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The flow resistance of experimental models
of naturally occurring cracks

G C Gardner, BSc, DS(Eng)and R J Tyrrell, BSc
Central Electricity Research Laboratories, Leatherhead, Surrey

Natural haue rou such a fashion uack completely when the surfaces are
pressed tal work are giuen by a ofequation when the crack surfaces are
wìdely s remains ses until roughn m opposing surfaces start to ouerlap and
then an upper limit is achieoed. Further reductíon in the uack wall separation causet a reductíon in the friction factor, which may føll
to the leuel applicable to a smooth-walled tortuous channel. These obseroations are ín accord with theoretical concepts.
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NOTATION

dimensionless,À/ave amplitude
surface area per unit projected area
packing element size in packed bed
sand grain size
friction factor, equation (3)
roughness height
constant
distance over surface
distance over surface per unit projected distance
velocity in x direction
crack wall separation
rectilinear distance through crack in flow direc-
tion ignoring roughness
wavelength
distance normal to x direction and in direction of
crack separation

pressure gradient

crack Reynolds number, equation (2)
packed-bed Reynolds number, equation (8)
root mean square surface elevation from mean
elevation
packed-bed voidage
angle of true flow clirection to x direction
kinematic viscosity
density
packing element shape factor
packed-bed friction factor, equation (8)

sured by the rate of build-up of radioactivity on the
low-pressure sidc and it is then required to relate this
rate to the size of the crack. The crack wall separation
may be less than 20 pm while the metal grains, which
afford roughness, may have a size which is also 20 pm.

If crack walls are separated by a large distance com-
pared to the size of the roughness elements, the manner
in which the friction factor for turbulent flow will vary
with wall separation is well known and is based upon
the classic work of Nikuradse (1) with pipes whose walls
were coated with sand. Recently, Button et al. (2) have
given confirmation with cracks composed of plane grit-
blasted walls and much other confirmation is available
in the literature.

When the wall separation is reduced it is necesóarf to
know when and how the Nikuradse approach will
break down. This has been answered to a limited extent
in the literature by those who have sought to define the
location of the wall when applying Nikuradse's equa-
tions. It was not of importance to Nikuradse, whose
largest sand grain was a thirtieth of the pipe diameter,
but reasonably the location should lie between the
bottom and top of the roughness elements. Bayazit (3)
reviewed experimental information which places the
effective wall at 0.15{.3 tinres the diameter of both
spherical and hemisphcrical roughness elements below
the tops of the clements projecting into the stream. His
own work gave a coefficient of 0.35 but none of this
may be applicable here, where a projection from one
wall corresponds to a geometrically similar cavity on
the other wall" The consequent direction of the flow by
the roughness could utiiize the available flow volume
morc effectively than without the correlation of rough-
ness on the two walls.

The manner in which the Nikuradse approach breaks
down is the chief interest of the present work. It will be
argued in the next section that, at least when the rough-
ness elements from opposing walls start to overlap, the
system may start to resemble a packed bed rather than
two plane rough walls. MacDonald et ul. (4) have criti-
cally reviewed the information on pressure drop
through packed beds and recommend the Ergun (5)

equation with slightly modifred numerical coeffrcients.
This will be shown to suggest that the friction factor is
independent of the wall separation. Therefore, it may be
expected that the rise in the friction factor, according to

1 T|¿"flROI,UCTION

Naturally occrrring cracks have two opposing rough
surfaces which will mate and seal completely if they are
pressed together, and it may be Dccessary to know the
crack's resistance to flow when it occurs undesirably in
a barrier wall between fluids at different pressures. An
example of present interest to the writers is of the
tubing containing water circulated from the reactor core
of a PWR. It passes through the steam generator with a
90 bar pressure differential over the tube wall. If a stress
corrosion crack forms, the rate of leakage can be mea-
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(b) Fig. I The aggregate crack
(a) Lower crack surface.
(b) Slices from the epoxy cast.

Nikuradse, as the separation is reduced will be halted.
However, this is not the end of the matter, not only
because the Ergun equation has not been tested for very
low packed-bed voidages but also because one can
visualize that, with very small separations, the system
may start to resemble a smooth-walled but tortuous

Fig. 2 Surface of the giant's causeway crack
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flotw channel. It is therefore not impossible that once the
friction factor has reached an upper limit, as seen
through the Ergun equation, it may fall as the wall
separation decreases further.

These conjectures will be put in quanitative form in
the next section and then experiments will be described
and discussed. Two types of surface with the required
characteristics were tested, and they are shown in the
photographs of Figs I and,2. Figure 1 is from what will
be called the aggregate crack, because it was made by
fracturing an aggregate of granite chips set in plaster of
Paris. The surface of Fig. 2 is much more artificial and
is a wall of what will be called the giant's cause\r'ay
crack. The reason for this name will become apparent
later. Here it needs only be noted that the opposing wall
had the important characteristics that it was identical
geometrically to the other. The two walls of the aggre-
gate crack were identical in a more random fashion.

2 THEORY

2.1 L*ge crack wall separation

First consider smooth crack walls. For laminar flow the
friction factor is given by

)L¡--' (1)"Re
where

2ow
Re - -: (2)

v

where u is the average velocity, w is the wall separatiod
and v is the kinematic viscosity. The friction factor is
defrned by

" w{dpldx)Í:# (3)
pú-

where dp/dx is the pressure gradient and p is the
density.

For turbulent conditions the Blasius equation (6) is

/:0.079(R¿)-o'2s (4)

The treatment of sand roughness is given in Schlicht-
ing (6). Only the result for a fully turbulent condition
will be required and the analysis for a pipe has been
adapted to the case of flow between parallel walls. The
result is

|:, ','["(*o )]' (5)

where d, is the sand grain size.
Equations (l), (4) and (5) are plotted in Fig. 3.

It may be noted that Button et al. (2) measured the
resistance of cracks with grit-blasted walls and with w
varying between 0.1 and 1.0 mm to the flow of nitrogen.
They measured the root mean deviation of the surface
elevation, Â, from the mean elevation with a surface
profilemeter and wl|, was varied in their experiments
from 10 to 500. They expressed their results by

]:,"['"(#^)]' (6)
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A=1.¿¡6
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Since the crack closes completely to leave no voidage,
the volume of packing elements p€r unit project surface
area of the crack wall is nd. Let,4 be the actual surface
area of a crack 'trall per unit projected area. From the
definition of { we have @ = 2Aln. Thus, using the defr-
nition of / and Re given by equations (2) and (3) equa-
tion (8) transforms to

,flJt:-'A
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Fig. 3 Laminar and turbulent flow regimes: upper and lower
linits to the friction factor

Comparison of equations (5) and (6) suggests that dJL,
lay between 5.5 and 8.3. The roughness height Ir was
greater than A by an unknown factor. It is also of inter-
est that Pfau (7) examined available data on hydraulic
resistance of naturally occurring ripples, such as ripple
magnetite in boiler tubes. They give high friction factors
for given roughness heights h, and Pfau found that dJh
varied from 2.6 to 8.9 with an average of 4.8.

2.2 A possible upper limit to the friction factor

The Ergun equation with the modified numerical coefli-
cients suggested by MacDonald er al. (4) is

Án
¿=^:+0.6 (7)

where

ú/:
2(dpldx) ed

Td(r-s)
4u ed

(8)

Reo: v þ(1 -e)
where d is the packing element size, e is the voidage and
@ is the shape factor, which is defined as the surface
area of the packing element divided by its volume and
multiplied by d. Thus ó : 6 for a sphere.

A model of the crack is considered in which packing
elements project a distance nd through a plane wall,
where n is a numerical coeffrcient. When the crack is
closed, the equivalent packed bed therefore has a width
of nd. When the crack is opened a distance w, the
voidage is

The Appendix shows that .4 for the giant's causeway
is calculated to be 31/2. The measurement of .4 for the
aggregate crack will be described later. It is 1.46. Equa-
tion (12) with these two values of .á is plotted in Fig. 3.

23 A possible lower limit to the friction factor
¡s the crack wall separation becomes very small

When the crack wall separation is small compared to
the size of the roughness elements the system is one of
flow in a tortuous passage. To estimate a lower limit¡to
the friction factor, which may occur when the separa-
tion is less than that to obtain the upper limit described
in Section 2.2, it will be assumed that the passage walls
are smooth and that there are no form drag losses.

A simple model is conceived of a two-dimensional
passage in the x-y plane with the x direction being the
general forward direction, in which the velocity is u. The
passage walls are a constant distance w apart in the y
direction and; locally, are at an angle 0 to the x direc-
tion. The velocity in the passage is, therefore, u sec 0
and the passage width normal to this velocity is
w cos 0. The distance moved along the passage for a
differential distance dx is ds: dx sec 0. Now, for
viscous flow, the pressure gradient is proportional to
the average velocity divided by the square of the
channel width, and it is deduced that the pressure gra-
dient in the x direction is proportional to sec4 0. In
turbulent flow the pressure gradient is proportional to
the friction factor times the square of the velocity and
divided by the channel width. However, the friction
factor is a function of the Reynolds number, which is
independent of 0 and, again, it is deduced that the press-
ure gradient is proportional to seca 0.

Consideration must now be given to tortuosity
norrnal to the x-y plane. Let S be the distance along the
surface in the x-y plane divided by the projected dis-
tance and assume that this parameter is applicable
normal to the x-y plane. Clearly all velocities must be
divided by S. Thus, in viscous flow there is a correction
factor seca 0/S and in turbulent flow seca 0¡S1'7s. The
exponent of 1.75 instead of 2 is used to make allowance
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for the variation of the friction factor with the velocity,
as given by equation (4).

The simple assumption is made that the passage walls
in the x-y plane are represented by a sine wave

v
X9

(13)

where xo is the wavelength and a is the dimensionless
amplitude. S can be calculated as a function of a by
integration of equation (13). It is also assumed that
S : Artz. S : 1.21 for the aggregate crack, which, there-
fore, has a : 0.157 lor the equivalent sine wave, and
S : 1.32 for the giant's causeway crack, so that
¿ : 0.198.

Finally, the average value of sec4 0 can be determined
by numerical integration using equation (13), and the
multiplying factors for the straight channel lriction
factors can be obtained to be applied to equations (1)
and (4). For the aggregate crack these factors are 1.93
for viscous flow and 1.67 for turbulent flow. The corre-
sponding factors for the giant's causetilay crack are 2.62
and 2.13. All these estimates are illustrated in Fig. 3.

3 EXPERIMENTAL APPARATUS AND METHOD

Fatigue or stress corrosion cracks may typically have a
wall separation of 20 ¡tm with a roughness element cor-
responding to metal grains of about the same size. In
the PWR, the pressure differential over the steam gener-
ator tube walls is 90 bar. It is experimentally convenient
for the manufacture of surfaces in the present work to
scale-up by a factor of about 1000, and this has the
additional advantage that the appropriate Reynolds
numbers may be obtained with greatly reduced pressure
differentials.

To manufacture the aggregate crack a cylindrical cast
was made with nominally 19 mm granite chips set in
plaster of Paris. A proportion of smaller chips was
added to obtain a maximum concentration of granite.
The cast was pressed between plane parallel walls to
make line contact parallel to the axis of the cylinder. It

Pressure taps (3 se¡s of 3 ofÐ

Lower
crack
surface

Rubber cast

fractured along an approximately plane surface without
fracturing the aggregate itself.

One fracture surface was chosen and an epoxy resin
cast was taken from it. This was machined to give a
rectangular area of 290 mm in the flow direction and
120 mm in the other direction of the original rough
surface surrounded by flat areas. A silicone rubber cast
was taken of the rough area and this was placed in a
Perspex channel, as shown in the photograph of Fig. 1

and the cross-section of the test section shown in Fig. 4.
Figure 4 also shows the epoxy resin cast forming the
upper wall of the crack and Perspex side walls of suit-
able height providing the crack separation.

There were three rows of three pressure tappings in
the top crack wall and these were connected to water or
mercury manometers, depending upon the magnitude of
the pressures to be measured. Measurements of sets of
three tappings transverse to the flow were averaged and
used to obtain pressure drops for upstream and down-
stream lengths of the crack. When the crack was set up,
depth gauges with modifred probe heads were passed
through the pressure tappings to check the crack
separation.

The test section was studded to an upstream water
supply box and was discharged to atmosphere. Water
flowrates were measured by calibrated rotameters.

The surfaces for the giant's cause!tray crack were
made from 50 mm lengths of 5 mm square fine-grained
wood stock, as shown in Fig. 5. A first layer of stock,
with corners meeting, was laid down in plasticine. A
second layer was then glued in the angles of the first but
with the ends set back 5 mm from the ends of the frrst
layer. Third and subsequent layers were glued in place
in a similar fashion. The surface including the ends ¡of ,
the stock comprised the required surface and in effect
was an array of cubes with corners pointing out into the
stream. If the glued assembly was stood with the axis of
the 50 mm lengths of stock vertical, it resembled the
geological curiosity known as the Giant's Causeway,
which led to the naming of the crack. The crack was
150 mm in the flow direction and 44 mm in the other
direction.

block

Penpex
spacer bar

O-ring seal
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Perspex base

Fig. 4 Test section for the aggregate crack
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Fig.5 rùy'ooden pattern used to make the giant's causeway
crack

An epoxy resin cast of the required surface of the
glued assembly and a silicone rubber cast of that
formed the experimental surfaces. The two surfaces were
put into a test section similar to that for the aggregate
crack but the upper crack surface of silicone rubber had
an aluminium plate cast within it. Studs attached to this
passed upwards through aluminium bracing bars
joining the side walls of the test section and thumb
screws on the studs then allowed the upper surface to be
tightened down on brass bars which controlled the
crack separation. Six pressure tappings at the centre-
line in the flow direction passed through the upper wall
to identical positions at the base of the roughness ele-
ments. Linear regression analysis of the pressure read-
ings gave the pressure gradient.

rühen the giant's causeway crack wall separation was
small and the water flowrate was small, rotameters
cou.ld not be employed to measure the flowrate. A tall
cylindrical Perspex vessel, which was open to the atmo-
sphere, was then attached to the upstream water supply
box. Water was drained from the vessel through the
crack and the level was measured with respect to time.
This gave the flowrate with respect to level so that
setting a constant level by continuously supplying the
vessel with water gave a required flowrate.

An additional epoxy resin cast of the aggregate
surface was made and was cut into 34 slices, three ol
which are shown in Fig. 1. These were placed upon a
digitizing table to obtain data for the calculation of the
distance along the surface of the slice divided by the
projected area of the slice. This ratio was found to be
t.2t.

4 RESUI,TS AND DISCUSSION

Figure 6 gives the experimental results in terms of fric-
tion factor versus Reynolds number for the giant's
causeway. The data for crack separation of 5.65, 6.31
and 9.55 mm agree with the Nikuradse-type equation
(5) if d. - 2.9h, where /¡ is the height of the roughness
element, which equals 5.77 mm. The multiplying factor
is of the magnitude expected from other work such as
that of Button et al. (2) and Pfau (7). Of greater interest
is that it appears to be appropriate to assume that the
wall starts from the bottom of the roughness elements.

@ IMcchE 1986
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Reynolds number R¿

Fig.6 Giant's causeway crack: friction factors versus Rey-
nolds number

Figure 6 shows the estimates of the turbulent friction
factor from equation (5) for the three crack separations
noted above. The prediction for the next nafroyest
crack of 4.72 mm separation is 1.69, whereas the experi-
mental value is 1.05. Clearly, the rise of the friction
factor is limited and the limitation is seen to be in good
agreement with the prediction derived from packed-bed
correlations of equation (12) with A : 31t2. It occurs
when the roughness elements from opposing crack walls
start to overlap.

When the crack wall separation is reduced further the
friction factor falls but it does not fall nearly so far as
Section 2.3 suggests. The reason may simply be that the
smooth wall friction flactors employed in deriving a pre-
diction make no allowance for form drag but imperfec-
tions in the theoretical model may also be a factor.

Figure 7 gives the results for the aggregate crack.
Unfortunately it was not possible to study crack separa-
tions sufficiently large to test the Nkuradse type of
equation, although there is little doubt that it would be
applicable. The results for the two largest crack separa-
tions of 9.85 and 19.85 mm are essentially identical and
indicate that an upper limit to the friction factor is,
again, achieved when the roughness elements from
opposing walls start to overlap. The fully turbulent lim-
iting friction factor is 0.2 which suggests, through equa-
tion (12), the physically unrealistic value of A : t
instead of the measured value of L46. The reason may
be that the closing agg¡egate crack is less well represent-
ed by a packed bed than the giant's causeway and the
packed-bed correlation may overestimate the form drag.
Nonetheless, the arguments based upon packed beds
have correctly led to the prediction of an upper limiting
friction factor.
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Symbol Crack width
mm

9.55
6.31
5.ó5
4.72
3.24
2.17
1.58
t.23
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Symbol Gap

It
oa
ÂA
o¡
oo

0E5
t.09
4.85
9.85

19.85

Nota: Open symbols-inlet half of crack
Closed symbols -outlet half of crack

factor falls and may fall to a level corresponding to a
smooth-walled tortuous channel.
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APPENDIX

Calculation of A fo¡ the giant's causeway

Figure 8 gives a plan view looking down at a corner of
a cube with three faces equally inclined to the observcr. ?

The giant's cause\vay surface $'as composed of such
cubes joined along the sides sloping down from the
corner. We only need to study one face, which is a
square with sides of length m. The diagonal AB in Fig. I
is viewed without distortion. It has a length 2Lt2 m, and
divides the plan view into two equal triangles, which
project angles of 120" at the corners of the cube. The
length of the other diagonal CD is therefore (2p¡rrz ^and the plan area of the side is (1/3)trz m2. / is the ratio
of the true area of the side, m2, to this plane area and is
therefore 31/2.
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Fig. 8 Plan of roughness element of giant's causeway crack
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Fig 7 Aggregate crack: friction factor versus Reynolds
number

In general, Fig. 7 shows a fall in the friction factor as

the crack separation decreases and it falls to about the
level expected for a tortuous smooth-walled channel.
This is consistent with the argument about the lack of
influence of form drag given in the last paragraph. [t is
noted that there is a difference in the measured values of
the friction factor for the two consecutive lengths of the
crack in the flow direction and the difrerence becomes
greater as the crack separation decreases. This points to
a difference between the measured and the true separa-
tion, although it is noted that the test section was
stripped down and reassembled without substantially
affecting results. More important is that smaller crack
separations than 0.85 mm could not be tested to obtain
accurate results and thus make sure that the lower lim-
iting friction factor had been achieved.

5 CONCLUSIONS

Conclusions must iemain semi-quantitative since the
precise morphology of crack surfaces is important. Sig-
nifrcant conclusions about the nature of the variation of
friction factor with crack wall separation are, however,
achieved. Conditions as the crack wall separation
reduces will be considered.

1. For wide separations the turbulent friction factor
increases as predicted by a Nikuradse-type equation.
The crack wall may be assumed to lie at the bottom
of the roughness elements.

2. When the roughness elements from opposing sur-
faces of the crack start to overlap, an upper limit to
the friction factor is achieved.

3. As the crack separation reduces further, the friction
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