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The Evaluation of Contaminant 
Concentrations and Air Flows in a Multizone 
Model of a Building 

J. R. WATERS* 

M. W. SIMONS~/ 
Improvements to tracer decay techniques for measuring flow rates in multi-cell buildings are 
proposed on the basis of a study of the governing equations. A detailed examination of the forward 
solution, in which tracer gas concentrations are predicted from known flow rates, has been carried 
out. This has revealed properties of the decay curves, which, if recognised, can assist in the 
extraction of flow rates from measured tracer concentrations. Proposals are made for tracer gas 
seeding strategy, and for computational procedures. 

NOMENCLATURE 

a1 concentration coefficient to ith eigenvector 
fii F,;V;-1 
F" volumetric flow rate from zone i to zone j (m3 s- 1

) 

n number of zones 
r, s.v:- 1 

S, s~~ of flows into zone i (m3 s- 1
) 

V, volume of zone i (m 3
) 

c( t) concentration in zone i 

l

c,(t)l 
c2(l) 

~(t) = : 

c0 (t) 

lx"] X;1 

~= : 
X;,, 

ith eigenvector 

Greek symbol 
.l, ith eigenvalue 

1. INTRODUCTION 

IN AIR movement studies it is convenient to represent a 
building as an assembly of interconnected zones, each 
zone being capable of exchanging air with any other zone. 
Usually, one zone is taken to represent external air, so 
that air movement between inside and outside may be 
represented as well as air movement within the building. 
If the interzonal flow rates are known, the multizone 
model may be used to compute the time evolution of the 
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spread of an airborne contaminant. This may be par
ticularly useful in certain types of buildings such as fac
tories and hospitals. On the other hand, if flow rates are 
not known, the model can be used to obtain them from 
appropriate measurements of contaminant concentra
tions. 

The differential equations governing contaminant 
distribution in a multizone model are well known, and 
have been given by Sinden [l] and Sandberg (2], both of 
whom make general remarks concerning their solution. 
However, in the particular case of the evaluation of flow 
rates from contaminant concentrations, as in the tracer 
decay method, it is of great advantage to understand the 
properties of the solution in considerable detail. Such an 
understanding is of value in, (i) determining the best 
initial distribution for the tracer gas, i.e. the most advan
tageous seeding strategy; (ii) avoiding poorly defined 
results due to ill-conditioning or linear dependency in the 
solution; (iii) maximising the information that can be 
obtained from a set of experimental data . 

Perera and Walker [3] have considered some of these 
points, but their discussion is mostly confined to a par
ticular building, and cannot, therefore, be easily general
ized. Indeed, as will be shown later, the more general 
approach adopted here leads to conclusions which differ 
in some respects. The purpose of this paper is to examine 
the theory of the multizone air movement model in order 
to improve strategies for the derivation of interzonal air 
flows from tracer decay measurements. This has been 
done by examining in some detail the forward solution 
from known interzonal flow rates in order to identify 
pertinent features of the decay curves. These features are 
then used to sugest how both seeding strategy and the 
analysis of decay curves may be carried out to best advan
tage. The theory and discussion are restricted to the case 
of a single tracer gas. 
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2. FUNDAMENTAL THEORY AND THE 
GENERATION OF DECAY CURVES FROM 

KNOWN FLOW RATES 

The fundamental equations of a multi-zone air move
ment model have been stated by several authors, but are 
repeated here for completeness and consistency. Figure I, 
due originally to ref. [l) and also given by ref. [2], 
illustrates the essentials of the model, in which a number 
of zones 0, I,. : .,11, are connected by one way passages 
through which air is flowing. The air in each zone is 
assumed to be fully mixed. Initially each zone contains a 
known concentration of tracer gas, and because we are 
restricting the problem to the tracer decay method, it is 
assumed that there is no generation of tracer gas in the 
system after time zero . Taking a volumetric balance on 
tracer gas in zone j, and balancing Lhe total flow into and 
out of zone) gives 

• 
V/;/t) = I Fudt)-cJ(t)Sj, 

i=O 
io,4} 

(1) 

where Sj is the summation of the flows into or out of 
zone j, and is given by the conservation equation 

,, n 

sj = I Fu = I fj;. (2) 
i=O i:>:O 
i:Fj i:Fj 

In matrix form, equation 1 becomes 

V£(t) = Ff!_(t) (3) 

where 

[v" 
0 

:.i v~ : 
V1 

0 

[-S, F10 F2o 

Fo1 -Si F21 

F= : 

Fon 

This is a system of of first order differential equations 
with the general solution 

n 

£(1) = I akxk e'", 
k- o -

where n + 1 values of ).k and ~k are, respectively, the 
eigenvalues and eigenvectors of the equation 

A.Vx = Fx (4) 

Fig. 1. The multizone air movement model of a building. 

and the coefficients ak are determined by the initial con
ditions. Sinden pointed out that (i) one eigenvalue, .A. 0 , is 
always zero, and that the corresponding eigenvector x0 

is real and has equal components, (ii) all other eige~
values and eigenvectors may be real or complex, (iii) 
complex values always occur in conjugate pairs, and (iv) 
all eigenvalues apart from 40 have negative real parts. 
Assigning infinite volume to zone 0 causes this zone to 
represent external air. The model then represents a build
ing with n internal zones. 

If tracer gas is not present in external air, the con
centration in zone 0 is always zero. Hence x 0(t) and the 
first row and first column of the vectors V and F may be 
deleted from Equation (2). The solution simplifies to 

n 

c(t) = I akxk e~•'. 
- k - 1 -

(5) 

The zero eigenvalue and its eigenvector no longer appear 
and the remaining lk and~ are obtained from 

(6) 

where 

Sinden's conditions (ii), (iii) and (iv) still apply. However, 
in the case of a two zone building (n = 2) only, Sinden 
showed that the two eigenvalues and their eigenvectors 
are always real. This indicates that for the two zone case, 
oscillatory solutions are impossible, whereas for all other 
cases (n ;:a: 3), oscillatory solutions exist for appropriate 
combinations of flow rates. 

Solution of Equation (6) requires computation of the 
eigenvalues and eigenvectors of E' = V'- 1 F', which for 
n > 3 generally requires the use of numerical comput
ation procedures. Such methods are certain to fail 
if E' has repeated eigenvalues and linearly dependent 
eigenvectors. That repeated eigenvalues can occur in 
quite normal situations can be demonstrated by some 
simple examples. 

Example I. Repeated eigenvalues, 2 zone building 
For the general 2 zone building shown in Fig. 2, the 

eigenvalues can easily be shown to satisfy 

from which it can be seen that repeated eigenvalues occur 
when 
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Fig. 2. The general 2 zone building. 

Writing 

this becomes 

(ri -r2) 2+4/id21 = 0. 

Since all quantities are real non-negative numbers, this 
requires 

(ri = ri) and Ui 2 = 0 or /2i = 0). 

The most obvious case which satisfies these conditions 
occurs when Vi = V2 and Fio = F02 = F 21 = 0, which 
corresponds to a simple uni-directional flow of air 
through the building. The solution for ci(t) and c2(t) can 
be found directly as : 

c 1(t) = ai e'' } 
c2(t) = (ait+a 2)eu 

(8) 

where 

A.=-~= - S2. 
Vi V2 

More generally, if Vi # V2 and only F 2 i = 0, then the 
condition r 1 = r 2 will be met if 

and the solution for c 1 (t) and c2(t) becomes 

c 1(t) = a 1 eA' } 

c2(t) = (ai/12t+a 2)eu 
(9) 

Example 2. Repeated eigenvalues, 3 zone building 
The eigenvalues will be the roots of a cubic equation 

A. 3 +aA.2 +bA.+c = 0. 

Again writing 

S, Fu 
r1 = - and flJ = -V , v, J 

it is a simple matter to show that 

b = r1r2+r2r3+r3ri-/12!2i-f23/32-/i3/31 

c = r1r2r3-r1/23/32-r2/i3/31 

-r3/12/21-/12/23/31 -/13/32/21 

v, = 1. v, = 2. v, = 3 

~o* 9 

Fig. 3. A 3 zone building with repeated eigenvalues. 

From elementary algebra, the cubic may be re-written as 

x 3 +px+q = 0, 

where 

ab 2a 3 

q=c--+-
3 27 

The condition for repeated roots is that the discriminant 
is zero, i.e. 

4p3 +27q 2 = 0. 

Now, by substitution for a and b, p may be shown to be 

p = -[/id2i +/2J/32+/1d3i 

+ U (r 1 -r2)2 + (r2 -r3)2 + (r3 -ri)2}]. 

Since all r, and fu must be real and non negative, then 
p ~ 0, and real solutions to the discriminant exist. Thus 
combinations of r, and fu exist which give repeated roots. 
In the particular case when all three roots are equal (and 
therefore real), then if this root is m, it may be shown 
that 

a1 
b=-3, 

a3 
c = 27' p = q = 0, and 

a 
m= --3· 

Clearly p = 0 when r, = r2 = r3 and/21 = /32 = /3i = 0, 
and a typical building configuration where this might 
occur, with suggested values, is shown in Fig. 3. In this 
particular example the solution is 

c 1(t) = cxe- 3
' 

c3(t) = y e-31 + (i + ~}e-31 + i t2 e- 31 

where ix, p, y are determined by the initial conditions. 
In general, the existence of repeated eigenvalues may 

be found by examining the Jordan canonical form of the 
matrix E'. Clearly the condition 

r 1 = r2 = ... = rn with some fiJ = 0 

is of particular significance, but whether or not this is 
a necessary condition has not been explored here. The 
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possibility exists therefore, that in general repeated 
eigenvalues wilJ occur for a variety of conditions on r, 
and J;j. The physical significance of a repeated eigenvalue 
in the 2 and 3 zone examples given above is that one zone 
in the system does not receive a flow from any other 
zone (except zone 0 which is the outside), indicating that 
contaminant concentrations in this zone are unaffected 
by contaminant concentrations elsewhere in the building. 
It is possible that a repeated eigenvalue has the same 
physical significance in buildings of 4 or more zones. 

3. PRINCIPAL PROPERTIES OF THE DECAY 
CURVES 

The solution lo the tracer decay problem Equation 
(5) is in praclice obtained in two stages. First, from the 
known interzone flow rates FIJ the eigenvalues and their 
associated eigenvectors are found. IL is convenient to 
label the largest eigenvalue and its as ociatedeigenvector 
11 and ~ t respectively. lt should be noted that the eigen
values and eigenvectors are completely determined by the 
set ·of F11. If one Fi1 is altered, all 4,. and ~k are also 
altered. Secondly from the known initial contaminant 
concentrations, the coefficients a/( arc calculated, each 
one being associated with one eigenvalue. Again, the ak 
are determined by the set or initial conditions. Changing 
the initial conditions in any one zone will change all the 
a~ but not the ).i; or ~· 

The solution has a number of properties which, if 
recognised, can aid the interpretation of measured decay 
curves. The following points are of particular value. 

(i) Whatever the initial conditions, a time will be 
approached when the largest eigenvalue dominates, 
after which a ll ;i;ones will decay at essentially the 
same rate and the concentrations in the zones will 
be in the same ratio as the components or ~1 • Since 
by definition the contaminant concentrations in aJJ 
zones are real positive numbers, it follows that ), 1 is 
a real negative number, and that a 1 and all com
ponents of ~ 1 are real positive. The remaining eigen
values eigenvectors and coefficients may be real or 
complex. However, complex values always occur in 
conjugate pairs [Sinden's (Ule (iii)], and so if there 
are an even number of zones, there must always be 
at least one more real J.k, 1iJ< and ak. 

(ii) The time taken to reach the point at which lhe largest 
eigenvalue dominates and a unifom1 decay is estab
lished in all zones depends on the initial distribution 
and the magnitude of the flow rates. If the initial 
distribution is such that the concentrations in the 
zones are in the same ratio as the corresponding 
components of ,!1> then uniform decay is established 
instantaneously, which implies that a 1 = 1 and 
a 2 = a 3 = .. . a"= 0. If the initial distribution is 
such that only the zone assoicated with the smallest 
component of the dominant eigenvector is con
taminated, the time to reach uniform decay rate is 
maximised. 

(iii) Starting from a non-uniform initial distribution, 
especially wliere only one zone is contaminated, it is 
likely Lhat the other zones will show an increase in 

contaminant concentration in the early part of the 
process. However, conservation considerations 
require that the zone with the highest concentration 
at any given time must be decaying. Thus the con
centration in any zone where it is rising must reach 
a peak not later than the Lime at which it equals 
the concentration in Lhe zone which until then had 
shown the highest value. In particular, if the con
centration versus time curves for any two zones in a 
system is such that the decaying concentration in 
one of them (say zone I) intersects the rising con
centration in the other (say zone 2) when the con
centration in 2 is at its peak, then immediately it 
may be possible to infer that the only non-zero fl.ow 
into 2 is from I. This occurs frequently in practical 
situations, and it may be proved by writing the flow 
equation for zone 2 (from equation I) in the form 

or more simply, since at the point in question, 
c2(1) = 0, 

C2(t) = fo2Co(t)+f12C1(l)+f22c2(t)+ .. -fn2cn(t) 

The coefficients /;1 must be such that 

Now if at the point of intersection c 1(t) > c1(t) for 
all other i (except i = 2) the equality c1(1) = c 1(t) 
can only be satisfied if all /i2 are zero except / 12 

which proves that F 12 is the only non-zero flow into 
zone 2. The condition that c 1 (1) is greater than all 
other ci(t) may be relaxed for those c1(t) where it 
is already known from other considerations (e.g. 
building geometry) tbat the correspondingfi1 is zero. 
Thus, if c 1(1) = c2(t) when c2(t) = 0 it follows that 
F 12 is the only flow into zone 2 if c1(c) is the 
maximum in the subset of zone.<> which have a poss
ible connection to zone 2. 

(iv) It is not possible to associate any eigenvalue with an 
individual zone, neither is it possible to associate 
any flow rate with an eigenvalue. This is an obvious 
consequence of the fact than an alteration in only 
one of the Fu will alter all the ).". 1n particular, the 
dominant eigenvalue which governs the later stages 
of decay does not relate to the overall fresh air infil
tration rate or the whole building. However when 
internal interzonal flow rates become very large rela
tive to the infiltrati.on fl.ow rates, the building will 
approximate lo a fully mixed single zone and in 
these circumstances,.\ 1 may become a good measure 
of the overall infiltration rate. 

4. AN ILLUSTRATIVE EXAMPLE 

The propertie di cussed in Section 3 can be illus
trated by a hypothetical but nevertheless realistic 
example. Consider a four zone building, as shown in 
Fig. 4, in which the signi ficant infiltration openings are 
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Fig. 4. A 4 zone building example. 

concentrated in zones l and 2. Wind pressure will create 
a flow into zone 1, a flow from zone l to zone 2, and an 
outflow from zone 2. Superimposed on this there may be 
a circulation through zones 3 and 4, generated perhaps 
by entrainment or by internal stirring mechanisms. This 
example is a simplified model of a common natural ven
tilation situation; Fig. 4 may be visualized as a plan view, 
in which zones 3 and 4 are rooms with no direct link to 
the outside, or, as in an industrial building, the figure 
could represent a vertical section, in which zones 3 and 
4 are the roof space. 

Taking the total volume of the building as 3600 m 3, 

then with F 01 = F20 = l m3 s- 1
, the fresh air infiltration 

rate is 3600 m3 h- 1 or 1 air change per hour. For values 
of the circulation flow rate, r greater than zero, zonal 
concentrations may be calculated from Equation (5), 
using values of A.k and !k found from Equation (6). This 
has been done for r = 0.25, r = land r = 4m 3 s- 1

, giving 
a range of values from well below to well above the 
infiltration flow rate. The resulting eigenvalues and their 
eigenvectors are shown in Table l. When r = 0, zones 3 
and 4 are isolated from zones 1 and 2, and become stag
nant areas, leaving a uni-directional flow through zones 
1 and 2, exactly as in example 1 in Section 2. In this case 
c3(t) = c4(t) = 0, and the solutions for c 1(t) and c2(1) are 
given by Equations 8, with 

A. S1 S2 1 
= -v;- = - V2 = - 900' 

The coefficients ak have also been computed for a range 
of cases, illustrating the effect of different initial 
conditions. The values of ak are shown in Table 2, in 
which the notation 1, 0, 0, 0 indicates that initially zone 
1 was seeded with contaminant, whereas zones 2, 3 and 
4 were contaminant free. The time evolution of the con
taminant concentrations have also been calculated for 
these cases, and the results are plotted in Figs 5-11. 
Inspection of Tables 1 and 2 show, as explained in para
graph 3 (i), that A. 1 is always real negative, and that a 1 

and all components of !i are real positive. Where com
plex values arise, they are in conjugate pairs, and because 
there are an even number of zones, there are always in 
total at least two real sets of A.k> ~ and ak. 

The effect of initial distribution on the time taken to 
reach a uniform decay is shown in Figs 5-9. The com
ponents of the dominant eigenvector are, from Table l, in 
the order X11 < X12 < x 13 < X14. Therefore, from 3 (ii), the 
time to reach uniform decay from the seeding of a single 
zone should be greatest if zone 1 is seeded, becoming less 
in order as zone 2 or 3 or 4 is the zone seeded. When all 
zones are equally seeded the time to uniformity should 
be least. Inspection of the graphs tends to confirm this ; 
the time at which all four zone concentrations settle into 
their final relative order [i.e. cit)> c 3(t) > ci(t) > c 1(t)] 
is a useful indication. However, a better criterion is to 
compare the ratios of the concentrations at a suitable 
point in time (say 2 time constants) with the components 
of ! 1• The closer these ratios are to x 1, the closer is the 
decay process to uniformity. The co~parison is shown 
in Table 3, which confirms the expectation. In practice, 
it can be seen that if, initially, all zones are uniformly 
contaminated, the time taken to reach uniform decay will 
always be short, whereas if, initially, any one zone only 
is contaminated, the time to uniform decay will be long. 
The effect offtow rate on the speed with which uniformity 
is established is shown in Figs 10 and 11, which show the 
effect of increasing r to 1 and then 4 for the l, 0, 0, O 
case. 

The effect described in 3 (iii) is most clearly shown in 
Figs 5, 10 and 11, in which seeding is in zone l. In each 

Table l . Eigenvalues and eigenvectors for 4 zone building 

i = l i= 2 i= 3 i=4 

Case l, r = 4 
A1 -2.68 x 10-• 0 -5.00x 10- 3 4.67 x 10- 3 -5.00x 10- 3 -4.67 x 10- 3 -9.73 x 10- 3 0 
X11 0.840 0 0.1 0.839 O.l -0.839 -0.752 0 
X12 0.882 0 1 0 1 0 1 0 
xll 0.939 0 -0.111 -0.939 -0.111 0.939 -0.840 0 
X;4 1 0 -0.869 0.210 -0.869 -0.210 0.705 0 

Case 2, r = 1 
A; -2.33 x 10-• 0 -1.67x10- 1 l.20 x 10- 3 -1.67 x 10- 1 - l.20 x 10- 3 -3.10 x 10- 1 0 
X;1 0.558 0 0.250 0.539 0.250 -0.539 -0.395 0 
X;i 0.623 0 1 0 1 0 1 0 
X;3 0.790 0 -0.354 -0.763 -0.354 0.763 -0.558 0 
x,. 1 0 -0.458 0.539 -0.458 -0.539 0.311 0 

Case 3, r = 0.25 
A1 -1.40 x 10-• 0 -4.64x 10-• 0 -1.20x 10- 3 0 -1.53 x 10- 3 0 
X;1 0.223 0 0.300 0 0.134 0 -0.0995 0 
X;2 0.247 0 0.452 0 1 0 1 0 
Xn 0.498 0 -0.672 0 -0.300 0 -0.223 0 
x,. 1 0 I 0 0.0903 0 0.0495 0 
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Table 2. Coefficients for 4 zone building 

Real and imaginary components of coefficients 

a, U1 

2.24 0 -4.21 0 
0.202 0 -0.280 0 
0.909 0 -0.931 0 
0.450 0 0.627 0 
1.785 0 -1.01 0 
0.274 0 0.354 -0.299 
0.263 0 0.070 -0.289 

a, 

4.66 
0.662 
0.421 

-1.40 
4.30 
0.354 
0.070 

0 
0 
0 
0 
0 
0.299 
0.289 

Zone 
I 

U4 

-4.53 
0.450 

-0.224 
1.01 

-3.39 
-0.879 
-0.372 

2 .............. . 

3 -·-·-
4 

···················-,. 

. ........ ,.-.::::::::- . -·-
~·:.:-..:.-.~.-:-----.:.-:::.:..-:==.:..-=w-------~===.-==.:: 

0 
0 
0 
0 
0 
0 
0 

.......... 
o..f..-.~:.._-===::.:::::;:.:.:___:::=::::=:==:;::::==·= .. .. = ... = ... = .... = .. ~::=;:=:=:======::::; 

0 

1·0 

0·8 

0·2 

0 
0 

0·& 1·0 
Time <time con at ants> 

Fig. 5. Tracer decay, 4 zone building, r = 0.25, zone l seeded. 

.. .. 

0·5 1·0 1 ·5 
Time !time c:omtanlsl 

Fig. 6. Tracer decay, 4 zone building, r = 0.25, zone 2 seeded. 
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0·5 1·0 
T1me(timeconstant11 

1 · 5 

Fig. 7. Tracer decay, 4 zone building, r = 0.25, zone 3 seeded. 

------
····· ······· ··· ········ ·········· ··· ... 

0·5 1·0 1 ·S 
lime ct11n1 constant•> 

Fig. 8. Tracer decay, 4 zone building, r = 0.25, zone 4 seeded. 
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2·0 

Table 3. Difference between concentration ratios and components of the dolilinant eigenvector at 2 time constants 

Seeded zone 

2 3 4 

Zone i Xu C; lc,-x,,I C; lc;-x11I C; lc;-x11I C; lc,-x 11I 

1 0.223 0.207 0.016 0.210 0.013 0.214 0.009 0.231 0.008 
2 0.247 0.213 0.034 0.218 0.029 0.225 0.022 0.270 0.023 
3 0.498 0.753 0.255 0.677 0.179 0.626 0.128 0.359 0.139 
4 1 1 0 I 0 1 0 I 0 

LIC;-X11I 0.305 0.221 0.159 0.170 
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0·8 

-... 
0 ·6 

I 
j .. a 

0·4 
"· 

"· ----· ------·--.. . .. .. 
0·2 ····· ... ........ .. ....... .. .... ............... ... ..... ................. 

0 0·5 1·0 t 5 2·0 
Time ltlm• constants> 

Fig. 9. Tracer decay, 4 zone building, r = 0.25, all zones uniformly seeded. 

of these, the decaying concentration in zone l intersects 
the concentration in zone 2 when the latter is at its peak, 
indicating that all F.·2 are zero except for F 1 2• Similarly, 
zone 2 intersects zone 3, and then zone 3 intersects zone 
4, indicating that all F; 3 and F; 4 are zero except for F23 

and F 34• Note also that seeding other zones gives less 
information. In Fig. 8, the intersection of c1(t) with ci(t) 
occurs when c2(t) is zero, but it is necessary to assume 
that the diagonal flow F42 is zero in order to infer that 
F 12 is the only flow into zone 2. Also in Fig. 8, because 

I 
J 

1·0 

0·8 

0·6 

0·4 

geometry doc not preclude that F, l = 0, the fact that 
c2(1) intersects cJ(I) when C,1(l) is zero does not oece sarily 
require Fu t.o be the only flow into zone 3. 

The relationship between the dominant eigenvalue,.lh 
and fresh air infiltration rate, as discussed in paragraph 
3 (iv), can be found by mulliplying A. 1 by 3600 to obtain 
air changes per .hour. Table 4 shows how .l 1 expressed 
in units of 11 - 1

, varies with r. Even with r = 4, the infil
tralion measured from the long term slope of the decay 
curve would be 4% below the true value of I air change 

Zone 

2. .... .. ... .... .. 

3 - ·-·-

4 

0 0·5 t·O 
Tlmeltime constants> 

2. ·0 

Fig. 10. Tracer decay, 4 zone building, r = I, zone I seeded. 
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1·0 

0·8 

0·6 

f 
.§ 

0·4 

0·2 

Zone 

2 

3 

4 

·.: -........_ 
···:.:...--~-

.... ···· ......... ......... :-::..:::.::::: ~."7;.~-:-.-.~ :-:-:-:--- :------

0 0·5 1 ·0 
Tlme(tlne constants) 

1 ·5 2·0 

Fig. 11. Tracer decay, 4 zone building, r = 4, zone 1 seeded. 

per hour, whereas at r = 0, it would be only 25% of the 
true value. Whilst it is obvious from this example that, 
for r = 0, the value of A. would give the correct fresh air 
infiltration rate if it were associated with the volume of 
zone I only, this cannot be done from the decay curves 
alone, without first establishing that F2 i. F3 1 and F 41 are 
all zero. 

Paragraph 3(iv) above, and the results of this example 
throw some light on remarks made by Perera and Walker 
(3] concerning the association of eigenvalues with par
ticular flow rates. Using computations from their own 
five-zone building, they concluded that "eigenvalues do 
not necessarily equate either to the fresh air infiltration 
or to the total air change rate of a zone". This is in 
agreement with the work presented here. However, they 
also state that the dominant eigenvalue must represent 
air movement between the building and the outside, and 
that the dominant eigenvalue is relatively unaffected by 
changes in interzone flows. This must be incorrect as 
it is clearly contrary to both the theory and example 
considered here. 

5. THE EXTRACTION OF FLOW RATES 
FROM TRACER DECAY MEASUREMENTS 

The problem encountered in practice is the opposite of 
that considered so far i.e. knowledge is required about 

Table 4. Apparent fresh air infiltration rate, 4 zone building 

r ).I Air change rate (h- 1) 

4 -2.68 x 10-• 0.96 
l -2.33 x lo-• 0.84 
0.25 -1.40 x 10- 4 0.50 
0 -l.llxl0- 3 0.25 

air movement patterns within buildings and across their 
external fabric from tracer gas decay observations. In a 
system of n zones each connecting with the outside there 
are n2+n flows, Fu. The necessary n2+n equations may 
be formed from the n flow conservation equations (2) 
and measurement of the concentrations c1(t), ... , c.(t) 
and their derivatives c1(t), ... , c.(t) on n occasions since 
each set of measurements yields n tracer gas conservation 
equations (1). 

If the c; data set is error free and gives perfect tracer 
decay curves, there is no difficulty in solving for the Fu 
providing the c;(t) and c;(t) can be obtained at n 
sufficiently different points in time to yield the necessary 
n2 equations. There are however certain precautions that 
must be taken in order to avoid an inaccurate solution. 

(i) As explained in Section 4, irrespective of initial con
ditions, zonal concentrations tend to relative mag
nitudes equivalent to the components of ~1 • If more 
than one set of c;(t) and c1(t) are taken as this con
dition is approached, an ill conditioned set of equa
tions and hence an inaccurate solution will result. It 
follows that it is necessary to ensure that adequate 
time is available for collecting well conditioned data, 
i.e. before the equilibrium concentrations are 
approached. This is most easily achieved by strategic 
seeding of the zones, especially, as explained in Sec
tion 4, by seeding the zone with lowest equilibrium 
concentration. Although this zone may often be 
identified intuitively, it is most easily obtained from 
the results of a preliminary set of measurements 
based on an arbitrary seeding pattern which is 
allowed to run until equilibrium concentration ratios 
are apparent. 

(ii) Care must be taken when seeding buildings of sym
metrical layout. In the case of the building shown 
in Fig. 12, if zone 2 alone was initially seeded the 
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Fig. 12. Example of flow symmetry which may lead to linear 

dependence. 

concentration in zone I would, for all time, be 
greater than that of zone 3 in the ratio of 3 to I. As 
a consequence there would be linear dependence 
between the conservation equations and hence no 
unique solution. In the case ofa real building, exper
imental scatter would mask the problem causing the 
linear dependence to give way to ill conditioning and 
an inaccurate solution. 

This problem may be quite easily overcome by 
ensuring that the symmetry does not exist. In the 
above example, seeding zone I, zone 3 or any com
bination of more than one zone instead of zone 2 
alone, would be satisfactory. 

(iii) Situations where there may be repeated eigenvalues, 
as in examples 1 and 2 in Section 2, may create 
difficulties if the wrong zone is seeded. In those par
ticular examples, it is obvious that it is necessary to 
seed zone 1, otherwise not all the decay curves will 
be present. In the case of a real building where there 
is no pre-knowledge of the flow pattern, incorrect 
seeding may fail to reveal an important flow. In 
example 2, if zone 2 was seeded, there would be no 
measured tracer in zone l. Nevertheless, a valid set 
of measurements would be obtained, the solution of 
which would lump the F 12 flow in with F02• 

The solutions to examples 1 and 2 show that the 
solutions for the concentrations are not wholly inde
pendent, as ci(t) and cJ(t) can be expressed in terms 
of c 1(t). However, this dependency varies with time, 
and so it is still possible to obtain the necessary n2 

equations from the tracer conservation equation. In 
the 2 zone case, if t 1 and t 2 are the two times at which 
c 1(t), c1(t), c2(t) and c2(t) are measured, then it may 
be shown by substituting equations 8 into equation 
i, that the determinant of the coefficient matrix for 
the F;; is exactly (t 1 - t 2) 

2
• As this is only zero when 

t 1 = t 2 a unique solution should always be possible. 

In practice, an experimental data set is subject to scat
ter from a variety of sources, and in many cases exper
imental technique provides measured values at discrete 
points in time only. As the direct solution technique relies 
on measurement of gradient as well as magnitude, the 
resulting errors in the F11 may be substantial. Walker 
(4] has attempted an analysis of errors by considering 
suitable norms of the appropriate matrices. This is useful 
for examining the theoretical upper bounds of the errors, 
but does not help to quantify the probable error arising 
from a particular data set. Nevertheless, Crom the analysis 
presented in this paper, it is possible to deduce in a 

qualitative sense a series of measures which should reduce 
the effect of errors in the data set and improve the quality 
of the computed Fil. Seeding strategy has already been 
discussed, and there are some other possibilities. 

5.1. Noise on the data 
If the data set is large enough, it is possible to use 

Sinden's suggestion, and integrate Equation (I I) over 
different time intervals. Penman and Rashid (5) have 
used this method. The disadvantage is that decisions must 
be made concerning the length of the time intervals and 
their positions in the data set. There is no simple criterion 
which will resolve the conflicting requirements of long 
time intervals (to maximise noise suppression) and 
sufficiently different time intervals to avoid ill condition
ing. This difficulty is avoided if a straightforward 
smoothing technique is adopted. For example if the data 
points are equally spaced in time, the method of fourth 
differences [6] may be applied. This gives smoothed 
values of both c;(t) and c;(t) according to simple alge
braic formulae. Where the smoothing is carried out 
over, say, five adjacent data points, we have: 

C;(t) = c;(1)-3/35[c;(t-2s)-4c;(t-s) 

+6c;(t)-4c;(t+s) + c;(t+ 2s)] 

,., _ -2c1(t-2s)-C;(t-s)+ c;(t+ s)+2c;(t+2s) 
L-;(t) - 10s 

where C;(I) and C;(t) are the smoothed values of c;(t) and 
c;(t), and s is the time interval between successive points. 
This method has been used in ref. [7]. 

5.2. Reducing the number of unknowns 
It is rare in practical situations for all possible flows, 

F;1, to exist, and therefore some of the Fu can be set 
to zero from geometrical considerations alone. Of the 
remaining Fu, some may also be set to zero ifit is observed 
that any of the decay curves intersect as in paragraph 
3 (iii). Furthermore, when a single zone is seeded, 
additional information can be obtained from an exam
ination of the decay curves in the neighbourhood of the 
origin. If only one zone is seeded, say zone i, then at 
t = 0, this will be the only zone to contain tracer gas, and 
Equation (1) reduces to 

Thus 

V;C;(O) = - C;(O)S;. 

c;(O) 
S; = - V; C;(O) (10) 

and the limiting value as t-+ 0 can conveniently be found 
by plotting the ratio i:;(t)/C;(t) against time. Also, for any 
zone, j which has a flow connection to zone i, equation 
I at time t = 0 can be reduced to 

and so 

c/O) 
Fi}=~ C;(O) " 

However, this likely to over-estimate F;j because time lags 
in the flow paths make it difficult to synchronise the 

r 



Evaluation of Contaminant Concentrations 315 

measurements of cj(O) and c;(O). If c;(O) is taken as the 
value of c;(t) at the time (usually slightly after t = 0) that 
the measured gradient in zone j is a maximum, then c;(O) 
is probably too low, and it is safer to write 

VcO 
F ~ _ J_J_ 

ij...., C;(O). (l l) 

Again, it is convenient to plot the ratio of ci(t)/c;(t) 
against time. 

5.3. Application of least squares methods to measured data 
sets 

Once the data has been smoothed, and the number of 
unknown Fu's has been reduced to a minimum, a solution 
of Equations 1 and 2 may be attempted. A least squares 
technique is appropriate, but in multi-zone buildings it is 
often found that the optimum solution contains negative 
values for some of the F;; [5, 7]. Clearly negative values 
of F;i are physically impossible, and so it is necessary to 
apply the constraint F;j ~ 0. Penman and Rashid 
achieved this by using the constrained least squares 
method described in ref. [8], and found that they were 
then able to obtain satisfactory results. Lawrance has 
done likewise, but has taken the idea further by includ
ing the extra information obtained from Equations 10 
and l l as additional constraints. The least squares solu
tion could possibly be further refined if the equations ob
tained from the data set were weighted according to their 
position in the time series, in order to compensate for 
the fact that, as time progresses, the equations approach 
linear dependence. This, however, would require a 
criterion for evaluating appropriate weighting factors. 

5.4. Time delays 
In large buildings, zones may be sufficiently far apart 

for there to be a significant time lag between zones. This 

not only has the effect of displacing the decay curves for 
the zones by different amounts with respect to time, but 
can also affect the pattern of the decay process. This effect 
has been examined for a simple two zone building [9]. 
For the two zone case, it was found that the introduction 
of time lags creates an oscillation on the decay curves. 
Similar effects could occur in multizone cases, and may 
therefore need to be included in the analysis. 

6. CONCLUSION 

Solutions to the equations for the distribution of a 
contaminant in a multizone air movement model have 
been examined in detail, with a view to improving the 
evaluation of interzone flow rates from measured decay 
curves. The principal conclusions are; 

(i) the most advantageous seeding strategy is to seed a 
single zone. Preferably this should be the zone in 
which the tracer concentration will as time pro
gresses fall below the concentration in any other 
zone. 

(ii) The number of unknown Fu's can be reduced not 
only from considerations of building geometry, but 
also if the decay curves exhibit certain features. 

(iii) The values of all non-zero Fu's can be constrained 
to be greater than zero, and some can be constrained 
to other values or to an upper limit from close exam
ination of the decay curves. 

(iv) It is not possible to determine the overall fresh air 
infilitration of a building by measuring the dominant 
eigenvalue from the final uniform decay rate. The 
fresh air infiltration rate can only be found by first 
solving for the Fij• and then summing to find 

. " 
So = L F;o = L Fo;· 

i=l i=l 
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