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1. Introduction 

In an air-conditioning system, it is necessary to remove or to 
supply heat in order to maintain a comfortable temperature level, but it 
is also necessary to supply the room with a proper amount of fresh air. 
Therefore the indoor airflow is an important factor in the investigation 
of thermal comfort, ventilation efficiency, air pollution and energy 
conservation. 

Model experiments and numerical analysis are known to predict 
indoor airflow and distribution of air pollutants. In the model 
experiments, the accuracy of prediction is affected by the level of the 
measuring techniques. Even though accurate and highly responsive 
instruments, such as an infrared gas detector or a flame ionization 
detector (FID), are used, it is difficult to analyze the detailed 
structure of the turbulent diffusion. 

Through a model experiment, Yoshizawa (1), Ito (2), and Hayakawa 
(3) showed the distribution and the variation of pollutant 
concentration. Kobayashi (4) and Tanaka (5) conducted a model experiment 
in which the relation between the fluctuation of concentration and the 
airflow structure was thoroughly measured. 

On the other hand, though there are several studies on the 
numerical methods, few methods dealing with turbulence, in which for 
example, the fluctuation of concentration is considered as the root mean 
square (6), have been carried out. 

This paper describes a numerical method of airflow and air 
pollution in buildings by the finite element method, and shows the 
mechanism for the diffusion of air pollutants by computer simulations. 

2. Nomenclature 

P :density 
u.,u. ':average and turbulence of air velocity 

l. l. . 
P : pressure 
C :average of gas concentration 
k :turbulent kinetic energy 
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E :turbulent dissipation rate 
v :molecular viscosity 
vt :eddy viscosity 
G :generation rate of gas 
Sc :Schmidt number 
ac :turbulent Schmidt number 
K :Karman's constant 
D :molecular diffusivity 
g :gravity 
n. :j-th component of unit normal vector 
AJ :penalty parameter 
u* :friction velocity 
Re :Reynolds number 
Pee :Peclet number 
Cav :average concentration of the field 
C95 :95% cumulative concentration of the field 
- u'v':Reynolds stress 
MA :Molecular weight of gas A 
CJJ,CDl'CDZ'ak,aE:constants of two-equation turbulence model 
As :universal constant 

3. Governing eqcations 

Air pollutants diffusing in a room generally consist of various 
components, however, in this paper they are limited to gases such as 
CO , NO , etc. and the focus is on the two-component diffusion of a 
poflutant of interest in the room air as a medium. The basic equations 
are based on the following three assumptions, 1) the fluid is 
incompressible, 2) absorption is neglected, and 3) pressure diffusion 
and heat diffusion are neglected. A two-equation model (k-E model) (7) 
is adopted as a mathematical model of turbulent flow. The governing 
equations of steady flow are given in tensor form, using Einstein's 
summation convention. 

u.,.=0 (1) 
J J 

ujui'j +II,i - ((v+vt)(ui'j + uj'i)),j - Fi= 0 (2) 

u .C, . - ((D + v t/ac)C, .) , . - G = 0 (3) 
J J J J 

u.k,. - ((v+vt/ak)k, .), . -vtS + E = O (4) 
J J J J 

2 
ujE' j - (( v + v /aE)E, j). j - ?Di (E/k)vts - cn2E /k = o (5) 

2 
vt•Ck/E (6) 

II = P/P +2k/3 (7) 

S = ( u1 , J' + u., . )u . , . 
J i i J 

(8) 

where Cu, c01 , c02 ,ak,aE and ac are constants. 
In the case that the buoyancy effect caused by the difference of 

density between a component and medium is not negligible, Rodi (8) 
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proposed those equations in which production terms based on buoyancy 
force are added to the transport equations of k and e:, however, these 
production terms are neglected in this paper and Boussinesq 
approximation is used as the effect of buoyancy only in a transport 
equation. The penalty function method is also adopted to treat 
incompressibility so that the continuum equation is eliminated from the 
original equations, i.e., penalty function for pressure is given (9) 

II= -).uj'j 

So momentum equation is given as 

ujui'j -A(uj'j) - ((v+vt)(ui'j + uj'i)),j 

where A is penalty parameter. 
Boundary conditions are considered as 

F. = O 
l. 

" u. = u. on r 1' 
l. l. 

t. = ((v+vt)(u.,. + u.,.))u. = t. on r2 
l. l. J J l. J l. 

,.. 
c = c on r 3, 

,.. 
k = k on r 5, 

"" e: = e: 

r=(D+vt/oc)C,.n.=r onf4 
J J 

s -
,.. 

.. s on r 6 

on r 8 

(9) 

(10) 

(11) 

where 
r, the 

" indicates a specified value. Using empty set$ and total boundary 
relationship among boundaries rl' r2' and r3 can be written as 

r
1
n r

2 
= r

3
nr4 = r

5
nr

6 
= r7 nr8 = <1> 

(12) 

Practical boundary conditions for u, k, and e:considering turbulent 
boundary layer theory and local isotropy near the wall, will be 
given (10) 

u/u* = (l/K)loge(u*z/v) + As 

k = u* 
2
/Cµl/

2 

3 
e: = u* /(Kz) 

(13) 

(14) 

(15) 

where u* means friction velocity, K means Karman's constant, and As 
varies with the state of wall surface. 

4. Numerical approach 

Governing equations (3),(4),(5) and (10) are discretized by the 
finite element method, and governing functions will be given as 
approximate interporate functions of unknown velocity u., concentration 
C, turbulent kinetic energy k, and turbulent dissipatio~ rate e:. 

U.=¢ u. ' C=¢ c ' k=¢ k ' e:=¢ e: (16) 
1 a ia a a a a a a 
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~ is adopted as the weighted function and the governing equations are 
integrated over the element domain. As the final step, governing 
equations are transformed into the weighted residual equations in weak 
form, after using the Green-Gauss theory. For example, 

fne<~a~S~Y.j)dnuSjuyi+fne{(v+vt)(ct>a,jct>S,i+$a,kct>S,k0 ij)'-A<I>a,i~S.j}dOuaj 

-Jr{$ (v+v )(u .. +u .. )n. +ct> Au .. n
1
.}df = 0 (17) 

e a t i,J J,l. J a J,J 

f ne<<t>a~act>y,j)dnuSjcy+Jne{(D+vt/crc)ct>a,jct>S,j}dnca-Jne<<t>aG)dn 
-Jn {ct> (D+v /cr )C .nJdf = 0 (18) ue a t c ,J J 

where n is the j-th component of unit vector n and re is the boundary 
of e-th J1ement. Finite element equations are given by superposition of 
the above equations and are solved with specified boundary conditions. 
We can easily integrate each term by numerical integration, however, 
reduced integration in which the number of integral points is one point 
less is adopted for penalty term (second term of eqn.(10)), in order to 
avoid the "locking phenomena". The procedure to arrive at the solution 
is already reported in the reference (11). In the case that the buoyancy 
effect caused by the difference of concentration is negligible, the 
calculation of concentration is executed after that of u, k, and E. 

In the first half, the momentum equation is solved by the Newton
Raphson method, and the approximate solutions of k and E by the modified 
Newton-Raphson method with the calculated mean velocity. Consequently, 
this iteration is continued until the residual of finite element 
equations becomes small enough. 

5. Mechanism for the diffusion by computer simulations 

There are many factors which influence the distribution of 
concentration in the air-conditioned room. In this chapter, two factors 
that will considerably affect the concentration are discussed. The first 
factor is a flow pattern caused by the various ventilation systems. The 
second factor is the location of gas generation. The mechanisms for the 
diffusion are clarified by computer simulations. 

5.1. Comparison of numerical analysis with the model experiment 

The accuracy of the calculated results is compared with the data of 
model experiments and is discussed. A room model (3mX2.5mX2m) with an 
outlet and an inlet is used, and fresh air is blown through the chamber 
from the inlet. Air velocity is measured by a hot wire anemometer and a 
ultra-sonic anemometer, and the concentration of methane as a tracer gas 
is measured by FID. 
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The finite element model for the calculation has 144 elements and 
169 nodes. The constants of the two-equation model are as follows; 

The comparison between the calculation and the model experiment is 
shown in Fig.l. The velocity and the concentration are expressed as 
nondimensional values relative to the standard values. There seems to be 
no significant difference between the results of the calculation and the 
experiment. 

µ 
..c:: 
00 

... q 
QJ 

::r: 

• exper:i.rrent 
O prediction 

• 

2 .-----. 

1 

(a)velocity 

0 
--0.5 0 

o--~-
0.5 0 1 2 c 3 

Fig.I Prediction and experiment 

Fig.2 Location of gas generation 

5.2. Flow pattern and distribution of concentration 

The numerical calculations of the representative eight ventilation 
systems, which are simplified to two-dimensional models and in which the 
location of gas generation is set in the middle of the space, are 
carried out. Fig.2 shows the flow patterns and the distributions of 
concentration. The concentration is relatively low in the types of 
Pattern-1,2,3,5,7 and 8 in which air is circulated in the room. But, in 
the types of Pattern-4 and 6, the concentration is considerably higher. 

5.3. Mechanism for the diffusion 

The relation between the distribution of concentration and the 
velocity at the location of gas generation is shown. Nine points (Fig.3) 
are chosen as the location of gas generation. Fig.4 shows the cumulative 
relative frequency of the concentration for Pattern-I and Pattern-4. The 
two types differ considerably in the distribution of concentration. 

Fig.5 shows the relation between the concentration and the velocity 
of all types. Two mechanisms for the diffusion induced by the convection 
and the turbulent diffusion are recognized. One is that the turbulent 
diffusion exerts an influence on the concentration where the air 
velocity is small, and the other is that the convection dominated 
diffusion where the air velocity is relatively large. 

Additionally the concentration in the room is approximately 
predicted by the velocity in the location of gas generation. The 
equations in this case are as follows; 
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Cav < 0.3 

c95 < 0.5 
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Fig.3 Flow patterns and concentrations 
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when U < 0.3, 

Cav < -S·U +2 
(21) 

c95 = -8.9·U+3.l , 

where Cav and c95 respectively are the average concentration of the 
field and the 95% cumulative concentration. 
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Fig.4 Cumulative relative frequency of concentrations 
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Fig.5 Relation between velocity and concentration 

6. Conclusions 

The numerical predicting method of the airflow and the distribution 
of concentration by the finite element method are described. The 
relation between the ventilation system and the distribution of 
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concentration, and two mechanisms for the diffusion induced by the 
convection and for the turbulent diffusion are investigated by means of 
computer simulations. In the conclusion, the concentration in the room 
is approximately predicted in terms of the velocity at the location of 
gas concentration. 
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