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Technical Note 

Summary .\Au!ti-zone models of air movement In b.uildings usually assume that there is no time 
lag in the Hows becween zones. Nevertheless, such time lags could have a significant effect on the 
pattern of con,eaminant d istribution throughout a building. This note shows how such effects can 
be evaluated by examining theoretically a two-zone model with ume lags. T he resulcs have 
implications for the interpretation of tracer decay measurements. 
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I Introduction 

In multi-zone air movement models it is assumed that a 
building can be represented by an assembly of zones with 
the air in each zone perfectly mixed. The flows between 
zones are usually assumed to occur without time lags, that 
is, a particle of air in the flow from zone 1 to zone 2 will, on 
leaving zone 1, reappear instantaneously in zone 2. This 
assumption is implicit in the multi-zone air movement model 
of SindenCll , and is perpetuated by authors such as 
SandbergC21 , PereraC3> and Waters and Simons'4l who have 
used Sinden's model. In practice, zones may be remote 
enough from one another for time lag effects co become 
important, especially if the principal connecting path is a 
corridor or duct. The effect of time lags will be most signifi
cant in a transient process, such as the spread of a con
taminant following its release in one part of the system, or 
the decay of a tracer gas in a tracer decay experiment. 
The introduction of time lags into the model renders the 
mathematics cumbersome. This note is therefore confined 
to an analysis of a two-zone model. 

2 Theory and analysis 

Consider a two-zone model as shown in Figure 1. The zones 
have volumes Vi and V2, and the contaminant concentrations 
at time tare x1(t) and x2(t). The flow, F, from 1 to 2 must, 
in this simple model, be the same as the flow from 2 to 1, 
but the time delay on the flow paths may be different. Let 
the time delay be g1 for the flow from 1 to 2 and g2 for the 
flow from 2 to 1. Assume that at time zero the contaminant 
concentration in zone 1 is suddenly raised to unity, and 
everywhere else in the system (including connecting ducts) it 
is zero. To determine the subsequent pattern of contaminant 
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Figure l Two-zone air movement model with time lags 

concentrations in zones 1 and 2, we may write the followir 
equations: 

For r < g2 

V1.i 1(t) = -Fx1(t) + Fx2(0) 

For L ~ g2 

V1.i1(t) = -Fx1(t) + Fxz(r - gi.) 

Fort< g1 

V 2x2(t) = Fx1(-0) - Fx2(t) 

For r ~ g1 

V 2.i2(t) = Fx1(t - g1) - Fx2(r) 

The notation x 1 ( -0) indicates the contaminant concentrati 
in zone 1 before time zero, and is therefore the concentrati 
in the connecting duct ab. Introducing, H, the Heavis: 
unit step function, and writing v1 = V11F, v2 = V2 ! 
allows the equations to be written more concisely in the fo 

v1x1(l) = -x1(t) + H(t - g2)xz(t - g2) 

- H(t - g2)xz(O) + x2(0) 

VzXz(l) = H(t - g1)X1(t - g1) - H(t - g1)x1(-0) 

+ X1( -0) - Xz(l) 

These equations may be solved by routine application of 
Laplace transform. The transformed equations are 

v1(s.i1 - x1(0)) = -.ii + e-12' .i2 

I 1 
- - e -i 2' x2(0) + - x2(0) 

s s 
1 

v2(si2 - xi(O)) = e -11' i 1 - - e -111 x1( -0) 
s 

1 
+-x1(-0)- i 2 s 

The initial condition is that at t = 0, x1(0) = l, x2(0) = 
x1(-0) = 0. The equations therefore simplify to 

The solution for i 1 and i 2 may be written, with k = g1 + 
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in the form It is interesting to note that when g1 = k = 0, the solution 
reduces to 

x,(t) = t (l + e-21 ,v) 

xi(t) = W - e-l11 t') 

(1) which is obviously the solution for the zero time lag case. 

Vi e-R'1' 
i - - ---- - --·---

2 - (v is+ l )(v2s + 1) - e -(g 1+f 2l• 

The equilibrium value of x1 and x2 may be found by 
means of the final value theorem, 

lim (x(t)] = lim (s.i(s)J 
r-a: s-0 

(2) Applying this to equations 1 and 2 (with v 1 = v2) gives 

Using (1 - a)-i = 1 +a + a2 + ... , the solutions may be 
expressed as a series expansion. For example. for i 1, 

_ Vi ( e-•r 
Xi = 1 + ------

(ViS + 1) (vis + l)(VzS + 1) 

+ e~2Ju z+ ... ) 
(vis + 1) (v2s + 1) 

Similarly for i 2• To obtain the Laplace inverse for the general 
case, each term in the series must be split into partial 
fractions. For instance, provided Vi* v2, the denominator 
of lhe second term in ii is 

I Vi /(vi - Vz) 
=----

(vis+ 1) (v1s + l)(v2s + 1) (vis+ 1)2 

_ v1v2 /(vi - v2)2 + v~ /(vi - ~·1)2 

V1S + 1 VzS + 1 

Hence, :taking the Laplace inverse term by term, 

xi(t) = e - 11" 1 + H(t-- k)(..!...::..!!_ e -<•-•l'" 1 
Vi -vz 

- V1Vz e-<1-•)1.,, • + V1Vz e-<r-•>tv z) 
(v1 - v2)

2 (vi - Vz)2 

+ terms in H(t - 2k), H(t - 3k) etc. 

Similarly for x2(t). 

When v1 = v2 = v, the series expansions for ii and i 2 
m:w be written as 

1 e_., e-2h 
Xi = I + __ 2 i 3 + ' I • + . ' • (s + v- ) v-(s + v- ) v•(s + v- )> 

e-11• e-<•+r1>• e-<:z.t+r1>• 

iz = v(s + v- 1)2 + v3(s + v-1)4 + vs(s + v-i )6 + . .. 

The Laplace inverse may be obtained directly to give 

( 
(t - k)2 

~ (t) = e-11
"' 1 + H(t - k)--- e• 10 

. I 2!v2 

(t - 2k)
4 

2A/IJ ) + H(t - 2k) 
1 4 e + ... 

4.v 
(3) 

(4) 

v 
x1 = x2 = -- at t = x 

2v + k 
(5) 

When k = 0, the zero time lag case, the equilibrium value 
is clearly ! . 

Since v is the time constant of the process, it is con
~enient to normalise the time dimension with respect to v, 
i.e. 

t'=!.,g; =~,gz =g2 andk'=~ 
v v v v 

Assuming plug flow in the connecting ducts, it can then be 
seen that the volumes of these ducts are given by 

V.b = g1F = g I V and Vcd = g2F = g 2 V 

3 Examples and discussion 

Equations 3 and 4 have been evaluated for five examples, 
with values of k' ranging from zero to 1.2. The zero time 
lag case, with k' = O, is plotted in Figure 2, and shows 
the concentrations x1(t) and x2(t) smoothly approaching the 
expected equilibrium value of 0.5. Figures 3 to 6 show the 
effect of increasing the time lag. For small time lags (k' = 
0.3 and k' = 0.6) the effect is not only to reduce the equi
librium value given by equation 5, but also to cause the 
concentrations to approach equilibrium more rapidly. For 
larger time lags (k' = 0.9 and k' = 1.2), the concentration 
curves show instability, with an oscillation of half period 
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Figure 2 Two-zone decav, zero time lag .case. g1 = g2 = 0 
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Figure 3 Two-zone decay, k' = 0.3, Kt= 0.1, Ki= 0.2 
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Figure 6 Two-zone decay, k' = 1.2, Kt= 0.4, Kz = 0.8 

roughly equal to k' and amplitude increasing with k'. The 
value of k' at which instability begins may be found by 
looking for a minimum in the x1(l) curve between c = k' and 
t = 2k'. Taking the first two terms only in equation 3, 
differentiating, and solving for (t' - k') when x1(t) = 0, 
shows that the required minimum exists when k' ;;;?; ln 2, i.e. 
k' ;;;?; 0.69. Thus, instability exists when the total volume of 
the connecting ducts is given by 

V.b + Vcd = (gj + g]. )V;;;?; 0.69 V 

Inspection of equations 3 and 4 shows that the pattern of 
the x1(t) and xi(t) curves depends only on the total time lag, 
k' , and that the effect of g i is to offset the curve for x2(t) on 
the time axis . Thus the pattern of the curves, the equilibrium 
values, and the condition for instability all depend only on 
k'. 

The effect of allowing additional flows between each 
zone and the outside has not been included in this analysis. 
Nevertheless it is obvious that if there is no contaminant in 
the outside air, the effect will be to make .x1(t) and x2(t) 
asymptote to zero instead of 1 /(2 + k'), without affecting 
the periodicity and offset of the decay curves. However, the 
value of k' at which instability commences may not be the 
same. 

4 Applications 

An important application is in the measurement of infil
tration rates and air movement by the tracer decay technique. 
The presence in the measured decay curves of oscillations 
of the type shown in Figures 5 and 6 would be an indication of 
the possible existence of time lags. Such oscillatory behaviour 
has been observed in measurements in industrial buildings, 
and Figure 7 due to Simons and WatersCSl is an example of 
measured decay curves in a six-zone building. Clearly, time 
lags, if present, will affect both the values of the tracer gas 
concentration and the gradient of the decay curves through
out the decay process. 

Estimates of fresh air infiltration based on decay curve 
gradients may be in error, because compared with normal 
single-zone and multi-zone theory, gradients will be steeper 
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Figure 7 Measured decay curves in a factory building. Zones: 1 --, 
2 ----, 3 ----, 4 -·. ·-·. ·, 5 --"-, 6 ........ 

during the early pan of the decay process and shallower 
during the later stages. 
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5 Conclusion 

The simple two-zone,model examined in this paper is suf
ficient to demonstrate that the existence of time delays in 
the flow paths between zones has a considerable effect on 
the contaminant versus time curves. The method described 
here could in principle be extended to predict contaminant 
concentrations in models with more than two zones. The 
reverse process, of establishing flow rates from measured 
tracer decay curves, is clearly more difficult than in the 
absence of time lags, as there will be additional unknowns 
to evaluate. 
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