H-3 AN INVESTIGATION INTO CIGARETTE SMOKE IN DIFFERENT TYPE OF ROOM

Masaya Narasaki Dr-Eng.

1. INTRODUCTION

The degree of indoor pollution depends, together with other factors, on the amount of tobaco smoked and upon the ventilation rate supplied. We therefore need to quantify the pollution generated by cigarette smoking so that it can be diluted to an acceptable level. The quantity of cigarettes smoked will depend upon the use of the room. We therefore need to identify the smoking habits of the occupants of different type of room.

This paper describes the investigation by Osaka University to quantify the proportion of occupants who smoke, the quantty of cigarettes smoked, the time taken to smoke a cigarette and the interval between cigarettes smoked. The spaces studied were an office, a conference room, a cafe and the waiting room in a bank.

2. INVESTIGATION METHOD

The proportion of adult occupants actually smoking is defined as $\beta \%$ which is different from $\alpha \%$ the proportion of habitual smokers in the adult. In this report βM is the fraction of males, β_{F} is that for females and β_{S} the proportion of habitual smokers who are smoking. The average value of β was obtained by counting the number and sex of the smokers and of the total occupants of the room every ten minutes. This determined the average number of smokers. All the cigarette butts thrown away during the investigation were collected and counted. The butt length was then measured so that the burning

Osaka University, Faculty of Enginneering, 2-1 Yamadaoka, Suita, Osaka, Japan 565
length of each cigarette could be calculilated. This enabled the average burning length of the cigarettes to be estimated. Calculations were then made on the following basis:

```
(Average smoking time, \(\mathrm{T}_{\mathrm{s}}\) (min/cig.)
```

Total smoking time (min)
Total number of cigarette butts (cig.)
$=\frac{\binom{\text { Duration of }}{\text { investigation }} \times\binom{\text { Average number }}{\text { of smokers }}}{\text { Total number of cigarette butts }}$
$\binom{$ Average burning }{ rate of cigarette }$V_{S}(\mathrm{~mm} / \mathrm{min})$
$=\frac{\binom{\text { Average butt length }}{\text { per cigarette }}(\mathrm{mm} / \mathrm{cig} .)}{\left(\begin{array}{c}\text { Average smoking time })(m i n / c i g .) \\ \text { per cigarette }\end{array}\right.}$
Average smoking interval; S.I. (min)
$=\frac{\binom{\text { Period of }}{\text { investigation }} \times\binom{\text { Number of habitual }}{\text { smokers in room }}}{\text { Total number of cigarette butts }}$

3. RESULTS OF DISCUSSION

1) $\alpha \%$. The Monopoly Corporation's report shows the trend in time in the proportion of people who habitually smoke (Table 1). Japanese men have the highest proportion of habitual smokers in the world. However, there are clear sexual differences in $\alpha \%$. The cigarette smoke condition in a room

Table 1 Proportion of habitual smokers in the adult population : α (\%) (from the Monopoly Corporation!s reports)

Year	Male	Female	Total
166	83.7	18.4	-
74	78.3	15.1	-
75	76.2	15.1	44.5
77	75.1	15.1	44.0
78	74.7	16.2	
79	73.0	15.0	
80	70.2	14.4	

would therefore be strongly influenced by the proportion of each sex present.
2) $\beta \%$. The number of smokers present ina room can be estimated from knowledge of the occupancy ratio and β the proportion of smokers.
i) A LABOLATORY CONFERENCE ROOM The occupants and smokers were few in number. Comprehensive details of the cigarettes smoked are given in Fig. 1. The average number of smokers was recorded at $1 \frac{1}{4}, 5$ and 10 minute intervals (Table 2). The dispersion of those values decreases as the time interval is reduced and as the number of smokers and occupants increased. For other investigations numbers of smokers and occupants were recorded at 10 minute intervals. Three investigations are summarised in Table 3, and show average values for β, β_{M} and βs. The female was a non-smoker. These values are not typical, except for β_{S}, because the sample size was so small. The average number of smokers in a conference room can generally be estimated by taking 28% of the habitual smokers β_{S}.
ii) AN OFFICE The smoking habits, identified by questionaire, are given in Table 4. The value for α is smaller than the national figure. The change in the proportion of people smoking β throughout the day suggests that smokers are more likely to somke immediately when they enter the office just before or after lunch time and around $3 \mathrm{p} . \mathrm{m}$. The average values of β are given in Table 5. Slightly higher values of β would expected based on the national value for habitual smokers α. People smoking at any one time can be estimated as 15% of the number of habitual smokers.
iii) A BANK WAITING ROOM Visitors comprised 53% male and 47% female. Average values for the smokers β, β_{M} and β_{F} are listed in Table 6. Accepting the national average of habitual smokers α, typical values would be 13% of the males and 15% of the females would be smoking at any one time.

Fig. 1 Smokirg condition in a conference room. The numerals on the figure are smoking times (min).

| Table 2 | The average number of smokers in a conferance |
| :---: | :---: | :---: | :---: | :---: |
| room | |

Table 3 Ratio of smokers to occupants in a conference room

Investigation	I	II	III
Puration (min)	85	88	75
Number of nceupants (personsi)	21	18	21
Number of habitual smokers (persons)	10	6	9
Average number of people smoking (persons)	2.8	1.8	2.3
Proportion of people smoking,	13.3	10.0	11.0
Proportion of males smoking	14.0	10.6	11.5
Proportion of habitual sinokers	28.0	30.0	25.6
Table 4 The proportion of habitual smokers in an office room			
	Male	Female	Total
Number of questionaire (persons)	69	20	89
Number of no answer (persons)	7	8	15
Ratio of sexual composition (\%)	84	16	100
Number of habitual smokers (persons)	38	1	39
$\alpha_{s} \quad(\%)$	61.3	8.3	52.7

Table 5 The proportion of people actunlly smoking in an office

Time		$B\left(\beta_{M}\right)$		
Date		$9 \sim 12$	$13 \sim 16$	$12 \sim 13$
Sep. 174	10 th	8.2	7.5	8.4
	11	9.1	7.6	5.7
	12	8.5	7.6	8.1
	Ave.	8.6	7.6	7.4
Feb. 175	17 th	6.9 (9.3)	6.0 (7.6)	-
	18	4.1 (9.8)	$5.7(6.5)$	-
	19	7.5 (9.8)	4.9 (6.5)	-
	20	7.3 (9.8)	5.5 (7.2)	-
	21	8.5(11.4)	7.1 (9.6)	-
	Ave.	6.9(10.0)	5.8 (7.4)	-

iv) A CAFE The proportion of people smokimg was recorded during the peak periods of noon to $2 \mathrm{p} . \mathrm{m}$. and 5 to 7 p.m. Average values are given in Table 6. The proportion of people smoking β is much higher than in the previous rooms. The proportion of women smoking is particularly high. Accepting the national values for habitual smokers results in 33% of habitual male smokers and 33% of the habitual female smokers actually smoking at any one time. The distinction between sexes has disappeared here.
4. SMOKING DURATION PER CIGARETTE: T_{S}, AVERAGE BURNING RATE: V(mm/min), AND SMOKING INTERVAL: S.I. (minutes)
i) AN OFFICE Values for the smoking time, cigarette lengh and smoking interval are presented in Table 7. The length of cigarette burned is slightily greater in the morning than in the afternoon, but is greatest at lunch time. The time taken in smoking the cigarette is longer during lunch time than during work. The burning rate is correspondingly lower during lunch time. The time interval between starting one cigarette and starting the next is significantly shorter in the morning than the afternoon.
ii) A BANK WAITING ROOM AND A CAFE

The analysis is presented in Table 8. This suggests that smokers are more likely to smoke in a cafe than elsewhere. iii) A LABORATORY CONFERENGE ROOM.

The smoking behaviour of each smoker in a conference room is presented in Table 9 , together with the ones obtained by the same method in an office. There is good agreement. S.I. can be calculated from the knowledge of daily cigarette consumption and the 16 hours awake. Table 9 shows the comparison between the measured value and the estimated value of this elasped time. The values are quite different. There is also a difference between conference room and office. This suggests that the rate of smoking cigarettes rises during a conference.

$\begin{aligned} & \text { Type-nr } \\ & \text { ronm } \end{aligned}$	Date			Actually smoking	Majes actually smoking	Females actually smoking
$\begin{aligned} & \text { Mank } \\ & \text { walting } \\ & \text { room } \end{aligned}$	175	April	13 t	5.7	9.9	0.5
		-	2nd	5.3	9.6	1.2
		Average		5.5	9.7	0.8
a enfo	175	Mnreh	$261 . h$	15.9	2.4 .6	1.9
		"	28th	17.1	26.3	1.9
		Average		16.5	25.4	4.9

5. CONCLUSION

There is a large difference in the proportion α of habitual smokers in men and women. If the number of occupants and the proportion of each sex are known, then the number of people smoking at one time could be estimated roughly from these values of β_{M} and β_{F} found in these surveys. If, in addition, the number of habitual smokers in a space is known, then the number smoking at any one time can be estimated with even more accuracy, using this data for β_{S}, the proportion of smokers smoking. In general, the proportion of people smoking rises in relaxing circumstances such in a cafe, and also in a conference meeting, in comparison with ordinary office work. The particulate matter generated continuously by smoking cigarettes one by one for an hour (mg/hour) is nearly proportional to the rate of burning the cigarette $V_{S}(\mathrm{~mm} / \mathrm{min})$. This burning rate is a function of the room use. Values of V_{S} for a relaxing cafe atmosphere and also for a conference room may be smaller than that for an office. The particulate matter generated will therefore be a function of the product of burning rate V_{S} and percentage of habitual smoker who are likely to be smoking at any one time. Values of this product, an index of pollution, are given by:

Type of room	$\beta_{\mathrm{S}}{ }^{* 1}$	$V_{\mathrm{S}^{* 2}}(\mathrm{~mm} / \mathrm{min})$	$\left(\beta_{\mathrm{S}} \times V_{\mathrm{S}}\right){ }^{* 3}$
An office	0.15	9.0	1.4
A conference room	0.28	7.0	2.0
A cafe	0.34	6.8	2.3

*1) Fraction of habitual smokers who will on average be smoking
*2) Burning rate of cigarette
*3) Index of pollution

Table 7 Cigarette smoking in an office

Date		Time (hour)	$\begin{gathered} \mathrm{N}^{⿻ 1} \\ (\mathrm{cig} .) \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{S}}{ }^{\# 2} \\ (\text { person }) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ (\min / \mathrm{cig} .) \end{gathered}$	$\begin{gathered} L_{s}^{* 3} \\ (\mathrm{~mm} / \mathrm{cig} .) \end{gathered}$	$\begin{gathered} V_{s} \\ (\mathrm{~mm} / \mathrm{min}) \end{gathered}$	$\begin{aligned} & \text { S.I. } \\ & (\min) \end{aligned}$
Sept. 174	10th	$9 \sim 12$	269	4.6	3.1	37.4	12.1	26
		12 ~ 13	31	2.7	5.2	38.5	7.4	
		13 ~ 16	236	5.5	4.2	36.1	8.6	30
	11	$9 \sim 12$	255	6.3	4.4	35.6	8.1	28
		$12 \sim 13$	28	1.8	3.7	35.6	9.6	28
		$13 \sim 16$	211	5.1	4.4	33.8	7.7	33
	12	$9 \sim 12$	267	6.4	4.3	35.5	8.3	26
		$12 \sim 13$	27	2.7	6.0	35.8	6.0	-
		$13 \sim 16$	203	5.0	4.4	34.0	7.7	35
$\begin{aligned} & \text { Feb } \\ & 175 \end{aligned}$	17 th		230	6.1	4.8	36.4	7.6	31
		$13 \sim 16$	180	4.6	4.6	36.7	8.0	39
	18	$9 \sim 12$	224	3.3	2.7	37.3		31
		$13 \sim 16$	204	4.4	3.9	37.2	9.6	34
	19		301	6.5	3.9	38.6	9.9	23
		$13 \sim 16$	231	4.2	3.3	35.4	10.8	30
	20	$9 \sim 12$	264	5.9	4.0	36.0	9.0	27
		$13 \sim 16$	237	4.5	3.4	35.0	10.2	30
	21	$9 \sim 12$	257	7.1	5.0	36.3	7.3	27
		13 ~ 16	229	5.2	4.1	34.9	8.5	31
Average		-	-	-	4.2	36.0	9.0	30

*1) N : Total number of cigarette butts
*2) n_{s} : Average number of smokers
*3) Ls : Average burning cigarette length by smoking

Table 8 Cigarette smoking in a bank waiting room and in a cafe

Type of room	Date	$\begin{aligned} & \text { Ti.me } \\ & \text { (hour) } \end{aligned}$	$\begin{gathered} \mathrm{N} \\ (\mathrm{cig} .) \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{S}} \\ (\text { person }) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ (\min / \mathrm{cig} .) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\mathrm{S}} \\ (\mathrm{~mm} / \mathrm{cig} .) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}} \\ (\mathrm{~mm} / \mathrm{min}) \end{gathered}$
Waiting	April 1st	$11 \sim 15$	106	1.8	4.1	37.2	9.1
room	" 2nd	$11 \sim 15$	75	1.4	4.5	40.5	9.0
A cafe	March26th	$12 \sim 14$	93	4.2	5.4	37.6	6.9
		17 ~ 19	176	7.2	4.9	37.2	7.6
	" 28th	$12 \sim 14$	76	3.2	5.1	36.1	7.2
		17 ~ 19	188	10.5	6.7	37.0	5.5

Table 9 Cigarette smoking in a. conference room

Smoker	S.C.* (cig/day)	T_{S} (min/cig)	S.I. (measured) (min)	S.I. (estimated) (min)
A	15	5.0	18.8	64
B	12	5.4	27.8	80
C	25	8.0	17.7	38
E	$50-60$	4.6	8.9	$16-19$
F	$50-60$	3.1	26.6	48
G	30	5.7	11.1	$16-19$
H	25	5.5	21.8	32
I	25	7.3	35.3	38
Average	29	5.6	20.6	38
Average	-	5.2	21.0	33
(estimated)				

