ECONOMICS OF ENERGY
 CONSERVATION INVESTMENTS

EX 0030
August 1985

Is home energy conservation a good investment? Although often asked, this question is usually very difficult to answer. Admittedly, energy prices have been rising fast; however, to save energy involves various kinds of investments. Which ones are worthwhile? This factsheet will offer two approaches to economic analysis - "payback" and "life cycle costing", that can help simplify this decision making process.

Payback analysis, by far the simpler approach, is discussed first and may be all that is needed to evaluate certain investments. Life cycle costing, a more comprehensive analysis tool, is subsequently introduced and two methods of evaluation are examined in greater detail - the Present Worth (PW) method and Internal Rate of Return (IRR) method. Discussion is also provided on the types of benefits and costs associated with energy conservation investments and how they are affected by certain economic factors.

Life cycle economic evaluations, as will be discovered, depend upon numerous estimates and assumptions. To the extent that most future benefits and costs are unknown, a high element of guesswork is inherent in the evaluation process. It is important to acknowledge this uncertainty and interpret results accordingly. The economic methods discussed below can serve a useful purpose, if care is taken to use only the best available data. small differences among competing investments, however, are probably not critical and examination of non-quantifiable factors may be more significant.

Washington Energy Extension Service is funded by the U.S. Department of Energy and the Bonneville Power Administration

PAYBACK ANALYSIS

Payback analysis is perhaps the most widely used technique for comparing energy conservation investments. It refers to the time required for energy savings to recover or "payback" the initial investment. Payback is an important consideration primarily for investors seeking a rapid turnover of investment funds or if the investment has a highly uncertain life expectancy. "Simple payback" is defined as the initial cost of an investment divided by its first Year savings. For example, an investment of $\$ 100$ that saves $\$ 20$ during the first year would have a simple payback of 5 years ($\$ 100 / \$ 20$ per year $=5$ years). Since only initial cost and first year energy savings are evaluated, simple payback analysis is most useful for comparing investments that have few annual benefits and costs other than energy savings to consider. In actuality, the payback period will be somewhat less than that calculated since simple payback analysis also neglects the affect of future increases in energy rates.

Comparing energy conservation investments according to simple payback is often desirable to give a general idea of what energy savings might be in relation to initial cost. Typically, low cost investments are associated with rapid payback times and high cost investments with longer paybacks. However, shorter payback periods do not necessarily indicate the most economically profitable investment since benefits or costs occurring after the payback period are not evaluated. Ranking investments by true economic efficiency, requiring the use of life cycle costing methods, would probably yield a slightly different order since the useful life of the investment is evaluated. When one recognizes the limitations of payback analysis, a list of energy conservation projects by payback period can serve as a useful reference for prioritizing investments. Estimated paybacks for typical home energy improvements are provided in Table 1.

An example of how simple payback may be used would be the comparison of attic and wall insulation, both having similar useful lives and virtually no annual benefits and costs other than energy savings to consider. A comparison is useful in this hypothetical case since it is assumed the homeowner is able to afford only one investment or the other. If the attic insulation costs $\$ 500$ and saves $\$ 100$ the first year, its payback is 5 years. If the wall insulation costs $\$ 1,000$ and saves $\$ 125$ the first year, its payback is 8 years. It may then be concluded that the attic insulation is a better investment. Although yearly savings are less (\$100 vs. \$125), the percentage "return" on the investment is greater (100/500=20\% vs. $125 / 1000=$ 12.5\%). Payback analysis can also be used to determine the optimum level of insulation for greatest savings. For ex.mole, a higher level of attic insulation costing $\$ 720$ may save $\$ 120$ the first year for a 6 year payback. For the highest return, then, it would be better to invest only at the $\$ 500$ level. Such prioritizing is not meant to suggest that wall insulation or higher levels of attic insulation is not a good investment. Payback merely ranks investments based on initial savings so that limited funds may be invested in the most economical projects first. If affordable it may be most economical to invest in numerous types of energy conservation options.

IMMEDIATE PAYBACK: NO COST ACTIONS

Lower space heating thermostat (at night and whenever house unoccupied)
Lower water heater thermostat to $120^{\circ} \mathrm{F}$
Install shower flow restrictor (often free or low-cost from utilities)
Install gaskets behind electric outlet and switch plates (often
free or low-cost from utilities)

LESS TEAN 2 YEARS PAYBACK

Automatic setback thermostat (minimum 8 hour setback of $10^{\circ} \mathrm{F}$) Do-it-yourself weatherstripping
Do-it-yourself caulking
Do-it-yourself storm windows (<\$I/ft², e.g. flexible vinyl glazing)
Sheetmetal fireplace cover
Oil furnace annual tune-up
Hot water tank and hot water pipe insulation

2-5 YEARS PAYBACK

Attic insulation to $R-30$
Underfloor insulation to $\mathrm{R}-19$ (over unheated spaces)
Furnace duct or boiler pipe insulation in unheated spaces
Do-it-yourself storm windows ($<\$ 3 / f^{2}$, e.g. rigid acrylic glazing)
Do-it-yourself insulated window covers (Minimum R-3 and $<\$ 5 / \mathrm{ft}^{2}$)
Low cost fireplace modifications (e.g. flue top damper, inexpensive glass doors)
Passive solar design in new construction
Solar heating of pools

GREATER THAN 5 YEARS PAYBACR

Insulated window covers (Minimum $R-3$ and $>\$ 5 / \mathrm{Et}^{2}$)
Commercially installed storm windows or insulated glass
Wall insulation
Replace conventional oil burner with flame retention burner Fireplace inserts and woodstoves
Solar or wood domestic water heating
Energy efficient appliances (especially refrigerators, freezers and A/C's)

SIMPLE PAYBACR is assumed for the above calculations and refers to the initial cost of the investment divided by the first year's energy savings. For discussion of payback's uses and limitations as an economic criteria, see the appropriate section in the text.

Table l. Energy Conservation Investment Priorities

An example of the limitations of payback analysis would be the comparison of an oil furnace annual tune-up with an automatic setback thermostat. The annual tune-up may cost $\$ 70$ and save $\$ 70$ the first year for a one year payback. Likewise the thermostat may cost $\$ 100$ and save $\$ 50$ the first year for a 2 year payback. According to these figures then, the tune-up offers greater savings. While this is true for the first year only, the economics change considerably during later years. Note that the benefits of a tune-up last only one year and that the benefits of the thermostat may last more than 15 years. Thus, the thermostat will pay for itself many times over compared to the tune-up due to its significantly longer useful life. This fact is not accounted for by simple payback analysis and points to the need for an analysis technique that is able to consider all benefits and costs over the useful life of an investment.

LIFE CYCLE COSTING

In response to this need, life cycle costing is a way of evaluating investments based on all associated benefits and costs occurring throughout the useful life of the investment. This includes initial costs plus the benefits and costs of ownership. Due to this added complexity, life cycle costing methods are more difficult to use than payback analysis although their applicability is much greater. Unlike the speculative investor interested in rapid payback and resale value, the homeowner is generally more concerned with long-term economic efficiency based on overall ownership costs. Life cycle costing methods provide this evaluation tool.

Discounting

The central aspect of all life cycle costing methods is a term known as "discounting". Discounting refers to converting benefits or costs that accrue at different points in time to a time equivalent basis. Discounting is necessary to account for the inflationary nature of money, investment risk and the amount of interest that may be earned as a result. For example, a dollar earned next year is worth less than a dollar earned this year. To account for this difference future dollars must be discounted by the anticipated inflation rate before being compared to present earnings. Usually, cash flows are converted to equivalent present values. They may also be converted to equivalent future values at some future year or to equivalent annual values based on the useful life of the investment. For use in discounting formulas, present values are abbreviated as "P", future values as "F" and annual values as "A".

The discount rate used, expre- $-d_{\text {d }}$ as a percentage, is selected to reflect the investor's time preference for money, which may correspond to a wide range of investment opportunities. While one investor may require only a 5% return, another may demand a 10% return on investment funds. Whatever the rate selected, it should take into consideration the fact that energy savings "income" is not taxable as is income from many other investments. Also it is necessary to distinguish between "nominal" and "real" discount rates. Nominal rates include the effect of inflation whereas real rates do not.

As an example, suppose one has the opportunity to earn 12% on a typical financial investment with taxable earnings. What equivalent discount rate could be used to evaluate an energy conservation investment? Assuming a 25% tax bracket, actual earnings from the typical investment are 25% less, or 9%. Thus one could use a 9% nominal discount rate. It is more common however to use real discount rates so that future cash flows need not include inflation. If inflation is forecasted to average 5% over the life of the investment, the approximate real discount rate to use would be 4%, or the after tax interest rate (9\%) minus the inflation rate (5\%). More precisely, the rate would be 3.8\%, or (1.09/1.05-1) 100%.

Present Worth Method

The Present Worth (PW) method, also referred to as the Net Present Value (NPV) method, uses discounting to convert cash flows associated with an investment over its useful life to an equivalent present value for comparison with other investment alternatives. The greater the net present worth, the more profitable the investment. To convert future amounts (F) to present amounts (P), it is necessary to know the specific "P/F" discount factor for the time period and discount rate under consideration. To convert annual amounts (A) to present amounts (P), the appropriate "P/A" discount factor is required. Expressed mathematically:

$$
\begin{aligned}
& P=(P / F) F \text { and } \\
& P=(P / A) A,
\end{aligned}
$$

where F and A are known and P / F and P / A depend on the assumed discount rate and investment life. Discount factors may be mathematically calculated, but typically are taken from standard tables such as appear at the back of this factsheet (Tables 4A-4H). As commonly occurs, when comparing a conservation investment to the base line case of investing nothing, net benefits of the project, e.g. energy savings, may simply be compared to the initial cost of the investment. A present worth in excess of the initial cost would then indicate a profitable investment. The PW method is specifically useful for determining the optimum investment amount when various levels of related conservation measures are being considered, e.g. Rl9 vs. R30 attic insulation. However, PW cannot easily rank investments as with the internal rate of return method, discussed in the next section.

To demonstrate use of the P / F and P / A factors, the following sample problem will be useful. Suppose that it has been suggested that an existing oil burner be replaced with a flame-retention burner. The improvement in seasonal efficiency is estimated to be 118 at a cost of $\$ 600$. Is this a good investment assuming a present annual heating bill of $\$ 500$, a 15 year useful life and an 8 s real discount rate? Note that the discount rate is normally selected based on the investor's individual preference but for present purposes has been chosen arbitrarily. Assuming no rate increases, the energy savings each year, in real or constant dollars (excluding inflation) is lio of $\$ 500$, or $\$ 55$. If a nominal discount rate were used, the energy savings each year would have to be escalated to remain consistent.

Referring to Table $4 F$, the P / A factor for a discount rate $i=8 \%$ and a time period $n=15$ years is 8.559. Then the present worth of the annual savings,

$$
P=(P / A) A=(8.559) \$ 55=\$ 471
$$

and compared to the initial investment of $\$ 600$ results in a negative net present worth ($\$ 471-\$ 600=-\$ 129$) and is not economically justified on this basis. Possible situations that would improve the present worth of this investment would be a higher present fuel bill, an extended useful life ($n>15$ years), a reduced discount rate (i<8\%) or a possible reduction in the initial investment. Other factors that were not accounted for may also affect the overall economics, such as lower maintenance costs or fuel prices escalating faster than the the average inflation rate.

Accordingly, this problem might be modified. Suppose the annual heating bill is $\$ 700$, and it is estimated that fuel prices escalate at a real rate (above inflation) of 2% per year. In this case the overall time period and discount rate remain as before but the annual benefit is ll\% of $\$ 700$ or $\$ 77$. Furthermore, this $\$ 77$ is escalated each year at a rate of 2%. Rather than calculating the benefit each year and multiplying each number by the appropriate P / F factor and summing the resulting present worth amounts, a simpler method is possible. For a present benefit (or cost) that is assumed to escalate at a fixed rate throughout the time period, a "P/A*" discount factor is used that accounts for such changes. These factors are also given in standard tables for various discount and escalation rates (Tables 5A 5H). Escalation rates, also expressed as a percent, are abbreviated as "e".

ENERGY PRICES (washington state)
1972 \$/100 日TU

Referring to Table 5 F , for $\mathrm{i}=8 \%$, the $\mathrm{P} / \mathrm{A}^{*}$ factor for $\mathrm{n}=15$ years and $e=2 \%$ is 9.787. Thus the present worth of the annual savings in this case,

$$
P=(P / A *) A=(9.787) \$ 77=\$ 754
$$

and compared to the initial investment of $\$ 600$ results in a positive net present worth ($\$ 754-\$ 600=+\$ 154$) and is therefore a good investment earning better than 8% higher than the rate of inflation. This problem also demonstrates how the overall economics of certain investments may be significantly altered by relatively small changes in one's initial assumptions.

Internal Rate of Return Method

As demonstrated above the PW method calculates the economic worth of an investment based on a preselected discount rate. The actual "rate of return" of the investment is not known except that it may fall above or below the assumed discount rate. Rate of return is defined as the interest rate, expressed as a percentage, for which discounted life time costs and savings are equal and is a measure of economic efficiency. The Internal Rate of Return (IRR) method, also referred to as the Return on Investment (ROI), or Rate of Return (ROR) method is used to determine the actual rate of return on an investment by a structured process of trial and error. It is particularly useful for evaluating conservation projects of different useful lives competing for the same budget where the optimal size of each project has already been determined.

This method also relies on discounting life cycle costs and another sample problem will serve to demonstrate its use. Suppose that most low cost, short payback conservation projects have already been undertaken, and consequently attic insulation is being considered in addition to the flame-retention burner mentioned in the previous section. The insulation is estimated to cost $\$ 800$ with annual fuel savings of lo\%. Useful life is assumed to be greater than 30 years. Using the IRR method the rate of return of each investment can be calculated and compared.

To begin the trial and error method, a discount rate near the expected rate of return is selected and net present worth calculated as above. A positive present worth indicates a discount rate that is too small and a negative value one that is too large. Successive rates are selected until a net present worth of zero is bracketed by two rates. At this point the actual rate of return corresponding to a net present worth of zero must be estimated by a process known as "interpolation". Interpolation starts by calculating a fractional amount. The fraction is obtained by dividing the positive net present worth by the sum of both positive and negative values (no minus signs used). The next step is to multiply this fraction by the difference in the two rates. Finally, this amount is added to the smaller rate.

Assuming a constant annual benefit of 10% of $\$ 500$, or $\$ 50$, a real discount rate of 6% is chosen first. With $A=\$ 50$, $i=6 \%$, and $n=$ 30 years, and referring to Table 4 E ,

$$
P=(P / A) A=(13.77) \$ 50=\$ 689
$$

for a net present worth of $\$ 689-\$ 800=-\$ 111$. Since this is negative, a smaller discount rate is needed. Choosing 4\%, and referring to Table 4C,

$$
P=(P / A) A=(17.29) \$ 50=\$ 865
$$

for a net present worth of $\$ 865-\$ 800=+65$. Since this is positive, the actual rate of return must fall somewhere between 4%
and 6\%. To interpolate this rate,

$$
\begin{aligned}
& \text { the "fractional amount" }=65 /(65+111)=0.37, \\
& \text { the "rate difference" }=6 \%-4 \%=2 \%,
\end{aligned}
$$

and the internal rate of return is thus,

$$
4 \%+(0.37) 2 \%=4.7 \% .
$$

The flame retention burner may be evaluated in the same way. With $A=\$ 55$, $i=6 \%$, and $n=15$ years (Table $4 E$),

$$
P=(P / A) A=(9.71) \$ 55=\$ 534
$$

for a net present worth of $\$ 534-\$ 600=-\$ 66$. Choosing 4% (Table 4C).

$$
P=(P / A) A=(11.12) \$ 55=\$ 612
$$

for a net present worth of $\$ 612-\$ 600=+\$ 12$. By interpolating, the actual rate of return is calculated as above,

$$
4 \%+[12 /(12+66)](6 \%-4 \%)=4.3 \% .
$$

Although the insulation yields a higher rate of return, it must still meet the investor's minimum acceptable rate of return. If the minimum acceptable rate is 5\%, neither investment is justifiable and other alternatives should be investigated. Likewise, if the minimum acceptable rate is 4%, both investments could be made provided that funds are available.

To summarize this analysis, the insulation investment costs slightly more and offers slightly lower annual savings than the new burner yet it has a higher rate of return due to its relative longevity. Another way of explaining this is that in order for the burner to continue providing energy savings for as long as the insulation, a replacement burner would be required after 15 years thus reducing its economic appeal. It should be noted that since these particular investments have such closely comparable rates of return (4.3\% vs. 4.7% above inflation) a more thorough look may provide information that would easily influence one's decision if a choice must be made. For example, if the oil burner is going to need replacement in several years anyway, then the incremental cost of a flame-retention burner over a conventional burner could be used for evaluation purposes rather than its full cost. It is likely that the burner investment would prove preferable under these circumstances.

DETERMINING BENEFITS AND COSTS

As shown in Table l, homebuilt storm windows have a payback of 2 - 5 years compared to commercially installed units with a payback of 5 20 years. Does this fact make the homebuilt windows a better investment? It is important to remember that payback and life cycle cost comparisons of energy conservation investments are only as
useful as the accuracy of the values assigned to benefits and costs. Furthermore, not all benefits and costs may even be quantifiable and able to be included in the economic analysis. If the commercially installed storm windows are more "attractive" to the buyer, how is this benefit evaluated? This section will attempt to introduce the many kinds of benefits and costs generally associated with energy conservation and how they may be affected by various economic factors.

Investor Perspective

From the perspective of the investor, quantifiable or ndirect" benefits and costs are most simply the net energy savings and initial outlay, respectively. In addition, other benefits or costs associated with operation, maintenance, repair and replacement should be considered for most major investments. Non-quantifiable, or "indirect" benefits and costs generally relate to comfort, appearance, and feelings of independence, security or prestige. The storm window question used above is a good example of how indirect benefits may overrule economic concerns. Although homebuilt storms will save as much energy as commercial units, appearance or other operable features of the more expensive designs may outweigh this cost advantage. The effect on resale value of a residence may also be an important criteria for selecting energy conservation investments.

Regional Perspective

The Northwest Power Planning Council now recognizes conservation as the preferred alternative for meeting increasing electric power demands, due to its significant cost advantage. The direct benefit of conservation to the region then is lower energy prices for all users as higher cost power is subsequently avoided. Indirect benefits of conservation to the region primarily include improvements in environmental quality from reduced use of thermal generation, and stimulation of numerous local economies involved in the energy conservation and home improvement markets. Possible indirect costs of certain conservation actions relate to building aesthetics which may negatively affect some individuals or communities.

Factors Affecting Benefits and Costs

Of many economic factors affecting benefits and costs used in life cycle costing techniques, the most obvious perhaps are the discount rate and time period of evaluation. As observed in the sections describing these techniques a higher discount rate and shorter economic life adversely affect the present worth of an investment while a lower discount rate and longer life will show improvement. The selection of a discount rate is normally guided by the level of return on alternative investment opportunities or the cost of borrowing money. Higher discount rates may be suitable for high risk projects or to account for the fact that conservation investments are generally less "liquid" (easily cashed out) than other investments. Risk may be treated in other ways, such as basing benefit and cost estimates on probabilities of occurrence or incorporating contingency cash flows. It is important that fuel escalation rates and cash flow estimates that inflate over time be consistent (real or nominal) with the discount rate chosen.

The selection of a time period of evaluation is based either on the useful life of the investment or on the specific time perspective of the investor. "Useful" life refers to the time period during which the conservation investment is able to provide energy savings. "Economic" life, often used interchangeably, actually refers to the time period that the investment remains the least costly means of providing a particular conservation saving. In practice, useful life is easier to predict and is more often used. If the investor's interest in a conservation application is limited to the planned time of occupancy or, as with a speculative builder, to the time period between initial property development and resale, the time period of evaluation may be much shorter than the investment's useful life. In such cases, long term conservation benefits to society are usually foregone, as many new homes and buildings are still built with insufficient regard for energy conservation.

Other important factors affecting benefits and costs are financial incentives and salvage values. Financial incentives offered by a variety of government and private sources may reduce the initial cost of a conservation investment significantly. Cash grants are available from various utilities for residential solar hot water heating systems. A trial two year market incentive program initiated by BPA in 1985 offers rebates of $\$ 200$ or $\$ 500$ for residential installations of either solar or heat pump water heaters in selected counties and Public Utility Districts throughout the region. Tax incentives include a federal program of tax credits for conservation and alternative energy investments (due to expire after 1985). Property tax exemptions and liberal depreciatic allowances for conservation investments also serve to reduce annual tax obligations. Low interest loans and loan buydowns, sometimes available from lending institutions, utilities or public assistance programs, result in reduced borrowing costs. Energy conservation investments that are uneconomical without financial incentives may become cost effective if subsidies are included in the economic evaluation.

Salvage value is the value of a capital asset remaining either at the end of the study period, or at the end of its useful life. It may be determined by estimating resale value of the asset, net the cost of removal, whenever the asset ceases to be evaluated or used. If an existing investment is being compared to a new one that would replace it, the current salvage (or resale) value of the existing investment may be subtracted from the first cost of the new alternative. A home or building utilizing energy conservation investments at time of resale will only provide salvage benefits to the seller if the remaining energy savings contained in the investment can be reflected in a higher resale price, or if the conservation devices can be removed and sold or used in another application. Since these possibilities are uncertain, it is often difficult to estimate salvage value with a high level of reliability. The importance of salvage value pertains particularly to short evaluation periods and to assets with a long useful life. In most cases when the useful life of an asset is exhausted, salvage values will be minimal.

The uncertainty relating to estimating salvage values applies to most cash flows that occur in the future. Since economic evaluations of energy conservation investments are only as accurate as the values used in formulating the analysis, particular attention should be given to making valid assumptions and realistic estimates. Analytical techniques for evaluating uncertainty that may be applied in complex economic studies include sensitivity and probability analysis. Sensitivity analysis tests the responsiveness of economic measurements to key factors such as discount rate, time horizons or fuel price escalation. Probability analysis determines benefits or costs based on their expected chance of occurrence. These techniques are not generally necessary for making home energy conservation investment decisions.

PROBLEM $\ddagger 1$ - SOLAR WATER HEATING

Assume that a homeowner will need to replace an aging conventional water heater soon and would like to compare a new efficient electric heater with an active solar water heating system. The homeowner's situation is as follows:

- present hot water use - 80 gal/day (heated from 50F to l30F)
- present cost of electricity - $\$ 0.045 / \mathrm{kwh}$ (forecasted to escalate at $2 \% / y r$ in real terms)
- solar availability - with roof mounted collectors, location is favorable (as determined by solar site survey)

Electric heating description:

- initial cost - \$300 (installed)
- expected useful life - 12 years
- overall efficiency - 0.90 (including standby losses)
- first year operating cost (electricity) - \$285/yr, calculated as follows:
$\frac{(80 \mathrm{gal} / \mathrm{day})(365 \mathrm{day} / \mathrm{yr})(8.34 \mathrm{lb} / \mathrm{gal})\left(130-50 \mathrm{~F}^{\circ}\right)\left(1 \mathrm{Btu} / 1 \mathrm{~b}-\mathrm{F}^{\circ}\right)(\$ 0.045 / \mathrm{kwh})}{(3413 \mathrm{Btu} / \mathrm{kwh})(0.90)}$ ($3413 \mathrm{Btu} / \mathrm{kwh}$) (0.90)
- replacement/repair costs - new heater in l3th year @ $\$ 300$ (present value)
- maintenance costs - drain/flush tank once per year, 3 $\mathrm{hr} / \mathrm{yr}$ @ $\$ 10 / \mathrm{hr}=\$ 30 / \mathrm{yr}$

Solar heating description:

- initial cost - $\$ 4500$ (installed) ; federal tax credit 40\% (\$4500) = \$1800; utility rebate - \$300
- net initial cost - $\$ 2400$
- expected useful life - 25 years (collectors, piping)
- overall efficiency - cesigned to meet 60% of hot water needs on an annual basis (with backup heating provided by single electric element); circulating pump consumes approximately $400 \mathrm{kwh} / \mathrm{yr}$ or 6% of total demand for net electric displacement of 54\%
- first year operating cost (electricity) - with 54\% savings, $0.46(\$ 285)=\$ 131 / \mathrm{yr}$
- replacement/repair costs - new storage tank in l3th year @ $\$ 500$ (present value); new pump and controls in 8 th and l6th years @ $\$ 200$ each (present value)
- maintenance requirements - drain/flushtank once per year, $3 \mathrm{hr} / \mathrm{yr}$; inspect, clean, maintain collectors once per year, $3 \mathrm{hr} / \mathrm{yr} @ \$ 10 / \mathrm{hr}=\$ 60 / \mathrm{yr}$

To compare these two alternatives, the homeowner has decided to use the $P W$ method to determine whether the incremental expense of the solar system is economically justified by its annual savings. An evaluation of incremental values is necessary since only the solar unit saves energy while the electric unit serves as a base case. Since the money spent on the solar system might also be invested in other long-term securities earning lo\% interest (after tax), a 4% real discount rate is selected assuming a 6\% long-term average inflation rate. The time period of evaluation selected is 25 years, the estimated useful life of the solar collectors. Both electric and solar storage tanks will require replacement halfway through this period (during the l3thyear). After 25 years, it is assumed all components of both systems will require replacement and therefore no salvage values are included.

A summary of cash flows for both electric and solar heating systems, plus incremental values and present worth calculations are given in Table 2. Note that net present worth is determined by summing the individual equivalent present values of each cash flow under consideration. Since the net present worth that results is positive, the solar water heating system may be considered a good investment based on the economic parameters selected, earning better than a 4% real rate of return or 10% including inflation. In cases where the economic returns are marginally satisfactory, indirect benefits of each investment could be examined as well.

Although fairly typical values were selected, it is important to realize that the above problem represents a hypothetical situation and is only intended to demonstrate use of the analytical methods employed. Wide variety in the types of alternative water heating systems, in the actual conditions of use and in the selection of economic analysis factors plays a critical role in determining which investment will be most economic in any particular situation. For example, solittle as removal of the utility rebate in the above case would result in a negative net present worth.

PROBLEM $\ddagger 2$ - WOOD SPACE HEATING

Assume that an owner/builder is designing a new home and would like to compare electric space heating with a woodstove installation. The design conditions are as follows:

- heating requirements of house - 8700 kwh /season (based on 1500 ft built to 1980 code standards)
- present cost of electricity - $\$ 0.035 / \mathrm{kwh}$ (forecasted to

Cash Flows

		Electric Heating	Solar Heating	Incremental Value	Present Worth Factor*	Equivalent Present Value
	Initial Cost	\$ 300	\$ 2400	\$ -2100	1.00	\$ -2100
	Annual Amounts (A)					
	Operating Costs (escalating)	285	131	154	19.61	3020
	Maintenance Costs	30	60	-30	15.62	-469
	Future Amounts (F)					
	Replacement/repair costs (yr 8)	0	200	-200	0.731	-146
	Replacement/repair costs (yr 13)	0	200	-200	0.601	-120
	Replacement/repair costs (yr 16)	300	500	-200	0.534	-107
	Net Present Worth					\$ 78
	* To locate the appropriate Present Worth Factors:					
	Converting from annual amounts, the $P / A *$ factor for $i=4 \%, n=25$ years and $e=2 \%$ is found in					
	Table 5C and the P/A factor for $i=4 \%$ and $n=25$ years is found in Table 4C. Converting from					
	future amounts, the P/F factors for	$i=4 \%$ and	n=8, 13 a	d 16 years a	re also found	Table 4C.

Table 2. Summary of Cash Flows and Present Worth Calculations Solar Water Heating Problem \#l.
escalate at $3 \% / y r$ in real terms)

- present cost of wood - $\$ 100 /$ cord (forecasted to rise at the general inflation rate)

Electric heating description:

- initial cost of system - $\$ 1200$ (installed)
- expected useful life - 15 years
- overall efficiency - 1.00
- first year operating cost (electricity) - $\$ 305 / y r$ ($=8700 \mathrm{kwh} \mathrm{x} \$ 0.035 / \mathrm{kwh}$)
- replacement/repair costs - entire system replaced in l5th year @ $\$ 1200$ (present value)
- maintenance costs - none
- salvage value of replacement system (yr 20) - \$800 (2/3 life remaining)

Wood heating description:

- initial cost of woodstove (including chimney and hearth) - \$1100 (installed)
- expected useful life - 20 years
- overall efficiency - 0.50
- initial cost of baseboard backup - $\$ 200$ (installed)
- expected useful life - 15 years
- overall efficiency - l.00
- first year operating cost (wood) - $\$ 220 / y r$ (to meet 80% total heating requirements $=2.2$ cords)
- first year operating cost (electricity) - \$61/yr (to meet 20\% of total heating requirements)
- replacement/repair costs - woodstove, $\$ 20 / y r$ (miscellaneous repair); electric units replaced in $15 t h$ year @ $\$ 200$ (present value)
- maintenance costs - 2 woodstove cleanings per year @ $\$ 50$ ea $=\$ 100 / y r$
- salvage value of replacement heaters (yr 20) - \$133 (2/3 life remaining)

Assuming the owner/builder seeks an after tax return of 10 \% interest and predicts long-term inflation will average 5\%, a real rate of return of 5% is desirable. The PW method is again useful to determine if the wood heating system satisfies this investment criteria. As in the last problem, Table 3 summarizes present worth calculations based on the incremental cash flows. Since the net present worth that results is negative, wood heating may be considered a poor investment based on the economic parameters selected, earning less than a 5\% return. Investments in homes that incorporate conservation measures may be evaluated in another way, however. Since most of the cost is financed, the IRR of the investment may be based on the down payment. In this case, home appreciation is the main concern.

As previously mentioned, the intent of these problems is merely to demonstrate the use of life cycle costing techniques. The numerous individual and subjective factors that are inherent to the problem's solution make it impossible to generalize concerning the outcome of similar economic studies.

It is interesting to note how much information is provided by equivalent present value data given in Table 3 . For instance the cost of wood is much less than electricity over the 20 year time period (\$2741 vs. \$4011) yet maintenance of the woodstove (\$1246) almost exactly offsets those savings. Also, a slight economic advantage results from the increased useful life of the woodstove equal to the difference in replacement, less salvage, costs (\481\$ 251=\$ 230$).

One factor not accounted for in this economic analysis is the time consuming and often laborious act of building and tending fires in the woodstove. Including this indirect cost in the evaluation will make it more difficult to justify wood heating. On the other hand, the overall benefits of wood heat could be improved if the wood is self-harvested or domestic water heating were included. In the final analysis, the economics of wood heating, as with many other alternative energy systems, highly depends on how much one values his or her time.

SUMMARY

More useful than simple payback analysis, life cycle costing methods offer the opportunity to evaluate energy conservation investments based on overall economic efficiency. $P W$ and IRR calculations account for both total ownership benefits and costs as well as the time value of money. Since economic evaluations rely on numerous subjective assumptions and the prediction of future benefits and costs, results are highly individualized. Non-quantifiable, or indirect, economic factors may also highly influence the attractiveness of a particular investment. For these reasons, differences in returns of $1-2 \%$ among most energy conservation investments, competing against each other or a fixed minimum rate of return, are probably not significant.

Cash Flows

	Cash Flows			Present Worth Factor*	Equivalent Present Value
	Electric Heating	Wood Heating	Incremental Value		
Initial Cost	\$ 1200	\$ 1300	\$ -100	1.00	\$ -100
Annual Amounts (A)					
Operating Costs - electric (escalating)	305	61	244	16.44	4011
Operating Costs - wood	0	220	-220	12.46	-2741
Replacement/repair costs	0	20	-20	12.46	-249
Maintenance costs	0	100	-100	12.46	-1246
Future Amounts (F)					
Replacement/repair costs (yr 15)	1200	200	1000		
Salvage value (Yr 20)	-800	-133	-667	0.377	$\begin{array}{r}481 \\ -251 \\ \hline\end{array}$
Net Present Worth					\$ -95

* To locate the appropriate Present Worth Factors:

Converting from annual amounts, the P / A * factor for $i=5 \%, n=20$ years and $e=3 \%$ is found in Table 5D and the P/A factor for $i=5 \%$ and $n=20$ years is found in Table $4 D$. Converting from future amounts, the P / F factors for $i=5 \%$ and $n=15$ and 20 years are also found in Table $4 D$.

[^0]Both the $P W$ and $I R R$ methods are similar in that they involve - converting future cash flows to an equivalent time basis, typically present values. They differ in that the PW method compares the profitability of investments to a fixed rate of return, the assumed discount rate, while the IRR method solves for the actual rate of return by finding the discount rate that corresponds to a net present worth of zero. Due to this difference, each method offers distinct benefits.

Present Worth:

- determines the optimum level of related (non-mutually exclusive) conservation investments
- determines if minimum acceptable rate of return is met
- simpler to compare investments of equal useful lives

Internal Rate of Return:

- able to rank mutually exclusive investments competing for funds
- determines actual rate of return
- easier to compare investments of variable useful lives

While each method has its advocates, it is best to understand both and how they are interrelated. Either method will serve the investor with a practical approach to making sound economic decisions. Their reliability depends entirely on the accuracy of one's estimates and assumptions. For further reading, a list of reference texts and publications is included.

This factsheet was written by Jack Brautigam. Artwork was provided by Rudi fyles and Mike Nelson.

SUGGESTED READING

- Marshall, Harold E. and Ruegg, Rosalie T. Simplified Energy Design Economics National Bureau of Standards Special Publication 544, U.S. Government Printing Office. Washington, D.C. 1980.

Informative overview of various life cycle costing methods, with sample problems relating specifically to conservation and solar investments in buildings.

- Marshall, Harold E. and Ruegg, Rosalie T. Energy Conservation in Buildings: An Economics Guidebook for Investment Decisions. National Bureau of Standards Handbook l32, U.S. Government Printing Office. Washington, D.C. 1980.

A more comprehensive and complex treatment of economics than the above publication; detailed illustration and numerous sample problems are used throughout.

- Grant, Eugene L. and Ireson, W. Grant. Principles of Engineering Economy 5th Edition. The Ronald Press Co., New York, NY 1970.

An in-depth textbook review of the principles and techniques needed for making decisions concerning the acquisition and retirement of capital goods.

- "How to Cash In on Energy Buys". Solar Age. Solar Vision Inc. Harrisonville, NH. December 1984 and February 1985 with corrections (p. 6).

Terse but detailed summary of economic methods and formulas appropriate to investments in conservation and renewable energy - including worksheets.

- "Life Cycle Cost Analysis versus Payback for Evaluating Project Alternatives". Heating/Piping/Air Conditioning. Reinhold Publishing Division of Penton/IPC. Stamford, CT. September 1984.

Review of advantages of life cycle costing over payback for choosing among energy conservation investment alternatives.

- "Rate of Return Analysis in the Evaluation of Project Alternatives". Heating/Piping/Air Conditioning. Reinhold Publishing Division of Penton/IPC. Stamford, CT. September 1983.

Comparison of Rate of Return and Present Worth life cycle costing methods.

2\% Discount Factors

n	Compound Amonint Factor F / P	Present Werilu Fuctar $\boldsymbol{I} / \boldsymbol{F}$	Slnking Fund Fuctor A / F	$\begin{gathered} \text { Caplital } \\ \text { Recovery } \\ \text { Factor } \\ A / P \end{gathered}$	Compraund Amount Fuctor F/A	Present Worth Faclor P / A	n
1	1.0200	0.9804	1.00000	1.02000	1.000	0.980	1
2	1.0404	0.9612	0.49505	0.51505	2.020	1.942	2
3	1.0612	0.9423	0.32675	0.34675	3.060	2.884	3
4	1.0824	0.9238	0.24262	0.26262	4.122	3.808	1
5	1.1041	0.9057	0.19216	0.21216	5.204	4.713	5
6	1.1262	0.8880	0.15853	0.17853	6.308	5.601	6
7	1.1487	0.8706	0.13451	0.15451	7.434	6.472	7
8	1.1717	0.8535	0.11651	0.13651	8.583	7.325	8
9	1.1951	0.8368	0.10252	0.12252	9.755	8.162	,
10	1.2190	0.8203	0.09133	0.11133	10.950	8.983	10
11	1.2434	0.8043	0.08218	0.10218	12.169	9.787	11
12	1.2682	. 7885	0.07456	0.09456	13.412	10.575	12
13	1.2936	0.7730	0.06812	0.08812	14.680	11.348	13
14	1.3195	0.7579	0.06260	0.08260	15.974	12.106	14
15	1.3459	0.7410	0.05783	0.07783	17.293	12.849	15
16	1.3728	0.7284	0.05365	0.07365	18.639	13.578	16
17	1.4002	0.7142	0.04997	0.06997	20.012	14.292	17
18	1.4282	0.7602	0.04670	0.06670	21.412	14.992	18
19	1.4568	0.6864	0.04378	0.06378	22.841	15.678	19
20	1.4859	0.6730	0.04116	0.06116	24.297	16.351	20
21	1.5157	0.6598	0.03878	0.05878	25.783	17.011	21
22	1.5460	0.6468	0.03663	0.05663	27.299	17.658	22
23	1.5769	0.6342	0.03467	0.05467	28.845	18.292	23
24	1.0084	0.6217	0.03287	0.05287	30.422	18.914	24
25	1.6406	0.6095	0.03122	0.05122	32.030	19.523	25
6	1.6734	0.5976	0.02970	0.04970	33.671	20.121	26
27	1.7069	0.5859	0.02829	0.04829	35.344	20.707	27
28	1.7410	0.5744	0.02699	0.04699	37.051	21.281	28
29	1.7758	0.5631	0.02578	0.04578	38.792	21.844	29
30	1.8114	0.5521	0.02465	0.04465	40.568	22.396	30
31	1.8476	0.5412	0.02360	0.04360	42.379	22.938	31
32	1.8845	0.5306	0.02261	0.04261	44.227	23.468	32
33	1.9222	0.5202	0.02169	0.04169	46.112	23.989	33
34	1.9607	0.5100	0.02082	0.04082	48.034	24.499	34
35	1.9999	0.5000	0.02000	0.04000	49.994	24.999	35
40	2. 2080	0.4529	0.01656	0.03656	60.402	27.355	40
45	2.4379	0.4102	0.01391	0.03391	71.893	29.490	45
50	2.6916	0.3715	0.01182	0.03182	84.579	31.424	50
55	2.9717	0.3365	0.01014	0.03014	98.587	33.175	55
60	3.2810	0.31148	0.00877	0.02877	114.052	34.761	60
65	3.6225	0.2761	0.00763	0.02763	131.126	36.197	65
70	3.9996	0.2500	0.00667	0.02667	149.978	37.499	70
75	4.4158	0.2265	0.00186	0.02586	170.792	38.677	75
80	4. 87.54	0.2051	0.100516	0.02516	193.772	39.745	80
85	5.3829	0.1858	0.00456	0.02456	219.144	40.711	85
90	5.9431	0.1683	0.00405	0.02405	247.157	41.587	96
95	6.5617	0.1524	0.00360	0.02360	278.085	42.380	95
100	7.2446	0.1380	0.00320	0.02320	312.232	43.098	100

TABLE 4C

4\% Discount Factors

n	Compound Amount Factor F / P	Present Wurth Fiactor P/F	Stuking Fund Fuctor A / F	$\begin{gathered} \text { Caplital } \\ \text { Recovery } \\ \text { Puctor } \\ A / P \end{gathered}$	Compound Antount Factor F/A	Present Worth Factor P/A	n
1	1.0400	0.9615	1.00010	1.04000	J. 000	0.962	1
2	1.0816	0.9246	0.49020	0.53020	2.040	1.886	3
3	1.1249	0.8890	0.32035	0.36035	3.122	2.775	3
4	1.1699	0.8548	0.23549	0.27549	4.246	3.630	4
5	1.2167	0.8219	0.18463	0.22463	5.416	4.452	5
6	1.2653	0.7903	0.15076	0.19076	6.633	5.242	6
7	1.3159	0.7599	0.12661	0.16661	7.898	6.002	7
8	1.3686	0.7307	0.10853	0.14853	4.214	6.733	!
9	1.4233	0.7026	0.09449	0.13449	10.583	7.435	,
10	1.4802	0.6756	0.08 .329	0.12329	12.006	8.111	10
11	1.5395	0.6496	0.07415	0.11415	13.486	8.760	11
12	1.6010	0.6246	0.06655	0.10655	15.026	9.385	12
13	1.6.6S1	0.6006	0.06014	0.10014	16.627	9.986	13
14	1.7317	0.5775	0.05467	0.09467	18.292	10.563	14
15	1.8009	0.5553	0.104994	0.08994	20.024	11.118	15
16	1.8730	0.5334	0.04582	0.08582	24.825	11.652	16
17	1.9479	0.5134	0.04220	0.08220	23.698	12.166	17
18	2.0258	0.4936	0.03899	0.07899	25.645	12.659	18
19	2.1068	0.4746	0.03614	0.07614	27.671	13.134	13
20	2.1911	0.4564	0.03358	0.07358	29.778	13.590	20
21	2.2784	0.4388	0.03128	0.07128	31.969	14.029	11
22	2.3699	0.4220	0.02920	0.06920	34.248	14.451	22
23	2.4647	0.4057	0.02731	0.06731	36.618	14.857	23
24	2.5633	0.3901	0.02559	0.06559	39.083	15.247	24
25	2.6658	0.3751	0.02401	0.06401	41.646	15.622	25
26	2.7725	0.3607	0.02257	0.06257	44.312	15.983	26
27	2.8834	0.3468	0.02124	0.16124	47.084	16.330	27
28	2.9987	0.3335	0.02001	0.06001	49.968	16.663	28
29	3.1187	0.3207	0.01888	0.05888	52.966	16.984	29
30	3.2434	0.3083	0.01783	0.05783	56.085	17.292	30
31	3.3731	0.2965	0.01686	0.05686	59.328	17.588	31
32	3.5081	0.2851	0.01595	0.05595	62.701	17.874	32
33	3.6484	0.2741	0.01510	0.05510	66.210	18.148	33
34	3.7947	0. 2636	0.101431	0.05431	69.858	18.411	34
35	3.9461	0.2534	0.101358	0.15358	73.652	18.665	35
40	4.8010	0.2083	0. 010.52	0.05052	95.026	19.793	40
45	5.8412	0. 1712	0.00126	0.04826	121.029	20.720	45
50	7.1067	0.1417	0.00655	0.04655	152.667	21.482	50
55	8.6464	0.1157	0.00523	0.04523	191.159	22.109	55
60	10.5196	0.0951	0.00420	0.04420	237.991	22.623	60
65	12.7987	0.0781	0.00339	0.04339	294.968	23.047	65
70	15.5716	0.0642	0.001275	0.04275	364.290	23.395	70
75	18.9453	0.0528	0.00223	0.04223	448.631	23.680	75
80	21.0500	0.0434	0.00181	0.04181	551.245	23.915	8
85	28.10436	0.0357	0.00148	0.04148	676.090	24.109	55
90	34.1193	0.0293	0.00121	0.04121	827.983	24.267	9
95	41.5114	0.0241	0.00099	0.04099	1012.785	24.398	95
100	50.5049	0.0198	0.00081	0.04081	1237.624	24.505	100

TABLE 4D
5\% Discount Factors

n	Componal Amount Fuctor F/P	I'resent Worlh Viactor P / F	Sinklng Finnd Factor A / F	Cuplial Recovery Faclor A / P	Compuund Anherat Fuctor F/A	Present Worth liactor P/A	n
1	1.0500	0.9524	1.000000	1.05000	1.000	0.952	1
2	1.1025	0.9070	0.48780	0.53780	2.050	1.859	2
3	1.1576	0.8638	0.31721	0.36721	3.153	2.723	3
4	1.2155	0.8227	0.23201	0.28201	4.310	3.546	4
5	1.2763	0.7835	0.18097	0.23097	5.526	4.324	5
6	1.3401	0.7462	0.14702	0.19702	6.802	5.076	6
7	1.4071	0.7107	0.12282	0.17282	8.142	5.786	7
8	1.4775	0.6768	0.110472	0.15472	9.549	6.463	d
9	1.5513	0.6446	0.09069	0.14069	11.027	7.108	9
10	1.6289	0.6139	0.07950	0.12950	12.578	7.722	10
11	1.7103	0.5847	0.07039	0.12039	14.207	8.306	11
12	1.7959	0.5568	0.06283	0.11283	15.917	8.863	12
13	1.8856	0.5303	0.05646	0.10646	17.713	9.394	13
14	1.9800	0.5651	0.105102	0.10102	19.599	9.899	14
15	2.0789	0.4810	0.04634	0.09634	21.579	111.380	15
16	2.1829	0.4581	0.04227	0.19227	23.657	10.838	16
17	2.2920	0.4363	0.03870	0.18870	25.840	11.274	17
18	2.4006	0.4155	0.03555	0.08555	28.132	11.690	18
19	2.5270	0.3957	0.03275	0.08275	311.539	12.085	19
20	2.6533	0.3769	0.03024	0.08024	33.066	12.462	20
21	2.7860	0.3589	0.02800	0.078001	35.719	12.821	11
22	2.9253	0.3418	0.02597	0.07597	38.505	13.163	21
23	3.0715	0.3256	0.02414	0.07414	41.430	13.489	23
24	3.2251	0.3101	0.02247	0.07247	44.502	13.799	24
25	3.3864	0.2953	0.02095	0.07095	47.727	14.094	25
26	3.5557	0.2812	0.01956	0.106956	51.113	14.375	16
27	3.7335	0.2678	0.01829	b. 06829	54.669	14.643	27
28	3.9201	0.2551	0.01712	0.06712	58.403	14.848	18
29	4.1161	0.2429	0.01605	0.06605	62.323	15.141	19
30	4.3219	0.2314	0.01505	0.06505	66.439	15.372	30
31	4.5380	0.2204	0.01413	0.06413	70.761	15.593	31
32	4.7649	0.2099	0.01328	0.06328	75.299	15.803	32
33	5.1012	0.1999	0.01249	0.06249	80.064	16.003	33
34	5.2533	0.1904	0.01176	0.06176	85.067	16.193	34
35	5. 5160	0.1813	0.011117	0.06107	90.320	16.374	35
40	7.11 .961	0.1420	0.00828	$0.015 \mathrm{H}_{28}$	120.800	17.159	40
45	8.9850	0.1113	0.010626	10.096, 26	159.700	17.774	45
s0	11.4674	0.0872	0.00478	0.05478	2149.348	18.256	50
55	$1+.6356$	0.0683	0.00367	0.15367	272.713	18.633	55
60	18.6792	0.0535	0.00283	0.05283	353.584	18.929	60
65	23.8399	0.0419	0.00219	0.05219	456.798	19.161	65
70	31.4264	0.0329	0.00170	0.05170	588.529	19.343	70
75	38.8327	0.0258	0.00132	0.05132	756.654	19.485	75
80	49.5614	0.0202	0.00103	0.05163	971.229	19.596	80
85	63.2544	0.0158	0.00080	0.05080	1245.087	19.684	85
90	80.73104	0.0124	0.00063	0.05063	1594.607	19.752	90
95	103.0357	0.0097	0.10049	0.05049	2040.694	19.806	95
100	131.5013	0.0076	0.00038	0.05038	2610.025	19.848	100

TABLE 4E
TABLE $4 F$
6 \% Discount Factors
8\% Discount Factors

11	Compounal Allount Factor F / P	Present Wurth Fuctor P/F	Sinking find Puctor A / F	Capital Hecovery Factor A / P	Cumpound Amount lyactor F/A	Preseat Worth Pactor P/A	n
1	1.0600	0.9434	1.000000	1.06000	1.000	0.943	1
2	1.1236	0.8900	0.48544	0.54544	2.060	1.833	2
3	1.1910	0.8196	0.31411	0.37411	3.184	2.673	3
4	1.2625	0.7921	0.22859	0.28859	4.375	3.465	1
5	1.3382	0.7473	0.17740	0.23740	5.637	4.212	5
6	1.4185	0.7050	0.14336	0.20316	6.975	4.917	6
7	1.5036	0.6651	0.11914	0.17914	8.394	5.582	7
8	1.5938	0.6274	0.10104	0.16104	9.897	6.210	
9	1.6895	0.5919	0.08702	0.14702	11.491	6.802	
10	1.7908	0.5584	0.07587	0.13587	13.181	7.360	10
11	1.8983	0. 5268	0.06679	0.12679	14.972	7.887	1
12	2.0122	0.4970	0.105928	0.11928	16.870	8.384	12
13	2.1329	0.4688	0.05296	0.11296	18.842	8.853	13
14	2.2609	0.4423	0.04758	0.10758	21.015	9.295	14
15	2.3966	0.4173	0.04296	0.10296	23.276	9.712	15
16	2. 54104	0.3936	0.03895	0.09895	25.673	10.106	16
17	2.6928	0.3714	10.03544	0.09544	24.213	10.477	17
18	2.8543	0.3503	0.03236	0.09236	30.906	10.828	11
19	3.0256	0.33105	0.02962	0.08962	33.760	11.158	19
20	3.2071	0.3118	0.02718	0.08718	36.786	11.470	20
21	3.3996	0.2942	0.02500	0.08500	39.993	11.764	11
22	3.6035	0.2775	0.02305	0.08305	43.392	12.042	22
23	3.8197	0.2618	0.02128	0.08128	46.996	12.303	23
24	4.0489	0.2470	0.01968	0.079 68	50.816	12.550	24
25	4.2919	0.2330	0.01823	0.07823	54.865	12.783	25
26	4.5494	0.2198	0.01690	0.07690	59.156	13.003	26
27	4.8223	0.2074	0.01570	0.07570	63.706	13.211	27
28	5.1117	0.1956	0.01459	0.07459	68.528	13.406	28
29	5.4184	0.1846	0.01358	0.07358	73.640	13.591	29
30	5.7435	0.1741	0.01265	0.07265	79.058	13.765	30
31	6.0881	0.1643	0.01179	0.07179	84.802	13.929	31
32	6.4534	0.1550	0.01100	0.07100	90.890	14.084	32
33	6.8406	0.1462	0.010127	0.07027	97.343	14.230	33
34	7.2510	0.1379	0.00960	0.06960	104.184	14.368	34
35	7.6861	0.1301	0.00897	0.06897	111.435	14.498	35
40	10.2857	0.0972	0.00646	0.06646	154.762	15.046	40
45	13.7646	0.0727	0.00470	0.06470	212.744	15.456	15
50	18.42102	0.0543	0.00344	0.06344	2911.336	15.762	50
55	24.6503	0.04116	0.06254	0.16254	394.172	15.991	55
60	32.9877	0.03113	0.010188	0.06188	533.128	16.161	60
65	44.1450	0.0227	0.00134	0.06139	719.083	16.289	65
70	59.0759	0.0169	0.00103	0.06103	96.7 .932	16.385	70
75	79.0569	0.0126	0.00077	0.06077	1300.949	16.456	75
80	105.7960	0.0095	0.00057	0.06057	1746.600	16.509	0
85	141.5789	0.0071	0.06043	0.06043	2342.982	16.549	85
90	189.4645	0.0053	0.100032	0.06032	3141.075	16.579	90
95	253.5463	0.0039	0.00024	0.06024	4209.104	16.601	95
100	339.3021	0.10029	0.00018	0.06018	5638.368	16.618	100

n	Componnd Amount Factor F / P	Present Wordh Factor $\boldsymbol{P} / \boldsymbol{F}$	Sinking Fund Fuclor A / F	Capital Kecovery Fuclor A / P	Compound Ambunt liactor F/A	Present Worlt Factor P/A	
1	1.0800	0.9259	1 . 01000	1.08000	1.000	0.926	1
2	1.1664	0.8573	0.48077	0.56077	2.080	1.783	2
3	1.2597	0.7938	0.30803	0. 38803	3.246	2.577	3
4	1.3605	0.7350	0.22192	0.30192	4.506	3.312	4
5	1.4693	0.6806	0.17046	0.25046	5.867	3.993	5
6	1.5869	0.6302	0.13632	0.21632	7.336	4.623	6
7	1.7138	0.5835	0.11207	0. 19207	8.923	5.206	7
8	1.8509	0.5403	0.09401	0.17401	10.637	5.747	
9	1.9990	0.5002	0.08008	0.16008	12.488	6.247	,
10	2.1589	0.46 .32	0.106903	0.14903	14.487	6.710	10
11	2.3316	0.4289	0.060088	0.14008	16.645	7.139	11
12	2.5182	0.3971	0.05270	0.13270	18.977	7.536	12
13	2.7196	0.3677	0.04652	0.12652	21.495	7.904	13
14	2.9372	0.3405	0.04130	0.12130	24.215	8.244	14
15	3.1722	0.3152	0.03683	0.11683	27.152	8.559	15
16	3.4259	0.2919	0.03298	0.11298	30.324	8.851	6
17	3.7000	0.2703	0.02963	0.10963	33.750	9.122	17
18	3.9960	0.2502	0.02670	0.10670	37.450	9.372	18
19	4.3157	0.2317	0.02413	0.10413	41.446	9.604	9
20	4.6610	0.2145	0.02185	0.10185	45.762	9.418	20
21	5.0338	1). 1987	0.01983	0.09983	50.423	10.017	21
22	5.4365	0.1839	0.01803	0.09803	55.457	10.201	22
23	5.8715	0.1703	0.01642	0.09642	60.893	10.371	23
24	6.3412	0.1577	0.01498	0.09498	66.765	10.529	24
25	6.8485	0.1460	0.01368	0.09368	73.106	10.675	25
26	7.3964	0.1352	0.01251	0.09251	79.954	10.810	26
27	7.9881	0.1252	0.01145	0.09145	87.351	10.935	7
28	8.6271	0.1159	0.01049	0.09049	95.339	11.051	28
29	9.3173	0.1073	0.00962	0.08962	1103.966	11.158	29
30	10.0627	0.0994	0.00883	0.08888	113.283	11.258	30
31	10.8677	0.0920	0.00811	0.08811	123.346	11.350	31
32	11.7371	0.0852	0.06745	0.08745	134.214	11.435	32
33	12.6760	0.0789	0.00685	0.08685	145.951	11.514	33
34	13.6901	0.0730	0.006630	0.08630	158.627	11.587	34
35	14.7853	0.0676	0.00580	0.08580	172.317	11.655	35
40	21.7245	11.0460	0.00380	0.08386	259.057	11.925	40
45	31.9204	0.0313	0.010259	0.08259	386.506	12.108	45
50	46.9016	0.0213	0.00174	0.08174	573.770	12.233	50
55	64.9139	0.0145	0.00118	0.06118	848.923	12.319	55
60	101.2571	0.0099	0.000880	0.08080	1253.213	12.377	60
65	148.7798	0.0067	0.00054	0.08154	1847.248	12.416	65
70	218.6064	0.0046	0.00037	0.081037	2720.080	12.443	70
75	321.2045	0.0031	0.00025	0.08025	4002.557	12.461	75
80	471.9548	0.0021	0.00017	0.08017	S886.435	12.474	80
85	693.456 .5	0.0014	0.00012	0.05012	8655.706	12.482	85
90	1018.9151	0.0010	0.00008	0.08008	12723.939	12.488	90
95	1497.1205	0.0007	0.00005	0.080105	18701.507	12.492	9
100	2199.7613	0.0005	0.00004	0.08004	27484.516	12.494	100

10% Discount Factors

12\% Discount Factors

n	Compound Amount Factor $\boldsymbol{F} / \boldsymbol{P}$	Present Wurth Factor P/F	Slaking Fund Factor A/F	Caplial Hecovery Factor A/P	Compound Amount Factor F/A	Present Worth Factor P/A	n
1	1.1200	0.8929	1.00000	1.12000	1.000	0.893	1
2	1.2544	0.7972	0.47170	0.59170	2.120	1.690	2
3	1.4049	0.7118	0.29635	0.41635	3.374	2.402	3
4	1.5735	0.6355	0.20923	0.32923	4.779	3.037	4
5	1.7623	0.5674	0.15741	0.27741	6.353	3.605	5
6	1.9738	0.5066	0.12323	0.24323	8.115	4.111	6
7	2.2107	0.4523	0.09912	0.21912	10.089	4.564	7
8	2.4760	0.4039	0.08130	0.20130	12.300	4.968	8
9	2.7731	0.3606	0.06768	0.18768	14.776	5.328	,
10	3.1058	0.3220	0.05698	0.17698	17.549	5.650	10
11	3.4785	0.2875	0.04842	0.16842	20.655	5.938	11
12	3.8960	0.2567	0.04144	0.16144	24.133	6.194	12
13	4.3635	0.2292	0.03568	0.15568	28.029	6.424	13
14	4.8871	0.2046	0.03087	0.15087	32.393	6.628	14
15	5.4736	0.1827	0.02682	0.14682	37.280	6.811	15
16	6.1304	0.1631	0.02339	0.14339	42.753	6.974	16
17	6.8660	0.1456	0.02046	0.14046	48.884	7.120	17
18	7.6900	0.1300	0.01794	0.13794	55.750	7.250	18
19	8.6128	0.1161	0.01576	.0.13576	63.440	7.366	13
20	9.6463	0.1037	0.01388	0.13388	72.052	7.469	20
21	10.8038	0.0926	0.01224	0.13224	81.699	7.562	21
22	12.1003	0.0826	0.01081	0.13081	92.503	7.645	22
23	13.5523	0.0738	0.00956	0.12956	104.603	7.718	23
24	15.1786	0.0659	0.00846	0.12846	118.155	7.784	24
25	17.0001	0.0588	0.00750	0.12750	133.334	7.843	25
26	19.0401	0.0525	0.00665	0.12665	150.334	7.896	36
27	21.3249	0.0469	0.00590	0.12590	169.374	7.943	27
28	23.8839	0.0419	0.00524	0.12524	190.699	7.984	28
29	26.7499	0.0374	0.00466	0.12466	214.583	8.022	29
30	29.9599	0.0334	0.00414	0.12414	241.333	8.055	30
31	33.5551	0.0298	0.00369	0.12369	271.292	8.085	31
32	37.5817	0.0266	0.010328	0.12328	304.847	8.112	32
33	42.0915	0.0238	0.001292	0.12292	342.429	8.135	33
34	47.1425	0.0212	0.00260	0.12260	384.520	8.157	34
35	52.7996	0.0189	0.00232	0.12232	431.663	8.176	35
40	93.0510	0.0107	0.00130	0.12130	767.091	8.244	40
45	163.9876	0.0061	0.00074	0.12074	1358.230	8.283	45
50	289.0022	0.0035	0.00042	0.12042	2400.018	8.305	50
∞				0.12000		8.333	-

TABLE 5A
2% P/A* Discount Factors

TABLE 5B
3% P/A* Discount Factors

n	e=18	$\mathrm{e}=2 \mathrm{8}$	e=38	e=48	ex5	e 68	n	e=18	e=2\%	e $=3 \%$	e=48	$\mathrm{e}=5 \%$	e $=68$
1	0.990	1.000	1.010	1.020	1.029	1.039	1	0.981	0.990	1.000	1.010	1.019	1029
2	1.971	2.000	2.029	2.059	2.089	2.119	2	1.942	1.971	2.000	2.029	2.059	2.088
3	2.942	3.000	3.059	3.119	3.180	3.242	3	2.885	2.942	3.000	3.059	3.118	3.178
4	3.903	4.000	4.099	4.200	4.303	4.408	4	3.810	3.904	4.000	4.098	4.198	4.300
5	4.855	5.000	5.149	5.302	5.459	5.620	5	4.716	4.856	5.000	5.148	5.299	5.454
6	5.797	6.000	6.209	6.425	6.649	6.880	6	5.605	5.799	6.000	6.207	6.421	6.642
7	6.731	7.000	7.280	7.571	7.874	8.189	7	6.477	6.733	7.000	7.277	7.565	7.865
8	7.655	8.000	8.361	8.739	9.135	9.549	8	7.332	7.658	8.000	8.358	8.732	9.123
9	0.570	9.000	9.453	9.930	10.433	10.963	9	8.170	8.574	9.000	9.448	9.921	10.418
10	9.476	10.000	10.555	11.144	11.769	12.432	10	8.992	9.481	10.000	10.550	11.133	11.750
11	10.374	11.000	11.669	12.383	13.145	13.958	11	9.798	10.380	11.000	11.662	12.368	13.122
12	11.262	12.000	12.793	13.645	14.561	15.545	12	10.588	11.269	12.000	12.785	13.628	14.533
13	12.142	13.000	13.928	14.932	16.018	17.194	13	11.363	12.150	13.000	13.919	14.912	15.985
14	13.013	14.000	15.074	16.244	17.519	18.907	14	12.123	13.022	14.000	15.064	16.221	17.480
15	13.876	15.000	16.232	17.583	19.064	20.688	15	12.968	13.886	15.000	16.220	17.555	19.018
16	14.730	16.000	17.401	18.947	20.654	22.538	16	13.599	14.742	16.000	17.387	18.915	20.602
17	15.576	17.000	18.581	20.338	22.291	24.462	17	14.316	15.589	17.000	18.565	20.302	22.231
18	16.413	18.000	19.773	21.756	23.976	26.460	18	15.018	16.428	18.000	19.755	21.716	23.907
19	17.242	19.000	20.977	23.203	25.710	28.537	19	15.707	17.259	19.000	20.957	23.157	25.633
20	18.064	20.000	22.192	24.677	27.496	30.695	20	16.383	18.081	20.000	22.170	24.626	27.408
21	18.877	21.000	23.420	26.181	29.334	32.938	21	17.045	18.896	21.000	23.395	26.123	29.236
22	19.682	22.000	24.659	27.714	31.226	35.269	22	17.695	19.703	22.000	24.632	27.650	31.117
23	20.479	23.000	25.911	29.277	33.174	37.691	23	18.332	20.502	23.000	25.881	29.206	33.052
24	21.268	24.000	27.175	30.870	35.179	40.209	24	18.956	21.293	24.000	27.142	30.793	35.044
25	22.050	25.000	28.451	32.495	37.243	42.825	25	19.569	22.077	25.000	28.415	32.410	37.094
26	22.824	26.000	29.739	34.152	39.368	45.543	26	20.170	22.853	26.000	29.700	34.059	39.203
27	23.591	27.000	31.041	35.841	41.555	48.369	27	20.758	23.621	27.000	30.999	35.740	41.374
28	24.349	28.000	32.355	37.564	43.807	51.305	28	21.336	24.382	28.000	32.309	37.453	43.608
29	25.101	29.000	33.682	39.320	46.125	54.356	29	21.902	25.136	29.000	33.633	39.200	45.907
30	25.845	30.000	35.022	41.110	48.511	57.527	30	22.458	25.882	30.000	34.969	40.980	48.274

TABLE 5 C
4\% P/A* Discount Factors

n	$e=18$	$e=28$	e=31	e=48	$e=58$	$e=68$	n	e=11	e=28	$e=38$	e=4\%	e=5\%	e=68
1	0.971	0.981	0.990	1.000	1.010	1.019	1	0.962	0.971	0.981	0.990	1.000	1.010
2	1.914	1.943	1.971	2.000	2.029	2.058	2	1.887	1.915	1.943	1.972	2.000	2.029
3	2.830	2.886	2.943	3.000	3.058	3.117	3	2.777	2.832	2.887	2.943	3.000	3.057
4	3.720	3.811	3.905	4.000	4.097	4.196	4	3.633	3.722	3.813	3.906	4.000	4.096
5	4.584	4.719	4.858	5.000	5.146	5.296	5	4.457	4.587	4.721	4.859	5.000	5.145
6	5.423	5.609	5.801	6.000	6.205	6.417	6	5.249	5.428	5.612	5.803	6.000	6.203
7	6.237	6.482	6.736	7.000	7.275	7.560	7	6.011	6.244	6.487	6.738	7.000	7.272
8	7.028	7.338	7.661	8.000	8.354	8.724	8	6.744	7.037	7.344	7.665	8.000	8.351
9	7.797	8.178	8.578	9.000	9.444	9.911	9	7.449	7.808	8.185	8.582	9.000	9.440
10	8.543	9.001	9.486	10.000	10.544	11.121	10	8.127	8.556	9.010	9.491	10.000	10.539
11	9.268	9.809	10.385	11.000	11.655	12.354	11	8.779	9.283	9.819	10.391	11.000	11.649
12	9.972	10.601	11.276	12.000	12.777	13.611	12	9.407	9.989	10.613	11.282	12.000	12.769
13	10.655	11.378	12.158	13.000	13.910	14.892	13	10.010	10.675	11.392	12.165	13.000	13.900
14	11.319	12.140	13.031	14.000	15.053	16.198	14	10.591	11.341	12.156	13.040	14.000	15.042
15	11.964	12.887	13.896	15.000	16.207	17.528	15	11.149	11.989	12.905	13.906	15.000	16.195
16	12.590	13.620	14.753	16.000	17.373	18.885	16	11.686	12.618	13.641	14.764	16.000	17.359
17	13.198	14.339	15.602	17.000	18.550	20.267	17	12.203	13.229	14.362	15.614	17.000	18.534
18	13.788	15.044	16.442	18.000	19.737	21.676	18	12.700	13.822	15.069	16.456	18.000	19.720
19	14.362	15.735	17.274	19.000	20.937	23.112	19	13.178	14.399	15.763	17.290	19.000	20.917
20	14.918	16.413	18.099	20.000	22.148	24.576	20	13.638	14.959	16.444	18.116	20.000	22.126
21	15.459	17.079	18.915	21.000	23.370	26.068	21	14.080	15.503	17.111	18.934	21.000	23.346
22	15.984	17.731	19.723	22.000	24.605	27.588	22	14.506	16.031	17.766	19.744	22.000	24.578
23	16.495	18.371	20.524	23.000	25.851	29.138	23	14.915	16.545	18.409	20.546	23.000	25.821
24	16.990	18.998	21.317	24.000	27.109	30.717	24	15.309	17.043	19.039	21.341	24.000	27.077
25	17.471	19.614	22.103	25.000	28.379	32.327	25	15.688	17.528	19.658	22.128	25.000	28.344
26	17.938	20.217	22.880	26.000	29.662	33.968	26	16.052	17.998	20.264	22.908	26.000	29.624
27	18.392	20.809	23.651	27.000	30.957	35.641	27	16.402	18.456	20.959	23.680	27.000	30.915
28	18.832	21.390	24.414	28.000	32.264	37.345	28	16.739	18.900	21.443	24.445	28.000	32.219
29	19.260	21.959	25.169	29.000	33.584	39.083	29	17.064	19.331	22.015	25.203	29.000	33.536
30	19.676	22.518	25.918	30.000	34.916	40.854	30	17.375	19.750	22.577	25.953	30.000	34.865

TABLE 5E
6% P/A* Discount Factors

n	$e=18$	$e=28$	$e=38$	$e=48$	$e=58$	$e=68$	n
1	0.953	0.962	0.972	0.981	0.991	1.000	1
2	1.861	1.888	1.916	1.944	1.972	2.000	2
3	2.726	2.779	2.833	2.888	2.944	3.000	3
4	3.550	3.637	3.725	3.815	3.907	4.000	4
5	4.335	4.462	4.591	4.724	4.860	5.000	5
6	5.084	5.256	5.433	5.616	5.805	6.000	6
7	5.797	6.019	6.251	6.491	6.741	7.000	7
8	6.476	6.755	7.046	7.350	7.668	8.000	8
9	7.124	7.462	7.818	8.192	8.586	9.000	9
10	7.740	8.143	8.568	9.019	9.496	10.000	10
11	8.328	8.798	9.298	9.930	10.397	11.000	11
12	8.888	9.428	10.006	10.625	11.289	12.000	12
13	9.422	10.034	10.695	11.406	12.173	13.000	13
14	9.930	10.618	11.364	12.172	13.049	14.000	14
15	10.414	11.180	12.014	12.924	13.916	15.000	15
16	10.876	11.720	12.645	13.661	14.776	16.000	16
17	11.316	12.240	13.259	14.384	15.627	17.000	17
18	11.735	12.740	13.856	15.094	16.470	18.000	18
19	12.134	13.222	14.435	15.790	17.305	19.000	19
20	12.515	13.685	14.998	16.473	18.132	20.000	20
21	12.877	14.131	15.546	17.144	18.952	21.000	21
22	13.223	14.560	16.077	17.801	19.764	22.000	22
23	13.552	14.973	16.594	18.447	20.568	23.000	23
24	13.865	15.370	17.096	19.080	21.364	24.000	24
25	14.164	15.752	17.584	19.701	22.153	25.000	25
26	14.449	16.120	18.058	20.310	22.935	26.000	26
27	14.720	16.474	18.519	20.908	23.709	27.000	27
28	14.979	16.815	18.966	21.495	24.476	28.000	28
29	15.225	17.143	19.401	22.070	25.236	29.000	29
30	15.460	17.458	19.824	22.635	25.988	30.000	30

TABLE 5F

8% P/A* Discount Factors

TABLE 5 G

10% P/A ${ }^{*}$ Discount Factors

n	$\mathrm{e}=18$	$e=28$	e-38	$\mathrm{e}=4$ \%	e=5\%	e=68	n	$e=18$	$e=28$	e=38	$e=48$	e=5	e=6\%
1	0.918	0.927	0.936	0.945	0.955	0.964	1	0.902	0.911	0.920	0.929	0.938	0.946
2	1.761	1.787	1.813	1.839	1.866	1.892	2	1.715	1.740	1.765	1.791	1.816	1.842
3	2.535	2.584	2.634	2.684	2.735	2.787	3	2.448	2.495	2.543	2.591	2.640	2.690
\ddagger	3.246	3.324	3.403	3.483	3.566	3.649	4	3.110	3.183	3.258	3.335	3.413	3.492
5	3.899	4.009	4.123	4.239	4.358	4.480	5	3.706	3.810	3.916	4.025	4.137	4.252
6	4.498	4.645	4.797	4.953	5.115	5.281	6	4.244	4.380	4.521	4.666	4.816	4.970
7	5.048	5.234	5.428	5.628	5.837	6.053	7	4.729	4.900	5.078	5.262	5.452	5.650
8	5.553	5.781	6.019	6.267	6.526	6.796	8	5.166	5.373	5.589	5.814	6.049	6.294
9	6.017	6.288	6.572	6.871	7.184	7.513	9	5.561	5.804	6.060	6.328	6.609	6.903
10	6.443	6.758	7.090	7.441	7.812	8.203	10	5.916	6.197	6.492	6.804	7.133	7.480
11	6.834	7.194	7.575	7.981	8.411	8.868	11	6.237	6.554	6.890	7.247	7.625	8.026
12	7.193	7.598	8.030	8.491	8.983	9.510	12	6.526	6.880	7.256	7.658	8.086	8.542
13	7.523	7.972	8.455	8.973	9.530	10.127	13	6.787	7.176	7.593	8.039	8.518	9.031
14	7.825	8. 320	8.853	9.429	10.051	10.723	14	7.022	7.446	7.902	8.394	8.923	9.494
15	$8.10 ?$	8.642	9.226	9.860	10.549	11.297	15	7.234	7.692	8.187	8.723	9.303	9.931
16	8.358	8.941	9.576	10.268	11.024	11.849	16	7.426	7.916	8.449	9.028	9.659	10.346
17	8.593	9.218	9.903	10.653	11.477	12.382	17	7.598	9.120	8.689	9.312	9.993	10.738
18	8.808	9.475	10.209	11.018	11.910	12.896	18	7.754	8.306	8.911	9.575	10.306	11.109
19	9.005	9.713	10.496	11.362	12.323	13.390	19	7.894	8.475	9.114	9.820	10.599	11.461
20	9.187	9.934	10.764	11.688	12.718	13.867	20	8.020	8.629	9.302	10.047	10.874	11.793
21	9.353	10.139	11.015	11.996	13.094	14.326	21	8.134	8.769	9.474	10.258	11.132	12.108
22	9.506	10.329	11.251	12.287	13.454	14.769	22	8.237	8.897	9.632	10.454	11.374	12.405
23	9.647	10.505	11.471	12.562	13.797	15.196	23	8.330	9.013	9.778	10.636	11.600	12.687
24	9.776	10.668	11.678	12.822	14.124	15.607	24	8.414	9.119	9.912	10.805	11.813	12.954
25	9.894	10.819	11.871	13.069	14.437	16.003	25	8.489	9.216	10.035	10.961	12.012	13.207
26	10.003	10.960	12.052	13.301	14.735	16.384	26	8.557	9.304	10.148	11.107	12.199	13.445
27	10.102	11.090	12.221	13.521	15.020	16.752	27	8.619	9.384	10.252	11.242	12.374	13.672
28	10.194	11.211	12.380	13.729	15.291	17.107	28	8.674	9.456	10.348	11.368	12.538	13.886
29	10.278	11.323	12.528	13.926	15.551	17.448	29	8.724	9.523	10.436	11.484	12.692	14.088
30	10.355	11.426	12.667	14.112	15.799	17.778	30	8.769	9.583	10.517	11.593	12.836	14.280

<

[^0]: Table 3. Summary of Cash Flows and Present Worth Calculations Wood Heating Problem \#2.

