall, E wos taken to denote an emissivity value,

. seemingly not properly defined, h, was the usual linearized radiant heat transfer coefficlent
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(40T, amnn?)y, and h. the convective coefficient. . T, was taken to drive a flow of heat

through a transmittance Eh,+h. (about 8 W/m“K) to the inner surface of an puter wall at Ta, ..

(Figure 1) so that T, must be taken to have radiative properties as well as convective '
properties, despite its name. T, also served to drive the ventilation loss of heat,. and
its value was further taken: to estimate the comfort temperature in.the room. : - Both
radiative and convective components of all internal sources’ of heat were taken to be input at
Tois The model provides a rather coarse account of room heat transfer, but it remains the
basls of many plant design calculations today. g

In the UK in the 1960s; a move was made to provide-a better. index temperature than T,,
which would take more explicit account of the longwave radiant:exchange in a repom The
concept of "environmental temperature", t,,, was developed. It was a linear mix of mean air
temperature t,, and of the mean surtface temperature, t,:

t = (1/3). ¢t + «2/3%.t
el ai m

This model will be termed the "environmental temperatufe model® (ETM, Figuire 2). “ (In
discuseing the ETM, temperature will be denoted by t, following the IHVE Guide notation.
The author's thesis will be presented using T.) Agcording)to the model, t,, drives a heat
flow from the room as a whole to a surface (internal as well as external) through a
transmittance of (6/5)Eh, +h.. The' ventilation loss 1s driven by the air temperqture, s
and there is a conductance of 4. 8ZA (W/K) between t,.; and t.,. ZA is the total internal area
of the room. (The conductance was later notated as h.ZA.)

In the ETM, convectively input heat was taken to act at t,,, as expected, but the
longwave radiation, Q,, from all sources was taken to act as the value 1% Q. at t,,, anda at

the same time a quantity %.Q. was taken to be extracted from t,,. The comfort temperature
- dry resultant temperature. t. - was taken to be given by a node on the h,ZA conductance with
a value

t =

(1/72). t + F1/4205
c ai - m

i

. 5 .
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This system was adopted by the UK Institution of Heating and Ventilating Engineers (now
the Chartered Institution of Building Services Engineers, CIBSE)> as its recommended procedure
for conducting heating design calculations in the 1970 revision ot its Guide, Section A5 (IHVE
1971). It was revised in (979 (CIBS 1979), (The factor of (6/5) in the quantity
(6/5)Eh,.th,, was given in the papers supporting the LHVE Guide but not in the Guide itself.)

The present author suspected from the outset that the reasoning which had been used to
arrive at t,, was flawed and that the model's handling of radiant exchange was oversimplified.
It was not immediately apparent, however, exactly where the reasoning broke down, nor what
degree of simplification of radiant exchange was acceptable in a design context. These
problems have now been solved. The present paper 1is intended to give an overview of how
radiant exchange can be so simplified, how a model based on a global room temperature such as
T, can be arrived at logically, and where the shortcomings in the ETM lie.

THE BINARY STAR MODEL

In this section, it is to be shown how, for design purposes, the convective and radiant
exchange mechanisms can be modeled with good accuracy using two superposed star based thermal
networks, one for convective and one for radiant exchange.

The Convective Network

The convective network 1s based on a central mean air temperature, T.. The value of
T. is arrived at conceptually by making measurements of airctemperature at uniformly spaced
locations in the room, and averaging. There may be steadily sustained temperature
dif ferences between, say, floor and. ceiling, but these are disregarded in the design model as
far as global behavior 1s concerned, . We assume that we know the h: values at.-the mean
surface temperatures T,, Tz ... of the room, although we recognize that there is uncertainty
in what values to select. The conductance linking T, to the jJfth surface is then A h.,.
Heat input convectively to the room is taken to be input at the T, node. A measuring
device such as a thermometer is linked to T, through a conductance A .h.,., where the subscript



p denotes the thermometer or probe properties. The A.h.. conductance is of course very,
very much smaller that of a typical room conductance, Ah.,.

This 1s the conventional model for convective exchange in a room. It 1s to be argued
that radiation cah be so manipulated that 1t can be handled in virtuelly the -same way.
This 1s not obvious, nor is it exact, but it is adequate for design purposes,

'

Radiat s_a Surface-Surface Exchange

Consider an empty room with six surfaces at mean temperatures T, to T.. If they are
blackbody, the direct radiant exchange between surfaces J and k is proportional .to o(T,*-T,*).
As mentioned earlier, this can be written on linearization as 40T, (T,-T.) or h,. (T;-T.).
h,. is about 5.7 W/m=K, The radiant conductance between these surfaces is given as A;F,.h,.
where F;. 1is the viewfactor between them end 1is related to room geometry. There are 156
such conductances if the six surface temperatures are specified. Figure 3 shows the pattern

for a four-sided enclosure.

Radiation u e-Star Point xchan e

The above: system is too complicated for design wuse, and the traditional and
environmental temperature models both tacitly assume that radintion can be dxchanged via a
star point of some sort. The present author has provided a logical foundation for this
assumption (Davies 1983) and it is sketched in Appendix 1.

If the surface J radiates to an eﬁclosing blackbody surface at a aniform temperature,

the radiant conductance is simply A,h,. It the surface "radiates" to an intermediate
node. ‘the radiant star node T, (Figure 4). 1ts conductance will be greater than A,h, end will
“be written as A,h./B,, where B, < 1. We have to have some sort of logical procedure to

find values of B such that, seen from the outsidé, the behavior of the equivalent star circutt
(Figure 4) is as like that of the parent (or delta) circuit (Figure 3) as 1is possible.

To do this, we write down an expression for the net resistance, R,.”, between nodes }j

and k in the parent network when the other four nodes are taken to be adiabatic,. (The
direct resistance is 1/A;F,.h,. The net resistance can be found as the ratio of two
. determinants. ) The resistance of the star network is simply

Ry ™ = By/Ah + 8, /AN

If the difference R,,*-R,.* were zero, the two circuits would be identical in thelir
external effects. This cannot be achieved simulteneously for all 15 pairs of nodes, so we
form the sum of the squares of the non-dimensionalized difterences,

- . "« ayz = . ) = ) s )
i1 Rjk /Rjk )=, J 1 5 k Jj+l 6

and by simultaneous adjustment of the values of f,, S can be minimized.

By examining a range of rectangular enclosures of all shapes, we find that B, is
largely determined by the ratio

fJ = AJ/(total surface area)
Then = |-f ~3.53(f ==Kf )+5,04(f =-Uf )
BJ 3 J J J J
with a standard deviation of 0.0067, The root mean square difference between the delta and

star circuits is given as (S/15)% and this is for the most part less than 0.02.. (Details
are given in Davies (1983) and in Appendix:1). :

Thus we conclude that the surface to surface or .delta pattern which provides an exact
description of the geometrical aspects of radiant exchange in a rectangular enclosure, can, as
far as 1its externdal effects are concerned, be replaced with good accuracy by a suitably
designed surface to star pattern. '



The qualitative idea of this transform is of long standing, but this may :be the first
attempt to design the star network 1in an optimal manner and to examine the accuracy 1t
provides.

The ssivit onductanc

If a surface is not blackbody but is grey with an emissivity of eg,, we have to include
two further features, shown in Figure 5: . i

1. A black. body equivalent node T,' which replaces T, itself as the termination of the
geometrically based conductances, either 1n the exact form with the A,F,.h,
conductances, or in the approximately equivalent form with conductances of type
A;h./8,.

2. An emissivity based conductance A ;e;h./(l-e;) 1s to. be located between T,, . the

thermodynamic temperature of surface A;, and its T,' node.

T;' 1is the linearized equivalent of radiosity in conventional radiant exchange theory.
It has the property that all longwave radiation from .an internal sourge ot radiation that
falls on the surface A; is to be completely absorbed at T,', not partly absorbed and partly
retlected at T, itself. e .

In the star-based system, the emittance conductance is in series with the geometrical
conductance and they can be combined as

[(A,e,h /Cl-e D))" + (A,h /B, )" '] (= AE *h, )
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The temperature T, is a fictitious temperature with no physical significance. It

simply serves as a convenlent device to ‘model the external ettect of the real radiant
exchange. The radiant inputs should be taken to act at the several T,' nodes, but suppose
for the moment that their total, Q,., were to act at T,. This is physically meaningless,

but it 1s very easy to calculate T. as an increment above wall temperature, which can be
conveniently taken to be zero.

Let us set aside such fictions for the moment and consider what radiant effect can
actually be observed in an enclosure (tsken as oair free so as to avoid consideration of"-
convection) when a source of radiant heat is present within the enclosure.

¥y

Suppose we have an enclosure with blackbédy surfaces all at a reference temperature of

zero, . (e.g 09C). A pure radiant source of strength, Q., 1is placed at its center and the
temperature is sensed by a probe of some kind at points over a unitorm array of points within
the room, (exactly as air temperature was supposed to be sensed). The averoge radiant
temperature, T..., can be found from the local values. . In relation to the labor of
performing design calculations, evaluation of T... for a room of given dimensions is &
laborious task. Detalls are given in Appendix 2.

he T Global Radiant Temperatures

We thus have two global measures of the radiant temperature in the room relative to its
walls, due to the presence of an internal radiant source:

1. The radiant star temperature, T,, network based,»fiétitious but very easily evaluated,

2. The average radiant temperature, T..., physically based and on the same footing éswi_.

but laborious to evaluate (and indeed, specific to situation). ar

The computations based on a wide variety of enclosure shapes show that T,., tends to be
a little larger - some 14% on average - than T, although it varies less with shape. It the
radiant source is placed at the wall of the enclosure - a more realistic position for a
radiator - T.., is reduced somewhat, and it turns out that, for practical design purposes, T,
provides a satisfactory estimate of the physical parameter, T...

The Radiant Star Model

r

The star model for radiant exchange thus consists of a series of conductances of type
AyE,;*h. linking the surface nodes, T,, to the fictitious radiant star node, T.. This 1is in

by



itself a useful simplification,” but it has the further advantage that the longwave Tadiant
heat input can be treated as though input at T,, and if so done,’ T, provides an estimate of
Tavry the physically significant quantity. (If the exchange 1is treated as a surtace to
surface exchange, T... requires separate calculation).

The Bipary Star Model

It was noted at the outset that the model for convective exchange consists of a series
of conductences of type A,;h.; lihking the surface nodes, T,, to the physically based mean air
temperature node, T.. “Since the radiant and convective processes procede quite
independently of each other within the enclosure and only interact at solid surfaces - those
of the room itself, or of furnishings or sensors - a physically based model of the enclosure
must consist of the two networks superposed so as to form a binary star pattern. =

T. and T, denote, respectively, the average perceptible air temperature and an estimate
of the average observable radiant temperature in the enclosure, Large heat flows - of the
order of kilowatts -~ can be input at T. and T,., &and they result in only modest ridses of
temperature. The resultant perceived temperature, whether by a sensor or an occupant, must
be a linear mix of the two. Dry resultant temperature is formed as

T =%T +%®T
c a T

The T. node is of course linked to these nodes by very small conductances, because of
the very small dimensions of, say, a thermometer bulb. T. 1s an estimate of T,.. If a
thin pencil of solar radiation falls on a thermometer bulb, it will lead to a marked increase
in T, but a negligible increase in T, or T.. Thus T. and T, are not on:the same®footing as
T and T..

Figure 6 shows the binary star model links for a four-surface enclosure. The most
important quantities from the designer's point of view are the comfort temperature and the
convective and radiative heat inputs needed to maintain it,

THE RAD-AIR MODEL

It is the purpose of this section to show that the binary star model of the last section, 1in
which convective and radiative processes are handled separately, cen be transtormed in
restricted circumstances to a single star model centered on a node to be called the "rad-air”
node, T,., since it will be found to be a linear combination of T, and T.. ° In a later
section, 1t will be shown that the environmental temperature model ia in most respects the
same as the rad-air model. ’ =

It is convenient first to state an equivalence theorem.

The Equivalence Theorem

Consider a very simple thermal <(or electrical) circult <(circuit A 1in Figure 7a)

comprised of three nodes, T,, T,, and T,. A conductance C 1links T, with 7T, and a
conductance R links T, with T.. (Te, and T,. will be given the meanings they had in the
previous section, and C and R are to denote convective and radiant conductances, but this
interpretation is not needed for the moment.?> A heat flow, Q,, 1s supposed input at T. and
there are heat losses of Q. from T, and Q. frém T,. If T, is fixed in some way, it is an

elementary calculation to find T, and T..

Consider now another circuilt - circuit B (Figure 7b) - which consists of T., T,, and C
as in circuit A, but which lacks T., R, and the heat input, Suppose that a node,T,. is
located on C, so as to define conductances <(C+R).C/R to T, and (C+R)> to T,. Suppose that a
heat input of Q.. (1+C/R) is ipput at T.. and at the same time a flow of Q..C/R is extracted
from T..

It is easily shown that the temperature established at T, and the heat tlows from T, and
Te are identical to those in circuit A. Te.a too can, of course, be found. T, does
not appear explicitly in circuit B but its value can be constructed as

T =T ..{U+C/R) = T .C/R
r ra a



. Thus circuit B provides exactly the same information - values of T,, T,, Q, and Q. -
as did the parent circuit A, :

If there are further heat inputs in circuit A at T. and T,, they are simply included in
circuit B without change.

This theorem can be used in connection with an elementary building model.

The Model for a Basic Enclosure

We consider the most elementary building enclosure possible. It consists of an
internal surface, all of whose area, A, is at a single uniform temperature, T,; the fabric
provides a conductance F, between T, and the ambient temperature of T,. The alr
temperature, T,, 1is linked to ampient by the ventilation conductance, V, and to T, by the
convective conductance, C,, equal to Ah.. A pure radiant source, Q,., is present within the
enclosure, and its output is taken to act at T,., linked to T, through the radiant conductance
R,, equal to AE*h.. The thermal circuit for the enclosure (circuit A' in Figure 8a) is

that of circuit A, together with the two loss mechanisms F, and V.

If the equivalence theorem is applied to circuit A', it transforms to circuit B' (Figure
8b) which consists of the following sequence of nodes and conductances: ’ )

T (C,+R,).C,/R,, Tomi (C, 4Ry, Ty Fiy T., V, back to T..
In this configuration, we 1input Q,. (1+C,/R,> at T.. and withdraw Q,.C,/R, from T..
According to the theorem, the real temperatures T, and T, have the same vonlues as they did in

circuit A'. and of course T. can be constructed from information provided by circuit B'.

The overall conductance from T.. to T. via T, is a U value-like conductance. If X
denotes the conductivity and d the thickness of the outer wall material, then

L L, i s SRR S Ul . et Uy
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) onsg he Rad-Air Model

An enclosure consisting of a single isothermal surface is too 1ldealized to be of any
value, Suppose instead that we have an enclosure consisting of an outer wall of inside
temperature T, and five internal surfaces at another uniform temperature T.. T. and T.
exist as before but we now have additional convective and radiant 1links, C.. and R, (see
Figure 9a), There will be a heat loss mechanism, F,, fqom T,. There may or may not be a

loss mechanism from T..

It can be shown - after some algebra ~ that {if

C2/R2 = CI/RI (= o, say)
the equivalence idea holds: We can replace T, by a node T,.., which has links
C,*R, to node T,,
Cz+R=2 to node T
and X = (Cy+C+Ry+R3). (C1+C)/ (Ry#+R3) ~ or Z(C+R), a - to node T..

An input of Q. at T,. in the physical circuit can be replaced by an input of Q.. (1+a) at
T.a together with an extract of Q..a from T, in the equivalent circuit. Tay Ty, and Tz
in circuit B' (Figure 9b) then have their circuit A' values and the value of T. in circuit A'
can be constructed from the values of T, and T,.. Vi

We assume that the same result holds when the enclosure surtface conslsts ot three or
more portions at different temperatures. If C,/R, # C,/R,, the equivalence does not
hold exactly.



Discussio f the Rad—-Air Model

The rad-air model is a single star model: it is centered on T.,., which is linked to the
surface J through a conductance C,+R, which lumps the convective and radiative mechanisms.

T, may be linked to the exterior through some simple or complicated thermal path. Tim 18
linked to T, through the conductance (C+R).a, (C denotes IC, and R denotes ZIR,>, and T, is
linked to the exterior by the ventilation conductance. As a working tool, the model has a

number of points both to commend and to deprecate it.

In its favor we may note:

1. The model retains the familiar U-value concept for conduction losses

2. The conductance (C+R).oa prevents a radiant input being too readily 'lost' by the
ventilation process. (This will be explained more fully later.) ‘This feature is
useful in performing calculations on overheating due to solar gains. These are very

quick and rough estimates, and it is sufficient to assume that all the solar gain is
input at T...

The model however contains a number of unattractive features:

i It is only exact if C,/R, = C./R,, etc. There are several reasons why this will
not be true. h. varies trom surface to surtace, € may vary from surface to
surface, <(though only 1in special cases), and radiative conductances are not simply
proportional to surface area.

2. The conductances of type C,+R, lump together totally unlike physical processes. In no
real sense can convective and radiative energy fluxes be sald to "flow together" to a
surface, :

3. The (C+R).a conductance defies any kind of physical interpretation.

4, It is physically meaningless to input an augmented energy flux into some node and to

extract part of it from a neighboring node.

5. The rad-air temperature can be given an interpretation ot a kind: it a weighted mean of
the average air and radiant star temperatures,
C.'l'a R.]}
Tra = CWR # TR

but this 1s of formal rather than of substantive value.

b

6. T.~ 18 not a generally accepted measure of comtort temperature. Comfort or dry
resultant temperature i1s usually taken as

T = % T + ®T.

c a r
T. can be represented by a node on the (C+R).a conductance. This, however, 1s
conceptually wrong. T. 1s a measured or perceived temperature at a thermometer bulb
or the human body; i1t is a locael value, and the conductances linking T. to the room are
orders of magnitude smaller than the room conductances themselves. Thus T. should
be linked to T, and T, by very small conductances. The rad-air model does not
include T, explicitly and so is unable to provide a low conductance link to T.. If

T. 1s placed on (C+R).q, as it must be in the rad-air model, it is linked to the room
by high conductances. i

If & thermometer bulb 1is placed in a narrow beam of strong’ sunshine, it will
register a high value, although the heating effect in the enclosure as a whole may be

negligible. The binary star model can handle this situation but the rad-air model
cannot.

7. It 1s easy in a design context to calculate the etfect of a heat input at T.. since all
the paths from it are in parallel, If heat 1s input elsewhere, at T, or T, say, some
thermal circuit analysis is needed. To the research worker this complication is
trivial, but to a thermal services engineer, for whom the intricacies of enclosure heat
transfer are quite peripheral, the complication is a hindrance. A procedure has been
developed in connection with the environmental temperature model - which is a form of

Z



the rad-air model - which® involves the use of a so-called '"surface factor", F' say.
F' is less- than unity. = Using this device, the real heat input, Q.,, at T, say, can be
scaled down to the value, F'.Q,. If the factor F' 1s chosen appropriately, the
reduced heat input, F'.Q,, 1if applied at T,.., (1.e., not at T, {itself), has the same
effect everywhere in the thermal circuit as does the application of Q, at T,, but with
the exception of that part of the circuilt that contains T,. The‘temperature at T,
i1s underestimated, and a post-scaling adjustment has to be applied to restore T, to its
proper value, .

This procedure works, .but it 1s an unsatisfactory device since contradicts the basic
principle of Conservation of Heat Flow.

a. Finally, it may be remarked that in stating the equivalence theorem, T, was replaced by
T.n and T, was left intact. This represents an unsymmetrical handling of the
elementary circuit. (We could have left T. and replaced T,.) This choice of
transformation has the effect that, when it is applied to the elementary enclosure, we
can accommodate an external loss of heat from T. - the ventilation loss in tact - but we
can no longer handle an external loss from T., the radiative loss that would occur from
an open window, for example. This does not matter in a cold climate where

ventilation losses are important but where the effect of open windows can be ignored,
but it limits the use of a rad-air 1like model to situations where the enclosure
concerned has no open apertures.

EXISTING SINGLE STAR MODELS

The section on the Binary Star Model showed how enclosure heat transfer could be handled in a
design context by keeping separate the convective and' radiative heat transfer mechanisms and

expressing them in the form of two independent star circuits. The section following it
showed how these mechanisms could be combined in a tormal manner to form a one star model, the
rad-air model, In the present section, the status of the existing-one star models,

mentioned in the first section, 1s to be examined.
e Traditio ode

The traditional model, it will be recalled, simply spoke of a "room temperature", T,, at
which all heat was input and from which all heat was lost by conduction through the tabric and
by ventilation, This situation can be derived from the binary model simply by superposing
the T, and T,. nodes. It fS'obvious that this 1s only possible if T. and T, happened to be
equal, and in general this will not be so. ‘The physical inappropriateness may be seen by
noting that longwave radiation is handled as though input at T,. The ventilation loss is
driven from T,. If T. and T, are superposed, the circuit will allow radiantly input heat to
be “lost" directly by ventilation, without the necessary intervention of a solid surface.
This is absurd, Thus the traditional model can only be a rather crude method of handling
room heat exchange. Whether it 1s adequate in a design context is another matter. “The
author believes that it 1s adequate for many design purposes

The radiant conductances of the traditional model were not set up correctly, but that is
better discussed in connection with the environmental temperature model.

(] Temperature Mode

The environmental temperature model (ETM) 1is closely similar to the rad-air model.

Unfortunately, the ETM was®set up on the basis of an oversimplification of radiant exchange,
and the concept of environmental temperature, as it is defined, is inadmissible. The
defects are fully discussed in Davies <(1986). “Appendix 3 of the present paper shows that it
is 1illegal to attempt to form an index temperature from surtace and air temperatures, and
environmental temperature is such a quantity.
“ The ETM was based on considerations of a cubic enclosure with an outer surface, area A,
emissivity E, at a temperature t,, five internal surtaces (5A) at t,, <(subscript I; not 1),
and we are forced to assume that they have an emissivity of unity - they are blackbody
surfaces - although this was probably not intended. The radiant conductance between t, and
t, was given as AEh,, without distinguishing between the emittance and geometrical components
of this quantity.



Environmental temperature t.s 1ltself was arrived at by finding that temperature which
would drive the same heat flux to t, as was physically driven by t, and the air temperature
; S The urgument included mention, however, ot mean surface temperature which proves to
be an irrelevant concept, either as far as the radiant exchange or the convective exchange in
the room 1s concerned. Furthermore, constancy of heat flux proves to be an inappropriate
principle with which to establish t,... It turns out that t.,, as it is defined, 1s an
absurd quantity, and the model centering on environmental temperature, if one adhers rigidly
to the logic by which i1t was set up, leads to some ridiculous conclusions. It can be shown
that t,., may "depend" on the value of the emittance of a non-existent surtace; the model
further asserts that there will be no radiant exchange between floor end ceiling 1f the
outer wall has zero emittance. These matters are discussed more fully in Appendix 3..

The radiant conductance between the surface at t, and the t., node as expressed in the
ETM is

Retm = (6/5)AEhr
The correct value, as given in the binary star model, is

R = [(Aehr/(lfe))“ + (Ahr/B)”']“' = AE*h

bsm r
In the ETM, E 1is taken as 0.9. In the binary star model, we can chose €
arbitrarily, and we will take the same value as that for E - 0,9, For a cube, B = 5/6.
Then
Reew = 1.08 Ah,
Rewm = 1.06 Ah,
and so the ETM value is near enough correct numerically, even 1if not in principle. (E* =

1.06 for one surface of a cube,)
With values of h. = 3 W/m*K and h, of 5.7 W/m“K, we should have for a cublc enclosure,
C/R = ZC,/ZRy; = 6Ah./(6AE*h,.) = 3/(1,06%x5,7) = 0,497 = %

Thus o or C/R is here equal to about ¥, and a radiant input at T, in the binary star
model has to be replaced by an input ot Q,. (1+c) = 1% Q, at T.., together with the withdrawal
of %.Q, at T..

But these are precisely the values acting at the t,, and t,, nodes of the ETM Thus
operationally spesking, the ETM is a rad-air model. The value of t,,, as arrived at by':
performing the operations recommended in the CIBSE 1979 Guide Section A (p A5-8), is to be
identified with T... The value of t.,(operational), however, is greater than, and 80
conflicts with, the value of t., (defined).

Thus the environmental temperature model 1s fundamentally a rad-air model, whose
derivation has been marred by a number of logical flaws. It will have the strengths and
weaknesses of the rad-air model listed above.

SUMMARY AND DISCUSSION

The foregoing analyses have demonstrated a series of results: :

1. The external effect of the physical surface to surface radiant exchange in an enclosure
can be modeled with good accuracy if the network is replaced by a surface to star- -point
node, T,, and the links between the blackbody surfaces at T, and T, are sized using the
exact view factor relations between the surfaces together with a least squares
technique. T. has no physical signiticance. 1f the surface J is thermally
grey, we have to introduce the concept of the "blackbody equivalent node", T,'; Ts*
is the linearised equivalent of radiosity. The emissivity conductance A; h,.€,/ (1=
€;) acts between T; and T,' &and 1s thus in series with the surface to star node
conductance A ;h,./B; to form the conductance R, = A E;*h,. Longwave radiation which
physically falls on surface J is to be taken to be completely absorbed at T,', and not
partly absorbed and partly reflected at T, itself. (The same 1is true of the
diffusely retlected component of shortwave radiation; shortwave absorptivity values
replace the ¢, values, and of course h, is not relevant.)



2. If an enclosure contains a pure radiant source Q,, the temperature perceived by internal

objects - turnishings, occupants, measuring devices - on which it falls 1is higher than
that due to wall temperature alone. The perceived témperature has a spacial
distribution and the space-aversged radiant temperature is detined as T.... Although

T. and T.., are conceptually quite different quantities, 1t is found that for design
purposes, Tevw can be estimated from the value at the star node T,., if the radiant input

traversing the space 18 taken to act at T.. (Radiation from the back of a wall-
mounted radiator and which does not traverse the space, but talls directly on the wall,
is taken to be received at the corresponding T' node.) This leads to a very simple

star-based model to handle radiant exchange,

3. Heat that 1s input convectively to an enclosure is routinely taken to be input at the
average air temperature, T,, with its convective C, links to the room. Since
convection and radiation procede independently of each other in a room, thei¥ joint
effect can be modeled by superposing the two star-based networks so as to form the
"binary star" model.

4, In the binary star model, the conductances linking the various nodes - T, to'T, and T,',
and T,' to T, are all macro-conductances, of order of hundreds of W/K. Comtort
temperature T. may be estimated as dry resultant temperature, ¥T.+%¥T,, but the physical
dimensions of a sensor, or even of a human occupant, are small 1in relation to room
dimensions, with the result that the conductances linking T. to T, and T, are small, of
order mW/K or pW/K.

5. It was shown above, using the equivalence theorem, (a circuit theorem, similar to those
of Thevenin or of Norton), that the binary star model of an enclosure can be reduced,
exactly, to such a single star model - the 'rad-air' model, centered on T,,.. Tind8
a linear combination of T, and of T, but the model does not handle the two nodes in a
symmetrical way: Ta 18 retalned, but T, 1s replsced by T,.. The equivélence is
only exact, however, if C,/R, = C./R;, .eftc., and the model 1s not a physically
attractive one. In particular, since T, no longer forms part of the model, comtort
temperature T. cannot be modeled using low conductance links to T. and T,; instead, 1t
has to be modeled as & node on the very large - and artificial - 1link between T. and
) |-

6. Désign models in current use are single star models, based on an air index temperature,
or on environmental temperature. Such models are numerically very easy to
evaluate, The environmental temperature model proves to be, operationally speaking, a
rad-air model but the radiant conductances it incorporates are incorrectly evaluated and
environmental temperature - as it is defined - is an absurd quantity

We can thus list some conclusions regarding the value of these design models

@ n or Air-Ind odel The model 1in etfect superposes T,
and T, and is thus not logical. This model of enclosure heat exchange, however, can be
understood at one level with little effort. It provides a procedure of sufficient

accuracy to cover most heating design exercises and appears to be widely used for routine
sizing of plant.

The Binary Star Model This model 1is physically based in that it keeps radiant and
convective exchange separate. It is logically based in that it handles radiant effects in
the manner noted in (1) and (2) above. It 1s flexible in that it allows the designer to
take account of the shape of a rectangular room, and the emissivity and convective coefficient
at each surface. It permits the comfort temperature to modeled in a conceptually correct
mnner. It is computationally little more involved than the air-index model. At

one level, it, too, can be understood with little effort by a design engineer.

The Environmental Temperature_ Model (ETM) This model was advanced in the 1960s 1in
the UK to obviate the illogical teatures of the traditional alir-index model.
Unfortunately, its own logic 1is tlawed, although this may not matter when the model 1is used
for a simple enclosure where surface emissivities are all large (around 0.9) and convective
coefficients are moderate (around 3 W/m=K). The ETM incorporates the 4.8ZA conductance
between t.,, and t.,,,and this represents a significant improvement on the traditional model
when checking the likelihood ot overheating due to solar gains

{ O



The Rad-Air Model  The rad-air model is a derivation of the binary star model, arrived
at when the convective and radiative processes are merged. However, the way in which the
model is set up invites the user to try to understand more deeply what is involved. For a
proper understanding, the user must follow through the reasoning leading to the binary star
model, (1 to 4 above), and then come to terms with the equivalence theorem (5), only to arrive
at a conceptually recondite model, The ETM and the rad-air model prove to be structurally
very similar, and, indeed, the rad-air model appears to achieve what the ETM origipally set
out to achieve. . h

In Davies (1987), Table 2, the author has provided a simple comparison of estimates of

temperatures found using the binary star, air-index, and rad-air models. The same basic
values of conductances and heat 1inputs are used for all three. In fact, the radiant
conductances are based on the same radiant transmittance (the E,*h, value) tor each surface;
only numerically different values for h., are input. This difference, however, leads to

significant differences in temperature estimates,

A number of computer models are available to check designs for enclosures that cannot be
reliably examined by these simple models of heat exchange.
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APPENDIX 1
The Star Network Conductances

This section presents the details of the analysis leading to the expression from’ which'®
we can find the star network conductances.

We consider the exchange of radiation between two surfaces of a rectangular enclosure of
dimensions 1 x d x h. The surfaces are supposed to be blackbody radiators, each at a
uniform temperature, T, and T, denote the temperatures of the floor and ceiling surfaces,
areas A, = A, = 1 x d, T. and T: denote the temperatures of the east and west walls and T» and
Ts those of the north and south walls, with areas similarly expressed.

When the temperature difference is linearized, the conductance between nodes T, and T.
is given as

ij = ij = AJFthr = AkaJhr

The view factor F,, from surface J ot size b x unity to the adjacent surface K of
dimension, ¢ x unity, 1s given by

Fy = {1/mb} (KL (b=+c3-1). In(b3+c3+1> = (b3-1).1n(b3+1) - (c2-1), ln(c=+1) 1.
+ UL- (bR+c®). In(bZ+c?) + b*. Ln(b) + c= In(c® 1
+ [-(b¥+c)%, tan=1 (b34c=) "% + b.tan"'(1/b) + c.ten ' (1/e) 1)

/



The view factor F,. from surface J, of size b x ¢, to the opposite surface, separated by
unit distance is : . -

Fy = (1/m} {(1/bc). L 1n<b2+1) + 1In(ce+1) — ln(b#+cE+1)1}
+ 20 (1/b) (b=+1)", tan ' (c/ (b=+1)*) + (1l/c) (c=<+1)*, tan ™' (b/ (c+1)*)]
= 2 (1/b). tan"! (c) : 2 (1/¢). tan' (b) 1)

For a cublc enclosure, b = ¢ = 1. In this case, F,. (adjacent) = 0.200044 and
F,. Copposite) = 0, 199825, Each of these rounds to the well-known value ot 0.2, but they
are not, 1in fact, identical.

The direct resistance between nodes J and K 1is simply 1/G;,. . The net resistance,
however, 1s less than this because of the .multiple paths provided by the other 14
conductances. We wish to find the net resistance, R,.°. (The superscript 4 denotes
the resistance provided by the surface-to-surface or delta network.) To do this, we

note that if a heat flow, Q,, is input at the node T,, continuity requires that

Zle.(Tl - 1k) = Ql' k=2, ..6

Continuity at the set of six nodes leads to the matrix equation

|—-+ Gll - G12 - Gl:a i 014 = G.:;. = G|.e— |-T| Q1
= Ga, + Gaz - Gzs - Gza — Gz2s - Gezes Te Quz

= Gy1 - Gaz +Gas — Gza = Gas — Gae Ta = Qa
i Gar ~ Gaz ~ Gan + Gaa ~ Gas — Gaw Ta Qa
- Ggy = Guz — Gua — Gua + Gaw — G T Q.
- Gg, = Gsz — Gas =~ Gea - Ger t G Te, Qe
where Gy, = Gy= + Gy;3 *+ Gya + Gye + Gyn, etc.
Suppose that we wish to find R.»°. We can set T. = 0 so that the number of equations
1s reduced to five. We make nodes 1, 4, 5 and 6 adiabatic. Then

Q = Qi = Qs = Q:. =0
By definition, Ron® = ;l'g/Q.2 and so by Cramer's rule,
R,22 = deti2,3]1/detl 21

where det(2,3] 1s the determinant of the &bove matrix of G,, values, which 1is tormed by
omitting the row and column through G:z» and the row and column through G-, detl(2] 1s the
determinant formed by omitting the row and column through G.., but in fact detl(1l] = det{2] =
det{3].....

Thus if the room dimensions, 1, d and h are specified, the set of 15 values of R.," can
be found. R, = Rys = Raz = Rye, but the value ot R,, 1is wunique. Thus there are
six distinct numerical values for R ,,® if 1 # d # h

The value of the resistance between node j and the radiant star node is B,/A,h.. So
the resistance between nodes j and k via T. is

B B

i K
R,* = R, +R = —=%- 4 --—-=
Jk J k

A Ah.

If R,s* were to equal R..®, the star and delta circuits would be identical in their )
external effects, as far as inputs at nodes 2 and 3 were concerned. In general, however,
R;u®* # Ry® and R,;.* - R,;.® determines the difterence

An overall measure of the difference of reponse of the star network from that of the
parent delta network might be found by summing the 15 values of R,.* - R,.%, but two changes
are needed. First, the largest R values are associated with the smallest and so the least
important surfaces. To avold bilasing the sum, we nondimensionalize the difference as

\



(Ryu™ = R ®)/Rjn®; Second, R,..* - R,.® may be positive or negative and to avoid the
spurious canceling of such differences, we take the square of the difference. The overall
difference in response of the star and delta circuits is thus expressed as the sum ot the 15
terms:

= L o oy
S ZZ((%k %k )/RJk )

The "optimal" star arrangement 1s tound by minimizing S with respect to the six 8
values- which have been hitherto arbitrary. So '

bS/bB1 = bS/bB2 =..... =0

This leads to a set of six simultaneous equations for R,, but since R, = R,, etc., the
set reduces to three, the first of which is

Rl(l/Glz2 + 1/6, .= + 1/G.. %) + R_/G! # + R./G, .2 = /G + 1/G;, + Ve/G1

13 14 2 12 3 13 12 13 4

From the solution of these equations, the § values are found as

BJ =AJhr'RJ

(In fact, the B values do not depend on the choice ot h,, and a value of unity can be assumed
in performing the calculations.>

To evaluate B, a series of enclosures was examined with values of 1l/h from 0.1 up to 10
in 10 equal fractional steps, and the same values for d/h. The values 1/h = d/h = | denote a
cubic enclosure. This makes a total of 11 = 121 enclosures, each ot which yilelds three
B values, many of which are, of course, coincident. '

One may enquire how well such optimelly determined star links represent the parent
network. The quantity & = (5/15)"* denotes the root mean square ditterence between the setf.
of resistances, expressed fractionally, across the nodes of the star and delta networks.
Its value is shown for a selection of the above set of enclosures in Table 1.

TABLE 1
Values of the Root Mean Square Deviation 8§ between the
Responses of the Star and Delta Networks

1/h 0. 40 0. 63 t. 00 1.58 2.51
d/h
0. 40 . 016 « 015 . 017 .018 .018
0. 63 . 015 . 010 .0t 1015 . 019
1. 00 . 017 011 . 000 . 010 . 016
1. 68 . 018 . 015 . 010 011 «015
2,51 .018 . 019 . 016 . 915 . 017

These values - deviations of 1% or 2% - show that a suitably designed delta circuit can
closely approximate the characteristics of the parent delta network

The value of & for a cubic enclosure is not exactly zero. The links between T, and
each of the six surface nodes of a cubic enclosure are, of course, equal; <(each is (6/5)Ah,).
The surface-surface links of the delta network, however, are not identically equal to ‘each
other, and for a cube, & = 0.000073. A small deviation from cubic form leads to a rapid
increase in &8, (see Davies [1983], Figure 5).

It turns out that the B values depend largely upon the fractional area f; of the surface
concerned:

% = ﬁ /(total area of the enclosure)

Some indication of their distribution 1s shown in Figure Al. It can clearly be
represented satisfactorily by a fitted curve, For theoretical reasons, tor a vanishingly
small surface (f; = 0), B, must be unity, and for a relatively very large surtace (t, nearly
%), B, must be M%. The distribution deviates sutficiently from linear to justify fitting
a cubic curve to it, which must be of the torm

3



(] o 1-fJ + ACf, = = Bf ) + B(f, =Y — Wf, )

J J J J J
A least squares fit gave values ot A = -3,53 and B = 5,04 with o standard deviation of
0, 0067. These considerations lead back to a simplified opproximate expression for view

factors in a rectangular room (Davies 1984),

The star node T, is a fictitious node and heat cannot be "input" at 1t, If
‘nevertheless we do input a radiant flow Q. there, the temperature generated in relation to the
walls at zero will be

Tr = Qr/(L(A hr/B )

J J

We can define a non-dimensionalized temperature B, as

ﬁ_ = t_.qAE% /q_

Then 8 A /(A /B )

r 3 3

B,.. was determined for the above enclosures using the least squares expression for B,.
The values are given in the upper lines of Table 2.

TABLE 2
Values of the Radiant Star Temperature and Average

Radiant Temperaiwe {Eapressea non aimsnsicnally oo P, and B.0..0

1/h 0. 40 0.63 1,00 1.58 2:51 ¥

d/h

0. 40 . 810 . 805 77T . 746 719
. 909 . 915 . 921 . 924 925

0.63 . 805 . 832 . 827 . 805 . 780
. 915 . 914 . 916 . 915 911

1. 00 . 777 . 827 . 843 . 832 .810
. 921 . 916 . 915 . 914 . 909

1. 58 . 746 . 805 . 832 . 827 . 805
. 924 + 915 .914 . 916 + 315

2.51 . 719 . 780 . 810 . 805 . 778
, 925 «911 . 909 . 915 . 921

Comment on the values of B, 1s postponed until later.

APPENDIX 2
The Average Radiant Temperature in an Enclosure

We wish to determine the average observable temperature in an enclosure due to the

présence of an internal pure radiant source, Q.. .Suppose for simplicity that Q. is placed
in the center of the enclosure and that it is of small dimensions. The flux across a
spherical surface, radius R and centered on the source, 1s Q./4nR<, Suppose that a small
spherical sensor or probe, radius r, 1s placed a distance R from the source. It
intercepts a flow of (nr®).Q,./4nR=, which brings it to a temperature ot T, above the wall
temperature of zero. The radiant flow from the probe to the walls is T, 4nr< h,. The

probe temperature so established is then

T = Q /16nR*h )
p r r

I



The space averaged value of T, is found as

{]] dx.dy.dz
This too can be non-dimensionalised. Further we note that
R., = x:z + yz + z;’.‘
So ﬁavr = Tp.).‘.A f'r/Qr
t/2 h/2 dx. dy. dz
B 16n 1/2 -d/2 J-h/2 xF 1 yE ¥ 2=

A full table of values of B... 1s provided in Davies (1983), Table 5. A selection is
given as.the second lines of Table 2 here.

It will be seen that B,., varies comparativéiy little with enclosure shape. B, is on
average some 14% less and varies more with enclosure shape. If, however, the radiant
source had been placed at the wall - a more realistic position for, a hot water radiator -
Ba... decreases. Further, we note that the local value of T,, must vary considerably over the
volume of the enclosure. Also, T, 1is itself sensitive to the probe shape; a flat plate

probe place edge-on to the source would record a near zero temperature regardless of position.

In the interests of having a simple procedure to handle radiant exchange 1t appears
sufficient to assume that B, and B,.. are near enough equal, that 1s to say, the average
observable radiant temperature, T..., the quantity upon which thermal comfort depends, can be
estimated with sufficient accuracy for design purposes as the radiant star temperature, T,, a
fictitious construct, if the radiant flow to the enclosure is taken to be input at T..

APPENDIX 3
A Mean of Surface and of Air Temperatures?

It is shown here that an attempt to torm a single index temperature from surface and air
temperature components of an enclosure, using considerations of heat flow from the enclosure
to one of ites surfaces, leads to an absurd quantity

Consider an enclosure containing air at temperature T, and consisting of two surfaces.
The smaller is plane, of area a, temperature T,, and emissivity e,. The larger surface is
of arbitrary shape, area A, temperature T., and emissivity e.. The conductance, akEh,,
between T, and T; 1s given as

IS . SR .
aEh ae h ah Ae _h
r 1'r 5 2
Suppose that the convective heat transfer coefficient between the air and the smaller
surface is h._,. The heat flow from the enclosure to the surface a is '
Q = aEhr.(T2 - Tl) + ahcl,(Ta = Tl)
If a tends to zero, both the radiant and convective components of this flow tend to
zero. Suppose we express this flow in terms of an index temperature based on T. and Ta.:
Ehr rZ * hcl'Ta
Q = a(Ehr + hcl’ ——————————————— - Tl
Eh + h
r cl



The heat flow is now expressed in terms of the index temperature

Eh .T, + h .1
R e A L
Eh + h
r cl
Again, 1f ‘a becomes zero, Q too becomes zero as it must, Now 1t a = O, the quantity.

Eh,. becomes €,h,, independently of €., <(provided that €. > 0> and the index temperature
becomes

Ta has preserved its form tor the situation when a = 0. Does 1t provide a valid
index for this single surface enclosure? We note that T, includes mention ot T, and of T,.,
now the only relevant enclosure temperatures, and to this extent, T, provides a valid
description of the enclosure. However, it includes too the values €, and h., as weighting
factors; these derive from the smaller and now non-existant surface, and so are now totally
irrelevant to the enclosure, Furthermore, T. does not include any mention at all of €,
nor of the convective coefticlent h.. tor the larger surtace. Thus I, does not contain
the information that is even qualitatively needed to torm a valid enclosure index; Te 168 &
meaningless construct.

But T, was arrived at as the index that drives the same heat tlow to T, as do the real
driving temperatures, T. and T.. Thus we establish the principle: considerations of heat
flow from an enclosure to -a bounding surface do not enable us to arrive at an Iindex
temperature for the enclosure.

Environmental temperature t,, was arrived at by exactly the argument used to reach T,
above. Thus t,,, as it is defined in the CIBSE Guide, cannot provide a meaningful index
temperature for the enclosure. t.. does not include proper consideration ot the emissivity
of the larger surface which constitutes the model enclosure - a cube - on which it 1is based,
or, 1indeed, any consideration at all of the convective coefficient <(h, .) at the larger
surface. As an 1llustration of its absurdity, we may note three consequences,

1. Returning to the cubic enclosure, the CIBSE Guide detines t,, as

(6/5)Eh .t + h_ .t
R L = @/t b B

(6/5Eh_ + h .
r [of

€y, the emissivity of the outer surtace, may have any value between zero and unity
Suppose €, = 0; then E = 0 and so

tei a taf

Thus t., 1s independent of the temperature of the five possibly blackbody surfaces

of the enclosure; it cannot provide a representative temperature for the
enclosure, Further, the Guide defines comfort or dry resultant temperature as

t = Wt + %t

c m ai

= *tei + “tai

and so in this case, -

t = 0t

c al

Comfort temperature is now based on alr temperature alone, and 1s Independent of the
temperature of the five internal surtaces — an evident absurdity.

2, According to the environmental temperature model, all radiant exchange between surfaces
takes place via t.,,, and the conductances are proportional to (6/5)Eh,+h.,. But 1f E
= 0, the conductances are simply proportional to h. alone, Thus the model now has

no means of describing any radiant exchange between, say, the tloor and ceiling, 1if
they happen to be at difterent temperatures.

) b



3 Since the convective part of these conductances 1s based on h. , alone, the model omits
any mention of the convective coefticient h., between air and the five internal
surfaces. Thus internal convective exchange 1is based on the wrong coefficient.
The model fails again.

It is clear that environmental temperature is a badly malformed index, It was shown
earlier that it 1s possible to construct a valid room index temperature - the rad-air
temperature, T.. - 1in order to combine convection and radiation. . Since emissivities

usually differ 1little from surface to surface, and convective coefficients do not vary
grossly, we should not usually expect big numerical differences between t,, and T., and their
consequent conclusions, but that cannot be held to be a Justification tor wusing so
structurally incorrect an index.

>



Figure 1

rc :
o u

The traditional model for handling heat transfer within a room, centered on
‘air temperature’ Ty Convectively and radiantly input heat flows (Qp and Q,.)

are both taken to-act at Ty, and 1 drives a heat flow proportional to Eh, + !
fig {6 i Guier wall, iimier suwifacé ai Ty Trie véiiiilaiion conduciunce, V', ucis

between T and ambient temperature T ,.
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t C>——6/\/\/ AN/
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Figure 2 The environmental temperature model, centered on environmental temperature

tpi. The augmented radiant input 1;/2.Q, acts at t,;; the excess is withdrawn
from the air temperature node, 44, so that the input there is - 1/2.Q, + Q.
There is a transmittance of (6/5)Eh, + h. between to; and any room surface,
internal or external. V acts between t4; and t,, and there is a conductance
4.5.LA between o) and tg;. Comfort temperature in the form of dry resultant
temperature (. is a node on the 4.8.LA conductance and has a value 3/4.t,; +

1/4.t4.
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Figure 3 The surface-to-surface or 'della' network for radiant exchange in an enclosure
with four black body surfaces
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Figure 4 The surface-to-star node network, centered on T'p, which has approximately the
same external effect as the parent delta network
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Figure 5 Inclusion of the blackbody equivalent temperature of a surface and its
emissivity conductance into the pattern of radiant exchange. This conductance,
logether with the geometrical conductance in star-centered form, constitute
the combined conductance AE j*hy,. which acts between T jand T,

Figure 6 The binary star model for a four surfaced enclosure. Q, acts at T, and Q. at
Tq. There is a transmittance of gj*h, between T, and any surface. and a
transmittance of h.; between T, and any surface. Dry resultant temperature,
T, is linked to T, and T, through very high resistances
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Figure 7 This figure illustrates the equivalence theorem. The characteristics of Figure
7a can be obtained exactly from those Figure 7b. In Figure 7b, T, continues to
remain independent of radiant transfer, but T\, is a linear combination of T,
and T4, and replaces T,

0,.(1+C/R)
R

T

I
0 0

Figure 8 The thermal circuit of Figure 8a illustrates the binary star model (in which air
temperature T, and radiant temperature T, are expressed éxplicitly) for the
simplest of all building enclosures - one in which there is a uniform internal
surface temperature Tj. F | denotes a fabric loss conductance from the surface
temperature Ty to Ty, and V the ventilation loss from Tgq to Ty According Lo
the equivalence theorem, the characteristics of the enclosure can be deduced
exactly from the equivalent circuit of Figure 8b, which is the corresponding
single star model, centered on the rad-air temperature T, q.
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Figure 9 The thermal circuit of Figure 9a is the binary star model for an enclosure
with two distinct internal surface temperatures, Ty and Tj. The single star
model of Figure 9b is exactly equivalent to it only if C;/R; = C3/R)
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fractional area fj = Aj/“j

Figure A-1 The figure shows the distribution of values of f3 obtained by the least
squares procedure which was used to transform the surface-to-surface
pattern of radiant exchange in a rectangular enclosure to a surface-to-star
point pattern. They were found from a range of enclosures of different
shapes. f values are presented as a function of the fractional area of the
surface with which the B value is associated. (Small circles indicate the
location of between 1 and S f values and large circles, 6 and more values.,
The total number of values is 3.112 or 363.
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