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The Multi-chamber Theory Reconsidered

from the Viewp

MATS SANDBERG*

oint of Air Quality Studies

eral multi-chamber model is presented and explored from the viewpoint of air quality studies. T he

model involves the following key concepts: purging flow rate and age distribution of both air and
contaminants. From the physical and mathematical properties of the model, are deduced estimates of
the magnitude of, and the relations between, the key concepts. The practical use of the madel is

illustrated.

NOMENCLATURE

cofactor of the flow matrix Q
b, elements of the inverse Q™' of the flow matrix
C concentration
C column matrix (vector) whose elements are the chamber
concentrations
C™  equilibrium concentration
C, extract concentration or equivalent extract concen-
tration
C, supply concentration or equivalent supply concen-
tration
e eigenvector
f statistical age frequency distribution of air or con-
taminant leaving the system
I unit matrix
m amount of contaminant or tracer gas released in a short
burst
m flow rate of contaminant or tracer gas
flow rate of contaminant per chamber or room volume,
om=mjV
nominal air exchange rate, n = Q/V
probability of a particle released at chamber i to pass into
chamber p
transfer index
total volumetric flow rate of air supplied to the system
flow matrix
transposed matrix obtained by interchanging the rows
and columns of Q
purging flow rate
total volume of system
volume matrix, whose entries are the chamber volumes
fraction of total supply air flow (X < 1)
fraction of total extract air flow (Y < 1)
column matrix (vector) whose elements are unity
column matrix (vector) whose elements are zero
factor representing the state of mixing or secondary flow
fraction of total volume (# < 1)
nth moment about the origin of the age frequency
distribution or concentration
eigenvalues to the t-matrix
exponent of the concentration decay curve of
exponential decay
generic symbol for time or dummy variable in
integration
non-dimensional time, ¢ = t/t,
nominal time constant of ventilation system, t, = V/Q
t-matrix, t = Q~'V
dummy variable in integration
statistical internal age frequency distribution.

o1}
3.

L)
3

h-S

QOO

~y

%u°—<k<<nc

tA
B

R

L]

aat oA

-~

A=

* Building Climatology and Installations Division, The
National Swedish Institute for Building Research, Box 785, S-801
29 Gavle, Sweden.

221

Subscripts and other symbols
e refers to extract
refers to supply
system-average
refers to estimated quantity

~
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INTRODUCTION

THE TRANSPORTATION and mixing process in any
flow system is, from the physical point of view, often
conceptually divided into a ‘systematic’ part represented
by the fluid velocity, and a ‘random’ part. The latter is due
to molecular diffusion and turbulence. The molecular
diffusionis represented by a molecular diffusion coefficient,
and in practice one often tries to represent the action of
turbulence by defining a turbulent mixing coefficient,
analogous to the molecular diffusion coefficient. The
mixing process can be represented by various models. Any
model representing a real system can only serve as an
approximation. One obviouscriteria for selecting a certain
model is physical relevance. Another criteria may be
simplicity of model.

There are two main approaches to model turbulent flow
systems. One approach is the use of the so-called advection
(convection)diffusion equation based on the concepts
given above. The diffusion coefficients in the model are
usually estimated by tracer experiments. The concent-
ration of tracers are measured, and the diffusion
coefficients are calculated by finding a solution to the
advection—diffusion equation. This approach has been
mainly used in unidirectional flow systems where two
spatial dimensions are averaged out and the equation
becomes a one-dimensional equation written in the
direction of the main flow. The turbulent diffusion
coefficient is replaced by a bulk dispersion coefficient,
which considers both the effect of the averaging procedure
and the action of turbulence. Rivers are examples of flow
systems where this approach has been applied. In three-
dimensional flow systems, e.g. in ventilated rooms, the
meaning of turbulent difTusivities is not always clear.

The other model approach is the lumped-parameter
‘chamber-model’. When the internal air-flows in a building
are being studied, it is very common to represent the
building as consisting of a number of interconnected
perfect mixing chambers. The basic mixing unit, the
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instantaneously and uniformly mixed chamber, may
consist of anything from part of a room to a whole set of
rooms. The assumption that the internal mixing process is
built up by a number of interconnected completely mixed
chambers is very often a reasonable approximation. When
it comes to the formulation of a multi-chamber model and
to derive the terms that constitute the model, we must
makeitclear as to what kind of air-flow field and properties
of the air-flow we want toderive. To illustrate the point, we
may take the volumetric flow rate of air between mixing
chambers. We must make it clear to ourselves whether we
want to estimate the net flow rate of outdoor air between
the chambers, or the total flow rate of air, including the
internal secondary air circulation.

The secondary air-flow circulation may be generated by
various heat sources (including man), by temperature
differences on surfaces, or by entrainment of air into the jet
stream from the supply air terminal. Normally the
secondary flow is much greater than the supplied air-flow.
As an example, we may consider an office room with 40 m?
volume and a floor area of 15 m2. The flow rate of outdoor
airamounts to 150m3/h. If we assume that the supplied air-
flow is uniformly distributed over an area equal to the floor
area, we obtain an average throughput velocity equal to
150/(15 x 3600) = 3 x 10~ 3m/s. However, weknow thatin
this kind of situation the average velocity in the occupied
chamber amounts to 0.10-0.20 m/s [1]. Therefore we can
say, in a simplified manner, that the air-flow in a room is
like a box filled with turbulence, with almost no net flow. It
is unlike duct or channel flow where the net flow rate is
easily identified. At any point within the room, we have air
and contaminants of different ages, and from velocity
records we cannot trace the net flow rate at which a
contaminant is removed from the system.

Furthermore, we must consider in the model
formulation, the differences between factors that govern
transient phenomena (e.g. decay of contaminant or
tracers), and factors that govern equilibrium concent-
ration. The starting point in the model formulation is the
total flow rates of air between the chambers. The total flow
rates include both the secondary flows and the
transportation by turbulent diffusion. The total flow rate
from one chamber to another may be greater than the total
flow rate of outdoor air supplied to the whole system.
From the total flow rates between the chambers and the
chamber volumes the following key concepts are deduced :

(i) The purging flow rate, the net rate by which a
contaminant is ‘flushed’ out of the system. The
purging flow rate is always less than or equal to, the
total flow rate of outdoor air supplied to the whole
system.

(i) The mean-age of air or contaminant, the age is
‘counted as the time elapsed since the entrance of air
into the system or the release of contaminant.

(ili) The transition probability, which is the probability
that a contaminant released in a region will pass into
another region.

Equilibrium concentrations at a region surrounding a
point source are controlled by the net flow rate of air
flushing the region, i.e. the amount of air passing through,
and not how fast the air is arriving at the region under
discussion. On the other hand, transient phenomena, for
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example, the decay of a contaminant concentration are

also dependent on how fast the air is arriving. The purging

flow rates and mean-ages are of course to some extent

interrelated. A high purging flow rate means of course that

the air rather quickly arrives at the point in question.
The aims of this article are:

1. To present a multi-chamber model based on concepts
pertinent to air quality studies. The concepts are the
same as those given in the author’s previous article in
this journal [2]; therefore, the nomenclature used in
this article is, with one exception, fully in accordance
with that in the previous article.

2. To derive again some of the relations given in the
previous article, now based on a multi-chamber model.
Derivations based on multi-chamber models are easier
to understand and will therefore better highlight the
meaning of the different concepts.

3. To derive new estimates of the magnitude and the
relationships between the key concepts given above.
These estimates are obtained by starting from the
mathematical properties of the model.

4. Toillustrate, using real measurements, the necessity of
making an appropriate model formulation.

Throughout the whole paper we assume that:

(i) contaminants are dynamically passive,i.e.they follow
the air movements in the room. In the Appendix the
differences between dynamically active and dynami-
cally passive contaminants are discussed ;

(i) the release rate of contaminants is much smaller than
the supply flow rate of air;

(ili) the contaminants are conserved, i.e. that which
enters the system also leaves the system;

(iv) all physical quantities are assumed to be mean values
in the sense of ensemble averages.

EXAMPLES OF WHEN THE MIXING-
CHAMBER APPROACH IS VALID

It is well known that, in buildings, there are often greater
differences in mixing between rooms than within rooms
[3]. Even with connectinginternal doors open, the internal
walls act as partitions that somewhat obstruct the diffusion
of air between rooms. Therefore, buildings can often be
satisfactorily represented by a set of interconnected
mixing-chambers, where each room constitutes a mixing-
chamber. Due to the stack effect, especially in buildings
with natural ventilation, there is often a net flow of air from
the first to the second floor. This causes a mixing pattern
with a pronounced difference between the first and second
floor, and a two-chamber representation may be sufficient
in this case.

Figure 1 shows a small test house equipped with a fan-
powered supply and extract system. The house had two
rooms of equal size (the volume of each room was approx.
50 m?) with a door connecting the two rooms. Air at room
temperature was admitted to room 1 and extracted from
room 2. Tracer gas technique was used to monitor the local
mean-age at two points, each in the centre of both rooms at
a height of approx. 1.7 m above floor level. Measurements
were carried out both with the connecting door open and
closed. When the connecting door was closed, a narrow
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Fig. 1. Connecting door closed. Recorded tracer gas concentrations.

slotunderneath the door allowed the air to pass from room
1 to room 2, but not in the opposite direction. The results
are summarized in Table 1. When the connecting door was
closed the one-way passage controlled the diffusion of the
airin the whole house, and caused a considerable difference
in mean-age between the rooms. That is we have two
different mixing-chambers. Figure 1 shows the recorded
tracer gas curves in a closed door case.

When the door was open the situation was somewhat
different. At the lowest flow rate, the mean-age was about
the same in both rooms and the whole house constituted
one mixing-chamber. When the flow rate was increased, a
pronounced two-chamber character appeared. The
mixing in room 2 was however probably now not perfect at
the higher flow rates. The mean-age of all air in the house
was estimated by using relation (37c). A somewhat
surprising difference appeared between the open door case
and the closed door case. The mean-age of all air in the
house was at its lowest when the door connecting the
rooms was closed. The tracer gas (contaminant) was
prevented from being spread back and forth throughout
the house, and therefore was quickly removed from the
house. This illustrates the fundamental objective of a
ventilation system ; that a contaminant shall be removed as
quickly as possible.

Figure 2shows the recorded tracer gas concentrations in
a room to which both ventilation air and heat is supplied
by a warm-air system (run A30 in [4]). Figure 3 shows the
mean-age of air at several heights above floor levels. The
two chamber character appears clearly both from the
tracer gas curves and in the mean-age distribution.

SYSTEM AND MASS-BALANCE EQUATION

A room or a building, henceforth called a system, is
subdivided into a arbitrary number, n, of chambers (see
Fig. 4). In each chamber, the mixing is assumed to be
uniform and instantaneous. The system boundary
represents the boundary between outdoors and indoors. In
general we have two types of chambers. The first type of
chamber is directly linked to outdoors, outdoor airis either
supplied directly to the chamber (supply air chamber), or
airis transferred from the chamber to outdoors (extract air
chamber). The second types of chambers are interior
chambers which are only in contact with outdoors via
other chambers.

It should be observed that when two indices appear, the
first index denotes the desitination, while the second index
denotes the origin. In the author’s previous article [2], the
order of the indices was in the reverse. The overall
volumetric flow rate of air leaving the chamber is denoted
by Q.

Qu= Z_: Qi+ Qi 1)
Gab
The total volumetric flow rate of outdoor air to the whole
system is:
) = Z Qis= z er- 2)
=1 j=1

Furthermore we assume that in chamber i, a contaminant
is released at a time-dependent rate m(t). Conservation of

Table 1. Recorded mean-age of air in test house in Fig. 1

Connecting door open Connecting door closed
Estimated Estimated
Nominal Nominal mean-age mean-age
flow rate time Local mean-age of air of all air Local mean-age of air of all air
of air constant Room 1 Room2 inthehouse Room | Room 2  in the house
0 :, ) ) (B ) ) Gy
(m*/h) (h) (h) (h) (h) (h) () (h)
25 4 4,00 4.10 4.05 191 4.53 322
50 2 1.39 2.70 2.04 0.95 2.26 1.61
100 1 0.80 1.37 1.08 0.60 1.08 0.84
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Figure 2. Short-circuiting system. Recorded tracer gas concentrations.

mass then gives for chamber i:

d¢; u

V'F = -0;Ci+ Z Qi C;i+Q;,C.+my(7). (3a)
%)

The equivalent exhaust concentration C,, equation (17) in

[2], becomes:

= ZQeic'i
—Q .

By using matrix notations equations, (3a) and (4a) can be
written in compact form as:

C. (4a)

dC
Vd— = —QC+Q,C,+m(r) (3b)
T
QI xC
C.= 4
0 (4b)

where:

V = diagonal volume matrix with non-negative
elements (=0)
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Fig. 3. Short-circuiting system. Recorded mean-age of air at
several heights above floor level.
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Fig. 4. Flow-system.

C, and C, are column matrices (vectors) with non-
negative elements
Q is the quadratic flow matrix defined by:

Qll —QIZ see _Q'I.n

Q= —-QZI :Q22 e _:an |

—in _an see QM

The properties of the flow matrix and its inverse
A flow matrix has the following properties:

1. The flow matrix Q has positive diagonal elements and
non-positive (<0) off-diagonal elements. Furthermore
we have the following constraints:

Q: - Qx 1 2 05 ie. le b Qﬂ+ z (—Qip) 2 0,
p=1
r*

1<i<n (6a)

n
Qx b QTxl 2 0y i-e' Qe,[ = Qil’+ Z (_ij) = 0,
&3h
1<j<n (6b)
where 1 is a column matrix whose elements are unityand 0 |
is a column matrix whose elements are zero.
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Relation (6a) implies that the sum of all elements, for
example in row i, are equal to the total flow rate of outdoor
air supplied directly to chamber i. In an exactly analogous
manner, relation (6b)implies that the sum of all elements in
column j is equal to the total flow rate of air transferred
directly from chamber j to outdoors. In the mathematical
parlance, relation (6a) implies that the flow matrix Q is
diagonally dominant, i.e.

Ql'i P Z I—'Qipl = z Qip' (7)
p=1 p=1
(p#i) (p#i)

Similarly, relation (6b) implies that the flow matrix is
diagonally dominant with regard to the column sums.
When the inequality (7) holds strictly, i.e. all row sums are
greater than zero, then the matrix is said to be strict
diagonally dominant.

The system is a closed system when there is no exchange

of air between the system and outdoors. A naturally =

ventilated building can, when there is no wind or stack
effect, occasionally be an almost closed system.
Henceforth, we shall presuppose that there is always an
exchange of air between the system and outdoors and
therefore that the system is open, i.e.

Q,=Q, #0. 8)

This implies that at least one row sum, and one column
sum, is greater than zero. We will in the sequel presuppose
that the flow matrix is irreducible. This essentially means
that there are no totally isolated chambers in the system.
This is a very reasonable assumption ; a chamber would at
least be connected to another by molecular diffusion.

2. Foranopensystem with an irreducible flow matrix, it is
well known that the flow matrix, Q, is non-singular and
therefore its determinant is non-zero:

Det Q # 0. &)

This implies that the inverse of the flow matrix, Q ~!exists.
A non-singular flow matrix belongs to a sub-class of
matrices called M-matrix ([5] Chap. 6). The inverse of the
flow matrix has, as will be shown later, an important
physical significance. The elements in the inverse matrix
are given by:

(10)

where A,; are the cofactors* of the matrix Q.

3. The cofactors of the diagonal elements in Q are
positive:

Ay, >0 (11a)
and the cofactors of the ofl-diagonal elements are non-
negative [5]:

Ai; 20 (i #)) (11b)

In view of relation (10), this shows that the elements in the
inverse matrix are non-negative,

A theorem, derived by Ostrowski [6], for strict
diagonally dominant matrices applied on the flow matrix

* The cofactor A, of the element @, in Q is defined as: A;; =
(= 1)"*/D,; where Dy is the determinant of the matrix obtained by
striking our row i and column j.

BAE 19:4~C

gives that for the elements b;; in Q™! it holds:

-max b, =b; and maxb; = by (12
i i
i.e. the maximum element in a row or column of Q ™' is the
diagonal element. Later, Berman and Plemmons 51,
reported that (12) holds even when not all the row or
column sums in Q are greater than zero.

The mass balance equation reformulated and its general
solution

As we have seen, the inverse matrix Q™! always exists
and therefore we obtain after multiplying both sides in (3b)
by Q!:
Q~!V dC(r)/dt = =C(1)+Q'Q,C,+Q 'm(z). (13a)
The physical dimension of the elements in the matrix
Q~'V is time. The matrix Q 'V has, as will be shown

further on, a particular physical interpretation, and
therefore we name it the t-matrix, that is:

t=Q V. (14)
Its inverse always exists and is equal to:
T l=V7iQ. (15)

The physical dimension of the elements in the inverse
matrix is the reciprocal of time.
Alter introducing the t-matrix into (13a) it becomes:

© dC/dt = —C()+Q~'Q,C,+Q 'm(x). (13b)

Without any loss of generality we will in the sequel assume
that the supply air concentration is equal to zero, that is:

C,=0. (16)

In case of no contaminant sources, m = 0. The time
evolution of the concentrations is governed by:

t dC(r)/dt = —C(7). (17a)

By multiplying each side of equation (172) by 71, we
obtain the mathematically equivalent expression:

dC(r)/dt = —¢~1C(1). (17b)

Starting from an initial concentration C(0) at timet =0
the time history of the concentration is given by ([7],
pp. 191-192):

Clt)=(e™* " "CO)+V~!

x [ J e "' (r) dr’]. (18)
V]

e~ 't is the matrix exponential defined by a Taylor series
({73, p- 180):

1
-!"IE I | =l— -1
e 'Z‘ln!( ') Tt

l 2(.— 132
+Et(t P4 (19)
[ is the unit matrix:
1 0 0
01 ... 0
I = - : (20)
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and (z~!)" is matrix multiplication of the matrix t™' by
itself n times.

The first term in (18) is dependent on the initial
concentration, while the second term is the ‘source term’.
As time increases, the first term decreases and becomes
negligible compared to the ‘source term’. With a constant
flow rate of contaminant equation (18) becomes:

C(z) = (e ")C0)+Q ' (21)

The equilibrium concentration attained is given by:
C(0) = Q™ 'm. (22)

In the case of no contaminant source (21) becomes::
C(1) = (™7 ')C(0). (23)

Equation (19) shows that with a time-dependent release
rate of contaminant, the ‘source term’ contains terms
dependent on both the flow rate of air and the volumes of
the chambers. However, equation (21) shows that in the
case of a constant rate of release of contaminant, the
‘source term’ is dependent only on flow terms.

In this subsection we have seen that the inverse, Q ', of
the flow matrix appears both in the expression for the
equilibrium concentration attained (22), and in the
expression for the time evolution of the concentrations
(17a). This motivates a closer look at the elementsin Q~ 1
and especially consideration of their physical meaning.
However, before this can be done we need the moments
with regard to time of the concentration histories. From
the moments, we can deduce the age distributions of both
the supplied air and contaminants released within the
TOOMm.

The moments of concentration histories

The objective of this subsection is to derive a relation
between the moments of concentration histories in interior
chambers and the moments of concentration histories in
the extract air chambers.

The moments about the origin are:

ue = J. "C(r)dr n=0,1,2,3,... 24)
0

where p is the area under the curve.
After use of integration by parts, the application of
definition (24) on relation (23) gives:

p = nl(e™ 1) IC(0) = mife™H) 1Y+ 1C(O)
=nlt®*DC(0). (25)

aftering inserting (23) into the definition (4b) of the
equivalent exhaust concentration we obtain:

1
Cl)= ) Q7 [exp(—*~191C(0) (26)

where, see equation (6b):

QI =1"xQ. @n

We insert (27) into (26) and calculate the moments in
accordance with (24) and obtain:

He) = na!(lfx Qx =" 1C(O)
="6!(]T>(V><V“er"”)c(0)
n!
= S Tx Vi eo)

= na' (17vs")C(0) (28)

where 1 = L.
From (25) we see that (28) can be expressed as:

e = G TVhE) 29)

We divide each side in (29) by the total volume V, and
rearrange the terms, and obtain:

1 _ g1 .,

V(ITXV)F‘(C" Y =7;#‘c.’- (30a)
The matrix multiplication in equation (30a) yields a
summation of the moment, u"~! in each chamber
weighted by the corresponding chamber’s fraction of the
total volume, that is:

e Q1
)= = O (n)'
i;l (V)#c.- e (30b)
By definition, the left-hand side in (30b) is the system-
average, (u? ~ 1, of the (n — 1)th moment and therefore we
rewrite (30b) as:

1
Gy =2, (300)

This is the same as relation (14) in [2].

The age distribution of the air

We possess different methods, based on tracer gas
technique, for determining the mean-age, ., of the air in
an arbitrary chamber p, see [2] Table 1. One possibility is
to start from the same initial concentration in each
chamber, that is:

C(0) = C(0n (31)

and record the concentration decay. The mean-age is
obtained by dividing the Oth moment, uf, ie. the area
under the decay curve by the initial concentration:

= @
According to (25):
#2 = 1 x C(0). (33a)
Combining (31) and (33a) yields:
29 = x1C(0) (33b)
Inserting (33b) into (32) gives the important relation:
) =x 1L (34)

The right-hand side in (34) is a column matrix consisting of
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the row sums of matrix r. That is, thesum of the elements in
for example row i in the matrix tisequal to the mean-age of
the air in chamber i, u}).

The mean-age of the air when it leaves the room, i} ‘, we
obtain from the concentration readings in the extract duct
as:

©)
a _ He

SARNCTN
According to (28) the Oth moment (area under the
concentration curve) is:

(35a)

1 V' C(0)
© = (1TVDC(0) = —— 36
ke, Q( )C(0) ) (36)
and (35a) becomes :

1
P

M

T,

3 (35b)

=

Relation (35b), in the context of multi-chamber models,
has been provided earlier by Wen and Fan [8], Chap. 7.

By inserting (4a) and (32) into (35a, b) the average age of
all air leaving the system can be expressed in terms of the
mean-age of the air in chambers from which the air is
leaving the system:

(0)

That is, the mean-ages are welghted by the flow rate of air
from the chamber to outdoors, to the total flow rate of air
from the system.

The mean-age of the air in the room, (i), is equal to:

ue,
<[1(”> = “(o.) (373.)

The first moment, uf!), according to (28) is equal to:
ud) = 6 (lTV x t x 1)C(0). (38)
Using (36), (38) and (34) in (37a), we obtain the following

expression for the mean-age of air in the whole system:

(ATVxTx1) _17V4)

ey = = 7

(37b)

The matrix multiplication in the denominator of (37b)
gives rise to a summation of the mean-ages, ul/, in each
chamber i, weighted by the corresponding chamber’s
volume {raction of the total volume, compare equation (67)
in [2]:
(N “ V (1)
gy = ‘; (V)m. (37¢)

In reference [9] it was proved that if at each point a passive
contaminant is released at a rate:
m
om=— 38a
7 (38a)

then the equilibrium concentration attained at each point
pisfully controlled by the local mean-age of air at the point
p:

C,(0) = dm uf). (39)

We shall derive (39) in the context of multi-zone models.

The contaminant generation vector m, now becomes:

h = dri V1. (40)

This inserted in equation (22) for the equilibrium
concentrations gives:

C(w0) = 0mQ~'V1. (41a)
In terms of the ¢ matrix that is equal to:
C(o)=0mtx1 (41b)
which by (34) becomes:
C(0) = dm p (41c)

which is the same as (39).

The age distribution of contaminants

The mean-age of a contaminant released within the
system can be obtained by the same procedure as for air.
The only difference is that now we start from an
equilibrium concentration caused by a contaminant
source. The equilibrium concentration is given by (22) and
the concentration is not necessarily the same in each
chamber.

The mean-age of the contaminant in chamber number i,
u4), is calculated (rom the concentration readings in that
chamber as:

(0)

o = Fo 42
Ho = C (0) 42)

For later reference we rewrite (42) as:
4 = Ci(Oy). (43)

The mean-age of the whole mass of contaminant present
in the system {u{"), is calculated from the concentration
readings in the exhaust as:

i 2 -
Hy 7 ==y -

From (28) we obtain the following expression of the zero
moment in the exhaust:

u) = b: (lTVC(O)) (45a)

By carrying out the matrix multiplication in (45a) we
obtain:

e = a <CO» (45b)

where {C(0)) is the average contaminant concentration in
the system. By using (29) the first moment in the exhaust
can be written as:

ue) = ) (lTVﬂ?‘)- (46)

By using (45b) and (46) we obtain the following expression
for the mean-age ol the contaminant presentin the system:
A7)
Wy = 44b)
#o 2 T vicon .
By carrying out the matrix multiplication in the
denominator of (44b) and using (43) we obtain the final
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expression:

= [ Vix C{0)
Wy = (— M. (44c)
we = X \vecon )
Thatis, the system-average age is obtained by summing the
mean-ages in each chamber weighted by the fraction of
contaminant content in the corresponding chamber of the
total contaminant content in the system.

The physical interpretation of the inverse matrix Q!
According to (10), the inverse matrix Q ™ ! can be written
in terms of the cofactors, A;;, of the matrix Q as:

Ay Ay o Ay
-1 _ 5 . .
Q " DetQ ' :
Ay Axn ... A
byy bz ... by,
=|: B @47
bnl an b bnn

We already know from (11a) and (11b) that all elements in
Q! are non-negative (> 0) and that the diagonal elements
are always greater than zero.

A constant release of contaminant in chamber i gives
rise, according to (22), to a contaminant concentration in
chamber p equal to:

C, = b,m;. (48)

The physical implication of relation (12), which states that
the maximum element in each row of Q ™! is the diagonal
element, is that the maximum concentration occurs in the
chamber where the contaminant is released.

By using (48), the elements in Q™! can be written as:

by ==L (49)

Theright-hand sidein (49)is ‘the transfer index’, T,,;, see [2]
equations (58) and (59), between the injection chamber and
chamber p. That is:

bp.‘ = Tpi 1) (50)

The reciprocal of the local purging flow rate in chamber i,
U,, is by definition, see [2] equation (71b), equal to:
| 1_¢ Ai

T o5~ M=o (51)

The local purging flow rate, U, expresses the net rate at
which a contaminant is transported out of the system.

Expressed in terms of the local purging fiow rate, U ,,and
the transfer index, T,,, the inverse matrix becomes:

1

U_ TlZ LEE Tln
1
Q'=|: o (52a)
1
Ta To .. U,

The transfer index can be written as, see [2] equations (72)
and (75), as:

~

-U—' (53)

4

T =

where P, is anon-dimensional(true) probability that gives
the probability of a particle released in chamber i passing
into chamber p. The flow rate of contaminant, r1,, at an
arbitrary point is given by:

r, = P, (54)

The equilibrium concentration at the same point may be
expressed as:

i pi 4
= == (55)
g UP UP
In terms of the local purging flow rate, U,, and the
probability, P,;, the inverse matrix Q™! becomes:

1 P, P, ]
U, U, U,
Q'=|: ;| (52b)
P, P, 1
v, U, U,

Restrictions to the magnitude of the local purging flow rate

We shall make use of the determinant of the flow matrix
Q. By expansion of the Q by its pth row, see [7], p. 33, we
obtain:

Det Q = - QplApl - QpZApZ. o +QppApp' I QprlApn‘
(56)

Now from (51) we know that the local purging flow rate in
chamber p is equal to:

Det
U, ===t

= 57)

pp

Therefore by combining (6a), (56) and (57) we obtain:

n A
UF = Qp.1+ z (1_ AN>ij' (58)
=1 PP
(i#p)

Weobtain a similar expression by expansion of the Q by its
pth column and making use of (56) and (57):

Up = Q¢p+ i (1 . Aip)Qip- (59)
i=1 App
(i*p)

All terms in (58) and (59), including the terms in brackets,
are greater than or equal to zero. Therefore it follows, that
the local purging flow rate is greater than or equal to the
largest of Q,, (flow rate of outdoor air supplied directly to
chamber p) and Q,, (flow rate of air transferred directly
from chamber p to outdoors). Thatis we have the following
lower bound on the local purging flow rate, U,, in a
chamber directly connected to outdoors:

U, 2 max(Q,,, Q.,) = 0, (60)

The lower bound, given by (60), is obvious if one considers
the physical interpretation of the concept purging flow rate
itsell. For an interior chamber we cannot give a lower
bound on the purging flow rate, without knowing the flow
structure in detail. To obtain an upper bound we are going
to make use of (6a), which after multiplication by Q! on
both sides becomes:

Q 'xQ,=Q !Qx1=Ix1=1  (6la)

By carrying out the matrix multiplication in (61a) we
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obtain the following set of equations:

bpp Qs 21 byCi=1
é*m
This and (12) gives us the following estimate :

I< bn(jgl QJ':) =b,0. (62)

(1<p<n.  (6lb)

We know from (51) that b,,
Q

I 4

= 1/U, and we obtain:

1< or U,<Q. (63)
That is, in any chamber, the local purging flow rate is less
than or equal to the total rate of outdoor supplied to the
system. In particular, if the total flow rate of outdoor air is
supplied directly to one chamber only, or all the air
transferred from the system to outdoors is taken from one
chamber only, then both the lower bound (60) and the
upper bound (63) are attained simultaneously. Therefore
in this particular case we find that the local purging flow
rate in the chambers in discussion are:

U,=0. (64)

The matrix t and restrictions to the local mean-age of air

By carrying out the matrix multiplication in definition
(14) of the matrix 7, using expression (52b) of the matrix
Q™ !, we obtain:

- .
B Y, Y p
U] []l 12 bR Ul in
t=Q V| i 5 S ()
Nhip Yap Yp
U,, nl U,. n2 sep U,, m-J

We know from relation (34) that the sum of elements in an
arbitrary row p in t is equal to the mean-age, uf), in
chamber p, that is

l n
#(1:__ V,P =_" — V,P,. (66)
) ,,,;1’ ol U, U”; 7 i
U#p)

We know from (55) that P,; < 1 and therefore we obtain
the following upper bound of the local mean-age:

P 4
P < L V=7 (67a)
v, i=t L4
or
U, xuy) <V, (67b)

compare equation (86) in [2].

Relation (67b) connects two important quantities, the
local purging flow rate and the local mean-age of air. We
can rewrite (67b) as:

Tn
< E Q. (67¢)

When 44 > 1, relation (67¢) gives rise to the following
restriction to the local purging flow rate:

U,<Q (whenl)>1,). (68)

The reader should observe that the important relations

(67)and (68) can be deduced in two different ways. One can
either use a pure mathematical argument or start from the
physical interpretation of the elements constituting the
matrix ¢. The mathematical argument is based on relation
(12) which states that the diagonal element is the largest
element in each row or column of the matrix . The other
argument is based on the fact that the probability P,  must
be less than or equal to 1. In [2], another argument was
used to deduce (67b) and (68).

All elements of the right-hand side of (66) are greater
than or equal to zero. Therefore we obtain the following
lower bound on the local mean-age of the air in any
chamber:

v,

U, .
The term on the right-hand side is the ratio of the volume of
the chamber to the net rate of the transmission through the
chamber. It can therefore be interpreted as the mean
residence time in the chamber, that is, the mean time period
spent by a ‘molecule’ entering the chamber.

Weknow thatitalways holds that U, < Q and therefore
we deduce from (69):

(1) >

Ho, 2 » (69)

v,
W2 (70)

By combining (67a) and (69) we obtain for an arbitrary
chamber: .

v, 14

P (0 «

L)< —. (71)

UP ’ UF
In particular, for achamber directly connected to outdoors
we obtain by using (60):

v, 14

Fsp) < —. 72
Relation (35¢) gives rise to a restriction on the mean-age in
extract air chambers. In the case of several extract air
chambers there are two possibilities: in each extract air
chamber is 4 = 1,, or is u§) < 1,, while ui) > 7, in at
least one chamber.

An estimate of the magnitude of the largest eigenvalue of the
matrix t

In the next subsection, we need an estimate of the
maximal eigenvalue of the matrix r. The matrix is non-
negative and therefore we may apply the Perron—
Frobenius theorem ([7], Chap. 9). The Perron-Frobenius
theorem states that the maximum eigenvalue is less, than
or equal to, the maximum row sum, and greater than, or
equal to, the minimum row sum. The theorem applied on ¢
and in view of the physical interpretation (34) of the row
sums of ¢ gives:

min 44 < max 4 € max uy). (73)
I4
From the matrix theory, we also know that the eigenvalue
of the inverse matrix t~ ! are equal to the reciprocal of the
eigenvalues of the matrix .

An estimate of the magnitude of the slope of an exponential
decay curve
The decay of concentration is given by equation (23):

C(t) = (e~ * "C(0).
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When the matrix t has ndifferent eigenvalues, iy, then (23}
can be expressed in a more explicit form, as:

Clry= Y Cxe ¥*e (74)
k=1
where C, are constants depending on the critical
conditions and e, are eigenvectors.
Aflter a sufficiently long period of time has passed (say 1
> 1), the right-hand side of (74) is dominated by the
component withthelargest eigenvalue, 4,, thatiswe havea
pure exponential decay:

C@@) ~ e~ ™A (1> 1) (75)

where max 4, is the maximum eigenvalue of the matrix =.

Therefore in a plot of concentration vs time, the
concentration curves in different chambers become
parallel for T > 1, see Fig. 2, with equal slope £, and it
holds that:

A (76)

Therefore, by combining (73) and (76), we obtain in this
particular case:

< max ). amn

That is, the magnitude of the reciprocal of the slope of an
exponential decay curve lies between the smallest mean-
age of air occurring in any chamber and the largest mean-
age of air occurring in any chamber. Another significance
of the slope, when pure exponential decay occurs is [2],
[10]:
_92 C)
RTION

That s, the slope is directly related to the ratio between the
concentration in the extract chambers and the system
average concentration.

(r > 10) (78)

A MODEL CASE

A simple model case will be studied in some detail to give
insight into the meaning of the concepts introduced. The
system is a two-room house, see Fig. 5. Between the rooms
there is a doorway. In each room the mixing is assumed to
be complete and instantaneous.

The flow rate of outdoor air supplied to room 1 is
assumed to be greater than or equal to the flow rate of air
extracted from room 1, that is X > Y. This givesrise to a
net flow rate of air from room 1 to room 2, which amounts
to (X —Y)x Q. The secondary flow is expressed as $Q,
where f may vary from no secondary flow between the
rooms (f = 0), up to the mathematical limit (8 = oc). The
latter limit gives rise to complete and instantaneous mixing
in the whole system. In practice the lower bound for
complete mixing is attained for f equal to 5-10. The actual
value depends to some extent on the relative position
between the supply and extract points.

Based on the relations derived earlier, we can estimate
the magnitude of the local purging flow rate and the local
mean-age without doing any calculations. Because
XQ > YQ we obtain from (60) that for room 1, the

purging flow rate is:
U, = X0. (79)

X 2 Y implies that (1—Y) > (1—X) and we conclude
from (60) that for room 2 it holds that:

U, 2(1-Y)0. (80)

Forthelocal mean-agein chamber 1, relations(70)and (72)
give us the estimate:

Vv T
H—< ) <=, 81
U, Ho, X (81)
Relations (70) and (72) give for room two:
(1=#)1, < i) < — (82)

$2 \(I_Y)

The flow matrix of the system consisting of the total flow
rates is readily set up (the arrows denote the corresponding
row or column sum):

(X+5) -8 1 -x0
Q_Q[—((X~Y)+B) (I—Y)+ﬂ:|—»(1—X)Q &

! !

vo  (a-ne

The determinant is calculated as being:
Det Q = QXX(1—-Y)+B). (84)

The inverse matrix Q ! becomes:

(1-7)+8 B
_ 1| X(0-N+§ X(1-1+8
2|l X=7)+§8 X+ |
X(1-7)+f X(1-7)+B.
We know from (51) that the reciprocal of the diagonal
elementsin Q ~! are the purging flow rates U, and U,. The

off-diagonal elements are P,,/U, and P,,/U,. Weread off
from (85):

Q™! 85)

X(1-)+8 B
=Q0—————; Pi,=————
N A
_ A X(1-=-Y)+8, _(X=Y)+8
UZ_QX_+B_’ P“_X—-l-ﬂ
The matrix T becomes:
t=Q 'V=r1,
(1-Y)+p B
X(1—Y)+p (I_X)X(I—Y)+ﬁ -
X-N+p | X+8 |
X(1—Y)+58 X(1-71)

The row sums in (87) are the mean-age of air in room 1
and room 2 respectively:

X(1-Y)+
”91) = Tuﬁ% (823)
0 X—HY+B (&2h)

By = Tnm'
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The average age of all air in the room we calculate from
(37¢):

H(H~Y)+X(1—H)+B
X(1-Y)+p '

For some extreme values of the parameters X, Y and §,
the resulting purging flow rates, transition probabilities
and the mean-age of air are listed in Table 2. Complete
mixing occurs when § = 0 and no back-mixing occurs
when § = 0. The displacement system occurs when there is
no back-mixing and all outdoor air is supplied to room 1
only, and all air is extracted from room 2 only.

g’ =,

(88)

MEASUREMENTS

We possess different methods for determining the
pertinent quantities, i.e. the purging flow rates and the age
distributions of both air and contaminants. The following
discussion will be limited to the determination of the
purging flow rate and the age distribution of air. The
methods can broadly be divided as follows:

1. Pure experimental methods

1a. Direct method. For each mixing chamber the
quantities desired are monitored directly by the methods
discussed in [2].

1b. Determination of the flow matrix Q. The entries in
the flow matrix can for example be determined by multiple
tracer gas technique. Then the inverse, Q ', of the flow
matrix gives us the desired quantities.

2. Combined experimental techniqgue and model
approaches

The age distribution of air is fairly easy to determine
experimentally, while the purging flow rate is more difficulit
to determine. Therefore a useful approach may be to
measure the age distribution and then, based on a model
assumption, calculate the purging flow rate.

The application of methods 1b and 2 are illustrated
below. The first example is based on measured
interchamber flows and infiltration rates in a three-storey
office building reported in reference [11]. Each floor was

v (1-K)V

e
U

xa Ya

I

(X-Y)Q.—/3-Q—>

® @

4—/?-0

F

(1-x)a (1-v)a

Fig. 5. Model system.

considered as a separate mixing chamber with a volume of
1762 m3 each. The building had a mechanical ventilation
system which allowed a variable amount of outdoor air to
be taken into the building. This value could be varied from
nominally zero (full recirculation) to full (no recirculation)
outdoor intake. Figure 6 shows a schematic drawing of
measured flow rates (m3/s) from a test carried out with the
ventilation system on full recirculation, i.e. nominaily zero
outdoor intake. The total amount of outdoor air entering
the building amounted to 1.28 m?/s (=4608 m?/h). This
corresponds to a nominal time constant equal to 1.15 (h).
Beginning with the data from the second floor as the first
row, the flow matrix Q becomes (entries in m3/s):

18 —107 -—047] —027
Q=|-057 166 —059| —0.50
—0.64 —036  1.52] —051.
! ! !

0.60 0.22 0.46 1.28

The inverted matrix Q™! becomes:

105 081 064] —2.50
Q- !'=|057 110 060| —227.
058 060 1.07] —225

With the diagonal elements written as the reciprocal of the
purging flow rates, and the off-diagonal elements written

Table 2. Model case, derived results

Purging flow rate

Transition probability Local mean-age

Type of system Parameters Room 1 Room2 Room2-room! Room!l—-room2 Room i Room 2
X Y B U, U, Py Py I‘g.’ I“olx)
Complete mixing 0-1 <X o Q 4] 1 1 T, T,
No back-mixing 0-1 <X 0 XQ (1-Y)Q 0 X-Y X . x-x’yt-
X X X(1-1
Displacement flow { 0 0 Q Q 0 1 #r, T,
All air supplied to
chamber 1, all air B X+ f
extracted from 1 0 - Q Q 1+8 1 1+8 T Tn
chamber 2
All air supplied to = = o -
chamber 1 1 <X - 0 (1 Y)-H?Q B (1-n+p Y)J(f’ﬂ'ir'I 1 .)?’Y+ﬂt~
1+8 (1-Y)+8 1+p (I-Y)+p (1-7)+8
All air extracted X+8 . B X +B
fi hamber 2 0-1t 0 — — L 1
rom chamber l+BQ Q T+5 X+ 5 T, T,
L B /i 1—#+8
Short circuiti 1 1 - —_— 1 Y
uiting Q Y Q T+5 T ; T,
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—1—+0.27 0.47
1.07
0.60 <— 4| Second floor
——0.50 0.57 0.59
0.22%— First floor 1' |
—t— (.51 | 0.36 0,64 -
0.46 =—1— Ground floor

Fig. 6. Office building, inter-chamber air flows in m?s.

as transition probabilities divided by the purging flow
rates, the inverse matrix Q™! becomes:

1077 0.61_]

095 095 095
052 1 055
091 091 091
0.54 056 1

053 093 093

Q=

Because each mixing chamber had the same volume, we
obtain the row sums in the corresponding * matrix by
multiplying the row sumsin the Q ~ ! matrix, by the volume
of the mixing chambers. This gives us the mean-age of air
on each floor. The results are summarized in Table 3.

Finally as an example of a mixed approach, we turn back
to the example shownin Figs 2 and 3. Itis a short-circuiting
case. The volume fraction of the first mixing chamber,
which all air is both supplied to and extracted from, we
estimate to be ¥ = 0.7. From Fig. 3 we see that the local
mean-age of air in chamber 2 is equal to 27,. From Table 2,
entry short-circuiting system, we read that in chamber 2
the local mean-age and the purging flow rate are:

1—5#+
ugz) = TET"’ U,= 'ﬁ'ﬂﬂ'

We know the local mean-age and this gives us g = 0.7,
and subsequently the local purging flow rate becomes
U, =0410.

0.

CONCLUSIONS

The flow conditions occurring in ventilated spaces
resemble those prevailing in recipients. The average air
velocities caused by the total throughput flow is typically
small compared to the velocities caused by secondary

M. Sandberg

flows. Therefore at any point, air or contaminants of all
ages are present, and a statistical approach is needed to
quantify a system’s performance to remove contaminants.
In particular we must make a distinction between flow
rates, predicted by recording velocities, and the net flow
rates by which a contaminant is removed from the system.

The pertinent key concepts are the purging flow rates
and the mean-age of both air and contaminants. A multi-
chamber model based on these concepts has been
formulated. Multi-chamber models are particularly
suitable for representing the conditions in whole buildings,
where each room is treated as a chamber. The starting
point in the model formulation is the flow matrix Q
consisting of the total flow rates of air between the
chambers.

The total flow rates of air between chambers may well be
greater than the total flow rate of outdoor air supplied.
However, it turns out that the net flow rates (purging flow
rates) are contained in the inverse Q ™! of the flow matrix.
The reciprocal of the diagonal elements in Q™! are the
purging flow rates, while the off-diagonal elements are
equal to a transition probability divided by alocal purging
flow rate. The inverse matrix Q ~ ! governs the equilibrium
concentration attained, while the matrix 1 =Q ™!V (V is
the diagonal matrix of chamber volumes) governs the time
evolution of concentration histories. The sum of the
elements in a row, say row i, is equal to the local mean-age
of air, 4, in the corresponding chamber. The mass
balance equation becomes:

T £ +C=Q 'm.
dr
Based on the mathematical properties of the matrix Q ™4, it
has been shown that the purging flow rate, U, , is equal to
or less than, the total flow rate, Q, of outdoor air.

This is fully consistent with the physical interpretation
of the local purging flow rate. Furthermore, it has been
shown, again starting from the mathematical properties of
the matrix Q™ !, that local purging flow rate and the mean-
age of air an an arbitrary chamber are related as:

(1)
Um X By, <V

where V is the total volume.

Based on this inequality it is readily seen that when the
local mean-age of air is greater than (V/Q), then the flow is
stagnant in the sense that the chamber is not ‘lushed’ by
the total air flow supplied.

In case of exponential decay with the same and constant
exponent A,, in each chamber, it has been shown that the

Table 3. Results obtained from the office building in Fig. 6

Purging
flow rate mean-age
(m3/h) (h) Transition probability
Second Second
Second floor 3420 1.22 1 0.77 t 0.61 - —
First Ground
First Second
First floor 3276 1.10 1 0.55 — l 0.52 —
Ground First
First Second
Ground floor 3348 1.10 — — l 0.54 l 0.56

Ground Ground
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exponent is related to the mean-age of air in the chambers :

L 1
min pui) < o S max .
L
Other estimates of the magnitude of the key concepts are
reported in this article.
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APPENDIX

Dynamically active and dynamically passive contaminants

Both for a dynamically active and a dynamically passive
contaminant, the equilibrium concentrations obtained at an
arbitrary point p can be expressed as

(A1

The difference between a dynamically active and a dynamically
passive contaminant appears in the transition probability, P .. Due
to, for example, a high supply velocity or density difference with
regard to the ambient air, a dynamically active contaminant sets
upits own motion independent of local air motions. Therefore, the
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transition probability for an active contaminant is not necessarily
directly related to the air motions, and subsequently, neither is it
directly related to the flow matrix Q, used in the model approach
in this article. For a passive contaminant however, the transition
probability is governed by the inverse Q ~ ! of the low matrix. The
restriction (12) on the magnitude of the elements in an arbitrary
row of Q7! gives:

P,<1.

(A2)

In accordance with the statistical interpretation of P, this
relation of course holds for both active and passive contaminants.
The restriction (12) on the magnitude of the elements in an
arbitrary column of the matrix Q™! gives rise to the following
relation:

U
P,<=E.
UPI

In the case U,; < U,,, the restriction (A3) is stronger than the
restriction (A2). By inserting (A3) into (Al), it follows that the

maximum concentration is attained where the contaminant is
released. When

Ay

P (a4)

pi = & <1

UPI
then it follows from (A1) that the equilibrium concentration
obtained at an arbitrary point is the same as the concentration at
the point of release.

This holds when, for example, a passive contaminant is released
in the supply air duct. Then P,; = U /Q thatisequal to the fraction
of the total flow rate of air supplied that passes through the
chamber (point p).
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