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NUMERICAL CALCULATION OF ROOM AIR MOVEMENT
- ISOTHERMAL TURBULENT TWO-DIMENSIONAL CASE -

By Takao TSUCHIYA, Dr. Eng. **

SYNOPSIS

This paper presents a numerical calculation method for a two-dimensional,
isothermal, turbulent room air movement. In this case, the time averaged
stream function-vorticity equations were represented by finite differencing ap-
proximations with a box model and a leapfrog time scheme and the Reynolds
stresses were assumed to be expressed in terms of an eddy kinematic viscosity
which was estimated to be proportional to the product of the cube of a prescribed
mixing length by a vorticity gradient.

This proportional constant was determined by comparing the computed
velocity distributions with experiments for two basic flows. Furthermore, the
parameterizations were proposed concerning the boundary conditions of vorticity
on a wall which corrected the gaps between the true velocity and vorticity
gradients and the represented by a finite differencing. These parameters were
also determined as compared with experiments. Then, three obtained para-
meters were confirmed to be valid by applying to a rather complicated flow in

which an air curtain was affected by a side blow.
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1. Introduction

Many successful results on the numerical calculations have been reported in
every kind of field related to the fluid dynamics. Especially in meteorology, the
conservative finite differencing schemes, such as Arakawa schemelz? were devised
free from the computational instability caused by the non-linear terms in order to
make possible the long term prediction. As to the room air movement, there are
several repoxgt)s-\;?ﬁch treat the laminar thermal convection in a room. However,
there are very fev%)which treat the turbulent room air movement with ventilation.
It does not seem to be useless to make a brief review of the studies on the nu-
merical calculation of the room air movement in our country at this moment.

First attemptgzvas made in 1958 by Terai who treated the thermal convection
in a room with a single heated wall. He succeeded in the integration of Navier-
Stokes equations and Energy equation by Cowley-Levy method which expands the
non-linear terms of N.S. equation in a power series by the same parameter as
Grashof number and made an approximate integration successively. However,
he described that Grashof number was limited under 3x10° to get stable solution.

In 1968, Tsuchiyla(.))tried to apply the finite difference numerical method with
ventilation by a successive over- relaxation method. The serious problem en-
countered in the course of the study was that the calculation was stable only
under low Reynolds number, Re < 750.

In 1972, Yamazallcil )succeeded in getting a stable~solution up to Re=2000. His
idea is to increase Re number a little bit and the same time to decrease relaxa-
tion parameter at every iteration procedure.

The flow is restricted only to laminar in all cases above described. How-
ever, the flow is essentially turbulent in a room even small box. Consequently,
it is necessary to deal with turbulence in a computation. Some approximate
methods were devised to compute a turbulent air convection. Tsuchi}}g)adopted
the same computing method as was used in a laminar case, assuming that eddy
kinematic viscosity was constant in a whole area except the portion of quite
vicinity of walls. Considering the fact that the maximum velocity and tempera-
ture appear at quite vicinity of walls, the computing domain was expanded so that
the computed maximum velocity takes place on rigid boundary walls. In this case,

the following relation was used as thermal boundary condition.

—Adap ( g:—)w= ;—(Tw—’l‘o)




where, lap ; apparent thermal conductivity

r ; thermal resistance between inner surface and outside
Tw ; inner surface temperature
To ; outside air temperature

13)
Enai carried out the computation of the thermal convection with a sigle

heated wall by dividing a domain into two regions at the point of maximum velo-
city where he made slip condition.

Recently, Kaizuka et. a11.4)have gotten a good result for turbulent three-
dimensional motion with ventilation by applying the Marker and Cell method and

the two-equation model for turbulence.

The N-S eqn. governs not only laminar but also turbulent flow in its nature.
However, a very fine mesh spacing will be required to resolve the minimum
‘eddy by means of the finite differencing based on the N-S eqn. Therefore, it
does not seem to be appropriate from the practical point of view. It appears to
be the most applausible method to evaluate the contributions of the turbulence to
the mean flow by means of an eddy kinematic viscosity. There are several
rnethOdISS)ﬁow available to estimate an eddy kinematic viscosity.

In this study, the computer programming of the numerical calculation for
two- dimensional room air movements is developed by means of the box model
finite differencing scheme for advection terms and the leapfrog scheme for time
steps in the time averaged stream function-vorticity equations, together with the
simplest method of the estimation of an eddy kinematic viscosity by a prescribed
mixing length distribution.

The objective of this report is to find the most suitable values of three para-
meters 7, C; and Cp, where 7 denotes an emperical constant in connection with
an eddy kinematic viscosity and the product of the cube of a prescribed i‘nixing

length by the absolute value of a vorticity gradient and Cl, C, are the correcting

coefficients which correct the discrepancy between the true and the represented by

a finite differencing concerning the velocity and the vorticity gradient on a wall,
respectively.

These parameters are determined by comparing the computed velocity dis-
tributions with experiments in a square and a rectangular cross sectional rooms
with a low side wall outlet and a high side wall inlet. It is confirmed that these
parameters are valid even for a complicated case in which an air curtain is

affected by a side blow by comparing the computed flow patterns and velocity
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distributions with experiments. In an experimental setup, not only the measure-

”
ments of air velocity but also the flow visualization are attempted.

2. Method of Numerical Calculation

2-1 Basic Equations
(1) Governing Equations

Well-known Navier-Stokes equations are as follows which govern two-

dimensional room air motion.

du u au 1 3 9% 3%
AT L - p 2P () e (1)
at ax ay o ax oy

av av v 1 ax v

My = ) RTt et S — (2)
at ax ay o 5y ox

Assuming that the room air would be incompressible, the equation of con-

tinuity can be expressed in the following form.

ou av

ix a9y

R (3)

Although u.v.p. can be solved directly from Eqs. (1), (2) and (3), the trans-
formed vorticity ( 2)-stream function (¥ ) equations will be adopted instead of Egs.

(1) - (3). These equations are:

af2 28 aQ 9%*Q 2t Q
E,— + u ?x— + v o =V ( ox? + ayz ) R (4)
8 o
w2 A — (5)
dy ax
azy By R 6
2= (axz st ) (6)

In almost cases, the room air flow is considered to be turbulent. We can
get the following vorticity equations for turbulent case by averaging the whole equa-

tions (4), (5) and (6) with substitution of

2-2 + ¢

u=u + u’



where over barred and dashed quantities indicate time averaged values and

the deviation from them, respectively.

a2 _ 89 _ a0
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ax /]
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= 8V fu
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The bar sign over each variable will be omitted hereafter for simplicity.
It is seen that Eqs. (8) and (9) are formally identical with Eqgs. (5) and (6),
respectively, if u,v, ¢, Q are replaced by their time-averages. In Eq. (7) 'R
and v'Q’ are assumed to be expressed in the terms of eddy kinematic viscosity and
gradient of vorticity. In addition, assuming that the eddy kinematic viscosity Kx, Ky
can be coupled with the mixing length and the vorticity gradient, then the following

expressions are possible.

Kx=7¢3 22 Ky=r1¢?® 69' - (10)
X , oy
where, 71 : emperical constant
¢ : mixing length

-~

Egs. (7) - (10) give a complete set for computation explicitly with the aid of follow-

ing boundary conditions.

(ii) Boundary Conditions

Non-slip condition u =v = 0 is imposed on all wall surfaces except the por-
tion of outlet and inlet where uniform velocity, i.e. linear distribution of ¥ will

be given. This is transformed into the following relations in terms of vorticity.

(1) Ow=— (2% (11)
on VW
a
(2) (2dw=v 25 e (12)
dn w
17)

2-2 Finite Difference Approximation by Box Model

(i) Stream Function-Vorticity Equations
We adopt the Box Model as a finite differencing scheme for advection terms

because of following reasons.
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Fig.1 Grid Arrangement of Box Model
(1) In almost room air motions, the distribution of velocity or temperature

indicates a strong and sharp change at the quite vicinity of walls, whilist a rather
moderate change at the central area of a room. Therefore, when a regular mesh
spacing would be used, a fine mesh spacing should be required to resolve the
whole field. However, this is not economical from the point of core memory and
CPU time. Consequently, an irregular mesh spacing is desirable which covers

-~

the whole space with fine mesh spacing for near a wall and coarse for central area.

(2) Computational instability does not occur even if the irregular mesh spacing
may be used, because the aliasing is controlled that the quadratic quantity £* for
nonlinear terms is devised to be conserved when summed over all grid points in
a domain. Aliasing is considered to happen when waves that are too short to re-
solved by given set of grid points are misrepresented by long waves. Uncontrol-
led aliasing causes computational instability until divergence takes place.

We consider the area surrounded by lattice grids as a box, and define the
vorticity 2 at the center of a box and the stream function ¢ on the grid point as
shown in Fig. 1. Then, velocities are reduced to be defined on the boundary sur-
faces adjacent to the surrounding boxes. Consequently, we can estimate the ad-
vective transportation of scalar quantity such as a mean vorticity %
these surfaces. In addition, assuming that the distribution of vorticity between
adjacent boxes is linear, we can get the following equations expressed in the finite

difference approximations for Eqs. (7) -~ (10).
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The grid point vorticity Q2i1+4%. j+% may be estimated by averaging four

vorticity values surrounding that point.

Ri+3, 3+ = (Ri+1. 541 + @i, 51+ Qi 1 +Qi+1, ) /4 e (16)
KXi+tg,j =7¢° -—~—'?i+"1“‘9“j +v
E(AXH-I-!'ﬁxi) -
i . — N LT (17)
KYl,j+%=TZS:M+V

E(Ay:ﬂ +2ayj)

In Eq. (13), we made use of the centered (leap-frog) time scheme for the
marching term. A leap-frog time difference involves at three time levels and
this introduces a non-physical computational mode into the solution. The mode
takes the form of an oscillation about the true solution with re spect to the even
and odd time steps. This causes the instability referred as 'time splitting’.
However, provided the instbility remains small, Lilllyggxas shown that the leap-
frog time scheme would be very accurate as compared with analytical solutions
among other time differencing schemes which displayed an undesirably strong
damping of the kinetic energy. Thus the leap-frog scheme is preferable if the
weak instability can be controlled. This can be done by starting the time step
with the initial value and the value gotten by the combination of Forward and
Centered schemes.

It is also well-known property of a leap-frog time scheme that causes a

20
computational instability when coupled with the viscous terms. In order to




remove this instability, the simple lagging of one time step was employed for
the diffusion terms indicated by superscript n-1.
Stability criterion for marching step is roughly evaluated by

OXmin or A¥min

o i'l.lnnxl 'i'thl:l:I

covveneenene (18)

ii) Boundary Conditions

Boundary conditions on wall surfaces can be written in the finite difference

form by (Fig. 2)

(1) R Rl S

(2) (-Qflux)w’czu

oo/ [ [ det ) L

T Y - Laminar Sublayer
N BRSNS ety
Y T
U t—s . — 4y, Y :
b 2 U, ! ! U, "~ Tursmient
Layer
l \yﬁ"‘\’ L
Yo -

Ub=Umax /

(i) Arrangement of U and 2 () Velocity Distribution (i) Vorticity Distribution
in a Box near a Wall.

Fig.2 Schematic Display of Variation of Velocity and Vorticity near a Wall

In above two equations, we propose two coefficients ¢y, c, which correct
the discrepancy between the actually existing gradients of velocity and vorticity
in a laminar sublayer and the represented by a first order finite differencing in
the box close to a wall.

These correction are inevitable because it might be impossible from the
point of computer economy to use so small mesh spacing as to resolve a laminar

sublayer. These coefficients will be given in later section.

2-3  Computational Procedure

We now list the basic steps in the computational procedure.

Step (1)  Set the initial value of £i.; for all interior points and also set ¥ value

i




on all boundaries
Step (2) Solve Poisson type Eq. (15) to get ¥i.; for interior grid points
Step (3) Calculate u, v, KX and KY from Egs. (14) and (17)
Step (4) Calculate 2+ and (Qfix)w from Egs. (19) and (20)
Step (5) Obtain 2i,; advanced one time step from Eq. (13)
Step (6) At the next time step, repeat steps (2) - (5)

In step (1), the initial guess of £i.; is made. The computational time
required to reach steady state is quite dependent on whether the initial guess is
good or not. We estimate this value as %’xi » Where U, and H are the outlet
air velocity and the height of a room, respectively. In step (2), we make use of
the successive over-relaxation method to solve Poisson type equation. Iterative

scheme can be written in the following form by transforming Eq. (15).

k+1 Lo 2Wis4, i+4 Wi-y, 5+
: ; =¥ ; + (14+a) | — +
Virls, i+ wl'(*'l/?' it ) [A{ (&X i +AX1)AX i +1 (ox it +a%) Ak
W 4, 3+ Wil i-Y k
+2i+%, i+t =W Veeeeen 21
(&y jr14ayay i (ay s +ay;)ay; Qissg. 514} tl/i+%-.i+%r] (z1)

2 2
where, A N
AX i+l AXi AY i+ AYj

@ : acceleration parameter ( =0.7 - 0. 9 )

k : number of iteration

-

It might be preferable to change the direction of iterative process, because
this causes dispersion of truncation errors in all points evenly so that the ac-

cumulation of errors can be avoided.

In step (5), we use the leapfrog time scheme, as described earlier, which
causes the computational instability by increase of computational mode. We intend
to suppress the progress of computational mode by the following process which is
believed to be best method today as shown in Fig. 3.

Guess £% by the forward time scheme using the initial value £2°
Obtain £' by the centered time scheme using Q" and Q%

Obtain 0?2 by the centered time scheme using go and Q!

®Lee

In general, obtain Q! by the centered time scheme using 2*-'and Qo

for n =2n 3;

Furthermore, we restart the above described process at every 30 time steps.

T

s

L
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Fig.3 Step of Time Extrapolation for Leapfrog Scheme

Cases and Conditions of Calculation

Cases of Calculation

We carried out the numerical calculation for four cases.

Case 1 is for the air motion in the room with square cross section repre-

sented by 1. 5m height. The outlet and inlet are located at the right side wall.

The former is on the floor level and the latter on the ceiling, respectively. These
have the same slot type opening of 0.05 m x 1.5 m. The outlet air velocity is
3.0m/s.

Case 2 is all the same as Case 1 except the room aspect ratio of 2.2 and the
outlet air velocity of 1.7 m/s.

In Case 1 and 2, six kind of calculations were carried out making use of dif-
ferent combinations of C; and 7 . The most suitable values of Cy and 7 will be
determined as compared with experimental results.

Case 3 is for the air motion in the room with a;pect ratio of 2.2 possessing
the outlet on the center of the ceiling and the inlet on the center of the floor. Let
we call it an "air curtain''. The outlet air velocity is 3.4 m/s.

Case 4 is for the air motion of the air curtain with 3.4 m/s outlet velocity
affected by the side blow which penetrates along the floor from the right side wall
opening by 1.7 m/s outlet velocity.

In these cases, the outlet and inlet are all the same slot type as Case 1.

Those are summarized briefly in Table 1.

3-2 Conditions of Calculation
(1) Grid System

Fig. 4 shows the grid systems which were used in the calculation of each
case.

It can be observed that an irregular mesh spacing, fine for near a wall and

jet regions and sparse for central area of a room, is used. The finest mesh

space normalized by room height for each case but 2 is 0. 008, which corresponds




Case 1

Case 2

i

1l

il

Case 4

Grid Systems for Each Case

Fig. 4




Table 1. Cases and Conditions of Calculation

Combination of 7,Cz and £ .
Case NO Arrangement : : e Outlet Air Smallest
g Outlet and Inlet r Cz T Tsotropic or Velocity Mesh Spacing
ype non-isotropic
F—1.5m—| (iy| 4 0.1 I isotropic
T ——» Inlet (ii) 4 1.0 I "
1 E ) 3.0 mys 12mm
_T_ Outlet (i) | 4 1.0 I non-isotropic
<« Qutle
(iv) 1 0.1 1I "
T. o | Inlet| (i) 1 1.0 I non-isotropic
2 |E 17 50
I_ —e |G| 4 1.0 I isotropic
Outlet
Qutlet v
J1 -
3 1 0.1 I1 non-isotropic 3.4 12
1
Inlet ¥
v
11 - 3.4 (air curtain)
4 |: 1 0.1 II ) 12
1 - 1.7 (side blow)
v

to the quarter of the outlet width. In case 2, the finest mesh space is four times
larger than the other cases. Itis set in order to verify the resolutional limitation

according to the mesh spacing.

-~

(2) Time Increment AT

Dimensionless time increment Ar was selected to satisfy the stability
criterion Eq. (18) as follows.

___AX . Aymin 0.008
|u‘mnx +|V| max 2

However, this caused the strong instability to divergence after the first
several time steps in the preliminary calculations. Consequently, one tenth value

was used for the first several time steps.

(3) Estimation of Correcting Coefficient Cy
Providing that the turbulent flow near a wall of the room air motion might
be represented by the smooth flat plate flow, the thickness of the laminar sublayer

21)
is given by the emperical relation as

5V

ys =W ------------ (22)

v
Tw /0 =0.0225 uf (— - W e (23)




where, ¥s : thickness of laminar sublayer
v 1 kinematic viscosity
0 : density

Tw : wall shearing stress

Furthermore, 1/7-th power law is assumed for the velocity profile of the
boundary layer near a wall except a laminar sublayer where the mean velocity
increases linearly with distance from the wall. Boundary layer thickness Yy is
defined as the distance from the wall to the point where the calculated velocity

becomes maximum. Then the following relations are gotten in reference with

Fig. 2.

Os _ (ﬂ)%
ub b
LR AR . AN w_& —daym (24)
ub ¥b 9y s Ys Vi
Therefore, one can obtain C. as
Cl - (%)% ......... (25)

(4) Correcting Coefficient C:

When the linear velocity profile is assumed in a laminar sublayer,
vorticity near a wall will take a constant value because the vorticity in that region
approximately equals to the velocity gradient normal to the wall. Therefore, the
vorticity gradient at the wall (z—f)wwﬂl reduce to be near zero. The coefficient
C: was pProposed in order to correct the discrepancy between the actual vorticity
gradient at the wall and the finite differencing approximation. InCase 1 and 2,
three kinds of values C,=01.,05,1.0 are used. The most suitable value will be

selected as compared with the later experimental results.

25) Emperical Constant 7 for Eddy Kinematic Viscosity

We assumed that the eddy kinematic viscosity was proportional to the
product of the absolute value of local vorticity gradient and the cube of mixing
length., To estimate the eddy kinematic viscosity according to Eq. (17), the
value of ¥ must be given. Four values 0.1, 0.4, 1.0, 4.0 are provided to select

the best fit for the numerical calculation.

(6) Mixing Length #
21
According to the knowledge of smooth pipe flows, )the variation of mixing

length over the diameter of the pPipe can be represented by the emperical relation

GNP TG x5



-().14 08 (1 2 X 4 .. )
0. 0.08 ( ) 0.06 (1 ) (

where, R : half the diameter of pipe
In the neighbourhood of the wall this equation can be simplified to
y2

L=0.4y —0.44 = e e (27)

Here, we propose two types of variation for mixing length over a room
guessed from the findings of smooth pipes. They are given in Fig. 5. Whereas
Type I is the simplified of the smooth pipe flows, Type II is based on the combi-

nation of two boundary layers, the wall boundary and the remaining boundary.

.08
TYPE I
fmax=.07TH
g L
\\) «06
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[
% .04 |-
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o n i A 1 L ] 1 1 1 i 1 L -2
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~~ 06 -
=4
=
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% 04 =
=
~
& H:Room Height
Z .2}
>
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=
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6 2 4 & 8 10 12 M 6 18 m w2 5 g WX
DISTANCE FROM WALL (y/H)

Fig.5 Variation of Mixing Length




The maximum value of mixing length £ max can be estimated as

Lmax = 0.14 x% cevsressease seene (28)

where , H: height of a room

The shape of turbulence near a wall is considered to be oblong, which is
referred as non-isotropic. Therefore, it is reasonable to assume that the vari-
ation of mixing length in the direction normal to the wall is represented by either
Type I or II, on the other hand, that in the direction parallel to the wall is uni-
form and its value equals to £ max. On the contrary, isotropic means that the
variation of £ is the same in both directions.

They are schematically displayed in Fig. 6.

’/'////_///////'/ //

ISOTROPIC NON-ISOTROPIC

Fig.6 Schematic View of Turbulence near a Wall

(7) Conditions for Outlet
a. Velocity Distribution ~
Uniform velocity distribution is assumed over the outlet opening. Then,

linear distribution of ¥ is obtained.

b. Determination of C, and C.

The coefficients C; and C,are strongly dependent on the shape, roughness,
turbulence generator and so forth of the outlet. Therefore, these should be
determined by experiment. In each calculation, these were decided by trial and
error to make the computed decay curve of the center-line velocity near the out-
let to be identical to the experimentally obtained for the wall jet with slot-type

outlet.

c. Vorticity just outside of the Qutlet Boxes
In order to calculate the vorticity of the outlet and inlet boxes, it is neces-
sary to give the value just outside these boxes. All zero values are given so that
the quadratic value of vorticity remains conserved when summed over whole do-

main for the non-linear terms.

ey —



(8) Conditions for Inlet
a. Velocity Distribution
Uniform velocity distribution is also assumed, which satisfy the continuity

condition for the whole domain.

b. Determination of C, and C,
C, and C:are set zero, that is, we neglect the contribution of the vorticity

diffusion from the wall of the inlet.

c. Vorticity just outside of the Inlet Boxes

These are all set zero as described earlier.

4. Experiment

Measurements of air velocity and flow visualizations were carried out to

verify the calculations for each case.

4-1 Test Rooms

Two basic test rooms were used. One was a square cross section, the
other was a rectangular cross section, respectively. The former dimensions
were 1.5 x 1.5 x 1.5 m, the latter were 3.3 x 1.5 x 1.5 m. The front wall and

a part of the side wall were made of acrylic plate so that the observation of air

flow was possible. Other walls were composed of veneer plate. The slot type
with 1.5 x 0. 05 m outlet and inlet were located at low and high sidewall.
Especially, in a rectangular test room, there had another pair of outlet and inlet

in the central area of ceiling and floor. These were used for an air curtain.

4-2 Assembly of Air Supply and Return System

The schematic view of supply and return system was shown in Fig. 7.
The supplied air from the slot traveled through a test room, return air chamber,

a packaged conditioner and a supply air chamber.

4-3 Method of Air Velocity Measurements

The air velocity at each measuring station was measured by moving the hot
wire anemometers along a vertical and a horizontal guide pipes. For the measure-
ment of air velocity higher than 0.2 m/s, Anemomaster Model 24-3111 of KANO-
MAX (Japan) was used and for lower than 0.2 m/s, Type 55 80/81 Low Velocity

Anemometer of DISA (Denmark) was used.
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Fig.7 Schematic View of Supply and Return Air Systems
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Fig.8 Arrangement of Apparatus for Visualization of Two-Dimensional
Room Air Movements

4-4 TFlow Visualization

The arrangement of an experimental apparatus for the flow visualization is
shown in Fig. 8. It was composed of the 1/5 scale model of the test room, 0.6 m
x 0.3 m in plan and 0.3 m high, two couples of outlet and inlet air chambers, the
illumination box and the tracer generator boxes. They were connected by flexi-
ble ducts with two blowers.

The scale model was made of 12 mm veneer plate except the front wall and

the part of the floor where 3 mm glass was used.

22)
Particles of metaldehyde were used as visible tracers. The substance sub-

limes at about 100~120°C and then reverts to the solid phase to form light weight
particles. These particles were continuously generated by heating the powder
state metaldehyde feeded from outside.

The particles were illuminated by four pieces of a high beam lamp (500 w)
set in an array mounted in the illumination box. The light was projected through
the glass part with 1 cm width of the floor to take the pictures of two-dimensional

air movement in the central plane. The time-exposure photographs were taken

with different kinds of exposure time.



5. Results

5-1 Value of r

The computations with different value of r were carried out and then the
following result was deduced. The value of r strongly affected the computational
stability, that is, when 7 was 0.1 or 0.4, the computation was quite instable and
the steady state solution was not obtained. On the contrary, when r was 1.0 or
4.0, the steady state was attained in rather earlier stage of time steps.

The large discrepancy between two calculated velocity distributions in
Fig. 10 might be mainly dependent on the difference of 7 value. In case of 7= 4,
the diffusion term took a considerable role and the excessive damping was en-

countered. Therefore, 7= 1 appears to be the most proper value.

5-2 Mixing Length

We assumed two types of distribution for mixing length 2. Type I was based
on the assumption that the boundary layer was extended to the center of a room
from the wall, and Type II was on the assumption that the influence of a wall was
limited to the area within the point whose velocity took the maximum value and the
flow was free turbulent within the area from this point to the center of a room.

In Fig. 10, the broken line represents the velocity distribution when Type I
is used, whereas the solid line does when Type II is used. The former indicates
a rather moderate curve at the region quite near a wall: on the contrary the latter
indicates a steep variation. It is observed that the latter is more close to the ex-
perimental velocity distributions. In latter case, we assumed also non-isotropic
model of turbulence. As it should be acceptable that the diffusion in the flow

direction is quite small as compared with the advection in a turbulent boundary

layer, the velocity distribution might be little affected by the assumption of

isotropic or non-isotropic. Therefore, it seems to be dependent on the difference

of £ distribution that the solid line reveals a steeper curve than the broken line.

5-3  Value of C,

It can be seen from Fig. 9 that the velocity distribution near a wall is strong-
ly affected by the value of C, . In case of C, = 1.0, the variation of velocity
over a wall indicates a moderate curve and the maximum velocity appears at the
point quite far from a wall. On the other hand, in case of C, = 0.1, the maxi-
mum velocity appears at the point close to a wall and the overall velocity distri-

bution agrees very well with the experimental result within a small deviation.
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It can be concluded from the sections 5-1 - 5-3 that the best fitted values of 7
and C, are 1.0 and 0.1, respectively, for the numerical calculation of two-
dimensional room air motion with box model type finite differencing scheme,
providing that the coefficient C; can be estimated by the knowledge of smooth
plate flow. In the later section, the comparison will be made between the ex-

periments and the calculations using the values 7 =1, C: = 0. 1.

5-4 TFlow Pattern

The calculated stream patterns for Case 1 and 2 are illustrated in Fig. 9
(b) and Fig. 10 (b). They are corresponding to the solid line in Fig. 9 (c) and
Fig. 10 (c). The agreement between the calculated and the photoes taken by flow

visualization technique is remarkable.

5-5 Application to Other Cases

The numerical calculations were applied to other two cases. One is the
case for the room air motion with the jet injected downward at the center of the
ceiling which is called as an air curtain. The other is for the air motion where
the air curtain is affected by the creeping flow along the floor. In both cases, the
selected values of 7 =1and C, = 0.1 were used. Comparisons between the
calculations and experiments were indicated in Fig. 11 and 12. In both cases, the
calculated velocities agree quite well with the experiments except the jet region.

Furthermore, it can be observed that the flow patterns, also agree well.

6 Conclusions

The computer programming of the numerical calculations for two-dimen-
sional room air movements was developed by means of a box model finite dif-

ferencing scheme for advection terms and the leapfrog time marching scheme.

Where three parameters were proposed. One was related to the eddy kinematic
viscosity and the others were to correct the velocity and the vorticity gradients on
a wall represented by a finite scheme. Two types of mixing length distribution
were also examined in connection with isotropic or non-isotropic turbulence model.
Several kinds of these parameters were attempted in order to find the best fit
values as compared with experiments.

The following conclusions are presented:

(1) The most appropriate value of 7 is 1.0, which is an emperical constant

when an eddy kinematic viscosity is expressed in the product of the cube of mix-

a2
X

ing length and the absolute value of vorticity gradient, Kx=7¢? When 71




Wwas smaller than 1.0, the computed quantities indicated an irregular osillation.
That was believed to resolve a part of turbulence. On the contrary, for r>1, a
relatively large damping took Place and the unrealistic feature of flow pPattern was

displayed.

(3) The suitable value is believed to be 0.1 or less as C, which corrects the
discrepancy between an actual vorticity gradient on a wall and that represented by
finite difference approximation, providing that C, , which corrects a velocity
gradient on a wall, can be estimated by the manner similar to the smooth plate

flow.

(4) The validity of these parameters was confirmed by comparing the calculated
velocity profiles with experiments in applications of the numerical procedure dis-
cribed in this report to the room air movement with symmetrical air curtain and

that affected by a side blow.
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