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NUMERICAL CALCULATION OF ROOM AIR MOVEMENT

- ISOTHERMAL TURBULENT TWO.DIMENSIONAL CASE .

By Takao TSUCHIYA, Dr. Eng. **

SYNOPSß

This paper presents a nurnerical calculation rnethod for a two-dirnensional,

isotherrnal, turbulent room air rnovernent. In this case, the tirne averaged

strearn function-vorticity equations were represented by finite differencing aP-

proxirnations with a box rnodel and. a leapfrog tirne scherne and the Reynolds

stresses were assurned to be expressed in terrns of an eddy kinernatic viscosity

which was estirnated. to be proportional to the product of the cube of a prescribed

rnixing length by a vorticity gradient.

This proportional constant was deterrnined by cornparing the corrrPuted

velocity distributions with experirnents for two basic flows. Furtherrnore, the

pararneterizations were proposed concerning the boundary conditions of vorticity

on a wall which corrected the gaps between the true velocity and vorticity

gradients and the represented by a finite differencing. These pararneters were

aLso deterrnined as cornpared with experirnents. Then, three obtained Para-

rneters were confirrned to be valid. by applying to a ra*the. cornplicated flow in

which an air curtain was affected by a side blow.
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l. Introduction

Many successful results on the nurnerical calculations have beea reported in
every kind of field related to the fluid dynarnics. Especially in rneteorology, the

conservative finite d.ifferencing schernes, such as Arakawa ..fr..rrål we¡e d.evised.

free frorn the cornputational instability caused by the non-linear terrns in order to

rnake possible the long terrn prediction. As to the roorrl air rnovernent, there are

several t"pot%-#lti.h tt."t the larninar therrnal convection in a roorn. Flowever,

there are very fev9)which lreat the turbulent roorn air rnovernent with ventilation.
It does not seern to be useless to make a brief review of the studies on the nu-

rnerical calculation of the room air rnovernent in our country at this rnornent.
9)First atternpt was rnade in I958 by Terai who treated the therrnal convection

in a roorn with a single heated wall. He succeeded in the integration of Navier-
Stokes equations and Energy equation by Cowley-Levy rnethod which expand.s the

non-linear terrns of N.S. equation in a power series by the sarne pararneter as

G¡ashof nurnber and rnade an approxirnate integration successively. However,
he described that Grashof nurnber was lirnited. und.er 3x103 to get stable solution.

In I968, t"rl.fti/"0[ried to apply the finite d.ifference numerical rnethod with
ventilation by a successive over- relaxation rnethod. The serious problern en-

countered in the course of the shrdy was that the calcrrlation was stable only
under low Relmo1ds nurnber, Re <750.

În 1971-, y"ttt""tiil)"rr."""d.ed in getting a stable-solution up to Re=Z000. His
idea is to increase Re nurnber a little bit and the sarne tirne to decrease relaxa-
tion pararneter at eve¡y iteration procedure.

The flow is restricted only to larninar in all cases above described. How-
ever, the flow is essentially turbulent in a roorn even srnall box. ConsequentJ.y,

it is necessary to deal with turbulence in a cornputation. Sorne approxirnate

rnethod.s were devised. to cornpute a turbulent air convection. f suchiyfaz)aaoptea

the sarne cornputing rnethod as was used in a larninar case, assurning that eddy

kinernatic wiscosity was constant in a whole a¡ea except the portion of quite
wicinity of walls. Considering the fact that the rnaxirnurn velocity and ternpera-
ture appear at quite vicinity of walls, the cornputing dornain was expanded so that
the cornputed rnaxirnurn velocity takes place on rigid bound.ary walls. In this case,

the following relation was 'sed as therrnal boundary condition.
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where, l.p ; apparent therrnal conductivity
r ; therrnal resistance between in¡rer su¡face and outside

Tw ; inner su¡face temperature
To ; outside air ternperature

r3)
Enai óarried out the cornputation of the therrnal convection with a sigle

heated wall by dividing a dornain into two regions at the point of rnaxirnurn velo-
city where he rnade slip cond.ition.

Recently, Kaizuka 
"r. "r'.n)rr"rre gotten a good. resurt for turbulent three-

dirnensional rnotion with ventilation by applying the Marker and cell rnethod. and.
the two-equation rnodel for turbulence.

The N-S eqn. governs not only larninar but also turbulent flow in its nature.
However, a very fine rnesh spacing wilL be required. to resolve the rninirnurn
eddy by rneans of the finite differencing based on the N-s eqn. Therefore, it
does not seerlr to be appropriate frorn the practical point of view. It appears to
be the rnost applausible rnethod. to evaluate the contributions of the turburence to
the rnean flgY uv rneans of an edd.y kinernatic viscosity. There are severalr5). r6t
rnethods'áow'available to estirnate an ed.dy kinernatic viscosity.

In this study, the cornputer prograrnrning of the nurnerical calculation for
two- dirnensional roorn air rnovernents is developed by rneans of the box rnodel
finite differencing scherne for advection terrns and the leapfrog scherne for tirne
steps j¡r the tirne averaged strearn frrnction-vorticity equations, together with the
sirnplest rnethod of the estirnation of an ed.dy kinernatic viscosity by a prescribed.
rnixing length distribution.

The objective of this report is to find the rnost suitable values of three para-
rneters l, CI andC¿, where r denotes an ernperical constant in connection with
an eddy kinernatic wiscosity and the product of the cube of a prescribed rnixing
length by the absolute value of a vorticity gradient and. cL, cz are the correcting
coefficients which correct the discrepancy between the true and the represented by
a finite differencing concerning the velocity and the vorticity grad.ient on a wall,
respectively.

These pararneters are deterrnined by cornparing the cornputed velocity dis-
tributions with experirnents in a squ.are and a rectangurar cross sectionar roorns
with a low side wal1 outlet and a high sid.e wall inlet. It is confirrned that these
pararneters are valid even for a cornplicated case in which an air curtai¡r is
affected by a side blow by cornparing the cornputed. flow patterns and. velocity
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dietributions with experirnents. In an experirnental setup, not only the rneasure-

rnents of air velocity but also the flow wiåualization are attempted..

Z. Method of Nurnerical Calculation

Z-I Basic Equations

(i) Governing Equations

Well-known Navier-Stokes equations are as follows which govern two-
dirnensional roorn air rnotion.

ôu au âu I ôo .az,t afu-:-.-* u:*At ôx Ay þ Ax .0x. 
Ay.

Av âv Av I ôp .A\ ô2v.u _ + v.-:__.2 + v(=_;+ 4) ..,............ (Z)at õx ôy P ay -Axz ôyz'

Assurning that the roorn air would be incornpressible, the equation of con-
tinuity can be expressed in the following forrn.

Although u' v, p, can be solved directly frorn Eqs. (l), (2) and (3), the trans-
forrned vorticity (g )-strearn function (r/) equations.will be adopted instead, of Egs.
(l) - (3). These equations are:

âu 0v
ôx ãy

a,tyu--,
ôy

(3)

(4)

(s)

(6)

a4[

ôx

9:-

In aknost cases, the roorn air flow is considered to be hrrbulent. We can

get the following vorticity equations for hrrbulent case by averaging the whole equa-
tions (4), (5) and (6) with substih¡tion of

Q:9 + Q'

u-î + o'

v-î + v'

V-tIl + tf'

A2TÌ
ay2
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where over barred and dashed quantities ind.icate tirne averaged. values and
the deviation frorn them, respectively.

+ . u* * "+- jf (Kx*y )+l .;î{ (Ky+y ,:E-¡,..ttt
where og:-x* aQ

Ax
aú1

ay

"'A'--""#
aE)

v --+ Ax (8)

: ôv âu
ôx ôy (e)

The bar sign over each variable will be ornitted. hereafter for sirnplicity.
rt is seen that Eqs. (8) and (!) are forrnally id.entical with Eqs. (5) and (6),
respectively, if ut vt Ç, e are replaced by their tirne-averages. In Eq. ft) Ta,
and "7il are assurned' to be expressed. in the terrns of eddy kinernatic viscosity and.
gradient of vorticity. In ad'dition, assurning that the eddy kinernatic viscosity Kx, Ky
can be coupled with the rnixing length and. the vorticity grad.ient, then the following
expres sions are possible.

"--rn'l@l , Ky :rt"l#l ( 10)

where, ernperical constant

rnixing length

Eqs' (7) - (10) give a cornplete set for cornputation explicitly with the aid of follow-
ing bor:ndary conditions.

(ii) Boundary Conditions

Non-slip condition l¡ = v = 0 is irnposed. on all wall surfaces except the por-
tion of outlet and inlet where uniforrn velocity, i. e. linear distribution of (¡ will
be given. This is transforrned. into the followin,g relations in terrns of vorticity.

(1) ew:- <il,- (rr)anw

(zl (grrr¡x)w:r(+) (tz)A¡ rr

Z-Z I'inite Difference Approxirnation by Box Vro¿"ì7)

(i) StrearnFunction-VorticityEquations

W'e adopt the Box Model as a finite d.ifferencing scherne for advection terrns

because of following reasons.

I

¿
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vi-%, i-)/,

oi, j+l

KYi, i- y2
Vi, i-/z vi+rí" i- yz

Ili+)/2, i
. oi+1, i

9i-1, i I<Xi+%, j

Vi- t/ó, j+% ví, i+%
lr:Yt, i+%

Oi, j+l

F__ ¿xi ___)

Fig. 1 Grid Arrangement of Box Model

(1) In aknost roorn air rnotions, the distribution of velocity or ternperature
indicates a strong and sharp change at the quite wicinity of walls, whitist a rather
rnoderate change at the cent¡al area of a roorn. Therefore, when a regular rnesh
spacing would be used, a fine mesh spacing should be required to resolve the

whole field. Ffowever, this is not econornical frorn the point of core rnernory an{
CPU tirne. Consequentlf, an irregulaÌ ûresh spacing is d.esirable which covers
the whole space with fine rnesh spacing for near " *ìf and. coa¡se for central area.

(Z) Cornputational instability does not occur even if the irregular rnesh spacing
rnay be used, because the aliasing is controlled that the quad.ratic quantity e' for
nonlinear terrns is devised to be conserved when surnrned. over all grid. points in
a dornain. Atiasing is considered to happen when waves that are too short to re-
solved by given set of grid points are rnisrepresegted by long waves. Uncontrol-
led aliasing causes cornputational instabitity until divergence takes place.

lV'e consider the area sur¡ounded by lattice grids as a box, and define the
vorticity g at the center of a box and the st¡earn function p on the grid. point as

shown in Fig. l. Then, velocities are reduced. to be d.efined. on the boundary sur-
faces adjacent to the su¡round.ing boxes. Consequently, u¡e can estinaate the ad.-

vective transportation of scalar quantity such as a r¡rean vorticity Q¡,: +Qt-t,¡
2these surfaces. rn addition, assurning that the distribution of vorticity between

adjacent boxes is linear, \Ã¡e can get the following equations expressed. in the finite
öfference approxirnations for Eqs. (?) - (I0).

-f

¿Yj

l
vi+%, j+%

otl
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rzÏ:j-oî;i axrar¡ +(ri¡y,,Y! - !t_%,,4-,¡+or-''1,"o'2Aî

+{xv i, Qi,¡+r-Qi,¡

|(ay¡+r+ay¡)

Ktr,i-r, 9!'i-Qr,r, ,
Z(ayj+^yi-¡)

tIti4Á, ¡+% - tlri+y, i-t4

n- I
^x¡

Ti-%.)+% - V¡ -%. i -%

^Yj

Vi-%, i-)é - Vi+r6, ¡-5

^xi

(13)

( r4)

whe r e, 1u+%,i-

{i -%,

vi-%, i-

' vt,l-%:

^Yj

vi, i+%- ¡+% - Vi +%, i+%
Axi

l|t+Y,t+N: í
2

(a¡¡ç1 -¡a¡¡)nX¡¡¡

zV+s/2,J+fu

(a¡¡1r {a,¡¡)a¡¡¡

zTt-%, ¡+%

(ay¡+r +^yj)^yj+r
4l¡i+%, i+%

+ 2 I
+

2V*y2, i-%tI4+%,¡+%-{ +(ax¡+r taxi) rx¡+r (axt+r {a¡¡)¡x¡ (aytrr *ay¡).ay¡1¡ (ay¡+rr,ay¡)ay¡

The grid point vorticity Qr+'|, ¡+¡ rnay be estirnated by averaging four
vorticity values surrounding that poirrt.

Qi+y, ¡+y- ( Q¡+t, ¡+r *gi , i+t +Qi, I +Qi+t , ¡) /A (16)

KXi+%,i:Tas

KYr, ¡¡y:7 ¿s

(15)

(r 7)

+

{)i,i+t-9¡,t

+v

+v
å(ov¡*'+ov:)

In Eq. (13), we rnade use of the centered (leap-frog) tirne scherne for the
rnarching terrn. A leap-frog tirne difference j¡rvolves at three tirne levels and.

this introduces a non-physical cornputational rnode into the solution. The rnod.e

takes the forrn of an oscillation about the true solution with respect to the even
and odd tirne steps. This causes the instability referred. as ttime splitting'.
However, provid.ed. the instbility rernains srnall, liffygl"" shown that the leap-
frog tirne scherne would be very accurate as coûrpared. with analytical solutions
aulong other tirne differencing schernes which displayed an und.esirably strong
darnping of the kinetic energy. Thus the leap-frog scherne is preferable if the
weak instability can be controlled. This can be d.one by starting the tirne step
with the initial value and the value gotten by the cornbination of Forward an¿

Centered schernes.

It is also well-known property of a leap-frog tirne scherne that causes a
cornputational instabiriby when coupled. with the viscous,""r-f":) In ord.er to
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relrrove this instability, the sirnple lagging of one tirne step was ernployed for

the diffusion terms indicated by superscript n-1.

Stability criterion for rnarching step is roughly evaluated by

(18 )

(20)

ii) Boundary Conditions

Boundary conditions on wall surfaces can be written in the finite difference

forrn by (Fig. Z)

(l) g-:-tt(ut + u-r 
)2'r. I '.......... (I9)

,oy, Zoy,

(zl

Uw:o

u.r

Uw:o

(grt*L-c2u

Ys

J-
LmlDr Subl.Fr

Qt- 9n

toY'

v 9w

T

J

lYt Yr
ur - Turtñl.rt

\- ¡ora¡r

Yb .I
(i) Arrange¡nent of U and g

in a Box near aWall.

Ub:Umax

(ll) Velocity Distribution (iii) Vorticiry Distribution

Fig- 2 Schematic Display of Variation of Velocity and Vorticity near a Wall

In above two equations, 'rñ¡e propose two coefficients cl, cZ which correct
the discrepancy between the actually existing gradients of velocity and vorticity
in a larninar sublayer and the represented by a first order finite differencing in
the box close to a wall.

These correction are inevitable because it rnight be irnpossible frorn the

Point of corn¡nter econorny to use so srnall rnesh spacing as to resolve a larninar
sublayer. These coefficients will be given in later section.

Z-3 Cornputational Procedure

We now list the basic steps in the cornputational procedure.
Step (l) Set the initiat value of gì,,¡ for all interior points and. also set V value

-7-



on all boundaries

Step (2) Solve Poisson type Eq. (15) to get {ti, j for interior grid points
Step (3) Calculate u, v, KX and Ky frornEqs. (I4) and (l?)
Step (4) Calculate Or and. (gl*), frorn Eqs. (f 9) and (20)
Step (5) Obtain g¡,¡ advanced. one time step frorn Eq. (13)
Step (6) At the next tirne step, repeat steps (Z) _ (5)

In step (t), the initial guess of At,: is rnad.e. The cornputational tirne
required to reach stead'y state is quite depend.ent on whethe¡ the initial guess is
good or not. 'We estirnate this value "" 

&"* , where U6 and H are the outlet22air velocity and the height of a roorn, respectively. rn step (z), we rnake use of
the successive over-relaxation rnethod. to solve poisson type equation. rterative
scherne can be written in the following forrn by transforrning Eq. (r5).

,IriI;6, ft% ü,*%, ,*%* ( r+d) tit##^_.*, * 2Vt-%, j+t4,
(ax¡+r +^Xi )^X I

(ay¡+r *ay¡)ay¡ + ei+%, i+%\ -{r: +y . r+%)......
(zr)

2Vi+%,:-%

where, ^ 2 z
axi+l 

^xi Ay j+l 
^yi

d : acceleration pararneter ( = 0.7 - O.9 )

k : nurnber of iteration

rt rnight be preferable to change the direction of iterative process, because
this causes dispersion of tn¡ncation errors in all points evenly so that the ac-
curnulation of e¡rors can be avoided..

In step (5), we use the leapfrog tirne scherrLe, as described. earlier, uÈrich
causes the cornputational instabitity by increase of cornputational rnode. W'e intend.
to suppress the prog¡ess of cornputational rnode by the forlowing process which is
believed to be best rnethod today as shown in Fig. 3.

Guess oo" by the forwa¡d. tirne scherne using the initiar varue ao

Obtain A' by the centered tirne scherne using ¡Jo and gos

Obtain Q" by the centered tirne scherne using eo a¡¡ð, g,

@ In general, obtain g*t by the centered. tirne scherne usi'g e\-t arLd eo
for n=2,3,

Furtherrnore, we ¡estart the above d.escribed process at every 30 tirne steps.

-8-
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Step of Time Extrapolation for Leapfrog Scheme

3. Cases and Conditions of Calculation

3-t Cases of Calculation

'We carried out the nurnerical calculation for four cases.

Case I is for the air rnotion in the roorrr with square cross section repre-
sented by l. 5rn height. The outlet and inlet are located at the right side wall.
The forrner is on the floor level and the latte¡ on the ceiling, respectively. These

have the sarl,le slot type opening of 0.05 rn x I.5 rn. The outlet air velocity is
3. 0 rnls.

Case 2 is all the sarne as Case I except the roorn aspect ratio of 2.2 andt}ae

outlet air velocity of l. 7 rn/s.

In Case I and Z, six kind of calculations were carried out rnaking use of dif-
ferent cornbinations of C2 and I The rnost suitable values of C2 and f wilt be

deterrnined as cornpared with experirnental results. 
_

Case 3 is for the air rnotion in the roor¡:l with aspect ratio ol.Z.Z possessing

the outlet on the center of the ceiling and the inlet on the center of the floor. Let
we call it an 'rair curtainr'. The outlet air velocity is 3. 4 rn/s.

Case 4 is for the air rnotion of the air curtain with 3.4 rn/s outlet velocity
affected by the side blow which penetrates along the floor frorn the right side wall
opening by 1.7 rn/s outlet velocity.
In these cases, the outlet and inlet are all the sarire slot type as Case l.

Those are surnrnarízed briefly in Table l.

3-Z Conditions of Calculation

(t) Grid Systern

Fig. 4 shows the grid systerns which were used in the calculation of each
case.

It can be observed that an irregular ¡rresh spacing, fine for near a wall and

jet regions and sparse for central area of a roorn, is used.. The finest rnesh
sPace norrnalized by roorn height for each case but 2 is 0.008, which corresponds

-9-
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Case 1

Case 2

Case 3
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Fig.4 Grid Systems for Each Case
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Case NO,
Arrangement

of
Outlet and Inlet

Combination of r,C¿ and, L
Outlet Air
Velocity

Smallest
Mesh Spacingr Cz

mixing length

Type rsotfoprc or
non- l so t ropl c

1

l--1.sm-l
l- Inlet

I < Outlet

( I )

(ii)

(iii)

(iv)

4

4

4

1

0.1

1.0

1.0

0.1

I
I
II
II

isotropic

n

non-isotropic

il

3.0 m/s 12 mm

2

Outlet

(i)

(ii)

1

4

1.0

1.0

II

I

non-isotropic

isotropic

L.7 50

3

Outlet 
V

Inlet v

1 0.1 II non-isotropic 3.4 72

4 1 0.1 II
3.4 (air curtain)

I.7 (side blow)

T2

Table 1. Cases and Conditions of Calculation

to the quarter of the outlet width. In case 2, t}ee finest rnesh space is four tirnes
larger than the other cases. It is set in order to verify the resolutional lirnitation
according to the rnesh spacing.

(Z) Tirne Incrernent Ar

DirnensionLess tirne incre¡nent Ar was selected to satisfy the stability
criterion Eq. (I8) as follows.

At: ^x , Âyr¡o 0.008

f 
ulm"x + lvl '"x z

Ifowever, this caused the strong instability to divergence after the first
several tirne steps in the prelirninary calculations. Consequently, one tenth value
u¡as used for the first several time steps.

(3) Esti¡nation of Correcting Coefficient C1

Prowiding that the hrrbulent flow near a wall of the roorn air rnotion rnight
be represented by the srnooth flat plate flow, the thickness of the larninar sublayerztlis given by the ernperical relation ás

5v
Jd

{rwlp

Tw /p-o.o2z5 u?( 
v 

)%
ub yb

(zz)

- ll -
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where, f,o thickness of larninar sublayer
kinematic viscosity
density

wall shearing stressTv

Furtherrnore, l/7 -t:r. Powef law is assurned for the velocity profire of the
boundary layer near a wall except a laminar sublayer where the mean velocity
increases linearly with distance frorr the wa1l. Bound.ary layer thickness y6 is
defined as the distance frorn the waII to the point where the calculated verocity
becornes rnaxirnurn' Then the following relations are gotten in reference with
îig. 2.

u": (Y')%ub yb

v

p

\t - (JJ) %ub yb r 
3n.,' _o" , y¡ , ur
aY fo ys yr

(z4l

Therefore, one can obtain C r as

a, - (at ;% (zs)
fs

(41 Correcting Coefficient C z

w'hen the linear verocity profile is assurned. in a larninar subrayer,
vorticity near a wall wilt take a constant varue because the vorticity in that region
approxirnately equals to the velocity grad.ient norrnal to.the wall. Therefore, the
vorticity grad'ient at the *"II (!€).will reduce to be near zero. The coefficient
cz was Proposed' in order to correct the d.iscrepancy between the actual vorticity
gradient at the wall and the finite d.iffe¡encing approxirnation. rncase L and, z,
three kinds of values c¿: 0.r,0.s, r.0 are used.. The rnost suitable varue wiu be
selected as cornpared with the rater experirnentar results.

(5) Ernperical constant T for Eddy Kinernatic viscosity
'W'e assurned that the eddy kinernatic wiscosity was proportional to the

product of the absolute value of local vorticity gradient and. the cube of rnixi:rg
Iength. To estirnate the ed.d.y kinernatic viscosity according to Eq. (rz), the
value of ?' rnust be given. Four values 0. r, 0.4, r.0, 4.0 are prowided to serect
the best fit fo¡ the nurnerical calculation.

(6) Mixing Lengrh ¿

Accorcling to the knowledge of srnooth pipe fiow3,t)trru .r""lation of rnixing
length over the diameter of the pipe can be represented by the emperical relation

":

*

I
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å-nt4-0.08,t-l)2-o,oe(t-Ë,. ......... (26l

where, R : half the diarneter of pipe

In the neighbourhood of the wall this equation can be simplified. to

l- o.ay - o.no v!- *R Q7l

Here, we ProPose two types of variation for rnixing length over a roona
guessed frorn the findings of smooth pipes. They are given in Fig. 5. 'whereas

T¡>e I is the sirnplified of the srnooth pipe flows, Typ. II is based on the cornbi-
nation of two boundary layers, the wall bound.ary and the remaining boundary.

.08

!cs- .06

É{

2 .on
r4
,l
ûz
x .02

o 2 4 6 I l0 12 14 16 l8 zo- 22 24 26 2A ¡Orrõt

aì.06

\

DISÎANCE FROM WALL ( y/H)

DISÎANCE FROM WÂLL ( y/H)

Fig.5 Variation of Mixing Length

$ 'or
z
Ét*l
o
3 .0,
X

0
0 246810t21{1618m2224

TYPE I
lmax:.07H

2:0'+l H:Room Height

TYPE f
(max: "07H
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The rnaxirnurn value of rnixing length þ rnax can be estirnated as

0^"* = 0. 14 x 
g

(2 8)

where, H : height of a roorn

The shape of hrrbulence near a waII is considered to be oblong, which is

referred as non-isotropic. Therefore, it is reasonable to assurne that the vari-

ation of rnixing length in the direction norrnal to the wall is represented by either

Type I or II, on the other hand, that in the direction parallel to the wall is uni-

forrn and its value equals to I' rna*. On the contrary, isotropic rneans that the

variation of t is the sarne i¡r both directions.

They are schernatically displayed in Fig. ó.

.1/Z'z "./.' " '' /././ 
/,,

ISOTROPIC NON- I SOTROPIC

Fig. 6 Schematic View of Turbulence near a \Mall

(7) Conditions for Outlet

a. VelocityDistribution

Uniforrn velocity distribution is assurned over the outlet opening. Then,

linear distribution of l{ is obtained.

b. Deter¡nination of C.t and Cz

The coefficients Or and O2are strongly dependent on the shape, ror¡ghness,

hrrbulence generator and so forth of the outlet. Therefore, these should be

deterrnined by experirnent. In each cal.culation, these were decided by trial and

error to rnake the cornputed decay curve of the center-line velocity nea¡ the out-
let to be identical to the experirnentally obtained for the wall jet with slot-t¡re
outlet.

c. Vorticity just outside of the Outlet Boxes

In order to calculate the vorticity of the outlet and inlet boxes, it is neces-
sary to give the walue just outside these boxes. AII zero values are given so that

the quadratic value of vorticity rernains conserved when surn¡ned over whole do-

rnai¡r for the non-linear terrns.

-14-



(8) Conditions for In1et

a. VelocityDistribution
Uniforrn velocity distribution is also assurned, which satisfy the continuity

condition for the whole dornain.

b. Deterrnination of C, and C z

Cr and Czare set zero, that is, we neglect the contribution of the vorticity
diffusion frorn the wall of the inlet.

Vorticity just outside of the Inlet Boxes

These are all set zero as described ea¡Iier

4. Experirnent

Measurernents of air velocity and flow visualizations were carried. out to
verify the calculations {or each case.

4-L Test Roorns

Two basic test roorns were used. One was a square cross section, the
other was a rectangular cross section, respectively. The forrner d.irnensions
were I.5 x 1.5 x 1.5 rn, the latter were 3.3 x 1.5 x 1.5 rn. The front waII and.

a part of the side wall were rnade of acrylic plate so that the observation of air
flow was possible. Other walls were cornposed- of venee¡ plate. The slot type
\{''ith 1.5 x 0.05 rn outlet and inLet were located. at loìv and. high sid.ewal1.
Especially, in a rectangular test roorrr, there had. another pair of outlet and inlet
i¡r the central area of ceiling and floor. These were used. for an air curtain.

4-Z Assernbly of Air Supply and Return Systern

The schernatic view of suppty and return systern was shown in Fig. ?.
The supplied air frorn the slot t¡aveled. through a test roorn, retu¡n air charnber,
a packaged conditioner and a supply air charnber.

4-3 Method of Air Velocity Measurernents

The air velocity at each rneasuring station was m.easured. by rnoving the hot
\¡¡ire aner¡aorneters along a vertical and a horizontal guide pipes. For the rneasure-
rnent of air velocityhigher than 0. Z rn/s, Anernornaster Mod.eLZ4-3III of KANO-
MAX (Japan) was used and for lower than 0. Z rr.f s, T1rye 55 g0/gf Low Velocity
Anernorneter of DISA (Denrnark) was used.

c
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Fie.7 Schematic View of Supply and Return Air Systems
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Fie.8 Arrangement of Apparatus for visualization of rwo-Dimensional
Room Air Movements

4-4 Flow Visualization

The arrangement of an experirnental apparatus for the flow visualization i.s

shown in Fig. 8. It was cornposed of the I/5 scale ràodel of the test roorn, 0.6 rn
x 0.3 rn in plan and 0.3 rn high, two couples of outlet and inlet air chambers, the
illurnination box and the tracer generator boxes. They were connected by flexi-
ble ducts with two blowers.

The scale rnodel was rnade of 12 rnrn veneer plate except the front wall and

the part of the floor where 3 rnrn glass was used..

Particles of rnetald.ehydz.z)-.t. used as visible tracers. The substance sub-
lirnes at about 100-lZ0"C and then reve¡ts to the solid phase to forrn light weight
particles. These particles were continuously generated by heating the powd.er

state rnetaldehyde feeded frorn outside.

The particles were illurninated by four pieces of a high beam larnp (500 w)

set in an array rnounted in the illurnination box. The light was projected through
the glass part with I crn width of the floor to take the pictures of two-dimensional
air rnovernent in the central plane. The tirne-exposure photographs were taken
with different kinds of exposure tirne.
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5. Re sults

5-l Valueof T

The cornputations with different value of f were carried. out and then the
following result was deduced. The value of ¡ strongly affected the cornputational
stability, that is, when r was 0. I o¡ 0.4, the cornputation was quite instable an¿

the steady state solution was not obtained, On the contrary, when r was I.0 or
4.0, the steady state was attained in rather earlier stage of tirne steps.

The Iarge discrepancy between two calculated. velocity d.istributions in
Fig. 10 rnight be rnainly dependent on the difference of f value. In case of Í= 4,
the diffusion terrn took a considerable role and the excessive d.arnping was en-
countered. Therefore, r= I appears to be the rnost proper value.

5-Z Mixing Length

We assurned two t¡res of distribution for rnixing lengt]n p. Type I was based.

on the assurnption that the boundary layer was extend.ed. to the center of a roorn
frorn the waII, and T¡le II was on the assurnption that the influence of a wall was
Iirnited to the area within the point whose velocity took the rnaxirnurn value and. the
flow was f¡ee turbulent within the area frorn this point to the center of a roorn.

In Fig. 10, the broken line represents the velocity distribution when Type I
is used, whereas the solid line does when Type II is used.. The forrner indicates
a rather rnoderate curve at the region quite near a waU] on the contrary the latter
indicates a steep variation. It is observed that the latter is rnore close to the ex-
perirnental velocity distributions. In latter case, we assurned. also non-isotroþic
rnodel of turbulence. As it should be acceptable that the diffusion in the flow
direction is quite srnall as corrrpared with the advection in a turbulent bound.ary
layer, the velocity distribution rnight be little affected by the assurnption of

isotropic or non-isotropic. Therefore, it seerns to be d.epend.ent on the d.ifference
oÍ. Ú distribution that the solid line reveals a steeper curve than the broken line.

5-3 Value of C,

It can be seen f¡orn Ftg. 9 that the velocity distribution near a wall is strong-
ly affected by the value of. Cr. In case of C. = 1.0, the variation of velocity
over a waII indicates a rnoderate curve and the rnaxirnurn velocity appears at the
point quite far frorn a wall. On the other hand, ir¡ case of Cz = 0. l, the rnaxi-
naulrt velocity aPPears at the point close to a wall and. the ove¡all velocity dist¡i-
bution agrees very well with the experirnental result within a small d.eviation.
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(a) F low Pattern, r,:ftsec, f :28

(b) S tream Function

(c) Velocity Distribution

Fig. 11 Comparison of Flow Pattern and
Velocity Distribution between
Computed and Experiment in
Case 3
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It can be concluded frorn the sections 5-I - 5-3 that the best fitted values of T

and C 2 are 1.0 and 0. l, respectively, for the nurnerical calculation of two-
dirnensional roorn air rnotion with box rnodel type finite differencing scherne,

providing that the coefficient C¡ can be estirnated by the knowledge of srnooth

plate flow. In the late¡ section, the cornparison will be rnade between the ex-
perirnents and the calculations using the values T = L, Cz = 0. l.

5-4 Flow Pattern

The calculated strearn patterns for Case I and Z are illustrated in Fig. 9

(b) and Fig. I0 (b). They are corresponding to the solid. line in Fig. 9 (c) and

Fig. t0 (c). The agreernent between the calculated and the photoes taken by flow
visualization technique is rernarkable.

5-5 Application to Other Cases

The nurnerical calculations were applied to othe¡ two cases. One is the

case for the ¡oorn ai¡ rnotion with the jet injected downward at the center of the

ceiling which is called as an air curtain. The other is for the air rnotion where
the air curtain is affected by the creeping flow along the floor. In both cases, the

selected values of ?" = I and Cz = 0.1 were used. Cornparisons between the

calculations and experirnents were indicated in Fig. ll and 12. In both cases, the

calculated velocities agree quite well with the exper^irnents except the jet region.
Furtherrnore, it can be observed that the fJ.ow patterns, also agree well.

6 Conclusions

The cornputer prograrnrning of the nurnerical calculations for two-dirnen-
sional roorrr air rnovernents was developed by rneans of a box rnodel finite dif -
ferencing scherne for advection terrns and the leapfrog tirne rnarching scherne.

Where three pararneters were proposed. One was related to the ed.d.y kinernatic
viscosity and the others were to correct the velocity and the vorticity gradients on

a wall represented by a finite scherne. Two types of rnixing length distribution
'were also exarnined in connection with isotropic or non-isotropic turbulence rnod.el.

Several kinds of these pararneters we.re atternpted in order to find the best fit
values as com.pared with experirnents.

The following conclusions are presented:

(l) The rnost appropriate value of r is 1.0, which is an ernperical constant
when an eddy kinernatic wiscosity is expressed in the product of the cube of rnix-
ing length and the absolute value of vorticity grad.ient, K,: ,n" l4l . When r' laxl
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was s¡rraller than 1' 0, the computed, quantities ind.icated. an irregular osillation.That was believed. to resolve a part of turbulence. On the contrary, for r)1, arelatively Iarge d'arnping took place and the unrearistic feature of flow pattern wasdisplayed.

(z) The Type lt together with non- isotropic is recornmend,ed. as a d.istributionof rnixing length' That is derived on the assumption that a roo,', air can be divid-ed into two regions by the surface cornposed. of a rnaxirnurn velocity point, thewall boundary region and the free tu¡bulent region.
(3) The suitable varue is believed to be 0. l or less as c. which corrects thediscrepancy between an acfual vorticity gradient on a wall and. that represented. byfinite difference approxirnation, providing that c, , which corrects a verocitygradient on a wall' can be estirnated, by the rnanner sirnilar to the srnooth plateflow.

(4) The validity of these pararneters was confirrned by cornparing the calculatedvelocity profiles with experirnents in applications of the nurnericar procedu¡e dis-cribed in this report to the roorn air movernent with syrnrnetricar air cu¡tain and.that affected by a side blow.
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