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Further Consideration of the Height
Dependence of Root-Coherence in the
Natural Wind

J. KANDA*
R. ROYLESt

. The growing interest in the response of structures to turbulent wind forces and the realisation
of the important role played by root-coherence in the prediction of such response has led to the
proposal of several expressions for the power spectrum and the root-coherence function in the
natural wind. A more general expression for the power spectral density has evolved and on the
basis of it an improved exponential decaying function is put forward for the root-coherence of
the longitudinal turbulent component in the natural wind. This takes into account both
horizontal and vertical separation between two points.

A modified frequency term is introduced and a power law profile is applied to the decay
factor in arder to establish the height variation of the root-coherence function.

The consistency of tns relationship is investigated by comparison with several sets of
empirical data from different sites. The resulls are encouraging and suggest that this type of
approach should be incorporated into dynamic structural response calculations.

INTRODUCTION

RECENTLY there has been a growing interest in the
dynamic response of structures due to turbulent wind
forces. In order to estimate the total fluctuating load
acting on a structure ‘due to the turbulent wind, it is
necessary to formulate expressions for the dynamic
characteristics of the turbulent wind such as the tur-
bulence intensity, the power spectra, the cross-spectra
and so on. In most papers, however, the turbulence in
the naturai wind is assumed to be homogeneous, in
other words. the characteristics of the turbulence are
assumed to be independent of position or height[1],
although it is widely admitted that the natural wind is
almost homogeneous horizontally but not vertically.
When the natural mean wind speed profile is estab-
lished and the standard deviation of the turbulence is
considered to be constant with height, the most impor-
tant problem for wind-loading is how to express the
power spectra and the root-coherence (or the cross-
spectra) of the longitudinal fluctuating components of
the turbulent wind speed.

Some expressions for the power spectra as a function
of height have been suggested[2, 3], however, as far as
the root-coherence is concerned, the non-homogeneity
has hardly been taken into account for reasons of
simplicity and convenience in practical applications.
One exception to this pattern is the use of a wind
speed averaged between two points having some verti-
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cal separation[4]. An alternative approach[5] assumes
homogeneous isotropic turbulence to exist in the first
instance and develops an expression for root-coherence
which incorporates some allowance for the variation of
the length scale of turbulence with height and yields a
complicated function.

It is the aim of this paper to express the root-
coherence function more simply but still having de-
pendence on height. This may not be applicable to the
general probiems of non-homogeneous flow, but simple
enough to be manipulated with a combination of a
suitable height-dependent power spectral function and
a power law for the mean wind speed profile.

The symbols used in the paper are summarised
below.

NOMENCLATURE

a. b = index

B = width of a structure
Clzy.2,) = [actor due to =, and -,

Cy = drag coefficient

2 = modified drag coefficient

Cy = mass coefficient

C& = modified mass coeflicient

expl ) = exponential function

EC) = averuge operation

Fix) = function of x

F,ir) = generalized force of the nth mode

= frequency

i = modified frequency

i = natural frequency of the nth mode
i = height of 4 structure

) =, - bomdiator of vy

N = constants

Ky hy = decay factor 1n the lateral and vertical direc-

ton respectively

K = decay factor matrix




L, = length scale in i-direction where i = x,y, 2 {

2, = longitudinal length .of turbulence (arbitrary"
value) . :

m = mass of a structure per unit area’

M, = generalized mass ol' a structure of the n(h
mode :

M, = total generalized mass of the nth mode’ I -

n = modal number ; 3t

N = number of degrees of freedom,,

P(t) = net wind pressure . . . T

p(¢t) = fluctuating component of P(tﬁ’ ' o

r = a non-dimensional Tength scale flhction

r; = separation distance, i = x, , 2z

r . = separation distance vector Ve

R,(f) = root-coherence function of u

R,(r, 1) = cross-correlation coefficient of u,,u,

Sy = power spectral density function of u

S.. (N = cross-spectral density function of'uy, u,

SE (1) = power spectral density function of F,

SN = power spectral density function of o

t = time ==

U(e) = wind speed

U'(t) = relative wind speed

= mean wind speed
U, = reference mean wind speed

u(t) = longitudinal turbulent component of U(t)
ufr) = wind acceleration
s = standard deviation of

x| =f¥, C,

. longuudmal co-ordinate

= lateral co-ordinates

= vertical co-ordinates

= reference height . t

~.geometric mean of . =,

= power exponent of mean wind speed profile
= power exponent of C(Z, z,) profile

=power expohent of decay factor profile

. = constant index in power spectral expréssion ”
=« Ti;F power exponent of Z, profile 2 s
- gamma function

A = lobigitudinal displacement

d = fluctuating component of A
8 = longitudinal velocity

J —_— longuudmal acceleration
I '
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z) = mode shape

E = air mass denslly
L8 . =timelag
= reducgd feequency fB/U 1
= mechanical admittance of the nth mode
Cn = damping ratio of a structure in the nth mode
(e = total damping ratio in the nth mode
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REVIEW OF POWER SPECTRAL
DENSITY EXPRESSIONS

There have been a great number of measurements of
spectra of wind speed in recent years. For higher
frequency regions most measurements confirm the
Kolmogorov hypothesis[6], huwe\er for, Iowcr fre-
quency regions there are still some variations between
established formulae for the power spectral density
function of the longitudinal turbulent wind speed com-
ponent . AL '

Davenport[1,7] proposed the followmg helght mde-
pendent expression as the basis of his Approach to the
prediction of wind induced dynamic structural
response. :

/ S"E(“:’“ - S ()
u (L+x7)

where x, =/ #,,U, f=(requency, £, = horizontal
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length of the wind fluctuation = 1200m, k, = constant
=% for normalising purposes, u?=variance of u, U,
= reference mean wind speed at : =z, (an arbitrary
reference height).

This formula has been used quite often but further
investigations suggest that it is slightly conservative for
engineering purposes.- The first point is that equation
(1) has aczero value.for f=0Hz although the one-
dimensional spectral density is consideted to approach
a finite value‘when the.frequency goes to-zero{6]. The
second 'point is thatcequation (1) is independent of
height. The horizontal scale ¥, appears to vary from

site to site and to increase with height, however,iits

variationris not clear, in other words, not established
at this. moment. !

I consequience some improved expressions of the
power spectral density have been’ proposed

Accordmg 0 Hings[2],

i’j Su(j)=

12 Y1+ xE)56

Xy U

where x, =f- /0, &, = katz z,)! 7*% k, and k, are
constants with k, =0.475 for normalising purpbses
(see AppPendix B). x is a power exponent of thé miéan
wind speed proﬁle Also a related expression dug to
Simiu[3] % can be rewmten in a similar way to equauon
(2). as.

j__iu‘f)_ k Xy

==k ———
u? (1+x,)°°

where x,=f%, U,, ,fl = kitz z)' 7% k, and k, are
constanls with k, =3 for nornj:allsmg purposes (see
Appendlx B). A

In equapqn (3), the power. e)ponent 2 is an equiva-
lent vglue for the, Jogquthmlc mean wind profile used
by Slmlu
Kolmogorov hypothesis in the high frequency: range
just as well as.equation (1). Equation (2) has.a form
squested by Harris{8], which is known as a, Von
Karman apectrum,, @,nd uses a constant,.. horizontal
lenath of W._ris )

L, = 1—_ 1800 m.

V2

TR

3)

Both equations (2) and (3) satisfy the,

There is not much’ differerice” between equation”(2)

and 43} at lower heigfts”but ‘the variation of ¥, is

rather different in eiith casé! Consequently there is a”

significdnt difference at gﬂtatcr hughts i.e. at greater
values of : e .

Equ.mon (2) is derived from the balance of the
energy dissipation. assuming a power law profile for
the mean wind speed,; and equation (3) is based on a
logarithmic profile.

Another more general expréssion can be written as
follows[9].

fS.1) \

. =k :J LRV

u- (L =xf)"-

where uw=,2.0, J

AN R o
Ly =kiz ), k, and k, are
constants and ‘
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(35) |
3B/ - B
1 2 i
L= — ; 5 x
G .
(see Appendix B). AT g0 Al b
According to the U.S. National - Bureau of
Standards[9], B = 0.845 jn equation. (4) is suggested

from, several sets of empirical data by means of the
least squares method. B =2 corresponds to equation

ky'=

(2), B =1 corresponds to equation. (3), and «f =3 :.
corresponds to Panofsky-Lumley’s expression, which ts: +
another well-known formula[10]. - TRNY P

More measurements at different sites may indicate.:
other values for B or expressions for &,. Clearly;rthere,
could exist many variations in the.form of the power,
spectral expression depending on site conditions and-
consequently a general expression of;the type shown int
equation {4) would be better for engineering purposes.
The [following discussion is developed on the basis of
thé power spectral expression given by equation (4).

ROOT-COHERENCE FUNCTION WITH:
VERTICAL AND HORIZONTAL SEPARATION

One 'of the well-known expressmns for the root-
coherence function R J(%.f), ie. the cross- correlatlon .
coefficient in :he frequency domain, has the form of a
simple decaying exponential function as suggested by
Davenport[ 1], namely,

R,(x.f)=exp(—k fx/U,) (5),

where A is a decay constant, x is a separation distancé. "

This form has been used many times but as in the
case of 'the power spectral e'xpre”ss'ron equatiott {1), it
has been pointed out[4] that’ equation (5) is shghtl\
conservitive.

For the convenience of integration with respect to
the surface of a structure the root-coherence function
for two points’ which are both horizontally and verti-
cally separated is'expressed as a simple product of the
root-coherence functions for the horizontal separation
and for the vertical separation in some gust response
approaches{7.11]. However, this simplification causes
a significant underestimate in certain circumstances,
e.g. upto 207, according to, Yickery[12]. -

A further point is thal cqncermng the helght de-
account in equation (5_)_ An _l,mpr‘meg exprcwon .wgsy
suggested by Vickery[4] in the form,

Rl;(-"l—_\'l,zz—:l‘/) PN

L /

\ Kiilys = W kB, -z, '
=exp{ v H(_‘?Z_‘I) (z__ l_) f} (6)4(

,[L(-.|+b(-,)]

/-

This assumes that the variation of the decay factors
are lincar to a wind speed averaged between two
points with vertical separation.

Meanwhile. for homogeneous isotropic llow, Harris
suggested a theoretical expression for the root-
cShierence[8] using modified Bessel functions. This has

been improved by developing expressions for the root-
coherence which incorporate some allowance for the
variation of the length scales of turbulence with
height[5]. However, this form seems to be rather
complicated for practical use but it does indicate that
the root-coherence function approaches a value signi-
ficantly less than unity when the frequency tends to
zero, and its value'at f=0 varies due to the mean
wind speed U, and the horizontal length &,. These
factors could .influence computations of dynamic wind
force and it is interesting to note that by comparison
equations (5) and (6) give root-coherence =1 when f

Consndermg these pomts equatlon (6) can be im-
proved, as [ollows, TR

K(zz) |
R.(r.f) =’exp<—|(¢if *-) ™M

U

where

_ {.Vz—'}"l} K = (kﬂ(zm) 0 )
2372y i 0 ky(2m) .

The decay factors k, and k, are assumeéd to be a
function of z, which is a representative height for the
vertical positions z, and z,. Here.z,, is introduced as. a
geometric mean of =, and z,. The reason for using a
geometric mean instead of a““simple mean is for
mathematical conveniencé since the root of the pro-

duct of the power spectra is used in the dgfinition of
the root-coherence function shown later in equation

W,

(9). However, theré may not be a sxgmﬁcant difference _

between the geometric mean \; :,:z, and ‘the simple

mean (2, +:,)/2 in the practlcal use of the coherence
function.

The modified frequency f* is introdiced instead of
the frequency f in the root-coherence function for the
purpose of consistency and better fit to the empirical
data. Reflerring to Harris's theoretical approach{8],

b ¥, o

f*= —Ci'i%ﬁ?' e ®)
TN )

For the greater valdes of frequency, ie.
v R

[* may be replaced h)'v [ without losing accuracy.,

In order 1o formulate the decay fuctors k,, and k. as
a Tunction of 2. the cross- -correlgtion  coefMicient
A,r.1) can be considered to be related 1o the root-
coherence function. The cross-correlation coelicient is
the inverse Fourier lmnsform of the cross-spectral

duml\ fum.uon from \\hl(.h the root-coherence R, (r. f)
is duﬁngd as.

Spally S s, oy
=R _) / 9)

" -

where 5, , (/) is the cross-spectral density function
between ty = u(y,, 2y and 1, = u(y,. z,).
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S,(f) is the power spectral density function of 11{*)

and the variance u?, of the' longitudinal gust cbm-'

ponent u(z) is assumed to be constant with height.
From the Fourier transformation;

R (r,1) = J‘m 5"'2?(2
o u?

where A,(r,t) is the cross-correlation coefficient be-
tween u, and u,.

e df (10)

Substituting equation (9) into (10) with r = O for the

cross-correlation coefficient #,(r,t), and assuming that
the phase angle or quadrature component of the cross-

spectral density can be neglected, equation (llj is

obtained.

.flu(r)=f Ry(r. )Y LS g gy
0

u?

Substituting equation (4) for the power spectral
density function and equation (7) for the ‘toot-
coherence function in equation (11) it becomes,

_ |7 [K(zn) | | *>
= [ (-5

le’xl(:l)'xl(zz)

X
AT+ EOF T+ )T

The root product of power spectra in equation (12)
is rearranged noting that x, = /% ,(z)/U, and #Z,(z)
= kl(z/:r )"’v

ki xi(zy) xy(23)
f\ 1[1 *‘.-\"{(21 )]5 ”(1 +X[((:2 ']5 34

ki L (z))-2L1z,)

e TN ]””[ #1,) s
j 1 Xz, 1 = xA(z
U\/{ t Py W) +ﬂ( ]

13

Since £ \(z,,) = V';;Z_—l(:, )f[’l_(:; then by letting
. I:{‘(_le_):r ’ _ [yl(:m)]ﬂ _ [311‘32):‘11
Z(zy) £(z) L (zy) i

where for r > 0 in general r+1/r 2 2, the following
equations can be obtained.

; Zhz) SIS 2i(z,) "‘T'
1+—~—“_ [+ = A (
\/[ Phizy) ‘“’} PZIFA
A ,
=[1 «r(r + ) )+ 37 "(:m)]
L r 5

AN o A =

EA
=[x/ 0] % (2 lower limit)

and

df. (12) v

R 1\ et . TIs6p N Lo, 003
E1«+<“+;>‘x‘f(.zz..f)+x%‘.’,(2,.);| -

S 1 : :;;:,f 1 ‘ P
r—+- 1 r+-— o
1 :l’e. ZJﬂ
sS|l—+ r+; 'x‘,’(z;,,)+ — X{ (Zm)
2 i e g
1\, 50
r+
r .
=\—| [+x{)1>* (an upper limit).

Equation (13) can be re-written using afactor C(-,,,.Z)
which is delined as follows, '
kl\/xl(zl)'xl(zl)

ST+ ()P0 + x4 (2,)]°7f

+ 1 k,

’?l(zm)

- ik 14
Clz,,2,) O [L+xB(z,)]°"8 (14)
where
1\ 5ot
r4-
.
1€ Clzpz) €\ -
i | SN[/ N ) R
EVTE @)L e
== = 22 o

and

H2Jnh =,z 22 >0

This inequality suggests that C(z,,z,) can be ex- -
pressed simply as a function of the geometric mean
height = . namely,

Clzy, -7>—<"‘-")‘ | (15)

=}

where 0 £ 2 ' <2y. When z, =:z,. r=1,and so ¥ =0.
2t ids interesting to note that x° depends on the
i exponent 7 but is independent of the expenent £ in
the'power spectral expression equation (4).
Now, consider the length scales which are defined
from the cross-correlation coefficient with no lag time,
~as follows. ..

L = j A ddr “(16)
o 4

where i = voy.zand r, =i, —1y.

Generally in three dlmenslonal lurbult.nl flow nine
-léngth scales can be defined as combinations of three
“velocity components and three directions of the sepa-
ration. However. since the longitudinal véldcity com-
ponent is the mdjOl‘ contributor to the fluctuating. wind
force which causes the ulong-wind dvnamic résponse of
a structure only thee length scales out of nine need be
Lihen o dcco"u‘m for the lnngnudinal veloeity

Lompont.n[ ‘
Clearly .#, (r) is a function of i, and i, and can be
rewritten as a funétion of position. i.e. the mean of i,
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‘and i, and the difference r; = iy—i,. Since equation
(16) has the form of a definite integral with respect to’
‘the difference r;, L; can be considered as a function of
:position. [f the turbulent flow is assumed to be hori-
‘zontally homogeneous all correlation coefficients are
lindependent of horizontal position. Then L, and L,

*can be considered constant with horizontal position

but L. may be expressed as a function of vertical
position.

In order to obtain the rtlationship between the
decay factors, ky and k., and height the two cases r,
=0 and r. =0 in equation (12) are discussed.

The integral in equation (16) can be developed from.,
(12), (14) and (15) giving,

[ (bt
L= xp|——2—i-—
A

Lk £l
Clz,z3) C, [L+xA(z, )15 %

k, L)
N L ( ) 'C_[1+w- TEE

X

dfdr,

Since
/’(727 7]
= L= 1 +x7(z,
/ V £z H SEN Xilgm!
and
. C’
df_ ) dx,
n k, f(:,")< )
T ki \5
/ dx, (Zm) “'7)
o [l+xt(z, )] 1 =x3z,]" 2

where L; = L. L_and k; = ky, kyand r; = r. r.
The integral term in equation (17) has a finite

constant value. Note that if the frequency / is used -

instead of the modified frequency f* for the root-
coherence function, the integral: does not converge
because of the infinite value at /= 0.

When the length scale L; is'expressed as a function
of height the decay factor can be formulated as a
function of height. [n homogeneous isotropic flow a
relationship between the length scales L, and the
horizontal length 2, is deduced from Taylor's hy-
pothesis{8]. as foliows.

Li=K, %) C, gt

where K, =K., K, and K_ are constants and K I\
=K. ‘ »

In the nd[uml wind K, may not be constant Hul
possibly vary \Mlh heght., }urllu.r measurements have
shown that K, can be expressed as a Iunumn of
herght[3.15]. Howe\er. since the function K,(2) is not
established for different roughness conditions at the
present time, K; is assumed here to be constant.
i

although this may be conservative. If K;(z) were ex-
pressed as an empirical power law function of height,
this discussion could be altered easily. |

! Equating equation (17) to (18),

17

kiﬁgl(zm) (z_m)_” J‘x dxl(zm)
kizp) Nz, o [1+x{(z,))* [ +xi(z,)]"?

= Ki.yl(zm) ’ U(zm)/Ur

which yields

ukz‘.:» B _;m' Gk U, :"m i
where
I‘l- % dxl

ky=— T . 19a

UK L (L+x§)>38(1+x})'7 52
and «;, = 2" +x. Consequently from equation (15)

1<a S§+a (19b)

and when =, = z,, 2, = 2. When equation (2) is used

as a special case of equation (4) 7 = (1l —4x) and so
equation (19b) becomes
xS % £l —-dy)+x =332 (19¢c)

Alternatively if equation (3) is used as a special case
of equation (4). » =(1 —x) and so (19h) becomes

d

A

%

A
Fpn

S4lq (19d)

The decay factors in the root-coherence {unction
may not have the exact form of a power law ex-
pression but the possibility of the existence of such a
relation is shown in the above discussion.

By comparing equation (19) with some - empirical
data measured at different sites the power exponent is
estimated in the following section. The constant ky in

» equation (19) may be computed from (19a). However,

stnce parameters k, and K; and f§ are mostly based on

.empirical data and have not been established yet, it

would appear better to estimate k, directly {rom root-
coherence functions obtained from natural wind data.
It can be shown from Harris" work{8] that in
homogencous isotropic flow at 4 standard reference
height =, = 10m,
=K, = =0.11%

and with ff =2k, =0.475 [see cquation (2)] then k3
= 9.01 (see App:'ndlx B).

COMPARISON WITH EMPIRICAL DATA

Using actual wind speed measarements Shrotani[13],
Chuen[14] and Duchéne Muarullas{ 20] computed de-
cay factors for the root-coherence function of the
longitudinal components and these are plotted against

mean height - in Fig. {: Chuen’s results requiring

i

SRRTERRES
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some conversion to make them relative to a standard
reference height. Similar decay factors have been de-
duced here from Harris’ natural wind data[8] and are
presented in the same figure. Suitable power law

exponents for these plots were estimated by means of

the least squares method and are listéd in Fig. 1,
although one of Chuen's results appears spurious and

was ignored in calculating the exponent from that set :

of data. d e
The range of magnitude of the. decay _:factor‘waries
from one plot to another even though ‘three of the
measurement sets were obtained over similar smooth
terrain. However, there is close agreement between the
_values of the exponent, x,.
terrain results. suggesting that the power law. ex-
pression, equation (19), has some relevance. i
It can be seen from Fig. 1 that the decay factor kj
a 2
0 ity ' dle
Vertical separation,;-
Ref [8] a,-0.47
Ref [13] a,=0.45
Ref [14] a,=0.40
Ref [20] a,=0 67
Horizontdl separation
o=@ Ref [14] a,=0 44
+-=X,.Ref.[20] a,=0 69
Compufed volue Ky

* (homogeneous
tsotropic furbulence)

200
—
150 =

—-——O

LA LS LR R AR

z,.=VZ 2,

_ _\ \

\ ¥

\
\
LY

Mean height,

I (Y S I 0 O O R B -

00 200 300
Decay factor,” k,

50

Fig. 1. Variations of decay factor.

computed for the standard reference height =, = 10m
in homogeneous isotropic flow has a lower value than
those indicated by extrapoldtion of the ‘empirical
power law curves to the same height.

Such differences could be expected since near to the
ground turbulence is not homogeneous or isotropic
(see Harris[8]) and under those circumstances the
decay factor would be higher.

An interesting feature of Fig. 1 is that the computed
value of k; for the reference height fits fairly well with
the data[20] from the urban location.

It could be anticipated that the lines shown in Fig. |
would converge on a point at the gradient height
where homogeneous isotropic conditions should exist.

The data are not sufficient to form any very definite
opinion about the value of x; and how it is influenced
by the terrain roughness. The smoother surface data in
Fig. I could be interpreted as converding on a com-
mon point at the gradient height. The urban terrain
data are much more scant but might suggest that %, is
greater for increased surface roughness. Since the gra-
dient height with  ground an

Incredises roughness

found from the smooth :

J. Kanda and R. Royles

12 . e
L s s

points of convergence for rough and smooth data in a
plot such as Fig. 1-could not be expected to coincide.

- The six values of the exponent 1, obtained from Fig.
-1' are plotted against the correspondmg power law
exponent x of the mean wind speed ‘profile in Fig. 2

5
- a==+xFa
L P 5 T Region of
- afsT i TITTTT Eq (19-d)
L x s Region of
L ) Eq(I9-¢).
¢ 8f
a
9 5af o a+a
c 2t
. 5 7
" 4°8"3 8
2 Gr oz 53 04 05
a
Fig. 2. Power law exponent of decay factor a, vs power law

exponent of mean windspeed profile «.

and compared with the theoretical region given by
equations (19¢) and {19d). These equations are based
on the power spectral density expressions, equations
(2) and (3) respectively. and the upper and lower limits
of the x,-x region could be improved with further
experimental information on the relation between L,
and ¥, in equation (18) or by using an alternative
‘form for horizontal length .

The Fig. 2 type of plot should facilitate an under-
standing of the influence of ground roughness on the
decay factor exponent %, when more data become

"available.

A comparison is made in Fig. 3(a), (b) and (c)
between the theoretical expression for root-coherence.
equations (7) and (19). empirical relations¥and mea-
sured data[8] for three pairs-of different heights.

These three plots indicate that the proposed root-
coherence expression, equations (7) and (19), is
reasonably consistent with measured data and
demonstrates its dependence on height.

DISCUSSIONS AND CONCLUSION

There are still not sufficient data available to con-
firnr the censistency of the power spectral expression
and,.f the root-coherence expression, especially in a
highly built-up area®Both expressions, however, have
to be established for the purpose of prediction of the
dynamic response of structures. Moreover, it is an
lmpo‘f“lant fuctor for a typical wind-resisting structure
llkc:é a 'high rise building in a city centre to represent

~appropriately the power spectrum and the root-
1 .

coherence (see Appendix A).
Recent  measuremeints suggest that hetght  depen-

deney is significant for botch the power spectrum and
root-coherence, which consequently should be tuken
Into account in the representations. with some allow-
ance for the influence of terrain peculiarities. Also the
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19 —— Eq(7) with yr0® 35al'047

' 4 ===- Ref El Eq(S). with k=7.7

o8 & —.— Ref (8] theorétical curve
L 1t after. Harris

\ \ s Ref [8] empirical data
ok VAN after Harris
o afF
o2t
oot
-0 2L

Frequency, Hz
(@) 2,149 3 m" 7,7 1658 m

~or,

= . = - —_—
L A & A
[l lﬂAAI &
B o8

Frequency, =7
(b} z =1000 m zZ=I|6_4 m

o8

Frequency., Hz
(€) 2=173m z,:341Im

3. Comparison between root-coherence [unctions and
empirical data after Harris{8].

wind profile - Structure °
Fig. 4. Wind-structure model.

variation in value of the root-coherence function at
zero frequency can be pointed out from recent

'(\ measurements—it is less than unity unless the sepa-

ration distance is zero. Having due regard to the above
pomts. un exponential: expression has been developed
for the root-coherence function, introducing the mo-
dified frequency f* instead:..of frequency f and the
power law profile with height for the decay factors.

There are two restrictions in the application of the
above expressions. Firstly the effect of the quadrature
component -of the. cross-spectra or the phase angle is
assumed -to be negligible. However, since the natural
wind turbulence is not completely homogeneous, the
quadrature component exists, even though it may:be
small. This matter should be investigated in future—
considering the effects of the quadrature component on
the dynamic wind loading of structures.

Secondly, equation (15) for the vertical separation is
only valid for the lower measuring point, given by z,,
above the reference height -, and z, should be chosen
such that the wind forces below this level do not make
a significant contribution. to the dynamic response of a
structure. This suggests that the power law profile with
the exponent %, for the vertical decay factor k, may
not hold below the reference height. Further investi-
gation of this point is required using measured data
obtained near the ground.

[t can be concluded that the expression proposed for
the root-coherence of the longitudinal turbulent com-
ponent between two points with vertical and horizon-
tal separation is consistent with recent empirical data
which indicate the height variation of the root-

.. Coherence.
b

~ The power exponent 2, for the decay factor in the

root-coherence expression is estimated from empirical .-

data and the decay factors, k,; and k. for horizontal
and vertical separation respectively. could be evaluated
at the reference height either theoretically or
empirically.
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APPENDIX A: PREDICTION OF ALONGWIND
DYNAMIC RESPONSE OF STRUCTURES
IN THE NATURAL WIND

The relationship between the fluctuating drag force and the
longitudinal turbulent component of the natural wind is
discussed and it is shown how the root-coherence function
and the power spectral density of the longitudinal turbulent
component contribute to the prediction of the dynamic
alongwind response of structures. The theory is a modified
form of that developed for a circular cylinder by Cooper and
Surry[16].

The assumption of a ‘strip theory’ relationship belween
local drag and the local relative ielocity for a two-

dimensional body[18] can be applicd also for a three- '
dimensional body, by replacing the local drag with the net
pressure which is the difference of pressures on the windward
and leeward surfaces of a structure. The net pressure Py, z,1)°
can be consideted to act through “the structure on the”
idealized surface normal to the mean wind direction as shown

in Fig. 4. i '
Yo e .
Pz = pCn. 250,z
pBIZIC Gz 00 s Al

v gk the drag coclficient and ¢ b the mass coefMicient
aind both are considered  to vary with postion and  the
reduced frequency &
/. B(z)
Clzy

S =

Ulhzn) = Uz ) =o(v. = 1)
is the relative wind speed:
Clyocony = Otz v iy, =

dly.ze) is the longitudinal com:
displacement: a(yv,z.¢) is the str - ure velocity; Biz) is the
width of a structure: and. p is the . mass density.

If the turbulence and the fluctuating motion of the struc-
ture ure both small. the second order terms in w and o van be
neglected. Then equation (A1) can be written as,

wnt of structure dynamic

Plyizoty = 1pCyy, 2. 0)C2(2)

1

FpCy 2 502ty 20
=pBICyv 2 iy, o)
—pCyly 2 0 (20 ly, 2. 1)

—pBCy (v 2. 8 )0 v 20, {A2)

P

The Tast two terms of cquation (A2) are not dependent on the
turbulence.  Consequently they are considered as the ad-
dinonal damping and mass i the equdation of moton of the
sructure, Then the dyvnamic part o e drag net pressure
plyczotiean be writien as,

pevzat) = pCylv, . Sty 2. 0)C(z2)

FeBIC n B sy (A
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The dynamic displacement response S{y,=.t) is a random
function made up of components [rom the various inde-
pendent modes of vibration, It is treated by a statistical
approach relating the power spectral density of d(y.z.t) and
the power spectral density of generalised total dynamic force
F(r), ie. the dynamic response of a structure can be de-

. termined by solving the normal equations of motion[ 19],

taking the aerodynamic damping and mass terms mentioned
above into account. ; )
. = S e Fauy oo
a1 + 20,20 )01 4 (201,034l l) = 0= (A4)

where g, is the generalised displacement of the nth mode:

TN
My.ot) =82ty = Y ma(2)-qa(t)
A=l
assuming the structural displacement to' be uniform over its

width: g,(=)is the nth mode shape: f, is the nth natural
frequency;

H (B
M,’,=J~ J [m(z)+ pB(2)Cy (¥, 2. E)]pa (z)dy dz:

0 0

m(z) is the mass of structure per unit surface area:

HOCBG Cyly, 2, E)0(2)pl(2)
=0+ o ——dydz:
fa J J P,

2, is the critical damping ratio of the structure of nth mode:
and, F,(t) is the generalised force associated with the
turbulence.

H ("B} _ i g
F,.(£)=J J piy, z, e, (2)dy dz (AS5)

[} 0

For the most lightly damped structures the cross-coupling
between modes is unlikely. Therefore: the power spectral
density of the response S,(f) can be written as follows as a
solution of equation (A4), ~ ’

L

S,(f1= S @m0 () (A6)
1

where
e !
= N Y+ = A Y
Now the generalised force of the nth mode F, () can be

computed by substituimg equation (A3 mto L3,

o I (]
Fa= |

v VO

Cylr 2 S0 (uly. 2
+pCy(y 2 2By 2 )ty dz. (AT)

in cquation (A7), F, (1) is expressed as a function of ¢ and ¢.
but since for lightly damped structures only the components
ol response in the niarrow bund of freguency around reso-
nance in a particular mode will be ol significance. therefore
only the corresponding components of €y und G need be
taken into account. Then equation (A7) can be modified
accordingly.

o T TH)
F,t) = | :(;nt\.:lu(\.:.n
wi) vl
FCE (esuity s dyds (AS)
where
Crovor o pCuvzo bzt
CHovezy pCyn s B
. LB
B STE

Now SF'(_[) can be defined as a Fourier transform of the
auto-corfelation function of F,(¢) as lollows,

-

i

S-(H=2 '[ ﬂrn(f)e_‘z'f‘dr (A9)

-2
where o

Ay (1) = E[F,(0). Fo(t+ 11} (AL0)

& §

g §ubstituting equation(A8) into (A10) and equation (A10) into
“{A9), the power spectral density [unction’ of generalised force

of the nth mode Sr. ¢an be computed[17].

C[E H H - ("Btzy [*Biz)
Se.(f) = ZJ,J j j J Ry lT)
Cd-x Jo Jo Joo o ;e

X {CH (1.2 )CH (¥ 220+ 20fCR 1 20)
x € (52 22) 4 2mifCY (31, 20)CE 2 72)
+ARCE (11, 200G (20 22)) dyydy,

xdz,dz,e 2 rdr. (ALl)

Since the cross-spectrum of the turbulent component 1s given
as

x

Supu(f)=2 J A, . (0)e e (A12)

-

r

equation (A1l) can be rearranged using equation (A12),
namely, :

*H °H Biz} B(o)
Se.(f) = J j j SuruilS)
o Jo Jo 0 .

x :C:,(.Vl- 5 )CI‘(,\'z- ) +i2nf

*x[CHiy 2)CH (a2 — Co .2 )CE (¥an 22 )]
+ATCE (1 200 55 ),

xdy, dy,dz, dz,. (Al3)

If C, and C,, are assumed to be constant with y and have the
same profile with z,

C:"(:I icﬁn(Z:)—Cv\*’"(:. 'C.T_“:) =0.

o 2
Consequently equation (A13) can be simplified as,

S oM Btz Bt-y
Se )= j J Su )
JO v 0 ]

X CH(z)CH (z2) = 32 2C 12, ICTiE )

<dy, dy,dz dz;. (Al4)

Generally the natural wind js not a homogeneous turbulent
Now and ~o the cross-spectral density function consists of real
and imaginary parts. However, since the power spectrum of
the generalised force is a real funcuon the real part of the
crosssspectrum (e, the cosspectrumi can be taken into
account instead of 5, (/110 equation (A1), J

For further simplification, if the imaginary part or quad-
rature component of the cross-spectrum of longitudinal turbu-
lence is assumed o he neclaible, the root-coherence becomes
identical with the normalised co-spectrum, e,

St CH CHize P

Sef) = R, S (S,

P TV B 1) 0
< CHZNCH ) =3 20 2 Ch {5y

«dy,dv,dz,dz;. (ALS)

;
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Then the variance of the dynamic response can be obtained
as follows,

o3 (z) = f Ssf)df

[}

and from equation (A6),
82 ()= f Y NN Se ) (A16)
0 a=1

For a tall building which has its fundamental natural fre-
quency much greater than the peak frequency of the power
spectrum of wind turbulence it should be sufficient to con-
sider only the first two frequency modes of vibration, i.e.
N =2 :

The instantaneous maximum value of the dynamic response
can be obtained {rom the mean displacement and the r.m.s.
value in terms of a peak factor g: which depends on a
probability distribution[7], as.

Amax = B+g. 52 (A7)

APPENDIX B: INTEGRATION OF A
POWER SPECTRAL DENSITY FUNCTION

All power spectral expressions referred to here--equations
({1-4)—can be integrated with respect to the frequency from 0
to infinity and the value of the definite integral becomes unity
when those power spectral expressions are normalised by the
variance of the turbulent component. Then each constant &,
in those equations can be obtained. For

!
F(x)= — (Bl
(x) 3 (BY

+x4y

the definite integral from f'= 0 to infinity can be computed as
follows. Let X = x“ then

dY =ax* " 'dx=ux"""dx.

Consequen’ ».
4 " dx ’ ‘\/—lu—llu
Flx)dy = J = | S——dX. (B2
0 o (1 =x") o d(l+X)

Since it is known that

~

i © ! Tl ()
[ (B3,
o L+y)m " Cim+n)
where ['{ ) is a gamma lunction. from equation (B2)
a—1
n—-1= - ,___._)‘ m+n=h
a
which yiclds
1 |
n= , m=h- .
ol 1]
Then cquation (B2} becomes
2 ]
. r )r(h - )
a ) d
J Fixpdx = ) (B4)
" ul th)

In the case of equation (1) a direct integration is possible
without resort to gamma functions since it can be rewritten
as,

Su) k& Xy

2 0, (+ap?
and so,
(= k2, Jf X,
— S df=1= d,
uzL Nd=t="5"], trars?
[ X, k, * dXx 3
= 7t dx, = ="k
. Jo [+ 1T 7 J x 2
hence

(B5)

By contrast equation (4) is in the form,

S k# L
Wi O, (1+xfp%

and

1 (" k&, J’ 1
- S(fidf=1= df
u? J:) Ny o o (L+xf)y3 v

* dx,
=k ] B
! J;, (14 x5 30

Consequently, by comparison with equation (B1)

k, [ Fix,)dx, = 1

v

where ¢ = g and b = 5 38. Then from equation {B4)

()

b= 55 (B6)
r(ﬁ)r(sﬂj

The values k, corresponding to the expressions in equations
t2-4) are obtained from equation (B6) and are summarised in
Table Bl together with the value of &, appropriate to
equation (1) which is given by equation (B3). Similarly the
integral in equation (19a) can be evaluated for ff = 2. .

i dx FHEE)
i T;}.""" PN SO =11 (B7)
Jo (1+xX7F “th+xppt )
which is required in order to establish k.
Table Bl
Power
Equation Source exponent fi k,

thy  Duvenport[1] 3

{2} Hurris[X] and Hino| 2) ) 1475
(3)  Siniuf 3] 1 3

(4) Nitional Bureau of

Standards{9] 0845 0-769
Panofsky and Lumiey[10] 33 0-505

1

2




