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A Computer Algorithm for Predicting
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ABSTRACT

This report discusses the extension of an infiltration predicting technique to the predictiom
of interroom air movements. The airflow through openings is computed from the ASHRAE grack
method together with a mass balance in each room. Simultaneous solution of the: mass balances
in all rooms having both large and small openings is accomplished by a slightly modified
Newton'g method. A simple theory for two-way flow through large openings is developed from
conslideration of density differences caused by different temperatures in adjoining rooums.

The technique is verified by comparison to published experimental results. The results indi-
cate that the simple model provides reasonable results for complex two-way flows through
openings. The model is as accurate as the available data, that is, about +20%. The airflow
algorithm allows infiltration and forced airflows to interact with the doorway flows to
provide a more general simulation capability.

INTRODUCTION

Although numerous building thermal modeling techniques and computer programs, for example,
NBSLD (Kusuda 1976), BLAST (Hittle 1979), and DOE-2 (LBL 1980), exist throughout the United

States, none of the existing techniques/programs handles the following processes
simultaneously:

- envelope heat transfer

- envelope air leakage

- envelope solar heat gain

- room-to-room heat transfer

- room~to-room air and moisture transfer

- {atraroom air movement

~ energy consumption by the heating/cooling equipment
- indoor comfort

- water vapor condensation and contaminant migration

Existing models are virtually all single-room models, where dynamic coupling between the
heated and nonheated spaces and/or the cooled and noncooled spaces is ignored.

Comprehensive multiroom building simulation capabilities will be needed in the coming
years for the following reasons:

l. Intraroom convection plays a significant role, not only for the transfer.of heat
from the interior surfaces to the room air, but also for the thermal coafort of

the occupants. Yet existing computational technology for predicting the temperatute
stratification and air motion in the room is very inadequate.
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2. Passive solar design techniques are expected to be used to a large extent in new
building design. Proper design is going to depend on understanding and being able
to predict natural energy flows within the buildings.

3. Proper control of the airflow in the central air system requires accurate knowledge
of room-by-room energy demand.

4. Moisture and contaminant distribution throughout a building must be capable of being

predicted in order to insure adequate designs as the emphasis on “"tighter” buildings
increases. '

5. Until such capability exists, effective design of internal partitioning with respect
to natural ventilation can only be done by empirical techniques.

In response to these needs, a research-oriented computer program has been developed to
allow the detailed study of simultaneous air, heat, and moisture transfer in aund through a
building with complex internal architecture. This program is called the Thermal Analysis
Research Program (TARP). Documentation (Walton 1983) for the program has been published.
Primary emphasis in the development of TARP has been on air transfer, because this is a major
shortcoming of present techniques and because it is basic to further developments in moisture
and contaminant analysis. A previous report (Walton 1982) describes initial results in the

development of TARP and indicated five significant areas for further research:
1. Calculation of airflows through large openings in reasonable computation time,

2. Calculation of convective exchange between rooms,

3. Accurate prediction of the wind-induced pressure distribution around the envelope of
the building,

4, Calculation of the effects of room air stratification, and

5. Availability of data for estimating the opening areas in the envelopes of buildings.

This report will address the first two areas.

METHODS OF CALCULATIVE

The Airflow Equation

The TARP airflow algorithm is described in detail in Walton (1982) where the program was

called the Multi-Room Loads Program (MRLP). The airflow algorithm is based on the equation
(ASHRAE 1977):

F=K* (ap)X ; (1)

where

flow rate (kg/s)

a constant

pressure difference across an opening (Pa)
flow exponent

>4 % ~
nn

Pressure differences arise from wind, air-density differences, and system-induced flows.
By applying equation 1 to all openings in the building envelope and all openings between
rooms and requiring a mass balance in each room, a set of simultaneous nonlinear algebraic

equations 1s created that can be solved for the zonal pressures and the alrflow through each
opening.

An estimate for the value of K was made by referring to the orifice equation:

F=C* A%p*y 2% AP /[ p (2)
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where

C = flow coefficient
A = observed opening area (m3)
p = air density (kg/m3)

When the opening 1is small, C equals 0.6 for a wide range of Reynolds numbers, as
shown in figure 1 (ASHRAE 1981). TARP assumes this value of C as a default. TARP allows a
variable flow exponent (instead of the 0.5 of the orifice equation) because building presuri-
zation measurements typically correlate to equation 1 when X equals about 0.65 (ASHRAE 1977).

Solution of the Flow Equations

The development of a technique to solve the airflow equations has been particularly
troublesome. Efforts have focused on two techniques described by Conte and DeBoor (1972).

The first technique is the classic Newton's method. The mass balance requirement may be
expressed as '

LF;=0 (3)

for every room. The flows, F4, are summed over all openings, i, in the enclosing surfaces
of the room. In Newton's method, successive values of room pressure, P,, for each room, n,
are calculated by

Pn(k+1) = Pn(k) = Dy (4)
where
k is the iteration number and D is computed from the matrix relationship
[J]1*[D]=1[B8B] (5)
where

[ B] 1s a column matrix, each element given by

By = I Fy (6)

and [J] 1s the square (i.e., N by N for a building of N rooms) Jacobian matrix. The values of
the diagonal elements of the Jacoblan matrix are given by

oF
.z 9F .
Jn,n =g %P (7

for all openings, i, into room n. The values of the other elements are given by

oF
z i
Tnm =y ®)

for all openings, 1, between room m and room n. Iteration proceeds until the net airflow

into every room, By, is sufficiently close to zero. These partial derivatives are very easy
to compute:

dF
# = - Xy * Fi/AP 9)
n
aF
—i. Xy * Fy/AP (interroom surface) (10)
aPm
or
3F1
T ek 0 (envelope surface) (11)
P
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Note that the term (AP)X™1 has been eliminated from these expressions, thus allowing
evaluation of the derivatives by a simple division rather than a time-consuming exponential.
Also note that as AP approaches zero, the derivative is undefined.

The second method calls for successively approximating each room pressure according to

oF
p(k+D) —p (K) _ pp /z - (12)

n
where k 1s again the iteration number. This method is quite simple and requires less
storage space than Newton's method because it does not use the Jacobian matrix.

Initial tests of these two methods showed that, although Newton's method was fastest for
most test cases, it occaslonally would not converge. The second method converged for the
original test cases and was chosen for the initial version of TARP (Walton 1982). 1t was
then found that this method converged very slowly when the openings between rooms were much
larger than the openings in the building envelope, which is a very common condition. This
problem led to a reexamination of Newton's method. A simple four-room test case was found
to usually be quadratically convergent (about 4 iterations) except for a few cases where it
converged verly slowly (about 30 iterations). In those cases, it was found that successive
iterations were overcorrecting. That is, they were successively far above and then far below
the correct solution, because successive corrections were of about the same magnitude but
opposite sign. Convergence could be achieved by reducing the size of the pressure correction
by about one-half. Since Newton's method is normally raplidly convergent, it is also neces-
sary to reduce the size of the correction only when overcorrecting occurs. The reason for
occasional slow convergence of Newton's method has not been found. It can occur with nothing
more than a change in wind direction from what was a quardratically convergent case. It
often occurs when the wind and stack pressures are about equal. Convergence is always
fastest when the flow exponent for interroom openings is near one. The experimental studies
below Indicate, however, that the exponent should be one-half.

The airflow algorithm was incorporated into a test program that allowed various solu—
tion techniques to be studied without revising TARP, which is very large. The test program
1s available from the author.

Newton's method requires the simultaneous solution of the matrix equation (Walton 1982)
at each iteration. Several techniques were considered for that solution. The first choice,
and the one ultimately chosen, was Gauss elimination. It has the disadvantage that solving
time 1s proportional to the cube of the number of equations, N, when N is large. The number
of equations is equal to the number of rooms. The Cholesky method (Brown and Solvason 1962)
is somewhat faster at large N, but is was found to be sensitive to computer truncation errors.
A Gauss—-Seidel iteration was also tried, since it has solving time proportional to the square
of N. However, this iteration also failed for large openings in much the same way that equa-
tion 12 did. Newton's method was tested for larger numbers of rooms, and it was found that
the number of iterations increased with the number of rooms. Thus, many rooms require both
longer iterations and more iterations. The number of iterations was also found to increase
with the size of the interroom openings, but it did not increase as dramatically as it had
done with equation 12. Therefore, the Newton's method is most appropriate for a small number
of rooms with large execution time penalties paid for simultaneously solving many rooms.

TARP uses an hourly heat balance in estimating dynamic room energy requirements. This
heat balance 1s solved iteratively, and at each iteration a quasi-steady solution of the air-
flow equations is obtained by the Newton's method described above. Techniques used to reduce
the number of heat-balance iterations contribute to the overall efficiency of TARP and are
described in Walton (1982).

A Theory of Flow through Large Openings

Equation 1 permits air to flow in only one direction through an opening. Large openings,
such as doorways, may have two-way flow as the stack effect between two rooms may cause a
positive AP at the bottom of the doorway and a negative AP at the top (or vice versa). A
theoretical estimate of the stack-induced airflow through a large opening in a vertical parti-
tion (a doorway) is given by Brown and Solvason (1962). The following discussion shows that
the TARP method is equivalent. Figure 2 shows a cross section of a rectangular opening of
height H and width W in a vertical partition that separates two rooms at temperatures Ty and
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Typ. The absolute pressure at the centerline (z = 0) 1is everywhere equal. Thé pressure
difference caused by stack effect at height z is

P} -Py =(pp - p2) *g*z (13)
The volumetric flow through an infinitesimal area is given by
dQ=C*W*dz * vV 2 * AP/p (14)
which can be integrated to give the flow through the top half of the opening
Z=H/2

Q=) dq=c/3*wux/ g ap/p * u3 (15)
Z=0

The coefficlent of thermal expansion is B = -Ap/(p * AT), where p 1s the average
density. For computational simplicity, TARP uses the density of the incoming fluid instead,
but this cannot cause a significant error at normal temperatures. Other definitions are:

heat-trangfer rate: a =Q*p*c* (T - Tp) (16a)
heat-transfer coefficient: h=gq / [W* H* (Ty - Typ)] (16b)
Nusselt number: Nu=h * H / k (16¢)
Prandtl number: Pr = c * u /k (16d)
Grashof number: Gr = p2 *g*B* (T - Ty * B/ 2 (l6e)

The expressions .can be substituted into equation 15 to give
Nu = C/3 * Pr * ¥ Gr 17)

This  simpltfied analysis has neglected viscous effects and effects of an air velocity
parallel to the partition. According to Brown and Solvason, the viscous effects reduce the
airflow through openings in thick partitions and an air velocity may either increase or
reduce the airflow.

TARP can handle the two-way alrflow through a doorway by dividing the door into an upper
and a lower opening. It is easy to determine the heights of the two openings, which cause a
stack effect giving the same volumetric flow as the Brown and Solvason model. These turn out
to be 13/18 * H for the upper opening and 5/18 * H for the lower one.

Brown (1962) also studied openings in horizontal partitions and developed a theoretical
expression for convection through such openings:

Nu = (0.29 to 0.35) * Pr * ¥ Gr (18)
In this case, the Nusselt and Grashof numbers are based on the thickness of the

partition. This thickness is the vertical space avallable for the development of a stack
effect.

VALIDATION OF THE LARGE-OPENING MODEL

Flow through Openings in Vertical Partitions

Weber and Kearney (1980) give a correlation for the two-way flow through a doorway based
on temperature measurements in the doorway

Nu = 0.26 * Pr * ¥ Gr (19)
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and another based on average room temperatures

Nu = 0.3 * Pr * ¥ Gr (20)

These correlations are based on similitude experimental studies of the room shown in
figure 3 and tests on a full-scale structure with a similar configuration. Weber and Kearney
estimated that they should be dependable to within 20%. They also compare their results to
two other studies (figure 4) including Brown and Solvason's. Comparing equations 19 and 17
glves a value of 0.78 for the flow coefficlent, C. Equation 20, which uses average room
temperatures, gives a value of 0.90 for the flow coefficient. This seems unreasonably large
and 1s apparently due to the uneven temperature distributions occurring in real rooms, espe-
cially above the door openings. A study of a doorway between a small room and a much larger,
high-heat-loss, two-story room did not agree well with the correlation (equation 20).

The TARP model dividing the doorway into halves was used for a wide range of parameters
and the resulte compared to equation 19. The interroom mass and energy flows were computed
for five values of AT (2, 4, 6, 8, and 10 C) each at five doorway heights (1.0, 1.5, 2.0,
2.5, and 3.0 meters). A flow coefficient of .78, a flow exponent of 0.5, and stack heights
at 5/18ths and 13/18ths of the doorway height give TARP computed mass and energy flows that
agree with equation 19 to within 0.1% for all cases.

Flow through Openings in Horizontal Partitioms

Figure 5 shows the experimental results (H = thickness; L = width of square opening) of
Brown's (1962) study of openings in horizontal partitions. 1In this configuration, there is

a significant frictional effect in the thicker partitions. Brown incorporated this into a
single equation:

Nu = 0.0546 * Pr * Gre35 * (L/H)-33 (21)

“For a TARP evaluation, it is better to consider the thickness effect as a modifier to
the stack height. A TARP model of an opening in a horizontal partition would again divide
it into two openings, one a distance Z above the center of the partition and one an equal
. distance below it. Then, for C = 0.78, the values of Z for different H/L would be:

H/L z

.0833 .168*%H
.167 . +120%H
.333 .093*H
.667 .074%H

These almost exactly duplicate the Brown results.

There are still several questions about this model. The effects beyond the studied
ranges of Gr and H/L.are not known. The model predicts that the flow should go to zero as H
approaches zero! There should be some flow. 1t is possible that two separate openings
would behave differently from a single opening of equivalent area, because one-way flow
could develop in each. These questions indicate room for further experimental work. 1In
addition, a TARP model would have to allow for no flow between rooms when the upper is warmer
than the lower.

CONCLUSIONS AND RECOMMENDATIONS

In this paper it has been shown that the convective flows through large openings can be
predicted by use of the simple orifice equations (equation 2) and a technique for solving the
mass balance equations for multiple rooms. The orifice equation is used by dividing the open-
ing into two equal areas and applying the appropriate flow coefficients and effective opening
heights. Appropriate values are given in the paper. The TARP algorithm was developed for
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predicting airflows due to stack, wind, and mechanical efforts. Since no generality was lost
in developing the coefficients for flow through large openings, TARP should properly allow
these forces to interact with the natural convection through the openings. Although more
work must be done for other building configurations, the close match between the TARP
algorithm on the experimental correlations is encouraging.

Because of the rapid increase of calculation time with the number of rooms simulated,
it is recommended that large buildings with many rooms be simulated by dividing the building
into groups of closely coupled rooms. First, treat each group of rooms as a single room to
solve for the infiltration through the building envelope and airflows between the groups of
rooms. Then, while treating those airflows as constant gains or losses to the appropriate
rooms, solve for the airflows between the individual rooms in each group.

Further study is needed on the simulation of room alr stratification, both for its
direct effects on comfort and energy requirements as well as for its effect on interroom air
movement. Study is also needed on the calculation of wind pressure on the building envelope.
This would include the interesting question. of simplifying the effect of a pressure distribu-
tion across the surface acting on many small openings in the surface. Then detailed valida-
tion should be performed with carefully gelected full-scale tests. After successful
validation, it will still be necessary to develop data on air-openings for typical building
components and construction techniques to permit the analysis and design of buildings.
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