

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT DIVISION

Presented at the New York Academy of Medicine Symposium on Health Aspects of Indoor Air Pollution, New York, NY, May 28-29, 1981

SOURCES AND CONCENTRATIONS OF ORGANIC COMPOUNDS IN INDOOR ENVIRONMENTS

Craig D. Hollowell and Robert R. Miksch

July 1981

LEGAL NOTICE

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

(Patulli gra)

BRIEF LAME.

8 - Se 173

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL-13195 EEB-Vent 81-34

Presented at the New York Academy of Medicine Symposium on Health Aspects of Indoor Air Pollution, New York, New York, May 28-29, 1981

SOURCES AND CONCENTRATIONS OF ORGANIC COMPOUNDS IN INDOOR ENVIRONMENTS

Craig D. Hollowell and Robert R. Miksch

Building Ventilation and Indoor Air Quality Program
Energy and Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

July 1981

This work was supported by the Director, Office of Energy Research, Office of Health and Environmental Research, Human Health and Assessments Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48.

Humans: (and their shousehold spets) generate carbon dioxide, moisture, strong and microbes simply through normal living processes. Other more important sources of indoor air pollution are combustion appliances (gas strongs, unvented space heaters), building materials (used in construction, of unishings, and insulation), and soil under and around houses. If these sources release carbon monoxide (CO), nitrogen dioxide (NO₂), fortunal dehyde (HCHO) and other organics, particulates, and radon. Table I was summarizes the sources and types of air pollutants commonly found indoors:

This paper will discuss the sources and concentrations of organic compounds in indoor environments. Formaldehyde; as an indoor pollutant, has been extensively investigated; however, recent work at Lawrence Berkeley Laboratory (LBL) and elsewhere is now focussed on a broad range of organic compounds, in addition to formaldehyder.

e no ege convente nitragile faces bas so e t

07 25 27

la est hatai

Formaldehyde (HCHO) is an inexpensive, high-volume chemical used as a general part of the sense spensor will as filly and the product throughout the world in a variety of products, mainly in urea, phenolic, selder at mode and actal resins. These resins are present in insulation enternals, particleboard, plywood, textiles, adhesives, etc. that are real at february and the building trades. Although particleboard used in large quantities by the building trades. Although particleboard and urea-formaldehyde foam insulation have received the most attention, some of the combustion processes mentioned above also release formal-term a weebnaries to make the sense of the combustion processes mentioned above also release formal-dehyde. The pungent and characteristic odor of formaldehyde can be actually added beginning to the sense of the combustion processes below 100 µg/m³. Several studies are proceeded in the literature indicate that concentrations in the range of as 1000 to 200 µg/m³ may be sufficient to cause swelling of the mucous mem-

tation of the upper respiratory passages can also result from exposure to relatively low concentrations. (High concentrations (>>> 1000 roug/m³) may produce coughing, constriction in the chest, and a sense of pressure in the head. There is concern that formaldehyde may have serious longterm health, effects. Several foreign countries and various states in the United States are moving rapidly to establish standards for formal dehyde concentrations in indoor air. The range of these proposed standards is 120 to 600 µg/m³. A summary of formaldehyde measurements in various indoor environments is given in Table II.

Formaldehyde, and total aliphatic aldehydes (formaldehyde plus other aliphatic aldehydes), have been measured by LBL at several energyeanefficient research houses at various geographic locations do in the U.S. Figure 1 shows a histogram of frequency of occurrence of concentrations of formaldehyde and total aliphatic aldehydes measured at an energyexpending binaryon to . . . efficient house with an air exchange rate of 0.2 ach. Data taken at an Parionary to page 1 to an early the total and an appear energy-efficient house in Mission Viejo, California, are shown in Table editalyan i per my are ablest to diate the second series III. As shown, when the house did not contain furniture, formaldehyde levels were below 120 ug/m; when furniture was added, formaldehyde levirecorio in deponding asheat gail of your selection of the least rose to almost twice the 120 µg/m level. A further increase was The store of the station have received the most attention noted when the house was occupied, very likely because of such activimaking it west-let out access by the common one or or some ties as cooking with gas. When occupants opened windows to increase) wie compent and communication odor of form the called ventilation, the formaldehyde levels dropped substantially. etecte most 'unamu' telesis belou 10' is.

In the past few years conflice workers throughout the country shave registered numerous complaints of "bad air" at These complaints come most

sealed windows. Although various government agencies have investigated these problems, the etiological agent(s) has frequently remained unidentified.

3, 50 :

eductions and be organic contaminants, which have numerous indoor sessources: building materials, cleaning products, tobacco smoking, furnishings, common consumer products, and building occupants themselves.

To date, however, there has been relatively little research on this topic. In 1980, LBL began a comprehensive DOE-sponsored research program in collaboration with the Center for Disease Control (CDC), and the National Institute of Occupational Safety and Health (NIOSH) to characterize indoor air pollution in "complaint" office buildings.

The results of work in one of the office buildings is summarized in Table IV. Only total hydrocarbons exceeded air quality standards; no other indoor pollutants, including formaldehyde, exceeded air quality standards. The average total hydrocarbon concentration was 1627 ± 26 µg/m³ (2.5 ppm expressed as methane). The average indoor concentration can be compared to the average outdoor concentration of 210 ± 60 µg/m³ (0.32 ppm). These hydrocarbon concentrations, especially the indoor values, are well in excess of the National Ambient Air Quality Standard of 160µg/m³ (0.24 ppm). It must be emphasized, however, that this standard was established on the basis of hydrocarbons acting as precursors for photochemical smog, and does not necessarily imply that hydrocarbons themselves are harmfull.

eller of the contract of the second of the method of the contract of the mining the contract of the contract o

The observation of high total hydrocarbon concentrations led us to investigate in depth the organic compounds in several office buildings. Figure 2 shows typical comparative gas chromatograms of equal size air samples taken simultaneously inside and outside an office building where complaints had been registered³. Organic contaminants are greater in number and concentration indoors than outdoors as indicated by the sizes and number of peaks. For an few samples, comparison, of the peak areas, with those of external standards indicated that the largest peaks corresponded to air concentrations of a few parts per billion.

Samples were analyzed by gas chromatography-mass spectrometry MS) to establish identities. Generally, the largest peaks fell into one of three classes of compounds, the largest being aliphatic hydrocarbons including straight-chain and derivatives of cyclohexane. These hydrocarbons are derived petroleum distillate-type solvents. The second largest class was alkylated aromatic hydrocarbons, predominately toluene but also including xylenes, trimethyl- and other substituted benzenes, and even methyl- and dimethylnapthalenes. These compounds are either on solvents themselves or constituents of maphenic type petroleum solvent inixtures. The third class observed was chlorinated hydrocarbons, gredominately, tetrachloroethylene, 1,1,1, trichloroethane chloroethylene. & Miscellaneous other compounds observed were ketones, aldehydes, and benzene. Table V lists those organic compounds found to be at least five times as great inside offices as outdoors, and notes, where applicable, the standards of exposure promulgated by the Occupational Safety and Health Administration (OSHA) for the workplace environment. In research now in progress, we are quantitatively determining the concentrations of these organic compounds by current state=

of-the-art analytic procedures, which, although they provide only rough estimates, are indicating concentrations ranging from 1 to 100 ppb. ai entaurion inmaili ut aaleema These levels are well below existing limits established by OSHA for to means a situation and another the same and occupational exposure but may be excessive for the general public for The second secon whom limits are typically ten times lower. +มีอย่าง _ - จักราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชานาราชา

While no single compound was present in high enough concentration to be singled out as a health hazard by existing OSHA criteria, the potential health hazard from the combined effects of the organic compounds found in these samples cannot be assessed at this time. The existing OSHA health criteria may be inadequate given that: (1) additive or synergistic effects are not adequately addressed; (2) the criteria are generally based on acute exposure studies whereas here the exposure is chronic; (3) the population at risk is more diverse including women and elderly workers; (4) annoyance from odorant effects is not considered.

957777

A summary of organic compounds identified in indoor environments given in Table VI. Several of the sources of organic contaminants in closed office spaces can be categorized as: (1) new building materials; (2) aged building materials; (3) wet-process photocopiers; (4) tobacco smoke; and (5) building maintenance products. Table VII summarizes the source characteristics and generation pattern for organic contaminants in a typical office space. 4 New building materials are a source of organic contaminants because they contain residual solvents and other compounds remaining after the process of manufacture. Qualitative GC-MS analysis of the headspace vapor standing over a variety of new building materials in an LBL study has revealed a great number of compounds -predominately toluene and aliphatic hydrocarbons. Ketonic solvents were observed as well as speciality compounds such as butylated hydroxytoluene (BHT).

ASTRIC BULL BURN

೨ಕೇಕರ್ಡಿಗಳು ಮಾಡಿಸಿಗಳು ಕ್ರಾಡ್ಕಾರ್ಯಕ್ರಿಯಾಗಿತ್ತು ಅದ್ದರ್ಥ ಜೀವರ್ ಜ್ಯಾರ್

GD L a T HI entimadus, er a atlatur lien atlona Implementation of control strategies for organic contaminants in Il se 'rveis are well below ar wing . Tils indoor environments must consider the nature and generation pattern of · STANTED SV · FARE each source. For new building materials further research may define an 4, simil men acceptable waiting period prior to occupancy or a period of high ventilation rates while they "dry out". Workday pollution from photocopiers and tobacco smoke may be reduced by increased ventilation, but not as a efficiently as source removal itself. Episodic contaminant generation from building maintenance products can be reduced by increased ventilation; but a better strategy may be to offset product use from the workday and period. The land of the land o

ACKNOWLEDGEMENT

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Energy Research and Development, Building Systems Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48. BESTAND 1 30

ະວາເວັດກັດ ອອດດາຖະວາຄ ຄຳໄດ້ເຂື້ອ ຄຳ exacts and fine raintenance products. Table II so a the sperious and the companies of the compan ev built mereriels are a bounce of be an are an are to the same and solve is end ther aom ผนกลัง กลาล กลกดู กไป รีกล prose ให้ง งกนา์acture ใช้งาง anihais of the ter apica yapo standing eyer a tariety tine " predominacely tolude and aliphacia communicately activates were Patri wal 🕡 🛈

REFERENCES STANDARD STANDARD STANDARD STANDARD

0 8 Au 200

1. National Research Council, National Academy of Sciences: Indoor Pollutants, National Academy Press, Washington, D.C., 1981.

2.108.100

- Turiel, I., Hollowell, C.D., Miksch, R.R., Rudy, J.U., and Young, R.A.: The effects of reduced ventilation on indoor air quality in an office building, submitted to J. Air Pollut. Contr. Assoc.; Lawrence Berkeley Laboratory report LBL-10479, Lawrence Berkeley Laboratory, University of California, Berkeley, California, 1981, Out.
- 3. Schmidt, H.E., Hollowell, C.D., Miksch, R.R., and A.S. Newton: Trace Organics in Offices, presented at the National American Chemical Society Conference, Environmental Chemistry, Las Vegas, NV, August 24-26, 1980, Lawrence Berkeley Laboratory report LBL-11378, Lawrence Berkeley Laboratory, University of California, Berkeley, California, October 1980.
 - Miksch, R.R., Hollowell, C.D., and Schmidt, H.E.: Trace Organic Contaminants in Office Spaces, to be presented at the International Symposium on Indoor Air Politition, Health and Energy conservation, University of Massachusetts, Amherst, MA, October 13-16, 1981, Lawrence Berkeley Laboratory Report LBL-11378, Lawrence Berkeley Laboratory, University of California, Berkeley, California, July 1981. TRING A ID COOKING

alogo Japin Ell S =450 PB 45 859

PROTESTS

Table I

SUMMARY OF SOURCES AND TYPES OF INDOOR AIR POLLUTANTS

5 5 15 15 15 15 1

7.

SOURCES

POLLUTANT, TYPES, DOLLARS

OUTDOOR

STATIONARY SOURCES

 SO_2 , CO, NO, NO_2 , O_3 , Hydrocarbons, PARTICULATES PARTICULATES

જેવાને કરત જેવાના અને કેવ કરી

MOTOR VEHICLES

SOIL

1.046

CO, NO, NO, LEAD, PARTICULATES

RADON

INDOOR

1811.

WHI STER

و الله و الله

BUILDING CONSTRUCTION MATERIALS

CONCRETE, STONE

PARTICLEBOARD

INSULATION " ...

FIRE REATRDANT M

ADHESIVĘŞ

RADON AND OTHER RADIOACTIVE ELEMENTS

FORMALDEHYDE

FORMALDEHYDE, FIBERGLASS

ASBESTOS

J moc

ORGANICS

ORGANICS, LEAD, MERCURY

BUILDING CONTENTS

HEATING AND COOKING COMBUSTION APPLIANCES

COPY MACHINES

WATER SERVICE; NATURAL GAS

HUMAN OCCUPANTS

METABOLIC ACTIVITY

BIOLOGICAL ACTIVITY

TOBACCO SMOKE

AEROSOL SPRAY DEVICES : TOTAL

CLEANING AND COOKING **PRODUCTS**

HOBBIES AND CRAFTS

CO, NO, NO, FORMALDEHYDE, PARTICULATES

ORGANICS

RADON

H20, CO2, NH3, ORGANICS, ODORS

MICROORGANISMS

Edite M.

CO, NO2, HCN. ORGANICS, ODORS PARTICULATES ***

FLUROCARBONS, VINYL CHLORIDE, CO2,

ODORS

ORGANICS, ODORS

ORGANICS, ODORS

Table II

Summary of Formaldehyde Measurements in Various Indoor Environments

	Concentrat	ion ^a
Sampling Site	Range	Mean
Two mobile homes in Pittsburg, Pa.	0.1-0.8 ^c	0.36
Mobile homes registering complaints in state of Washington	0-1.77	0.1-0.44
Mobile homes registering complaints in Minnesota	0-3,0	0.4
Mobile homes registering complaints in Wisconsin	0.02-4.2	0.88
Public buildings and	0-0.021	at h
energy-efficient homes, occupied and unoccupied	[0-0.23] ^c	

^aFormaldehyde, unless otherwise indicated.

Source: National Research Council, National Academy of Sciences. 1

 $b_1 ppm = 1200 \mu g/m^3$.

^CTotal aliphatic aldehydes

Table III

Indoor Formaldehyde Concentrations

in a New

Residential Building

Condition	Formaldyhyde (µg/m³)
Unoccupied, without furniture ^a Unoccupied, with furniture ^a	80 <u>+</u> 9% 223 + 7%
Occupied, day	261 <u>+</u> 10%
Occupied, night ^b	140 <u>+</u> 31%
Outdoor Air	<20

^aAir exchange rate ≈ 0.4

bWindows open part of time; air exchange rate significantly greater than 0.4 and variable.

Summary of Average Indoor Air Quality Measurements in an Office Building and Air Quality
Standards

eld sur (de

	Office Building Air Qu	ality	Air Quality Standards		
Contaminant	Concentration	Averaging Time	Concentration	Averaging Time	
Carbon monoxide	4.6 mg/m ³ (4 ppm)	1 hr	40 mg/m ³ (35 ppm) ^a	1 hr	
Carbon dioxide	1800 mg/m ³ (1000 ppm)	8-10 hrs	9,000 mg/m ^{3b} (5,000)	8 hrs	
Nitrogen dioxide	60 μg/m ³ (30 ppb)	1 week	100 μg/m ³ (50 ppb) ^a	1 yr	
Hydrocarbons (non-methane)	1627 μg/m ³ (2.5 ppm)	30 minutes	160 μg/m ^{3a} (0.24 ppm)	3 hours (6-9 am)	
Formaldehyde	49 μg/m ³ (41 ppb)	6 hours	120-840 µg/m ^{3c} (100-700 ppb)	maximum	
Aliphatic aldehydes	108 μg/m ³ (90 ppb)	6 hours	No standard		
Particulates	31 pg/m ³	12 hours	75 μg/m ^{3a} 260 μg/m ³ a	1 yr 24 hrs	
Lead	0.2 μg/m ³	12 hours	1.5 µg/m ^{3d}	3 months	
Sulfur (as SO ₄)	2.5 μg/m ³	12 hours	25 μg/m ^{3d}	24 hrs	
Ariborne Microbes	179 CFP/m ³	20 minutes	No standard		

^aU.S. EPA Ambient Air Quality Standard for outdoor air.

bState of California Air Quality Standard.

c range of recommended standards

 $^{^{}m d}$ U.S. Occupational Safety and Health Administration (OSHA).

Table V
Organic Compounds Detected in Office Buildings British

A Committee of the Comm

_	ic Compound	7		Permiss	sible Ex (ppm)	_	Limit	-	Pr. 34. 1
7.3	Day N.		-1-	5.7	1C = 2G	1.0			
10.00	HYDROCARBONS	MED SERV	177.7					124.3	andres or Moreov ser
	n-hexane			200	500			1891	i Mole
	n-heptane				500				
	n-octane	100			500	CONTRACTOR OF THE CONTRACTOR O			# 11.11. E
	n-nonane						Ь.	20049	s jągalė,
	n-undecane						-	114	444
	2-methylpentane			- 21 5			,	ise/	đ iu
	3-methylpentane						**	24 2 . 10 .	
	2,5-dimethylheptane								
	methylcyclopentane								
0.02	ethylcyclohexane				. Land		4.2	VC	1033
	methylcyclohexane				500				
4146 14	pentamethylheptane							SERT OF	in ord
FG - +	97.1							han.	¹¹ - [] *
	AROMATICS								
	benzene	-1			= 1			197	25 A TO
IJ	xylenes				100				
	toluene				200				
		HTE SIN		7	38		an n	Die.	inde
00.00	HALOGENATED								
	HYDROCARBONS 4	34			250			19-	2
	tricloroethane				350				
an electric	tricloroethylene		,		100				
1-27	tetrachloroethylene				100				
376	MIGGELT ANEQUE	141.0					,	4.60	
7.7.4.	MISCELLANEOUS	23.7			× 1,611	129) <u>\$</u>	
	hexanal				200	200			
	methylethylketone	TOTAL TOTAL	-		200	135	22.00	3.0	. Hodit

-13-

. Is the man and the same that the same the same

Ty.s. Very set of safet, and under distribute (2)

etars of saifornia As Ourlate trandors

remain it was a make a

UNANT TOTAL ORGANIC Compounds in Indoor Environments Firm and an acceptance of the compounds of the compound of the co

Compounds	Health Effects	Sources and/or Uses
Formaldehyde and other Aldehydes	Eye and respiratory irritation; may have more serious long term health effects	Out-gassing from building materials particle board, plywood and urea- formaldehyde insulation foam; also generated by cooking and smoking
Cn Alkanes N = 5 A 16	Narcotic at high concentrations; moderately irritating	Gasoline, mineral spirits, solvents, etc.
C _n Alkenes N = 5 ∿ 16	Similar to that of alkanes	Similar to that of alkanes
Benzene	Respiratory irritation; recog- nized carcinogen	Plastic and rubber solvents; from cigarette smoking; used in paints
27-321-57°	186	and varnishes, including putty, filler, stains and finishes
Xylene (Bankaranan alama) (Bankaranan alama)	Narcotic; irritating; high concentrations may cause injury to heart, liver, kidney, and ner-vous system	Used as solvent for resins, enamels, etc.; also used in non-lead automobile fuels and in manufacture of pesticides dyes, pharmaceuticals
Toluene	Narcotic; may cause anemia	Solvents; by-product of organic compounds used in several house-hold products
Styrene	Narcotic; can cause headache, fatigue, stupor, depression, incoordination and possible eye injury	Widely used in manufacture of plastics, synthetic rubber and resins
1,1,1-Trichloroethane	Subject of OSHA carcinogenesis	
Trichloroethylene 18278 G. A. F. TIAL	Animal carcinogen; subject of OSHA	Oil and wax solvents, cleaning compounds, vapour degreasing products, dry cleaning operations; also used as an anaesthetic
Ethyl Benzene	Highly irritating to eyes, etc.	Solvents; used in Styrene related products
Chloro Benzenes	Strong narcotic; possible lung, and kidney damage and hidney damage and hid principles.	Used in production of paint, var- nish pesticides, and various; organic solvents logs (bin1)
Polychlorinated Biphenyls (PCB's)	Sustected carcinogens	Used in various electrical components; may appear in waste oil supplies and in plastic and paper products in which PCB's are used as plasticizers

Table VII

Characteristics of Sources of Organic
Contaminants in a Typical Office Space^a

Source	Nominal Emission Rate (gms/hr-office)		Major Known Types of Organic Contaminants Emitted
88° (2.85° - 35	h		-7G8-7C
new building materials """ """ """ """ """ """ """ """ """ "		continuous	aliphatic hydrocarbons aromatic hydrocarbons ketones esters (formaldehyde)
The V reserve (see	par 1811 D gay 18	dair in 1.31, d	many miscellaneous,
aged building materials	low	continuous	formaldehyde a
wet-process photocopiers"		workday	aliphatic hydrocarbons
smokers	1 ^d 0.5 ^d .	workday	formaldehyde acrolein
simmers to see in the	0.25 ^d		nicotine (total particulates) many miscellaneous
building maintenance products	100 ^e 45m	episodic	aliphatic hydrocarbons aromatic hydrocarbons formaldehyde
Joseph Lander Land A and Tell a and Tell as and Tell a	onofestor.	N., 1 08 2 2 2 2 2 2 2 12 1 40 40 2 2 20 2 2 40 40 40 40	amines

The typical office being considered has dimensions of 100 x 10 ft with an occupancy of 40 workers.

The sea down electrical months of

or some of some

nger un landest

Tolde transfer transfer

Pestfoliaes

4 1 3

Emission rate calculated assuming 1.0 mg/ft ofor wall-to-wall carpeting after several months.

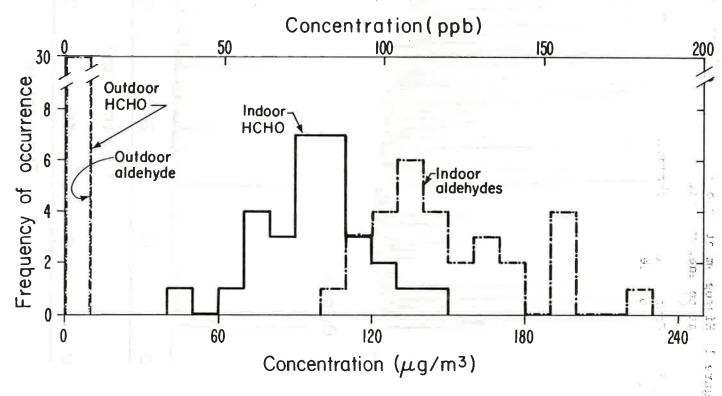
Emission rate calculated assuming one wet-process photocopier using 1000 gms of fluid per week.

dCalculated from data in Weber et al. (1977)

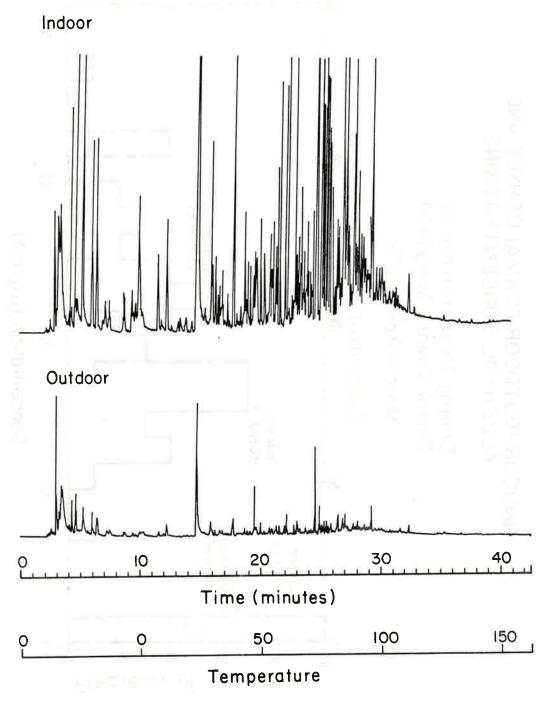
Emission rate calculated assuming 100 gms of product (floor detergent or dusting fluid) applied in one hour.

Figure Captions

- Figure 1 Histogram of indoor and outdoor formaldehyde concentrations at an energy efficient house
- Figure 2 Comparative gas chromatograms of indoor and outdoor air at an office site


8

€


INDOOR/OUTDOOR FORMALDEHYDE AND ALDEHYDE CONCENTRATIONS

Energy Research House Carrol County, Maryland

March/April, 1979

Comparison of Indoor and Outdoor Air at an LBL Office Site

XBL808-1727

Figure 2

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

ed stromber by the bright office of Evergy Roses of , which is at Evergy Roses of , and the seeson of the seeson that and the seeson of the seeson of the seeson of the seegy under Contract Markey of the seeson of

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720