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Air Flow Through Cracks 

P.H. BAKER* 
S. SHARPLES* 
I. C. WARD* 

The pressure flow characteristics of a number of full-scale model cracks. representative of real 
leakage paths. have been measured. The crack flow equations developed by Etheridge [I) have 
been verified over a wider range of parameters. The authors suggest a quadratic relationship: 

dP = A·Q+B·Q2 

which follows from the same flow theory as the Etheridge so/uiion, to replace the ubiquiwus power 
law as a practical fit to pressurisation data. Unlike 1he power law, the quadratic coefficients A 
and B can be direcz/y re/a1ed 10 crack parameters, and a simple graphical method is given 10 
enable 1he prediction of crack leakage areas. 

1. INTRODUCTION 

1.1. Crack flow equations 
Equations of the form 

ll.P =CJ.' QP (1) 

have been widely used to describe the fl.ow through 
cracks. It has been found that the power law can be 
used to describe the relationship between volume fl.ow 
rate Q and pressure drop !!.P for a wide range of crack 
geometries. However, as Etheridge [I] points out, equa­
tions of this type lack generality because they are not 
dimensionally homogenous, that is they do not obey 
Reynolds law of similitude. 

Some evidence [2, 3] suggests that the fl.ow rate is 
approximately proportional to the square root of the 
pressure drop : 

Q = aJM' (2) 

where a is a constant proportional to the effective leakage 
area of the crack. 

This simple law also applies to turbulent fl.ow through 
a thin plate orifice, and so the area of the equivalent thin 
plate orifice to which the crack approximates may be 
calculated. However, in practice the relationship does not 
fit the available data. Hopkins and Hansford [4] give 
a number of reasons for this deviation from theory: 
(i) the open area increases as the pressure difference 
increases, due to distortion of the crack. (ii) The orifice 
plate equation used to estimate the leakage area assumes 
a constant value of the discharge coefficient; any vari­
ation in the discharge coefficient will produce a deviation 
from the theory._ (iii) The square law approximation is 
not strictly true for all types of crack, crack geometries 
and pressure differences. 

Thomas and Dick [5] found that for the pressurisation 
testing of windows the flow-pressure data fitted a curve 
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of the form: 
ll.P = A- Q + B · Q 2 (3) 

and that there was some correlation between the con­
stants A and B and the window gap dimensions. 

Jones [6] and Etheridge [7] suggest that the above 
relationship might be used rather than the power law or 
the square law. Although the quadratic disregards the 
existence of a critical velocity of transition between 
streamline and turbulent flow, it has the practical advan­
tage that at both extremes, i.e. Q-+ 0 and Q-+ co, it gives 
the correct forms corresponding respectively to laminar 
flow and to complete turbulence. The coefficients A and 
B remain independent of the rate of flow. 

1.2. Theoretical basis of the quadratic equation 
It can be shown that the use of the quadratic equation 

to describe the flow characteristics of simple components 
has some theoretical validity. The basic flow equation for 
laminar flow through infinite parallel plates [8] is : 

Q d 3AP1 
Z = 12µz (4) 

where ll.P 1 is the pressure drop due to skin friction along 
the dimension z in the direction of flow, d is the gap 
thickness, L is the breadth of the plates and µ is the 
dynamic viscosity. Rearranging gives: 

Q I2µz 
!!.P1=z7 (5) 

Now the total pressure drop allowing for edge effects, 
that is fl.ow contraction and expansion pressure drops, is 

(6) 

where C is a dimensionless constant, pis density. 
It is clear that this equation reduces to 

!lPrnTAL = A·Q+B·Q 2 (7) 

where 

A = 12µz/Ld 3 

:-·: 
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and 

B = p•C/2d2L2. 

It can also be shown that the quadratic is dimensionally 
homogenous . 

Hopkins and Hansford (4] and Etheridge [l] have sug­
gested an equation of the form 

l z 
C i= kR D + C 

d eh h 
(8) 

where C11 is the discharge coefficient of the crack, Reh is 
the Reynolds number based on the hydraulic diameter 
Dh, C is an empirical cons1:ant and k is an apparent 
coefficient which varies with Reynolds number and aspect 
ra.tio. The above relationship, like the quadratic, is also 
derived from the basic flow equation for steady laminar 
flow between infinite parallel plates (equation 4) with the 
addition of a tenn for edge effects; however its greater 
usefulness certainly from a theoretical viewpoint, com­
pared to the quadratic form is that the terms l/C~ and 
z/RehDh are non-dimensional. In practice, the quadratic 
may be more suitable for the estimation of leakage areas 
through components. 

1.3. Experimental crack.flow measuremencs 
The validity of equation (8) has been tested by press­

urisation testing of model cracks of the 'straight through', 
'L-shaped' and 'multi-cornered' types [4]. Curves of the 
fonn of equation (8) were fitted to available data with 
some reservations for the L-shaped and multi-cornered 
cracks, where deviations from a smooth curve occur. 
These can be explained by flow separation effects at the 
bends in the model cracks, witnessed by ft ow visualisation 
by means of smoke. Values of the coefficiencs k and C 
were obtained for each crack, and then average values of 
these were calculated for each of the three types of crack 
to enable semi-empirical curves to be drawn through the 
data [Figs 1 (aHc)]. These appear to give a good fit, 
regardless of the deviations. 

Hopkins and Hansford suggest that the semi-empirical 
equations can be used to evaluate discharge coefficients 
for each type of crack to be used in conjunction with 
an orifice plate solution of the form of equation (2). 
Etheridge [L) points out that such a combination is 
both inconsistent and unnecessary, since the fl.ow is com­
pletely and rigorously described by equation (8) alone. 
Althou.gh equation (8) is a simplified representation of a 
complex flow situation, Etheridge found it successful for 
estimating both the open areas of real full-scale com­
ponents and for describing the flow through them. Since 
it takes into account Reynolds number effects the esti­
mated values of open area are independent of the flow 
rate through the open area. This also means that where 
an open area can in fact be obtained by direct measure­
ment, the value can be used directly in the equation to 
estimate the leakage flow under a given pressure differ­
ential. Etheridge further noted that the empirical values 
of slope obtained for the straight-through and L-shaped 
cracks were close to a theoretical value of 96 derived 
from the equations for flow between parallel plates. This 
supports the assumption that the pressure drop can be 
considered as two additive components, i.e. due to skin 
friction and edge effects. 
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Fig .. l. Hopkins and Hansford's data showing their semi-empiri­
cal relationship (--), and the 95% prediction intervals for 
l/Cd1 (-----)calculated for each crack type from the data in 
Figs 4-6. (a) Straight-through cracks, (b) L-sbaped cracks, (c) 

double bend cracks. 

In. the present study, the experimental work of Hopkins 
and Hansford [4) bas been extended over a wider range 
of Reynolds numbers, and the validity of equation (8) 
has been examined, particularly as a description for 
cracks with one or more bends. A quadratic analysis of 
crack flow has also been made as a simplified but still 
rigorous description. 
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Fig. 2. Schematic diagram oftest facility. 

2. EXPERIMENT AL EQUIPMENT AND 
PROCEDURES 

2.1. Experimental apparatus 
The experimental arrangement is shown schematically 

in Fig. 2. Crack models, described below, were fitted into 
the detachable front of the pressurisation chamber, which 
was depressurised using a combination of a bleed valve 
and fans in series to produce a range of flow rates up to 
0.01 m3/s. The pressure difference across a crack was 
measured using either a pressure transducer or a micro­
manometer connected to two pressure tappings, one 
positioned centrally in the pressurisation chamber the 
other in the shield box, used as protection against exter­
nal pressure fluctuations in the laboratory, e.g. doors 
closing. As the work progressed it was found that a simple 
sheltered pressure tapping sufficed without the need of 
the shield box. 

Flow rates below 0.00167 m3/s (100 I/min) were meas­
ured with a commercially available laminar flow orifice 
device. The pressure drop across this factory calibrated 
device is a linear measure of flow rate with 100 I/min= 
1.90 mm H20. Flow rates above 0.00167 m3/s were 
measured using an orifice plate constructed and cali­
brated according to BS 1042 [9]. Since the discharge 
coefficient of the orifice plate is dependent on fl.ow rate, 
the final value of the discharge coefficient and hence of 
fl.ow rate must be obtained by iteration from an initial 
chosen value of Reynolds number. The British Standard 
suggests Re = 106 as the starting point. The calibration 
was independently checked over a limited range offlows, 
0.0019--0.0043 m3/s, by attaching in series a smooth cali­
bration pipe fitted with a micrometer traversing pitot 
[10]. The flows measured using both the orifice plate and 
a IO-point 'log-linear' pitot traverse [10, 11] agreed within 
5%; thus the orifice plate calibration was accepted as 
satisfactory. Various pressure transducers were used dur­
ing the measurements which enabled a wide span of press­
ure differentials across cracks to be measured, typically 
in the range 0.5-100 Pa with the available fan system. 

2.2. Experimental procedure 
The pressure drop across the crack was set up by 

adjusting the bleed valve of the fan system. When the 
pressure drop/flow readings had become steady the data 
were recorded for 2 min on a chart recorder or 500 scans 
per data pair were made with a data logging system. The 
procedure was then repeated over the required range of 
pressure drops. The crack was then sealed over, in order 
to measure the adventitious flows or 'leakage' of the 
pressurisation facility. Adventitious flow measurements 
were made at approximately the same pressure differ­
ences as the crack flow experiments. Since a rigorous 
analysis of the adventitious leakage data was not 
required, curves were fitted in the form: 

with excellent agreement (correlation coefficient r > 0.98 
for all data fits). 

Since the crack flow experiment actually gave the total 
flow (crack+ adventitious) at pressure difference fl.P, the 
adventitious leakage flow Q. was calculated at fl.P using 
the above relationship and then subtracted from the total 
flow to give the air flow through the crack. Whirling 
psychrometer measurements of dry and wet bulb tem­
peratures were made, and barometric pressure taken, 
enabling air density to be estimated and air viscosity/ 
kinematic viscosity to be calculated under ambient con­
ditions. 

The results of the experiments were generally treated 
by both the following methods: (i) the non-dimensional 
parameters I/CJ and z/ReJJ. were calculated, and 
plotted to obtain a relationship of the form 

1 z 
2 =k--+c. 
Cd Re"D" 

(8) 

(ii) The flow-pressure drop data were fitted to a quad­
ratic to obtain the coefficients A and B in equation (7). 
Theoretical values of A and B were also obtained by 

.. . .. 
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using the relationships 

A= 11µz/Ld 3
, 

B = pCf1d 2L 2 

(9) 

(10) 

and assuming values of the loss coefficient, C on the 
following basis: C = 1.5 for straight through cracks, 
C = 2.5 for L-shaped cracks, C = 3.5 for double bend 
crack etc., this follows from pipe flow experiments 
where, for sudden contraction and expansion, the loss 
coefficients are 0.5 and 1.0 respectively, and for a sharp 
bend the loss coefficient is 1.0. These assumptions may 
not be true for reclangular cross-section cracks. The 
theoretical and measured values of A and B were then 
able to be compared. 

3. FLOW THROUGH MODEL CRACKS 

3.1. Crack flow modelling 
Three basic types of crack have been examined which 

are representative of real leakage paths through, for 
example, doors and windows and which may serve as 
models of background leakage paths : (i) Straight­
through, (ii) L-shaped, i.e. one 90° bend (iii) Multi­
comered, i.e. two or more 90° bends. 

Initial measurements made on a 3.22 mm thick crack 
had suggested that the flow per unit length Q LIL through 
a crack of length L was independent of crack length 
provided that the length is much greater than the crack 
thickness. Figure 3 shows QL!L plotted against t.P and 
demonstrates the independence of the flow per unit length 
on crack length. Consequently, for convenience a stan­
dard crack length of 0.5 m was chosen for all measure­
ments. Crack dimensions are given in Table 1. 

The thickness of a crack was originally set using end 
spacers of known thickness. However, due to bowing of 
the ground flat steel plates used to fabricate the earliest 
'straight-through' models, the average of feeler gauge 
measurements made over 21, 25 or 50 positions (depend­
ing on crack type) along the crack length were taken as 
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Fig. 3. QLIL vs t:>.P for 3.22 mm crack. 

Table I. Crack types and dimensions 

(i) Straight-through cracks 

zmm dmm 
~.---~~~~~~~~~~~~~~~~ 

d ---- z ---- 152 
t 76 

50 

0.38, 0.90, 1.40, 3.05, 6.15, 9.40 
0.55, l.03, 1.39, 2.85, 5.85, 8.94 
0.49, 1.17, 1-79, 3.20, 6.08, 9.13 

(ii) L-shaped cracks 

amm bmm zmm dmm d1 r 50 50 94.00 6.00 
50 50 96.02 2.98 b 

50 50 98.91 i.09 l i d ~------~ 50 20 64.01 5.99 
+ 50 20 66.90 3.10 

50 20 68.92 1.08 
c-

(iii) Multi-cornered cracks 

-c- u 
-d-

d ------1 

r '[LJ]' I I 
I 
I I I 

I 
I I 

I I I 

z I I 

s I a I I c I I I 

j ' l 
I I . ------ L---z---' 

-c- -b-

Type amm bmm cmm zmm dmm 

s 50 50 50 150 3.16 
s 50 50 50 150 1.09 
s 20 20 50 60 3.14 
s 20 20 20 60 1.09 
u 50 50 50 143.53 3.23 

a better estimate of crack thickness. The average standard 
deviation for the thickness of straight-through cracks was 
±0.08 mm, and that for L-shaped and multi-cornered 
cracks ±0.09 mm. For 0.5 mm cracks these deviations 
are approximately 20%, which may be considered unac­
ceptable, therefore, no attempt was made to fabricate 
thinner cracks. For ease of manufacture and cost the 
L-shaped and multi-cornered cracks were made from 
perspex sheet. Although this does not have the flatness 
of ground fiat steel, its lightness and rigidity when made 
up into crack models produced good accuracy . 

4. RESULTS 

4.1. Non-dimensional parametric solution 
The non-dimensional parameters !/CJ and z/Re,,Dh 

were calculated from the measured data for each crack 
type. Results are shown in Figs 4-6, where a logarithmic 

·. ! •* • 
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Fig. 4. The relationship between the non-dimensional parameters for flow through straight-through cracks. 

scale has been chosen since the parameters range over 3 
t_o 5 decades. The maximum value of z/Reir/)h obtained 
in the present study is about IO for each crack type. This 
compares to a range of 0.13--0.4 achieved by Hopkins 
and Hansford [4] for similar crack geometries. Figures 
4-{; indicate, with the exception of data for some L­
shaped cracks which showed dependence on flow direc-
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tion (12], that the characteristics of each crack type can 
be described by a continuous function. 

Etheridge [l] has shown that Hopkins and Hansford's 
data fitted linear relationships of the form of equation 
(8). On first examination, a linear fit using standard least 
squares linear regression proved to be inadequate. For 
example, for the straight-through cracks, least squares 

1 .__~~~~~~--.~~~~~~~--.~~~~~~~--.~~~~~~~-, 

0.001 0 .0 1 10 

Fig. S. The relationship between the non-dimensional parameters for flow through L-shaped cracks. 
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Fig. 6. The relationship between the non-dimensional parameters for flow through double-bend cracks. 

gives an intercept of 10.9, yet it is evident from Fig. 4 
that as :/RehDh approaches zero, l/CJ tends to ca 1.5. 
This poor fit is produced by the disproportionate effect 
of the greater scatter of data for larger values of the 
parameters and can be overcome by the selection of a 
suitable weighting factor in the regression analysis (13). 

Weighted least squares analysis produced better linear 
fits to the data, and the intercepts and slopes thus 
obtained for the three crack types are compared with the 
values detennined by Etheridge [1] in Table 2. 

Although there is good agreement between the values 
of the imerceptS, C, the comparison between the slopes 
is poor. However, if the 95% prediction intervals for 
l/CJ, computed from the data for the present inves­
tigation are drawn through Hopkins and Hansford's 
experimental results (Fig. l), then by inspection most of 
their data fall within the intervals. Thus there is some 
evidence for agreement between their data and that 
reported here. 

The estimates of the intercepts are close to the pre­
dicted values of the loss coefficients for the pressure drop 
due to bends, assuming that these are the same for fl.ow 
through parallel plates as for pipe fl.ow (10): (a) for a 
combination of a sharp entrance and exit, e.g. crack 
edges, the loss coefficient, C = 1.5 and (b) for a sharp 
90° bend, C = l. Thus for a straight-through crack the 
predicted value of C is 1.5 ; for a single-bend L-shaped 
crack, C = (l .5 + l) = 2.5; and for a double-bend crack, 
C = (1.5+ I+ l) = 3.5; i.e. C = 1.S+nb, where nb is the 
number of bends. 

It can be shown (e.g. [l]) that the theoretical relation­
ship for the steady laminar flow through parallel plates 
is: 

1 z l 
2=96·-·-+ c 
Cd Dh Reh 

(11) 

with the assumption that the total pressure drop across 
the plates can be considered as the sum of the pressure 
drops due to skin friction and due to bends and end 
effects. This relationship was tested against the exper­
imental data for the three crack types, by calculating the 
percentage deviation (6%) of the experimental values of 
I/ CJ from those predicted for different values z/Re,,Dh 
using equation (11). Plots of~% vs z/Ren · Dh are shown 
in Fig. 7. Equation (11) was considered to be a reasonable 
approximation to the data if 6 % < ± 20%. For straight­
through cracks 82% of the data fulfilled this criterion. 
However, for L-shaped and double bend cracks, only 
48% and 59% of data, respectively, fitted the require­
ment, a lthough Figs 7b and 7c show that equation (11) 
is adequate for z/Re,,Dh less than ca 0.05. 

Figure 7 also shows that the largest deviations from the 
theoretical relationship were associated with the thinner 
cracks of each type. Errors in the estimation of the crack 
thickness may explain the poor fit of the theoretical 
relationship to the L-shaped and double bend crack data, 
and the disparities between different workers' estimates 
of the slopes of the empirical lines through the data 
(Table 2). For any of the crack models, the 95% Con­
fidence Interval for the mean thickness is about ±0.03 

Table 2. Values of the slopes and intercepts of the weighted 
regression lines (Figs 4-Q) for the three crack types and those 

determined by Etheridge[!] for similar crack geometries 

Present study After Etheridge [ l] 

Slope Intercept Slope Intercept 
Crack type k c k c 

Straight-through 103.0 1.4 95.7 1.5 
L-shaped 78.3 2.3 91.4 2.2 
Double bend 78.9 3.3 43.2 3.4 

·. : ·~ .. 
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Fig. 7. Fit of the theoretical equation (11) shown as .6.%. 
(a) Straight-through cracks, (b) L-shaped cracks, (c) double­

bend cracks. 

m, and the accuracy of each individual measurement is 
± 0.05 mm. Additionally, unknown errors are introduced 
for the L-shaped and double bend cracks, since it was 
not practicable to measure along the complete centre-line 
of these cracks, e.g. the centre section of the double-bend 
cracks. Thus a rough estimate of the error in thickness is 
±0.1 mm, which is ± 10% for a crack of 1 mm thickness, 
but only ±2% for a 6 mm crack. In the former case the 
expected errors in the parameters z/Rei/)h and l/C; are 
thus ± 10% and ± 15%, respectively, and for the 6 mm 
crack ± 2 % and ± 3 % . Since data for the thicker cracks 
(z/Rei/)h - 0) determine the intercept or loss coefficient, 
a small error in this may be expected. On the other hand, 
because the thinner cracks (z/Rei/)h-+ oo) tend to deter­
mine the slope of the regression line, the expected error 
in the slope may be large, e.g. ± 27% based on an error 
of± 10% for a crack thickness of 1 mm. 

The above indicates that good agreement between 
the intercepts determined by the author, by Etheridge's 
analysis of Hopkins and Hansford's results, and the 
pseudo-theoretical loss coefficients, may be expected as 
the error is likely to be small. However, since the error 
on the slope is likely to be large for a small absolute error 

in thickness, discrepancies between different workers' esti­
mates of slope are to be expected, particularly for the 
more complex crack geometries where there is greater 
uncertainty in thickness measurement, and a poor fit to 
a theoretical model is also likely. 

4.2. Quadratic solution 
As discussed above, there are reasonable theoretical 

grounds for describing leakage data with a quadratic 
equation. Two methods of quadratic analysis were used: 
(a) curves were fitted to the data using regression analy­
sis; (b) 'theoretical' curves, derived from calculated 
coefficients, were drawn and compared with the measured 
data . 

4.2.1. Quadratic regression analysis. Good quadratic 
fits were obtained for all data, with a coefficient of deter­
mination generally better than 0.99. Some examples are 
shown in Figs 8-10. The goodness of fit, indicated by 
inspection of the residuals from the regression analysis 
and calculation of coefficients of determination, was gen­
erally superior, in 61 % of the tests, to a power law fit 
[Figs 8(a) and (b)]. It was considered as good as the 
powerlaw in 23% of the tests [Fig. 8(c)], whilst the power 
law was better in 16% of the tests. 

The significance of the regression coefficients (Table 3) 
is best considered by comparison with the theoretical 
coefficients computed for each crack. 

4.2.2. Theoretical quadratic equations. The values of 
the coefficients are, 

A= 12µz/Ld 3 (9) 

and 

(10) 

calculated for each crack, using the measured crack 
dimensions, experimental ambient conditions, and 
assuming the loss coefficient, C = 1.5 + nb, are given in 
Table 3. These were used (i) to construct the theoretical 
curves as shown in Figs 9 and 10, and (ii) to predict the 
crack flows at the experimental values of pressure drop, 
6.P. The deviation 

oQ% = Qthoory-Q x 100% 
Qlhcory 

was then found, which indicates whether the predicted 
flow, Qtheory• under- or overestimates the measured fl.ow, 
Q. 

(i) By inspection, the theoretical curves give a sat­
isfactory fit to most of the data, i.e. well within 20%, 
which may be taken, arbitrarily, as the limit of 
acceptability of the theoretical model. (ii) A more rig­
orous analysis was made by constructing frequency-dis­
tribution diagrams with the values of the 'goodness of 
fit' parameter oQ% for each crack type (Fig. 11). In 
each case a set of data could be identified which gave a 
noticeably poorer fit than the majority of the data for 
that crack type. 

It is noteworthy that these data pertain to thinner crack 
sizes, e.g. I mm L-shaped (Fig. !Oa) I mm double bend, 
0.5 mm straight-through (Fig. !Ob), which are subject to 



1" ': .. 
I 

I ! • 

; 1.: 

i; 

300 P. H. Baker et al. 

Table 3. Experimental (exp) and theoretical (th) values of the coefficients in the quadratic solution 

d z A,.= B,h= 
Type (mm) (mm) A.,P 12µz/Ld 3 Bu, pC/2d 2L2 

s 0.38 152 1130779 1212632 - 5266 79257• 24743767 
s 0.90 152 98670 91075 1427614 4370370 
s 1.40 152 23346 24063 1808829 1821429 
s 3.05 152 2370 2340 366872 382155 
s 6.15 152 338 285 83851 94785 
s 9.40 152 121 80 34741 40403 
s 8.94 76 93 46 36431 45644 
s 5.85 76 291 166 84435 106421 
s 2.85 76 1722 1435 429895 445799 
s 1.39 76 13494 12373 1160443 1869468 
s l.03 76 33854 30446 -1520483• 3339617 
s 0.55 76 99680 199242 907575 11920661 
s 0.49 50 257262 185331 1107877408 14693878 
s 1.17 50 12324 13579 1882549 2567144 
s 1.79 50 3661 3841 1061599 1102121 
s 3.20 50 708 666 334264 341602 
s 6.08 50 162 97 75335 94951 
s 9.13 50 53 29 34646 41748 
LE 6.00 94 128 190 190024 162500 
LE 2.98 96.02 1541 1585 662393 664384 
LE 1.09 98.91 25660 33545 264683 4965912 
LUS 5.99 64.01 173 130 231323 163043 
LUL 

" " 
186 

" 
137704 

" LUS 3.10 66.90 1147 981 627699 613944 
LUL 

" " 
1048 

" 504660 .. 
LUS/L 1.08 68.92 17255 23898 4133307 5058299 
DS 3.16 150 956 2088 890830 820181 
DS l.09 150 38288 50594 7274357 6834442 
DS 3.14 60 1501 844 677975 851962 
DS l.09 60 10251 20237 8461119 7040653 
DU 3.23 143.53 1345 1852 805036 796285 

S, Straight through; LE, L-shaped equal 50 mm x 50 mm sections; LU. L-shaped unequal 
20 mm x 50 mm (S = short exit, L = long exit); DS, double bend 'S'; DU, double bend 'U'. 

•The negative values of B,.P are a consequence of the spread of data. 

greater proportional, dimensional errors than the thicker 
cracks. It can readily be shown, when deriving the theor­
etical coefficients, if the absolute dimensional error is 
taken as 0.1 mm, that this is sufficient to cause errors of 
approximately ± 25% in the coefficients predicted for a 
small crack thickness, but for thicker cracks these errors 
become less significant (- ± 5%). There was therefore 
reasonable justification for rejecting these data from the 
analyses of the distributions (Table 4). 

For the theory to be acceptable the mean value of oQ% 
should be zero, but using a rigorous statistical treatment 
of the oQ% values the actual mean value of - 3.1 % can 
be shown to be significanL so the model should be rejected. 
However, it can also be shown that the mean t5Q% is 
significantly less than ± 5%, which is an acceptable pre­
diction error limit for a model. Also since greater than 

90% of the data fall within the ± 20% acceptance limits 
for individual datum points, there is reasonable evidence 
for accepting the theoretical quadratic model. 

The model is sufficiently accurate for it to be considered 
as a rule of thumb method for estimating, for example, 
leakage areas using pressure drop-flow measurements. 
However, an accurate solution may be difficult to achieve, 
since once a leakage patb has been identified, it is unlikely 
that its critical dimensional characteristics (thickness, 
centre-line distance and number of bends) are either 
known or practically measurable, unless the path is 
formed by a building component such as a door. The 
parameters which can be easily obtained from simple 
measurements are crack length and air density and vis­
cosity, from ambient conditions. Using a pressure box 
technique, crack length is fixed at a predetermined value, 

Table 4. Analyses of frequency-<listributions of the deviations. oQ% 

Goodness of fit: 
Standard 95% Confidence % of data within 

Crack type Sample size Mean Q% deviation original of mean acceptance limits 

Straight-through 281 -1.3 10.8 1.3 95 
L-shaped 325 -2.8 13.2 1.5 87 
Double bend 151 -7.3 7.5 1.2 97 
All 757 -3.1 11.5 0.8 92 

' 
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Fig. 8. Examples of this quadratic and power law fits : (a) and (b) quadratic better than power law, 
(c) quadratic as good as power law, (d) power law better than quadratic. 

say 0.5 m as in this investigation, and then the flow 
through the complete crack is found pro-rata. The exper­
imental values of the quadratic coefficients, A and B, 
can then be substituted along with other known crack 
parameters into equations (9) and (10), which can be re­
arranged to give the unknown parameters on the left: 

and 

z AL 
d 3 = 12µ 

C 2BL2 

dz =-p-. 

An exact solution for leakage area, defined as the prod­
uct Ld, cannot be found, since there are three unknowns 

and only two equations, but a good estimate may be 
obtained by a graphical method. Figure 12 shows bands 
constructed for 0.5 m long cracks of various thicknesses, 
0.5-9 mm, at 20°C. The curves which form the limits 
(z = 50-150 mm) were drawn using the quadratic model 
(equation 6). 

Experimental flow pressure drop measurements are 
plotted onto the diagram. The approximate crack thick­
ness can then be read off. Shown are some data measured 
for L-shaped cracks. The method works well for the 
cracks with nominal thicknesses of I and 3 mm. since 
there is reasonable differentiation between the bands. 
However, for thicknesses greater than about 3 mm, the 
bands overlap considerably, thus for the 6 mm L-shaped 
cracks the best estimate of thickness is 5-7 mm. For more 
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complex cracks and values of z outside the range of the 
diagram, the method gives an apparent crack thickness . 

4.3. Conclusions 
(I) The relationship: 

I k I 
2=k·-·-+C 
Cd Dh Reh 

(8) 

adequately describes crack flow for a wide range of the 
parameter z/Re,,Dh. However, agreement with the exper­
imental data deteriorates at higher values of z/Re,.Dh. 

(2) The intercept or loss coefficient C in equation (8) 
approximates to (I.5+nb), where nb is the number of 
bends. This estimate can be used in theoretical qiµdratic 
equations (see 4 below). 

(3) A quadratic curve of the form: 

t:..P = A· Q + B • Q 2 

describes the experimental data better than a power law, 
t:..P = a.QP. 

Fig. 12. Flow characteristic chart: Curves drawn for various 
crack types (d mm, z mm, crack type: s = straight-through; 
d = double-bend). Experimental Data: 

L-shaped cracks 
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(4) A theoretical quadratic model of crack fiow can be readily obtained by quadratic regression analysis 
of the experimental data. 

12µz pC 
2 

llP= Ld 3 ·Q+2d2L 2 ·Q (6) 

obtained from the same parallel plate theory as equation 
(8), is suggested as a more practical alternative to the 
more general non-dimensional solutions found in 
equation (8), since adequate estimates of the parameters 

12µz pC 
A= Ld1 and B = 2d2L2 

(5) Both the quadratic model, equation (6), and the 
non-dimensional solution, equation (8), can be used to 
produce a simple graphical method of predicting crack­
age areas from measured data based on a known crack 
length. 
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