VENTILATION

IN

INDUSTRIAL BUILDINGS

FINAL REPORT

J.R. Waters & M.W. Simons

Contents

			Page						
1.	Intro	Introduction and Objectives							
•	1.1.	Background to the study	1						
	1.2	Objectives	1						
2.	Equipment and Experimental Technique								
	2,1	Nitrons Oxide System	2						
	2.2	Sulphur Hexafluoride System	3						
	2.3	Injection of the Tracer Gas	4						
	2.4	Experimental Difficulties	4						
3.	Preli	minary Investigations	6						
	3.1	Mixing of Tracer Gas	6						
	3.2	Variation of Ventilation Rate throughout a Space	7						
	3.3	Implications of the Preliminary Investigations	7						
4.	Theore	Theoretical Considerations							
	4.1	Single Cell Ventilation Model	8						
	4.2	Analysis of Results	9						
	4.3	Multi-Cell Ventilation Model	10						
5.	Results and Conclusions								
	Refer	References							
	Table	s	15						
	Figure	es	18						
	Resul	ts Section							

1. Introduction and Objectives

1.1 Background to the study

A considerable body of knowledge exists on the natural ventilation and air infiltration of domestic buildings, and of domestic size rooms in other buildings. Experimental measurements have been carried out for many years by a number of workers, and several experimental techniques are well established. Review papers have been published by Hitchen and Wilson (1), Hunt (2), and Sherman et. al (3). There is no similar body of knowledge on natural ventilation in large single cell buildings such as factories. This may be partly due to lack of attention by research workers to this type of building, but there is also some doubt as to whether or not the measurement techniques used in domestic dwellings can be used in much larger buildings. There have been a number of model studies of air flow patterns in factory buildings, for example, by Baturin (4), and there are some published results on measured temperature distributions. However, there is hardly any published work on measured ventilation rates and air movement patterns in any large single cell buildings.

The initial impetus for this study came from a desire to model the energy consumption of factory buildings. The natural ventilation rate is an essential parameter in such a model, and typical values were needed for typical buildings in the size range 1000 m to 10,000 m. It was realised that air movement patterns within such a building may be just as important as ventilation rate, and indeed that there may be considerable variations in the ventilation rate throughout the space. In order to fill the gap in knowledge, and to provide essential information for the modelling of energy consumption of factories, it was decided to institute an experimental programme to measure ventilation and air movement in factory buildings. The programme was conceived as being in two stages, firstly a pilot study to assess the experimental problems and to identify the most important parameters, and secondly a more substantial study to obtain data on a number of buildings. The pilot study, which was funded by SERC research grant GR/B/64604, is the subject of this report.

1.2 Objectives

The overall objective was to study the problems associated with the measurement of ventilation rates and air movement patterns in large single cell buildings. In order to contain the study within the resources and time scale of a pilot study, it was limited in two ways:

- (i) it was restricted to unoccupied, unheated buildings;
- (ii) it was restricted to tracer gas methods.

The restriction on occupancy and heating provided a considerable simplification, because difficulties of measurement and interpretation of results due to, for example, the random opening and closing of doors or windows, or due to the nature and location of heat emitters, were eliminated.

The restriction to tracer gas methods was made because it was considered necessary to explore in the first instance the validity and usefulness of the technique which has found widest acceptance for ventilation measurement in other types of building. Should tracer gas methods prove to be satisfactory, then the investigation of factory ventilation could commence immediately, using the knowledge and expertise which already exists for such methods. On the other hand, should they be shown to be unsatisfactory, the investigation of factory ventilation itself would have to be preceded by a programme of research on instrumentation and methodology.

The specific question to be answered is, therefore, "can a tracer gas method be used to measure air change rates in large single cell buildings?". Particular aspects of this question which the project is intended to explore are:

- (i) the difficulty of adequate mixing of the tracer gas;
- (ii) variability of ventilation rate throughout the space;
- (iii) variation of ventilation rate with time.

2. Equipment and Experimental Technique

Two independent tracer gas systems were employed, one based on nitrous oxide and the other on sulphur hexafluoride. These were chosen because they have suitable properties and appear to be the most popular of the tracer gases in current use.

Nitrous Oxide System

The detection system consisted of a model 120 Infra Red Gas Analyser (IRGA) and a six point sampling unit, purchased complete from GP Instrumentation. The IRGA was fitted with a Luft detector, and was designed to measure nitrous oxide in air over a range of concentrations from 0 to 100 x10-6, with an accuracy of about $^+$ 2 ${\rm x}{10}^{-6}$. The range was checked using a calibrated gas mixture of 44 $\times 10^{-6}$ nitrous oxide in air. Although the instrument gives a continuous record of nitrous oxide concentration with time, its response is not instantaneous. For example, for a step change in nitrous oxide concentration of about 50 x10-6, the instrument exhibited a time constant of about 15 secs. The six point sample unit has a single pump which draws air through each channel in turn, with a dwell time of 1 minute per channel. In normal use, this allows adequate time for the instrument to settle at the correct reading before switching to the next channel. However, in actual use, the IRGA and sample unit were often some distance from the points within a building at which it was desired to measure the tracer concentration. Consequently, there was about 20 m of small diameter tubing between the input part of the sample unit and each measurement point, as well as a filter head to remove dust particles. Thus, a significant proportion of the 1 minute dwell time was required before a stable reading was obtained. To overcome this problem without increasing the dwell time per channel, an additional pump was used to draw air continuously through the sample lines.

At first, the output of the IRGA was taken to a chart recorder via a logarithmic amplifier, the idea being that a change in ventilation rate would show up immediately as a change in the slope of the trace on the recorder. However, this did not prove to be of any great value, and the logarithmic amplifier was dispensed with.

Air was drawn through each sample line at a rate of about 1.4 litres per minute, and the flow rate through the IRGA was normally set to about 0.8 litres/minute.

2.2 Sulphur Hexafluoride System

This was based upon an AI Instruments model 505 gas chromatograph detector. This is a small portable gas chromatograph designed for leak detection using sulphur hexafluoride gas. The detector itself is an electron capture cell, and the column is 380 mm long stainless steel tubing filled with 100-120 mesh alumina. For leak detection, the instrument is operated in continuous mode, with a constant, flow of air through the detector. However, used in this way, the output is insufficiently stable to be quantitative. For quantitative measurements, the instrument is operated in sample mode. The internal pump draws air continuously through a sample loop; on operating a valve on the front panel, the contents of the loop are injected into the column and detector. The output produced on the chart recorder is a typical gas chromatogram, with a large peak due to atmospheric oxygen showing first, followed approximately six seconds later by a lower peak due to sulphur hexafluoride. Using a calibrated gas mixture of 35 x 10-9 sulphur hexafluoride in air, the range and sensitivity of the instrument were checked. It was found that on the least sensitive (x50) range, full scale deflection corresponded to a concentration of 350 x10 -9. whereas on the most sensitive (xl) range, the concentration at full scale was about 7.4 x10 -9. In practice, because signal noise and instability were sometimes apparent on the x l range, the lowest range which was used was the x 5 range, for which f.s.d. was 36.8 x10 -9.

In its original form, this instrument was found to be unsatisfactory, due mainly to interaction between the internal air circuits for the two different modes of operation. The problem was solved by dismantling the instrument and rebuilding it for operation in sample mode only, and in this form the instrument proved to be stable and consistent in its readings.

In its revised form, the instrument appeared to recover sufficiently rapidly after each chromatogram for successive readings to be taken at 1 minute intervals. It could therefore be operated in conjunction with the six point sample unit, through in practice it was found easier to operate the six point sample unit manually at intervals slightly longer than one minute.

The flow rate of air through the instrument was normally set at 0.6 litres/minute.

2.3 Injection of the Tracer Gas

Several methods of injecting the tracer gas were used, ranging from the crude and simple, to the complex. Details of the evaluation of these methods is given in Chapter 3. It was found that relatively simple methods were sufficiently effective, the preferred ones being as follows:

- (i) Nitrous Oxide. Gas was taken directly from the gas cylinder through a flow meter. The flow was adjusted to a rate that would give an overall concentration of between 50×10^{-6} and 100×10^{-6} throughout the building within a maximum period of 30 minutes.
- (ii) Sulphur Hexafluoride. An inverted burette was used to collect a measured volume of gas from the cylinder by displacement of water. The measured volume was chosen to give an overall concentration of about 350 x 10⁻⁹. The burette was usually filled outside the building being tested, and was then carried to the point of release.

As experimental work progressed, it became clear that there were two starting conditions of particular interest, one with the tracer gas distributed approximately uniformly, and the other with a "plug" of unmixed tracer at a selected point in the building. The first was achieved by injecting the gas into the blades of a small fan, and the other by bleeding it into a small piece of foam or fibrous material (in order to randomise the exit velocity direction).

2.4 Experimental Difficulties

The majority of the experimental difficulties which were encountered arose from the practical problems of using sensitive laboratory type equipment on site in industrial surroundings. Nevertheless such difficulties are important, and must be overcome if good quality measurements are to be made. In addition some difficulties of a more fundamental nature were found. The main problems were as follows:

i) Leakage

In order to ensure sufficient speed of response, it was necessary to draw air through all sample lines continuously and simultaneously, by means of a single vacuum pump. The multipoint sampling unit, equipped with its own pump, switched sequentially between the sample lines, diverting a proportion of the sample line flow into the detector. It has proved very difficult to maintain the integrity of all seals, joints, junctions and valves in the system so as to prevent ingress of air other than at the entry to the sample line, and to prevent cross-leakage between sample lines. Alterations and checking of the equipment to eliminate leakage has accounted for a large part of the project time. The new system which is proposed later has been designed to be inherently less prone to this problem.

(ii) Robustness

Although the infra red gas analyser was a good laboratory instrument, it was frequently troublesome and unreliable when used for field measurements. The act of transporting it to and from factory sites often disturbed its mechanical adjustments, and when on site it required a very long warm-up period. It required frequent repair and readjustment, and it was difficult to ensure that it performed up to specification in the field.

The sulphur hexafluoride gas chromatograph, on the other hand, has been found to be highly robust, and in its final modified form, was also very reliable. It required only a short warm up time before giving consistent and repeatable readings.

(iii) Speed of response

In the early stages of the tracer decay, not only are tracer concentrations changing rapidly, but there may be large differences in concentration between adjacent channels. In these circumstances, the one minute dwell time per channel was barely sufficient to allow the IRGA to come to a recognisably stable reading. Increasing the dwell time would have widened the interval between successive readings on each channel, giving less information during the period of most rapidly varying tracer concentration.

The sulphur hexafluoride detector, because of 1ts different operating principle, did not suffer in the same way. The transit time of air through the sample loop is of the order of 1 second, so that the instrument is effectively taking 1 second samples of air, and analysing that sample for average sulphur hexafluoride content. Even when tracer gas concentrations were varying rapidly, the gas chromatograms were clean and undistorted, and the recovery time between successive readings could be reduced to as little as one minute. A reduction below one minute did not see feasible.

(iv) Accuracy and stability

In clean, thermally stable laboratory conditions, and using calibrated gas mixtures as reference sources, both instruments could be shown to be stable and accurate to better that + 2% full scale deflection over periods of several hours.

However, in the more rigorous environment of field measurements, both instruments exhibited some instability.

In the case of the IRGA, the instability appeared in the form of a slow, random zero drift, which in severe cases could be equivalent to as much as 20 x 10 parts of nitrous oxide in air over a period of about 3 hours. To monitor this drift, it was found necessary to connect one of the six sample lines to an uncontaminated source of air, usually external air. In the case of the gas chromatograph, the instability was in the form of a slow drift in sensitivity, which showed itself as a change in the oxygen peak on the chromatogram. Fortunately, calibration tests showed that the sensitivity to sulphur hexafluoride was in proportion to the magnitude of the oxygen peak.

Therefore, by measuring the oxygen peak as well as the sulphur hexafluoride peak on each chromatogram, a correction for sensitivity drift could be applied to each reading.

(v) Interference from other gases

Both instruments are susceptible to interference from atmospheric gases other than the gas for which they are designed. The IRGA is particularly sensitive to interference from carbon dioxide and water vapour, both of which have infra-red absorption bands close to those of nitrous oxide. To combat this, the IRGA is fitted with an optical carbon dioxide filter in the sample beam, and drying agents in the input gas line. However, since the output of the instrument is merely the deflection of a meter, it is impossible to know whether or not any interference due to changes in the atmospheric content of carbon dioxide or water vapour has occurred.

The gas chromatograph will detect any electron capture gas in the atmosphere, but in this case different gases will usually have different retention times in the column, and so should be separated in the resulting chromatogram. The usual procedure is to run a series of null tests before injecting sulphur hexafluoride into the atmosphere to see if any interfering gases are present. In all tests conducted so far, no interfering gases have been detected.

3. Preliminary Investigations

Some preliminary investigations were carried out to investigate different methods for mixing the tracer gas in the air, and to investigate possible variation of ventilation rate throughout a space.

3.1 Mixing of tracer gas

When measuring the ventilation rate of small rooms, it is usual to mix the tracer gas with the air with a small fan. The fan is switched off before the measurements are commenced, and it is then assumed that the tracer gas concentration is uniform throughout the space at all times. This assumption greatly simplifies both the experimental technique and the theoretical analysis. In large spaces, not only may it be more difficult to achieve an initial uniform distribution of tracer gas, but the assumption of uniform concentration at all times may no longer hold.

Investigations of this aspect of the problem were first carried out by injecting tracer gas into a sealed room and noting the time taken for uniform concentration to be achieved using a variety of mixing techniques. The Coventry Polytechnic reverberation chamber (200 m) has been used for this part of the project, because it can be sealed to give effectively zero infiltration. The nitrous oxide system was used for these tests, and typical results are shown in figures 1, 2 and 3. In each case, the graphs show at all six sample positions the time taken to reach uniform tracer concentration, and the period immediately before uniformity during which the concentration was within 5% of its final value. Figure 1 shows the results of bleeding in the nitrous oxide directly from the gas cylinder with no artificially induced air movement. In figure 2, the nitrous oxide was injected close to the blades of a small fan, which continued to operate throughout the test. In figure 3, air was forced into an 80 m length of 150 mm diameter polyethylene tubing, perforated along its length. The nitrous oxide was bled into the tubing at the fan position, so that it entered the

room via the perforations. These results show that even with no artificially induced air movement, uniform mixing is reached in less than an hour, and that the simplest method of mixing, as in figure 2, achieves uniformity most quickly.

Further tests were carried out in a factory building of about 3000 m³ internal volume, again using nitrous oxide. In figure 4, nitrous oxide was introduced at a rate sufficient to reach a uniform concentration of 50 x10⁻⁶ in about 1 hour. Mixing was by means of a small fan. It can be seen that the distribution of nitrous oxide throughout the space was approximately uniform at all times. Figure 5 shows a similar test at twice the injection rate, and it can be seen that the distribution is less uniform. Kowever, uniformity was reached by continuation of stirring for another 15 minutes. It can be concluded, therefore, that there is little difficulty in achieving a reasonably uniform distribution of tracer gas throughout spaces of volume up to at least 3000 m³. This conclusion has been confirmed by the experience gained in other measurements in this study.

3.2 Variation of ventilation rate throughout a space.

This was investigated in a room measuring approximately 4.4 m x 4.8 m x 2.7 m high. The room was on the corner of a building with two glazed external walls. The six sample points were arranged on a grid on a horizontal plane, and measurements were repeated with the grid at different heights, thus enabling tracer decay rate contours to be constructed. It was assumed that these decay rates could be converted directly into air change rates, and typical results for three different conditions are shown in figures 6, 7 and 8. These results indicate that the ventilation rate (that is, the rate of exchange between room air and external air) can vary with position by as much as + 20% of its mean value. Two conclusions may be drawn from this result. first is that although the initial distribution of tracer gas was uniform, a ventilation rate derived from measurements of tracer decay at only one point in the room could be misleading. The second is that the decay rate may no longer represent the ventilation rate in a simple fashion. The reason for the second of these conclusions is that although the tracer gas distribution was initially uniform, it gradually becomes non-uniform as the decay procedes, because the decay rates throughout the room vary. Thus with a non-uniform tracer gas distribution, the decay rate at any point may be influenced by air exchange to other internal points as well as by air exchange to the outside.

3.3 Implications of the preliminary investigations

At the start of the project, the problem of achieving an initial uniform distribution of tracer gas was seen as a possible major obstacle to the viability of tracer decay methods. The results of the preliminary investigation show that this is not the case, and that simple methods of injecting and stirring the tracer gas will achieve acceptable uniformity in buildings up to at least 4000 m³ in volume. In any case, a uniform distribution cannot be sustained after stirring has ceased if there is a spatial variation in decay rate.

The variation in decay rate throughout the space has implications for both the experimental technique and for the analysis and interpretation of results. Clearly it was first necessary to establish whether or not the variations in decay rate observed in the small room used for this preliminary study were present to a greater or lesser

degree in large spaces such as factories. Therefore, considerable care was taken to ensure that the construction, calibration, and operation of the apparatus was sufficiently good to record such differences. For example, it was found that differences in the lengths of the sample lines could cause differential time lags between channels, and hence cause uncertainty in the timing of each individual measurement.

The method of analysing the results must take account of both findings of the preliminary investigation. On the one hand, there appears to be no difficulty in generating sufficient internal circulation to generate an initial uniform concentration. On the other, once stirring has ceased, the tendency to a non-uniform distribution suggests that internal circulation is itself non-uniform, or that exchange from each part of the space to the outside is dominant. In order to create additional experimental evidence on this problem, several tests were carried out with the tracer gas initially unmixed, that is with the gas concentrated in one small part of the building rather than distributed uniformly throughout. It was thought that this technique would be particularly useful in demonstrating the pattern of internal air movements.

4. Theoretical Considerations

As the main purpose of the pilot study is an examination of experimental technique, no attempt has been made to develop a new approach to the analysis of the results. All the results have been analysed using the usual single cell ventilation model, even though this model may be inadequate for describing large spaces. However, in preparation for the development of a more realistic model for the next stage of the overall programme, some preliminary work has been done using a multi-cell model.

4.1 Single Cell Ventilation Model

Figure 9 represents on enclosed space which is being ventilated by a supply of fresh air as well as being injected with a contaminant. It is assumed that the contaminant is at all times uniformly distributed throughout the space, so that its concentration in everywhere defined by a single value. The following symbols may be defined:

V = volume of the space

F = flow rate of fresh air into space (assumed constant)

q = flow rate of contaminant into space (assumed constant)

x, = concentration of contaminant in space

x = concentration of contaminant in the incoming fresh air

Assuming that pressure and temperature differences throughout the system are negligible, a volumetric balance may be taken on the contaminant concentration:

$$(F \times_{0} + q) - (F + q) \times_{1} = V \frac{dx_{1}}{dt}$$

If the internal contaminant concentration at time t = 0 is $x_1(0)$, the solution of this equation is:

$$x_1 = \left(\frac{Fx_0 + q}{F + q}\right) \left(1 - \exp\left(-\frac{(F + q) \cdot t}{V}\right)\right) + x_1(0) \cdot \exp\left(-\frac{(F+q) \cdot t}{V}\right)$$

A tracer decay measurement corresponds to the case q = 0, and $x_1(0) \neq x_0$, which yields:

$$x_1 = x_0 + (x_1(0) - x_0) \exp \left(-\frac{Ft}{V}\right)$$

This is a simple exponential decay with a time constant, t_c , given by:

$$t_c = \frac{V}{F}$$

It is conventional to express ventilation rates as the flow rate of fresh air per unit volume, with units of reciprocal time. The ventilation rate, N, is thus:

$$N = \frac{F}{V} = \frac{1}{t_c}$$

Clearly, a plot of the natural logarithm of the concentration versus time should yield a straight line, the gradient of which is the negative of the ventilation rate.

4.2 Analysis of Results

In practice, for each ventilation rate measurement, both the nitrous oxide system and the sulphur hexafluoride system yielded a set of pairs of values of time and tracer gas concentration. By first converting the values of concentration to their natural logarithm, a straight line could be fitted to each set of results using the method of least squares. The gradient of the best fit line was taken as the ventilation rate. As an indication of the reliability of each ventilation rate result, the goodness of fit of the data was investigated statistically. A correlation coefficient, R, was evaluated, where R is defined by:

$$R = \sqrt{\frac{\text{Regression Sum of Squares}}{\text{Total Sum of Squares}}}$$

$$// \sum (Y_e - \overline{Y})^2$$

or
$$R = \sqrt{\left(\frac{\sum_{i} (Y_{e} - \overline{Y})^{2}}{\sum_{i} (Y_{i} - \overline{Y})^{2}}\right)}$$

where \overline{Y} is the mean of the Y values (Y is the natural logarithm of the concentration), Y_{e} is the estimated value, Y_{i} is the measured value, and the summations are taken over all points in the data set.

Table 1 is a summary of the results of the measurements, and shows the ventilation rate, the number of experimental points and the correlation coefficient for each data set. In most cases, the correlation coefficient is close to unity, showing that a simple exponential decay is a good description of the results. Further statistical information is given in the detailed analysis of each run, by means of a statistical analysis table. The definition of the terms in this table are:

Regression Df Regression degrees of freedom (always unity)

Residual Df Residual degrees of freedom (N-2)

Total Df Total degrees of freedom (N-1)

Regression SS Regression of sum of squares

Residual SS Residual sum of squares

Total SS Total sum of squares

Regression MS Regression mean squares

Residual MS Residual mean squares

The F statistic (Regression MS/Residual MS)

4.3 Multi-cell ventilation model

Despite the high correlation coefficients obtained by the application of simple single cell theory to the results, there are two reasons for suspecting that a more sophisticated theory is necessary. Firstly, the difference in the ventilation rates between channels in the same run is large enough to be significant at the levels of correlation obtained. For example, referring to run BO3R07 in table 1, for channel 1, V = 1.898 with R = 0.956, and for channel 6, V = 2.544 with R = 0.993. Secondly, inpearly all cases, the correlation coefficient for the complete set of data for a run (the final column in table 1) is less than the correlation coefficients for the individual channels. This is most obvious in runs BO1R01 and BO1R02, though the small number of data points for these runs may have exaggerated this phenomenon. Both of these reasons suggest that there are genuine differences in the ventilation properties of different parts of the same space. Thus, the central assumption of single cell theory, viz. that the tracer gas is fully mixed and uniformly distributed, is at best an approximation. Further, even if the distribution was uniform at a particular point in time, it could not remain so because the decay rate varies throughout the space.

An improvement on single cell theory can be achieved by treating the space as an assembly of small cells, or zones. Within each zone, the tracer gas may be assumed to be uniformly mixed, and each zone exchanges air, or ventilates, to its adjacent zones. Clearly, the greater the number of zones, the more closely will this arrangement approximate to the continuum which exists in practice. The resulting system of zones can be analysed using the multi-cell theory developed by Sinden (5). Figure 10 is a schematic diagram of a multi-cell system. The symbols are defined as:

V, = volume of cell i

 F_{ij} = flow rate from cell i to cell j. Note that F_{ii} = 0, and in general $F_{ij} \neq F_{ji}$

q, = flow rate of contaminant in cell i

x, = concentration of contaminant in cell i

n = number of cells

Taking a balance on the contaminant concentration in cell j;

$$q_j + \sum_{i=1}^{\infty} x_i - \sum_{i=1}^{\infty} F_{jk} x_j = V_j \dot{x}_j$$

Taking a balance on the total flow into and out of cell j

$$q_i + \sum_{i=1}^{K} = \sum_{i=1}^{K} = S_i$$

For tracer decay, $q_i = 0$, and the equation becomes

$$v_j \dot{x}_j = \sum_{i=1}^{\infty} x_i - x_j s_j$$

or

$$\overline{V} \stackrel{\cdot}{x} = \overline{F} \overline{x}$$

where
$$\overline{V}$$
 = $\begin{vmatrix} V_1 & 0 & 0 & - & - & - & | \overline{F} = & | -S_1 & F_{21} & F_{31} & - & - & - & | \\ 0 & V_2 & 0 & - & - & - & | & | F_{12} & -S_2 & F_{32} & - & - & - & | \\ - & - & - & - & - & - & | & | F_{1n} & - & - & - & - & - & S_n \end{vmatrix}$

If the F_{ij} are known, the equation may be solved to give the time evolution of the tracer gas concentration in each cell, i.e.

$$\bar{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$$

A simple solution is of the form

$$\bar{x}(t) = \bar{x}(0) e^{\lambda t}$$

which, on substitution into the original equation, gives

$$\lambda \overline{V} \overline{x} = \overline{F} \overline{x}$$

The eigen values, λ_0 , λ_1 , λ_n for which this has a non-zero solution, and the corresponding eigen vectors \overline{x}^0 , \overline{x}^1 , \overline{x}^n

may be found. Further solutions, corresponding to arbitrary initial conditions may be found by linear combination

where a_k are constants determined from the initial conditions, i.e. the concentrations x_i at time t=0.

As an example, the multi-cell theory has been applied to a rectangular building of internal volume $12,000\text{m}^3$, split into 6 equal cells each of volume $2,000\text{ m}^3$. An overall fresh air ventilation rate of 2 a.c.h. was assumed (corresponding to 7 m $_{\text{S}}^{3}$). Figure 11 shows the building, and also gives the assumed values of the flow rates between cells, i.e. the values of \mathbf{F}_{ij} . The equations were solved to give the time evolution of

the tracer concentration in each cell for several different sets of initial conditions. The results are shown in table 2 and in figures 12 to 17. In each case it can be seen that after about 20 minutes, the decay curves for all cells are similar. Thus, if these curves were analysed by means of single cell theory, they would yield similar, but slightly different ventilation rates. However, it is clear from figure 11 that this would not be a true interpretation of the air movement regime in the building; in particular, cells 1, 2 and 3 are receiving no fresh air at all, the flow into them coming entirely from other parts of the building.

The reverse problem, the evaluation of the F_{i,} from the measured decay curves, is more difficult. It requires the shapes of the decay curves to be accurately known during the early part of the decay, which was not possible with the apparatus in its current form. In any case, this was outside the scope of the objectives for this project.

Results and Conclusions

The complete set of results is presented in the Results Section. There are three sections, one for each building, with a drawing of the building at the head of each section. Within each section, the individual runs are listed in sequence, the information in each run being presented in the following format:-

- Summary of conditions prevailing at the time of the run, plus a diagram showing the position of the sample points and where relevant, the position of gas release.
- A table of results. The tracer gas concentration is given in arbitrary units, because the fine sensitivity of the recording was usually adjusted at the start of each run to give approximately full scale deflection on the recorder.
- A statistical analysis table.
- 4) Graphs of the natural logarithm of tracer gas concentration versus time for each channel.
- 5) A graph of the tracer gas concentration versus time for all channels.

The main conclusion which can be drawn from these results is that, experimentally, there is no particular difficulty in using a tracer gas decay method to measure ventilation rates in a large single Relatively simple methods of stirring can achieve cell building. an initial uniform distribution of tracer gas, if indeed this is Satisfactory decay curves have been considered necessary. obtained even when there has been no attempt to achieve an initial uniform distribution. The variability of ventilation rate throughout the space appears, in most of the results, to be small but This variability, even though it is small, leads significant. immediately to a conceptual difficulty in defining ventilation rate, because it is clear that, if different parts of the same cell are behaving differently, the tracer gas decay constant is not necessarily a measure of the fresh air ventilation rate. The simple calculation using the multi-cell model illustrates this quite clearly.

A secondary conclusion, therefore, is that care is needed in the interpretation of the results of tracer decay measurements. The overall decay rate for all channels may be a guide to the total amount of fresh air entering the building, but that fresh air may be distributed in a highly non-uniform fashion, even if the decay rates of individual channels are similar.

Regarding experimental technique, the experience of this project is that the small, portable gas chromatograph fitted with an electron capture detector, and using sulphur hexafluoride as a tracer, is sufficiently sensitive, robust and reliable for field measurements, and is to be preferred to the infra-red gas analyser.

References

 Hitchen E.R. and Wilson C.B. "A review of experimental techniques for the investigation of natural ventilation in buildings." Building Sc., 2, 59-82, 1967. Rui

BO:

BO

BOS

BO2

BO:

- Hunt C.M. "Air infiltration: a review of some existing measurement techniques and data".
 Proc. ASTM Conf. on "Building air change rate and infiltration measurements". Gaithersburg, 13th March, 1978.
- Sherman, Grimsrud, Condon and Smith "Air infiltration measurement techniques".
 Air Infiltration Centre Symposium, Windsor, October 1980.
- Baturin V.V. "Fundamentals of industrial ventilation" Pergamon Press, 1972.
- Sinden F.W. "Multi-chamber theory of air infiltration" Building and Environment, 13, 21-28, 1978.

- 14 -

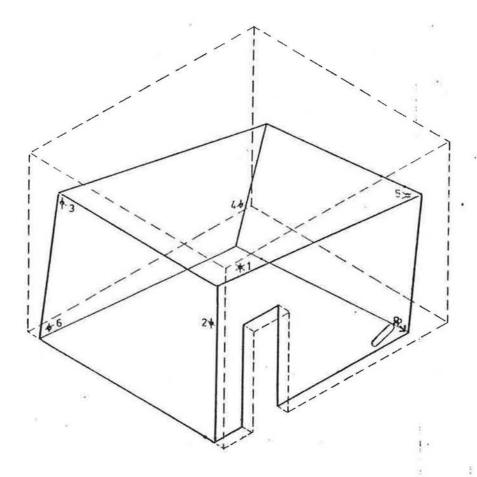
TABLE 1 SUMMARY OF RESULTS

V = Ventilation Rate, a.c.h. N = No. of points R = Correlation coefficient

25		Channel Number								
Run	Tracer		1	2	3	4	5	6	Average	
		v	0.100	0.091	0.069	-0.108	-0.043	0.008	0.015	
BOIROI	N ₂ O	N	5	5	- 5	5	5	5 .	30	
	-	R	0.480	0.987	0.839	0.990	0.557	0.406	0.065	
		v	0.087	0.038	0.047	0,103	0.065	0.043	0.055	
301R02	N20	N	5	5	5	4	. 5	5	29	
	2.	R	0.972	0.811	0.948	0.890	0.920	0.967	0.436	
		**	1 05	1 57	1 40	1 54	1 27	*	1 40	
POOROI	N 0	V	1.25 12	1.57 12	1.42 13	1.54 13	1.37	•	1.42 62	
BO2RO1	N ₂ O	N R	0.942	0.995	0.977	0.963	12		0.933	
		ĸ	0.942	0.985	0.977	0.963	0.944		0.933	
		v	0.884	0.879	0.836	0.846	0.814	*	0.850	
302R02	N20	N	18	19	19	19	19		94	
1	2	R	0.969	0.997	0.926	0.986	0.988		0.964	
		124			2 222			74		
		V	0.888	0.853	1.018	0.783	0.779	*	0.864	
BO2RO3	N_2^0	N	20	21	20	20	20		101	
		R	0.988	0.988	0.981	0.991	0.988		0.961	
T-		v	0.522	**			%		0.522	
302R04	SF ₆	N	29					8	29	
	ь	R	0.928						0.928	
		••	0.700	74544					0.770	
POOROS		V	0.739	**					0.739	
BO2RO5		N R	18 0.985						18 0.985	
i		ĸ	0.005						0.965	
3O2R06		v	1.076	0.806	0.839	0.965	1.038	*	0.947	
302R06	N ₂ 0	N	22	21	21	21	21		106	
723	2	R	0.983	0.987	0.932	0.984	0.976		0.957	

Channel 6 was used to monitor external air as a zero check

Only one channel was available for these runs

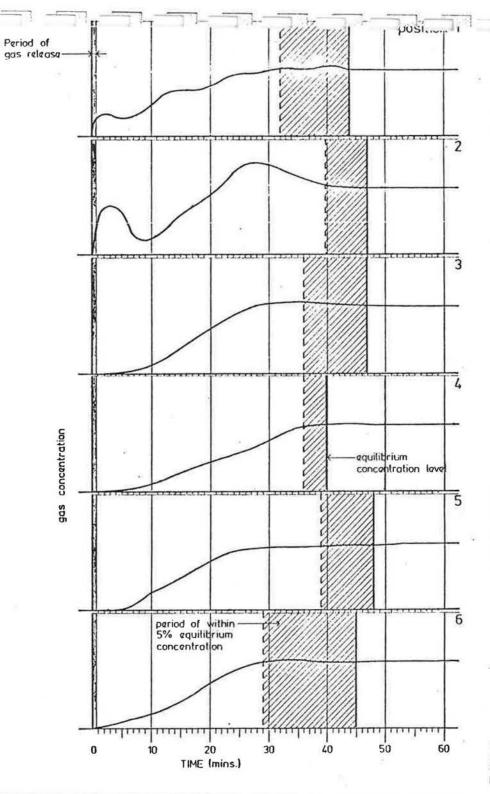

TABLE 1 SUMMARY OF RESULTS (Continued)

= Ventilation Rate, a.c.h. N = No. of points R = Correlation coefficient

Run	Tracer		Channel Number						
Number			1	2	3	4	,5	6	Average
		v	0.589	0.542	0.679	0.624	0.596	0.634	0.613
BO3RO1	SF ₆	N	19	19	19	19	19	19	114
1.	6	R	0.978	0.954	0.951	0.941	0.957	0.957	0.949
		v	4.145	4.581	4.572	4.514	4.456	4.299	4.423
303R02	SF	N	7	7	7	7	7	7	42
3001102	SF ₆	R	0.996	0.996	0.988	0.995	0.998	0.998	0.990
				(4)			8		
		v	4.203	4.210	4.441	4.436	4.580	4.397	4.387
BO3RO3	SF ₆	N	7	7	7	7	7	7	42
	ь	R	0.999	0.999	0.999	0.996	1.000	0.999	0.990
-		v	2.837	2.695	2.917	2.752	2.887	2.909	2.817
303R04	SF ₆	N	8	8	8	8	8	8	48
	6	R	0.996	0.977	0.989	0.993	0.995	0.997	0.978
		v	1.446	1.665	1.596	1.733	1.597	1.624	1.613
BO3RO5	SF	N	11	11	11	11	11	11	66
	SF ₆	R	0.968	0.993	0.993	0.995	0.996	0.990	0.986
		v	1.384	1.386	1.240	1.104	1.200	1.254	1.266
303R06	CTA		11	11	11	11	11		66
SOSROO	SF ₆	N R	0.991	0.992	0.990	0.992	0.992	11 0.991	0.984
		v	1.898	1.936	1.927	2.092	2,158	2.544	2,127
B03R07	SF ₆		12		11		11	11	67
	6	N R	0.956	0.978	0.960	0.980	0.973	0.993	0.946
1		**	1 540	1 460	1 077	0.000	1 004	1 500	1 700
202000	CD	V	1.548	1.462	1.877	2.002	1.934	1.783	1.793
303R08	SF ₆	N	11	11	11	11	11	11	66
	82	R	0.925	0.959	0.945	0.973	0.987	0.987	0.946

TABLE 2

Eigen	values	and	eigen	vectors	for	the	multi-cell	example	illustrated	in figure	11
Eigen	values	*	-0.017	79 -0	.0006	i	-0.0044	-0.0116	-0.0115	-0.0069	
Eigen	vectors		-0.274	16 0	. 4277		0.6074	-0.1211	-0.0700	0.5254	
			0.606	67 0	.4449)	0.0654	0.4994	0.4718	0.4335	
			-0.438	37 0	.4544		-0.4221	-0.5267	-0.5611	0.3528	
			0.186	35 O	.3444		0.4130	-0.3130	-0.3427	-0.3020	
			-0.451	.8 0	.3741		-0.1487	-0.5803	0.5730	-0.4467	
			0.353	88 0	.3926		-0.5059	-0.1544	-0.1092	-0.3476	


MIXING CONDITIONS: gas released into corner of room, with no artificially induced air movement.

AIR MOVEMENT:

floor level - average air speed 0.02m/s range of air speeds 001 to 0.03 m/s

100m high- average air speed 0.02 m/s range of air speeds 0.01 to 0.025 m/s

Figure 1. Time taken to achieve a uniform concentration of tracer gas : No artificially induced air movement.

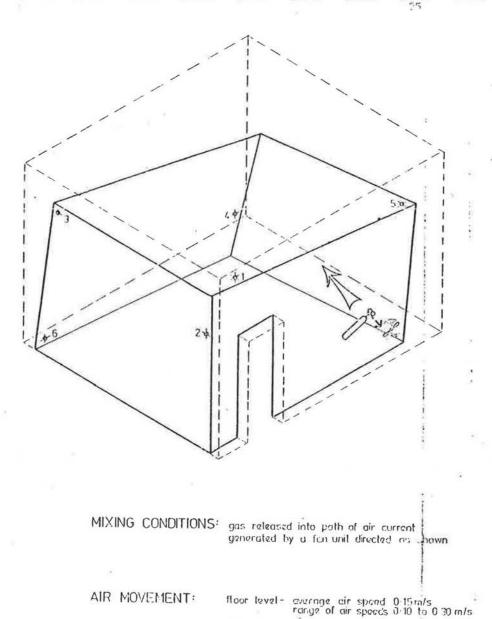
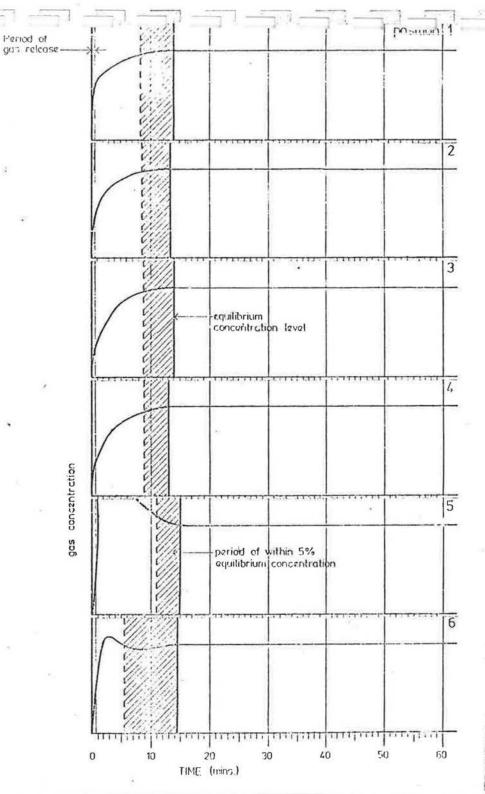
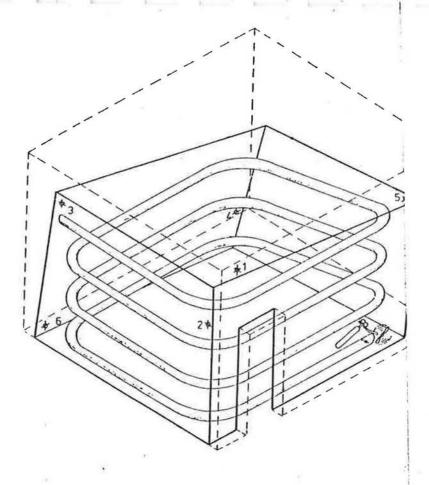
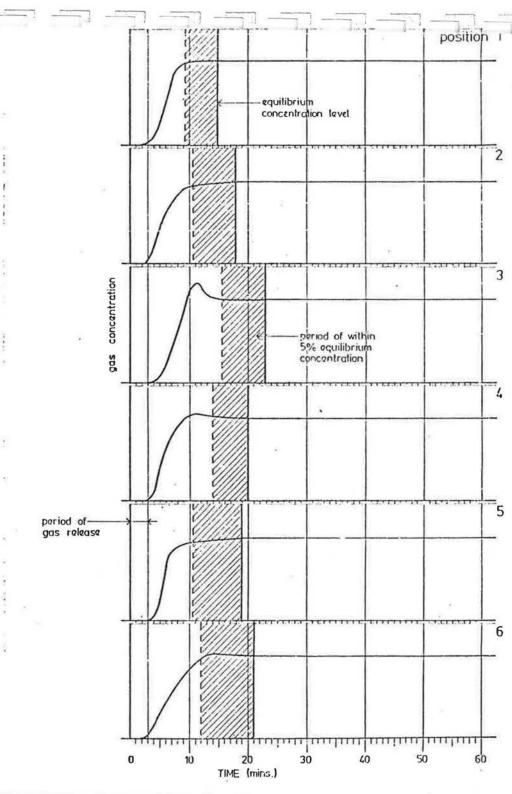
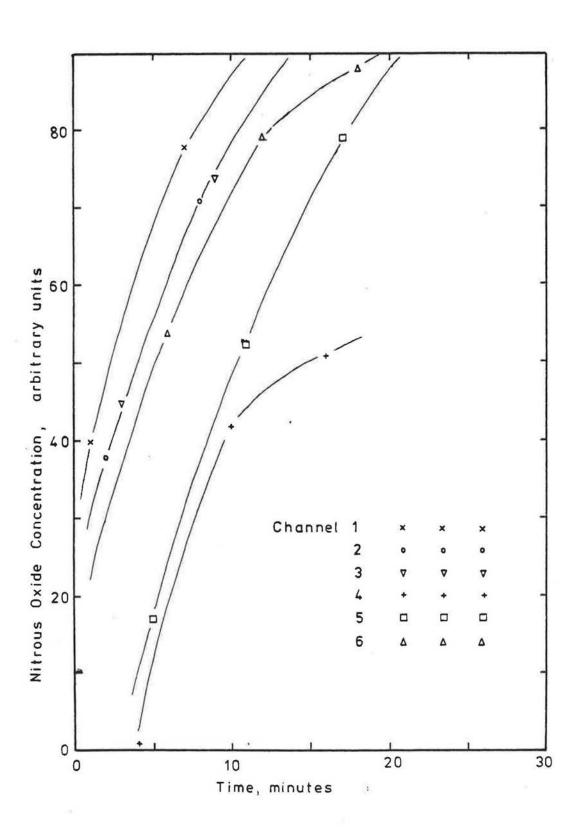




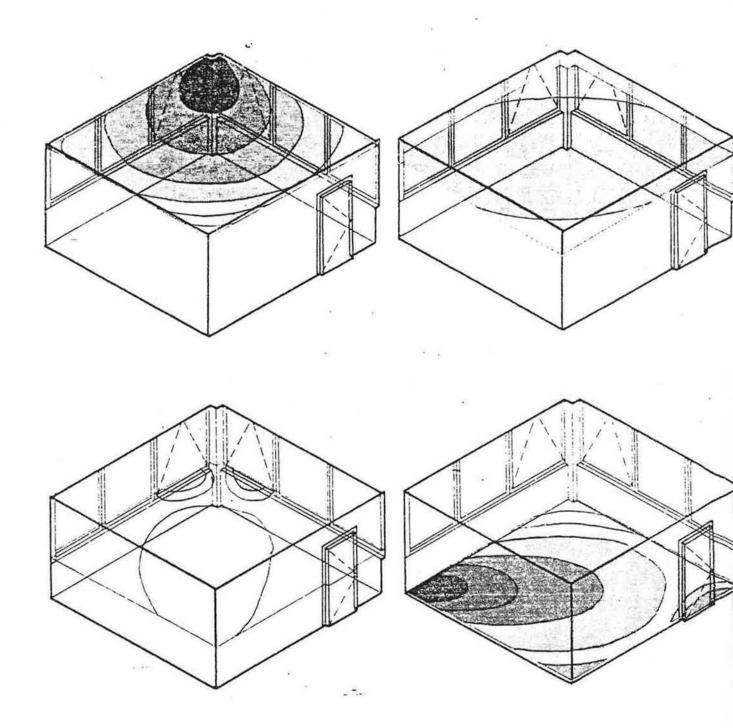
Figure 2. Time taken to achieve a uniform concentration of tracer gas : Artificially induced air movement.

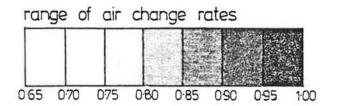
120m from fan unit average air speed 10 m/s

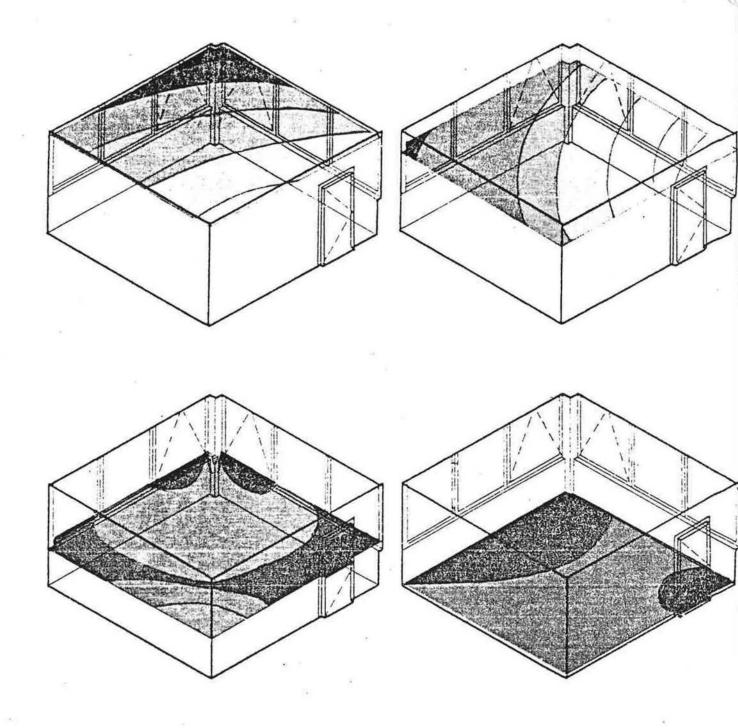


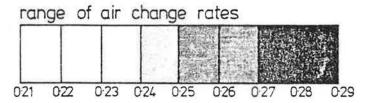

MIXING CONDITIONS: gas roleased into path of air current generated by a fan unit inflating a 150mm diameter polythene tube with 2number 3mm diameter diametrical holes at 500mm centres along the 80m length.


AIR MOVEMENT:


100mm from outlets in lubing average air speed 30 m/s


Figure 3. Time taken to achieve a uniform concentration of tracer Tracer gas bled into fan inflated polyethylence tube.

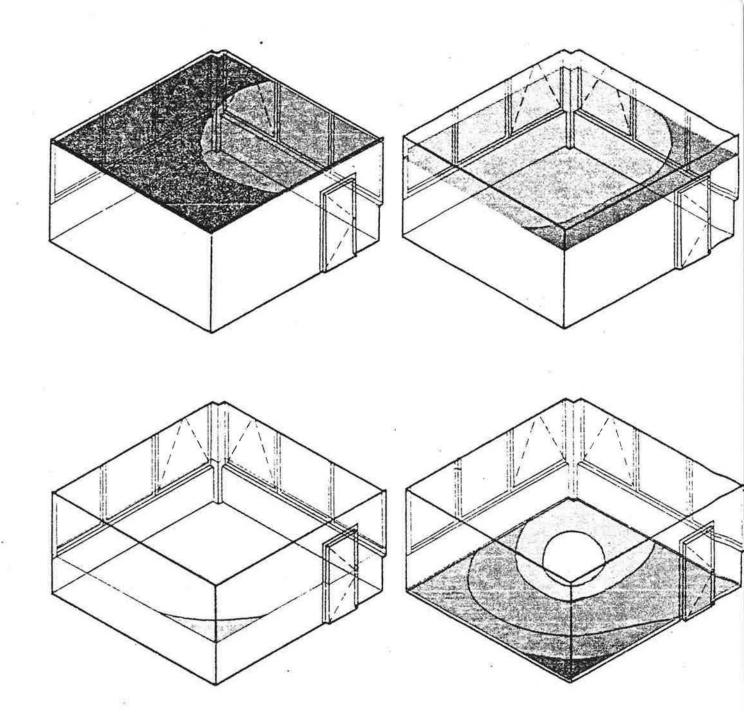


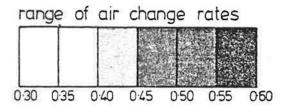

Meteorological conditions:

temperature - mild

wind - gusty
sky - overcast

Figure 6 Infiltration Pattern :
Radiant heat source - gusty conditions.


Meteorological conditions:


temperature-mild

wind - still

sky - clear, sunny

Figure 7. Infiltration Pattern:
Radiant heat source - still air.

Meteorological conditions:

temperature-cool
wind -still
sky -clear,sunny

Figure 8. Infiltration Pattern:
Convective heat source in still air.

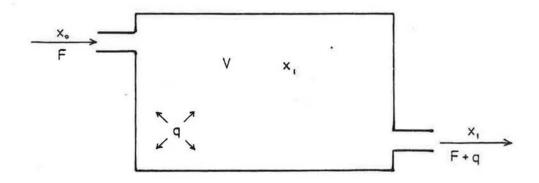


Figure 9 Single cell ventilation model

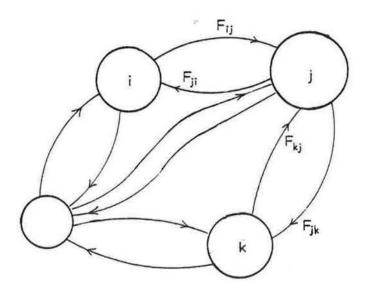
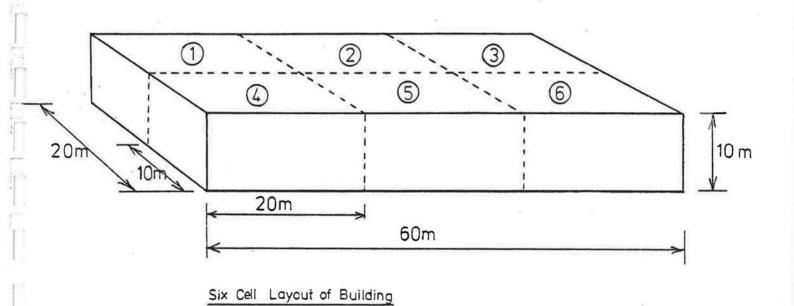
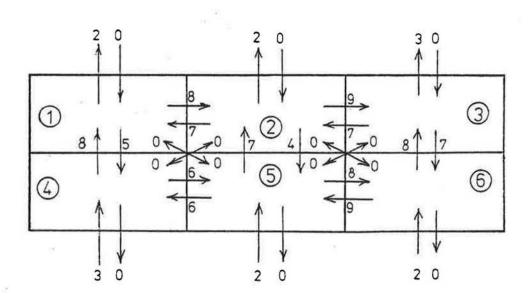




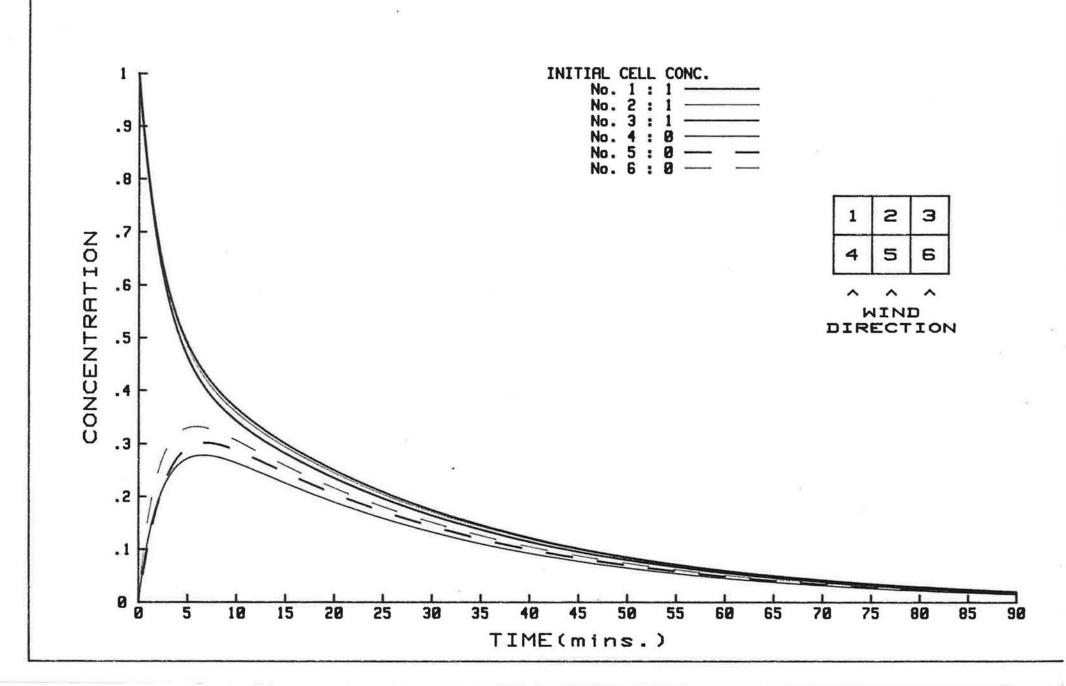
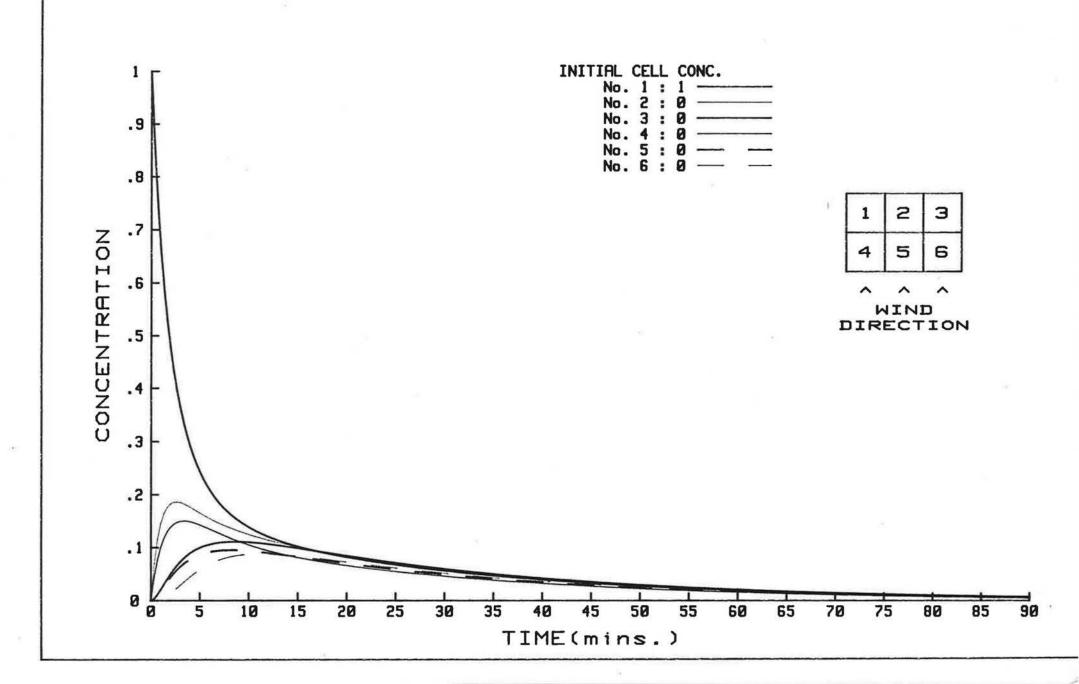
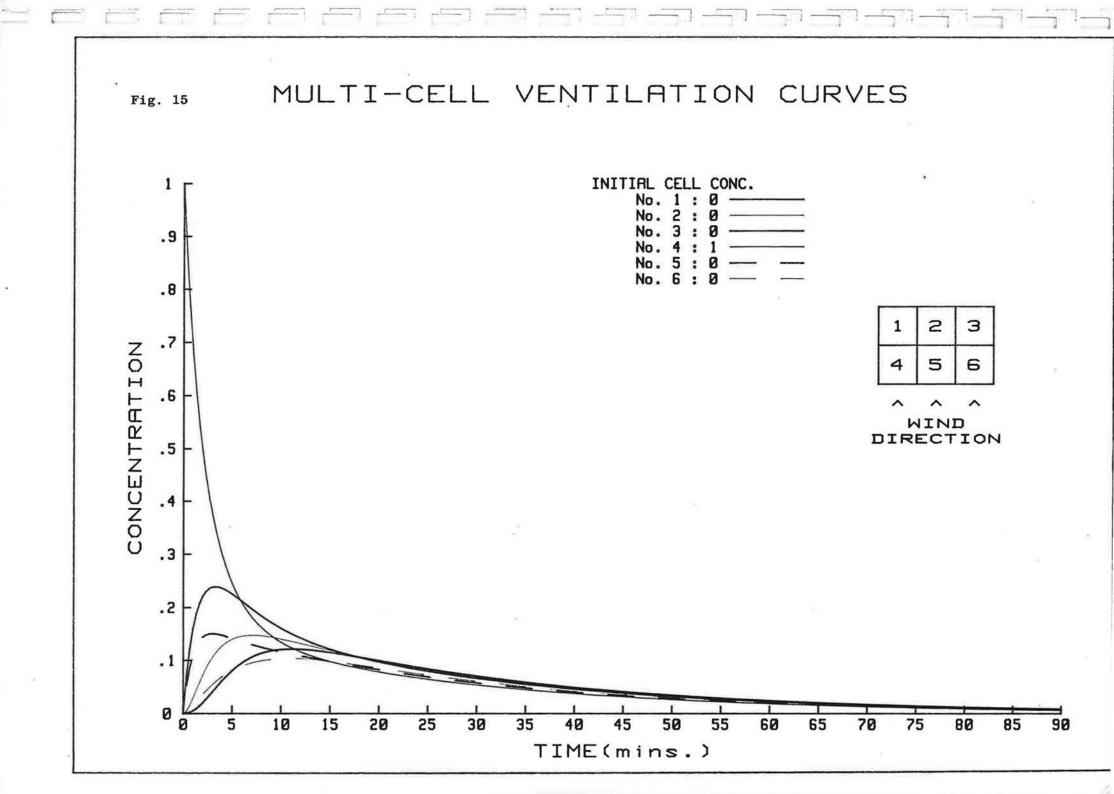
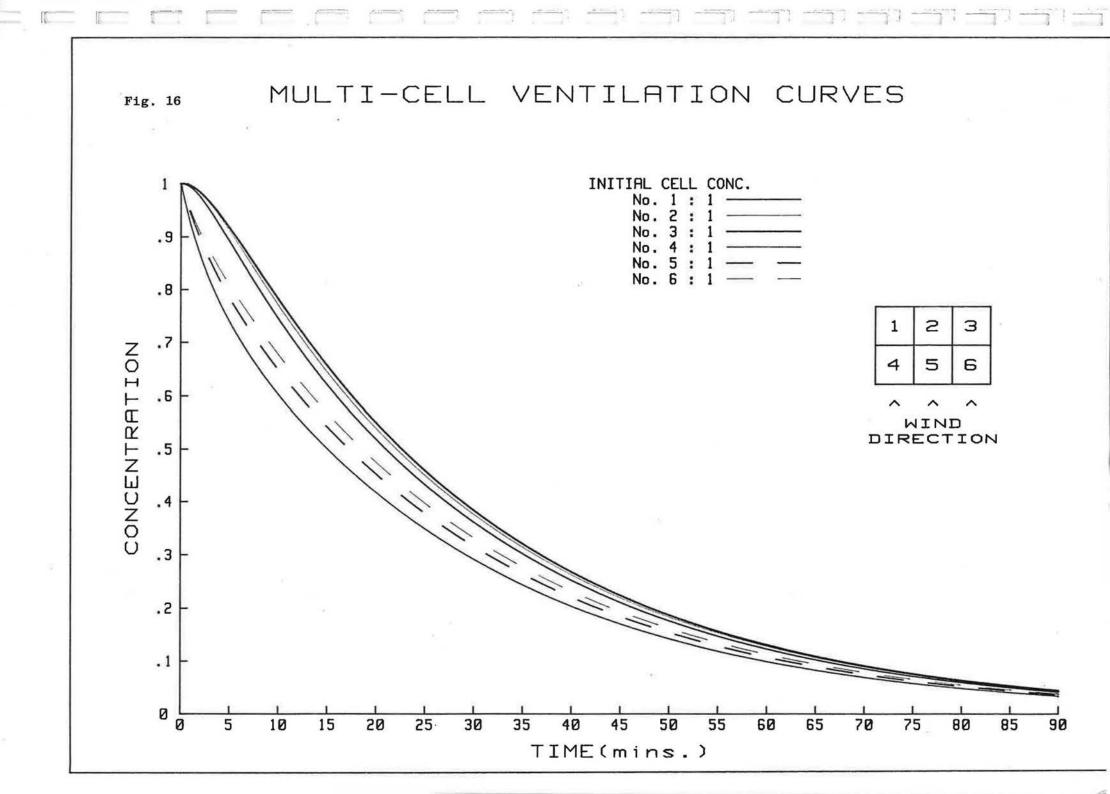
Figure 10 Multi cell ventilation model

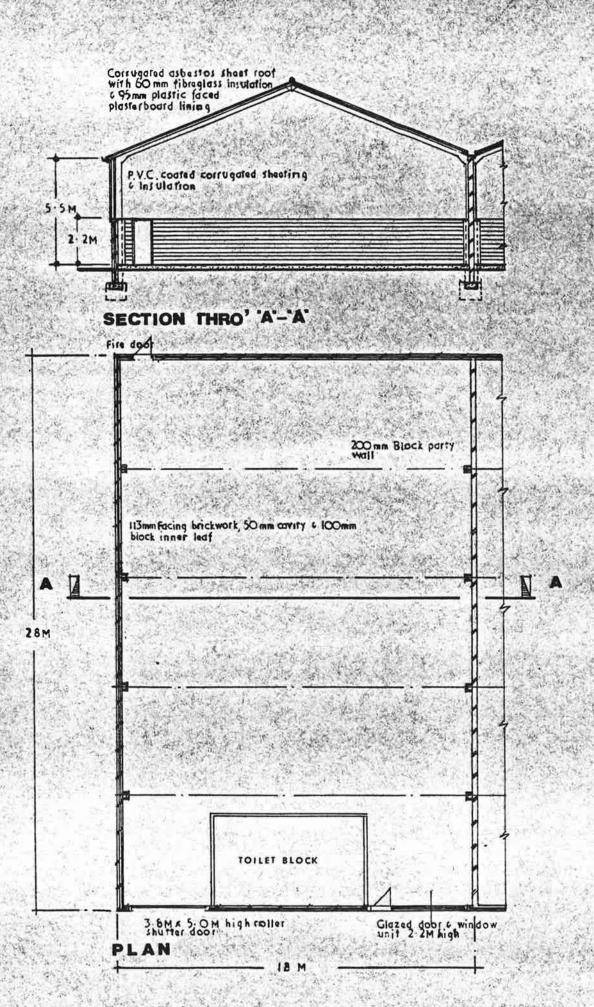
Theoretical Ventilation Rates A Multi-cell Example

Flow Between Cells

MULTI-CELL VENTILATION CURVES Fig. 12 INITIAL CELL CONC. .9 .8 2 3 .7 CONCENTRATION 6 5 .6 MIND DIRECTION .5 .4 .3 .2 . 1 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 TIME(mins.)

Fig. 13 MULTI-CELL VENTILATION CURVES


Fig. 14 MULTI-CELL VENTILATION CURVES

RESULTS SECTION

BO1 RO1

Date: 16th December, 1981

Time: 1100 hours to 1200 hours

Tracer Gas: Nitrous Oxide

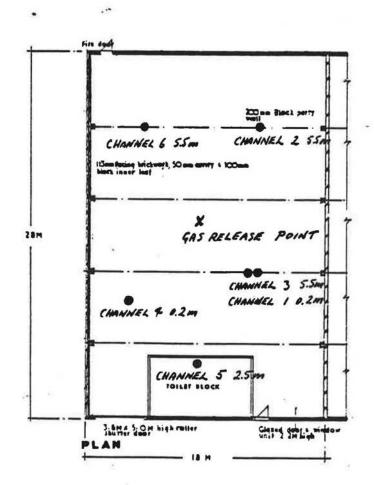
External Conditions:

Time		Windspeed (m/s)	Temperature (°					
1100	hrs	zero	-6.4					
1200	hrs	zero	-4.8					

Internal Conditions:

air velocity: very low, not measured temperature: -1°C to + 3°C

Gas Release:


Gas released into path of small fan at point shown on plan.

Sample Positions:

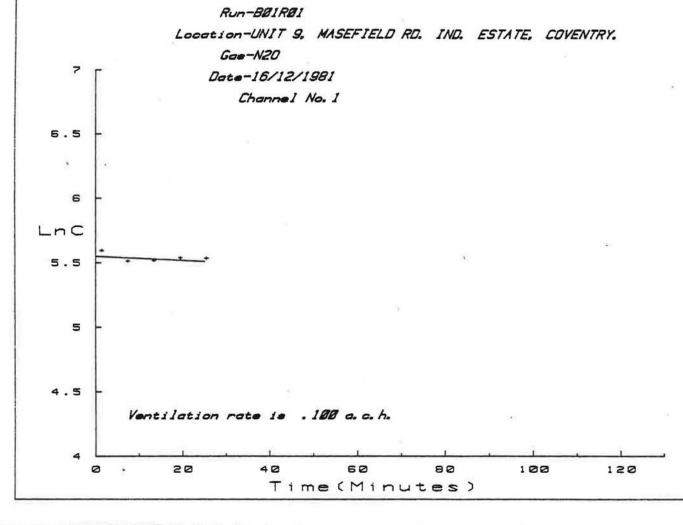
As shown on plan.

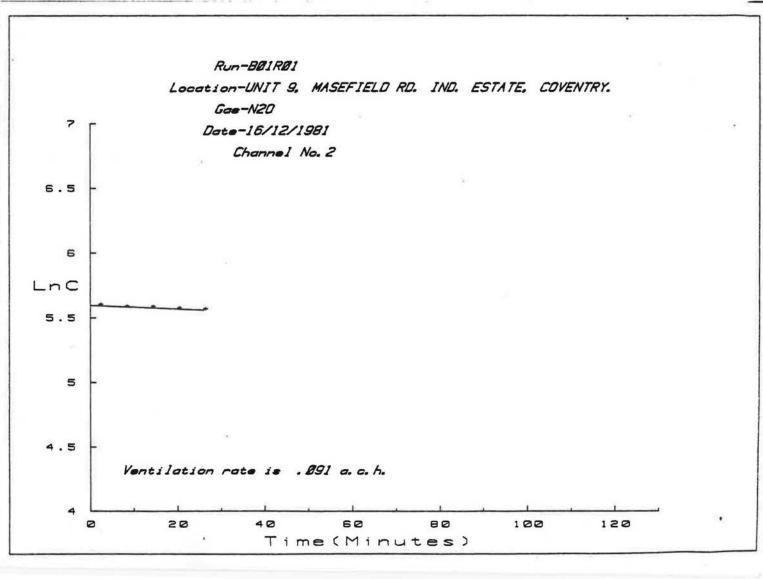
Comment: Roller shutter door open 300 mm and one small window open, both on s.w. face of building.

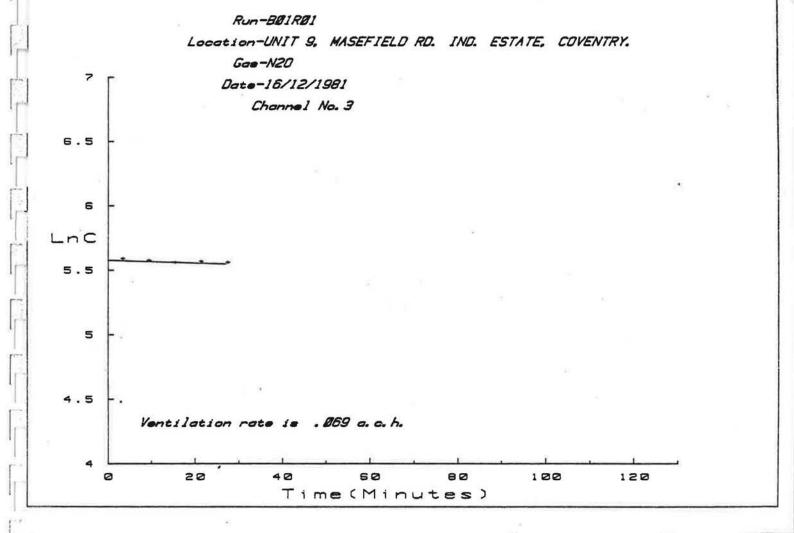
N.B. With roller shutter door and window closed there was no detectable fall in tracer concentration.

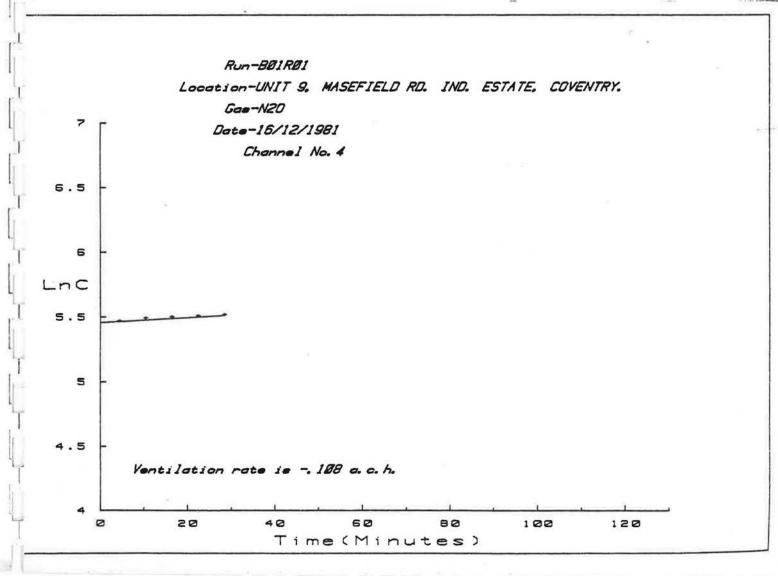
ANALYSIS OF PACTORY VENTILATION RATES

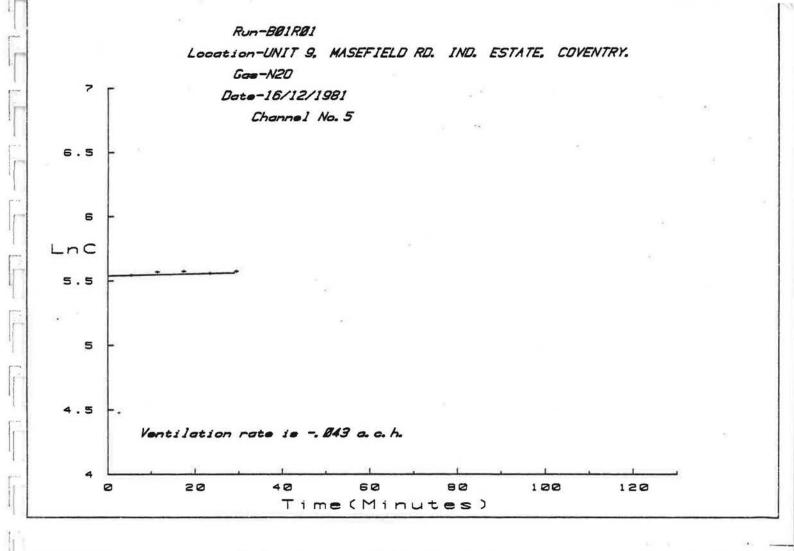
Experimental run number: B01R01 Location: Unit9, Masefield Road Ind. Estate,COVENTRY Date: 16/12/81 Tracer gas: N2O

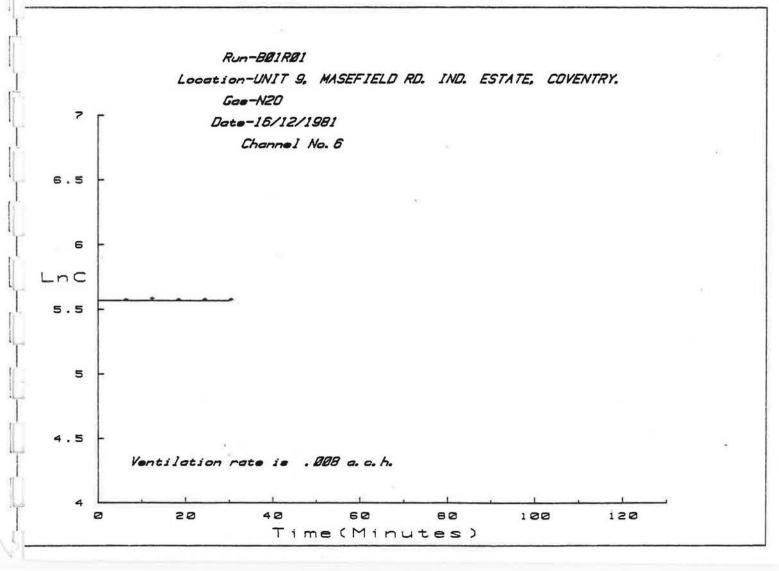

T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

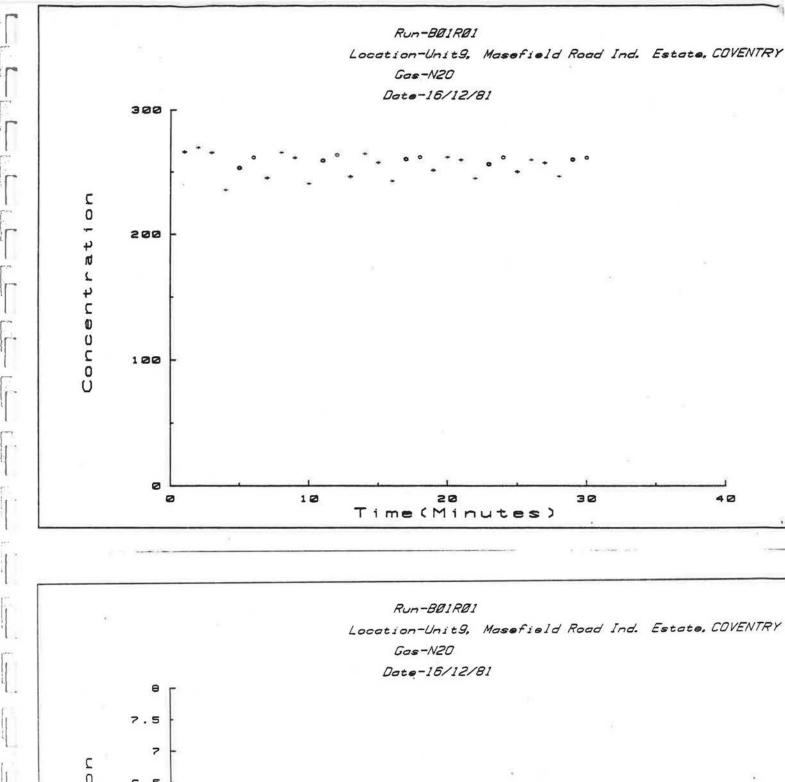

TABLE OF RESULTS

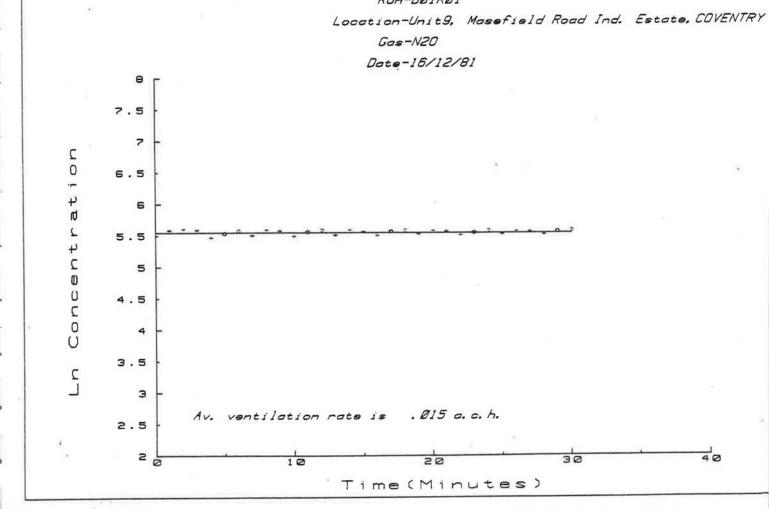

Data Pt.	d	hannel	1 '	a	hannel	2	a	hannel	3	d	hannel	4	C	hannel	5	a	hannel	6
****	*****	****	*****	****	****	*****	****	****	*****	****	****	*****	****	*****	*****	*****	*****	*****
	T	С	LnC	T	c	LnC	T	С	LnC	T	C	LnC	T	c	LnC	Ť	C	LnC
1	1.0	266	5.583	2.0	269	5.595	3.0	265	5.580	4.0	235	5.460	5.0	253	5.533	6.0	261	5.565
2	7.0	245	5.501	8.0	265	5.580	9.0	261	5.565	10.0	240	5.481	11.0	259	5.557	12.0	263	5.572
3	13.0	246	5.505	14.0	264	5.576	15.0	257	5.549	16.0	242	5.489	17.0	260	5.561	18.0	261	5.565
4	19.0	251	5.525	20.0	261	5.565	21.0	259	5.557	22.0	244	5.497	23.0	256	5.545	24.0	261	5.565
5	25.0	250	5.521	26.0	259	5.557	27.0	257	5.549	28.0	246	5.505	29.0	260	5.561	30.0	261	5.565


*				
STREET STICAL A	MALTELS FOR	CHANGEL 1		
Source	DE			
Regression Residual Total	1 4	.001 .003 .004	.001 .001	.001
DESCRIPT- 5.	549039794 66460088897	m-03		
Ventilatio	m rate is .	.100 air chenges	het peet	
STREETICAL A				
heresian	. of	.001	.00 .001 -	0000000
Residuel Total	3	.001	- 100.	
0001000	59857588156 01516267575	1		
Veniletie	m come in .	.00L air dampes	-	
CONTRACTOR				
ADDITION A	5423	COMMENT 3		- 4
manus in the second	¥	****	00000	7.630
Recident Secol	3	-607 -600 -600	.000	7.000
	57769664884 14999713131	m-03		
Ventiletic	m roto ia .	.069 air champas	por hour	
				181
STATISTICAL A	MALYSIS POR	CHANNEL 4		
Boucos	DE .			
Regression Residual Total	1 2 4	-001 -001	.001	52,943
DESIGNATION 1.	45752669289 80035575554) 10-63		
	rate is		pac haur	
SERVICE !	manus ro	CROSS 5		
-	=		PES 000000	
Registration Recident	3 4	-000 000-	.000	1.463
Beincary- 5.	5391871123 1956112222			
		.043 air changan		
APPLIES OF	MALMIS PO	COUNTY !		
	=		18 00000	
Representati Recident Strat	3 4	.000	.000	.439
MINICIPP 5.	9603372197: 2722700055	<u>.</u>		
		.006 air etempes	per laws	
		- N	500	*
PRINCE A	- 1200000 - A	ALL CHARGES		
Aneron	20	20000	****	
Production of the last of the	26 29	.036 .034	.000	.120
		*		


INTERCEPY- 5.5483609673







BO1 RO2

. Date: 16th December, 1981

Time: 1300 hours to 1400 hours

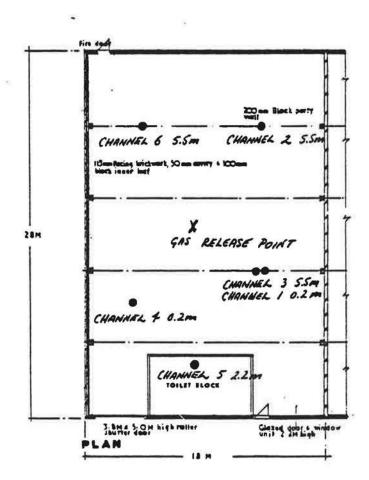
Tracer Gas: Nitrous Oxide

External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1300 hrs	zero	-3.4
1400 hrs	zero	-2.9

Internal Conditions:

air velocity: very low, not measured temperature: -1°C to +3°C


Gas Release:

Gas released into path of small fan at point shown on plan.

Sample Positions:

As shown on plan.

Comment: roller shutter door and small window on s.w. face of building and door on n.e. face of building open.

ANALYSIS OF PACTORY VENTILATION RATES

Experimental run number: B01R02

Location: Unit 9, Masefield Road Ind. Estate, COVENTRY Date: 16/12/81

Tracer gas: N2O

eeaaaaaaa

T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

TABLE OF RESULTS

Data Pt.	a	nannel	1	a	nannel	2	a	nannel	3	a	nannel	4	d	nannel	5	a	nannel	6
****	*****	****	*****	****	****	*****	*****	*****	*****	*****	*****	*****	****	****	*****	*****	*****	*****
	T	С	LnC	T	С	LnC	T	c	LnC	T	c	LnC	T	c	LnC	T	c	LnC
1	1.0	253	5.533	2.0	257	5.549	3.0	256	5.545	4.0	250	5.521	5.0	255	5.541	6.0	257	5.549
2	7.0	250	5.521	8.0	259	5.557	9.0	256	5.545	10.0	245	5.501	11.0	251	5.525	12.0	256	5.545
. 3	13.0	248	5.513	14.0	257	5.549	15.0	255	5.541	16.0	245	5.501	17.0	248	5.513	18.0	255	5.541
4	19.0	244	5.497	20.0	256	5.545	21.0	253	5.533	22.0	237	5.468	23.0	248	5.513	24.0	254	5.537
5	25.0	243	5.493	26.0	253	5.533	27.0	251	5.525	34.0	238	5.472	29.0	247	5.509	30.0	252	5.529
6	31.0	243	5.493	32.0	254	5.537	33.0	251	5.525				35.0	246	5.505	36.0	252	5.529

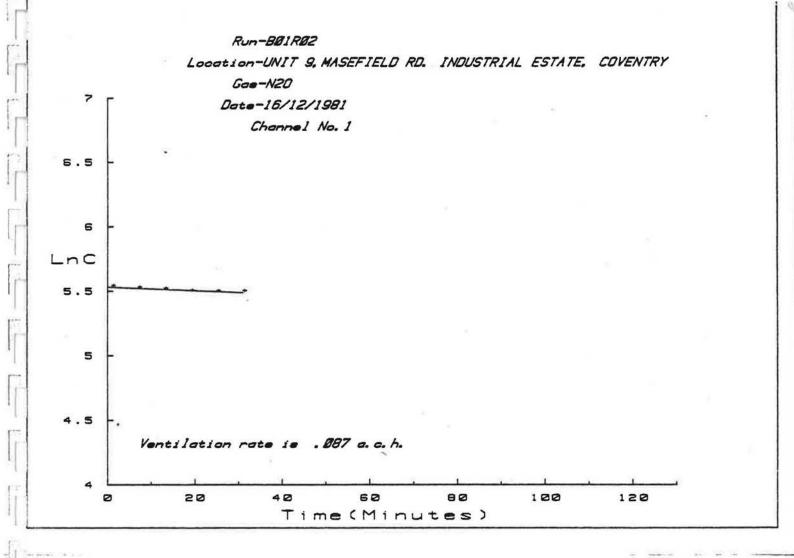
STATISTICAL MONLYSIS FOR CHANGEL 1 96 .001 INTERCEPT- 5.53168831437 GRADIENT- -1.44332939048E-03 Ventilation rate is .067 air changes per hour STRTISTICAL ANALYSIS FOR CHANGEL 2 -000 -000 -000 INTERCEPT- 5.55590737499 GRADIENT- -6.329688063498-04

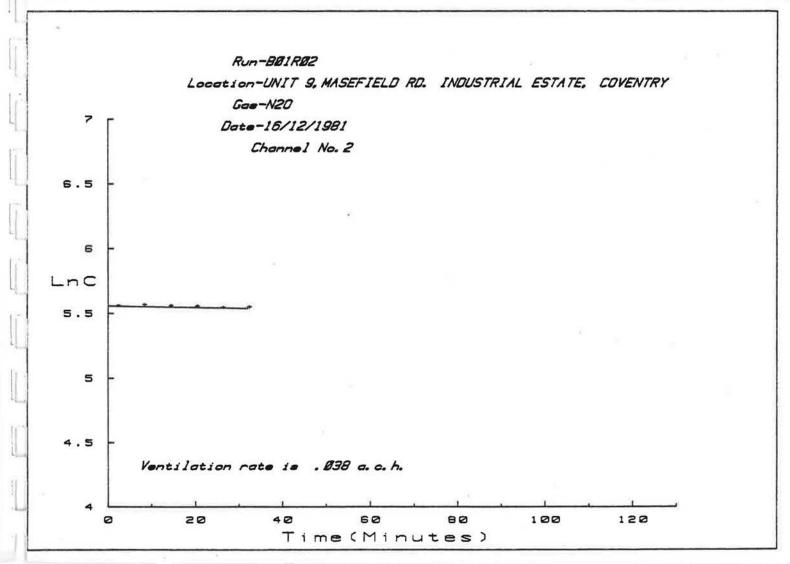
Ventilation rate is .038 air changes per hour

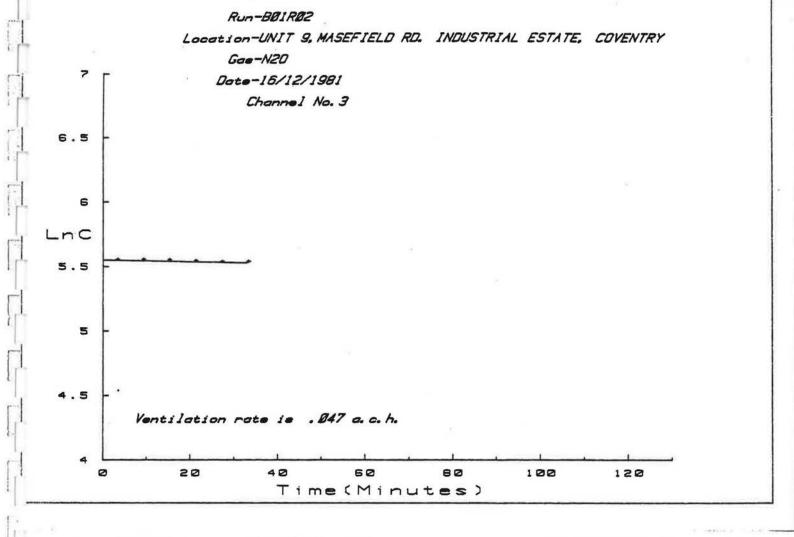
Source	00	**	PES	
*****	-	****	****	*****
Regression	1	.000	.000	47.01
Residual	4	.000	.000	
Total	5	.900		

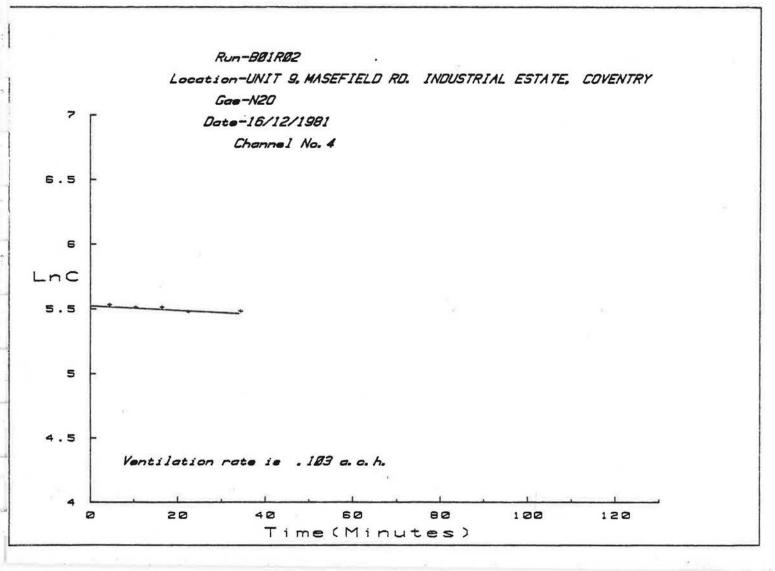
<u>ne</u>	86		P
1 3	.002	.002	10.828
		1 .002	1 .002 .002 3 .000 .000

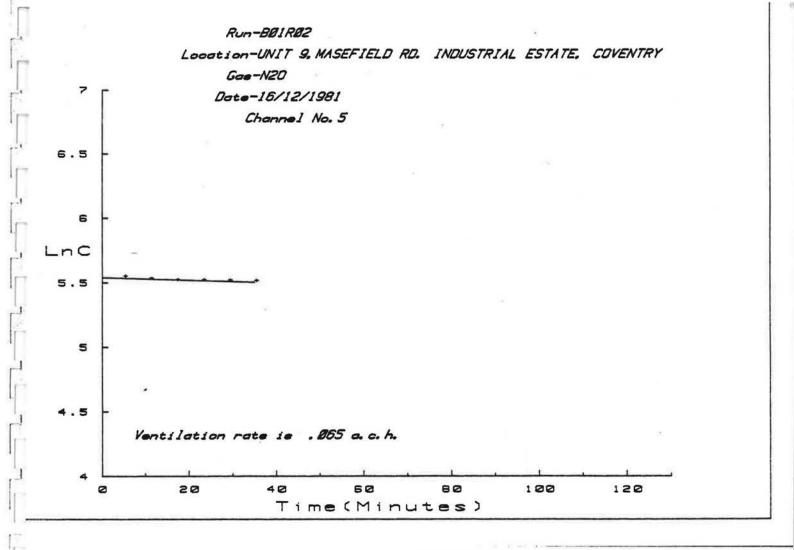
Source	DÉ	26		
*****	**	*****	*****	******
Regression	1	.001	.001	22,562
Pasidual	4	.000	.000	
Total	5	.001		

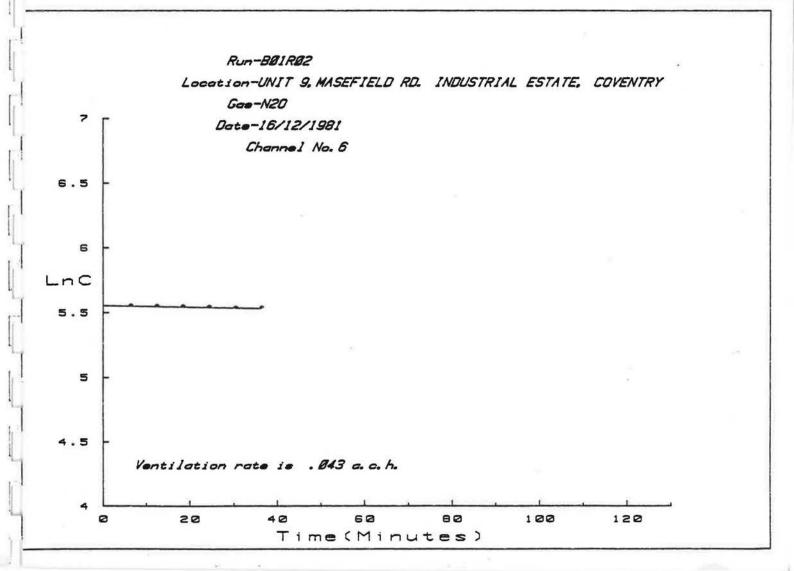

*******	******		- 0	•35
Source *****	DE .	86	15	P
Regression Residual Total	1 4 5	.000 .000	.000	115.808

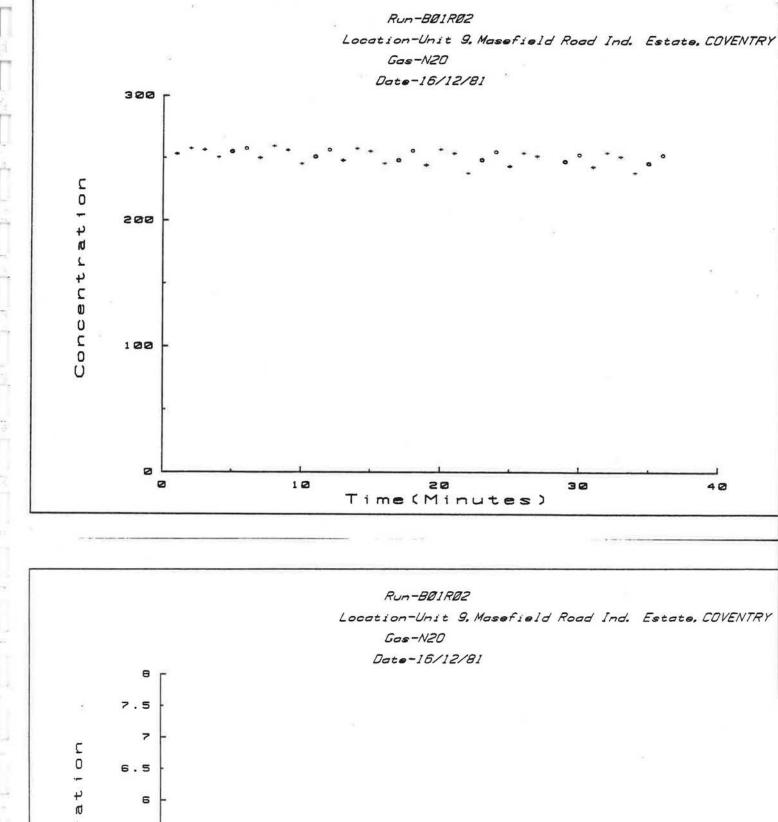

Ventilation rate is .043 air changes per hour

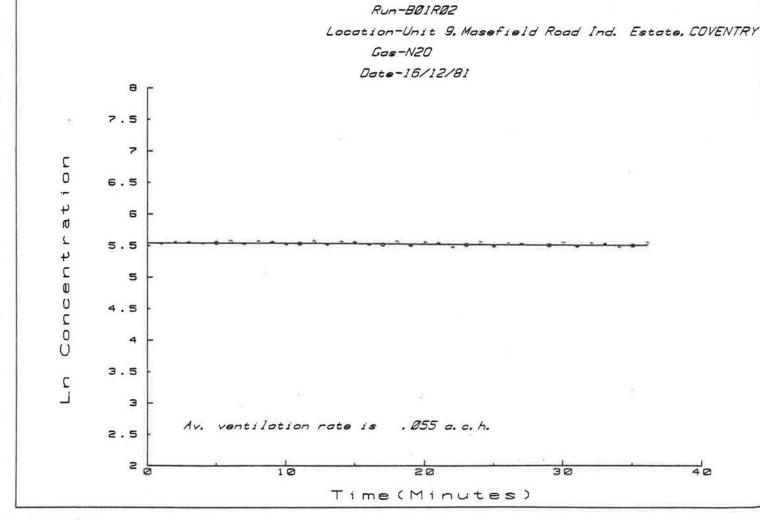

STATISTICAL		- ALL CHANNELS		
Bource	DÉ **	88	195	
Regression Residual Total	1 33 34	.003 .014 .017	.003	7.770

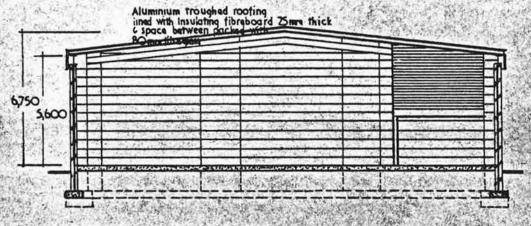

INTERCEPT- 5.54078645144 GRADIEST- -9.166908816088

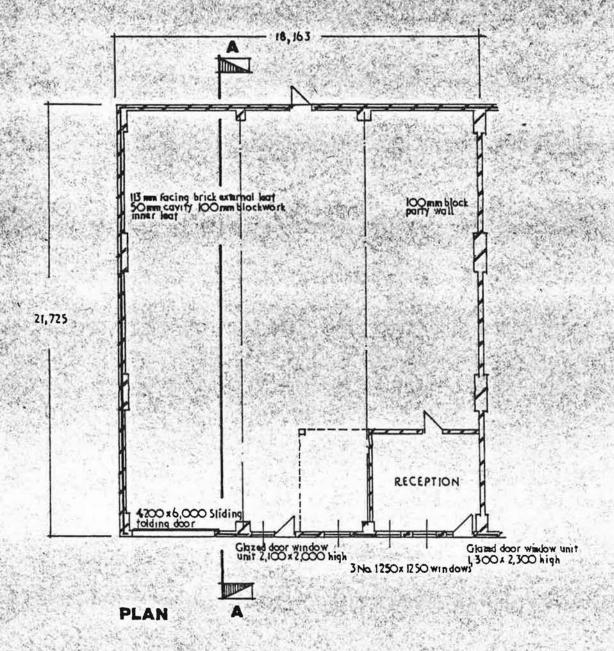

Wentilation rate is .055 air changes per hour











Building B02 Stag Industrial Estate, Coventry

SECTION THRO' 'A'-'A'

BO2 RO1

Date: 16th March, 1982

Time: 1500 hours to 1600 hours

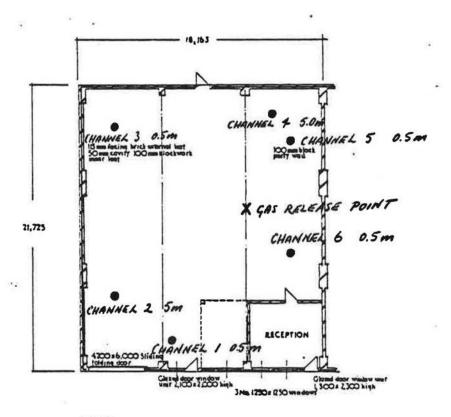
Tracer Gas: Nitrous Oxide

External Conditions:

Time		Windspeed (m/s)	Temperature (
1500	hrs	7.2	7.5				
1600	hrs	7.2	7.5	*			

Wind Direction: west south west

Internal Conditions:


air velocity: 0.02 to 0.10 m/s temperature: 8.1 to 9.5°C

Gas Release:

Gas released into path of small fan at point shown on plan.

Sample Positions:

As shown on plan.

PLAN

ANALYSIS OF FACTORY VENTILATION RATES ***********

등 문 등 등 등 등 으 으 으 으 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ

Experimental run number: 802R01

Location: Stag Industrial Estate, COVENTRY

Date: 16/3/82

Tracer gas: N20

T=Time in minutes. C=Concentration (arbitrary units) Lnc=Natural log of concentration.

TABLE OF RESULTS *****

Data Pt.		nannel	1		nannel	2	CI	nannel	3	C	nannel	4		hannel	5
	T	С	LnC	T	C	LnC	T	С	LnC	T	С	LnC	T	С	LnC
1	3.0	507	6.229	5.0	859	6.756	0.0	912	6.816	1.0	861	6.758	2.0	627	6.441
2	9.0	501	6.217	11.0	741	6.608	6.0	668	6.504	7.0	682	6.525	8.0	565	6.337
3	15.0	452	6.114	17.0	638	6.458	12.0	582	6.366	13.0	612	6.417	14.0	531	6.275
4	21.0	322	5.775	23.0	513	6.240	18.0	525	6.263	19.0	513	6.240	20.0	442	6.091
5	27.0	245	5.501	29.0	501	6.217	24.0	440	6.087	25.0	488	6.190	26.0	376	5.930
6	33.0	295	5.687	35.0	398	5.986	30.0	331	5.802	31.0	347	5.849	32.0	309	5.733
7	39.0	214	5.366	41.0	355	5.872	36.0	327	5.790	37.0	351	5.861	38.0	355	5.872
8	45.0	207	5.333	47.0	282	5.642	42.0	316	5.756	43.0	355	5.872	44.0	376	5.930
9	51.0	197	5.283	53.0	245	5.501	48.0	316	5.756	49.0	275	5.617	50.0	204	5.318
10	57.0	211	5.352	59.0	243	5.493	54.0	248	5.513	55.0	295	5.687	56.0	229	5.434
11	63.0	180	5.193	65.0	174	5.159	60.0	229	5.434	61.0	224	5.412	62.0	180	5.193
12	69.0	100	4.605	71.0	145	4.977	66.0	168	5.124	67.0	126	4.836	68.0	108	4.682
13							72.0	119	4.779	73.0	104	4.644			

STATISTICAL AMALYSIS FOR CHANNEL 1

Source	DE	88	MS	P
******	**	****	****	*****
Regression	1	2.226	2.226	79.753
Residuel	10	.279	.028	
Motol 1	11	2 506		

INTERCEPT= 6.30310708605 GRADIENT= -2.079587251946-02

Ventilation rate is 1.248 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL 2

Source seeses	DE .	95	*****	
Regression Residual Total	1 10 11	3.525 .037 3.561	3.525 .004	960.312

INTERCEPT- 6.90342812331 GBADIENT- -.026165706451

Ventilation rate is 1.570 air changes per hour

STATISTICAL AMALYSIS FOR CHANGEL 3

Source	DE	SS	MES	,
*****	**	*****	****	******
Regression	1	3.660	3.660	226,314
Residual	11	.178	-016	
Total	12	3.838		

INTERCEPT- 6.69629450528 GMADIENT- -2.363558925678-02

Wentilation rate is 1.418 air changes par hour

STATISTICAL ANALYSIS FOR CHAMMEL 4

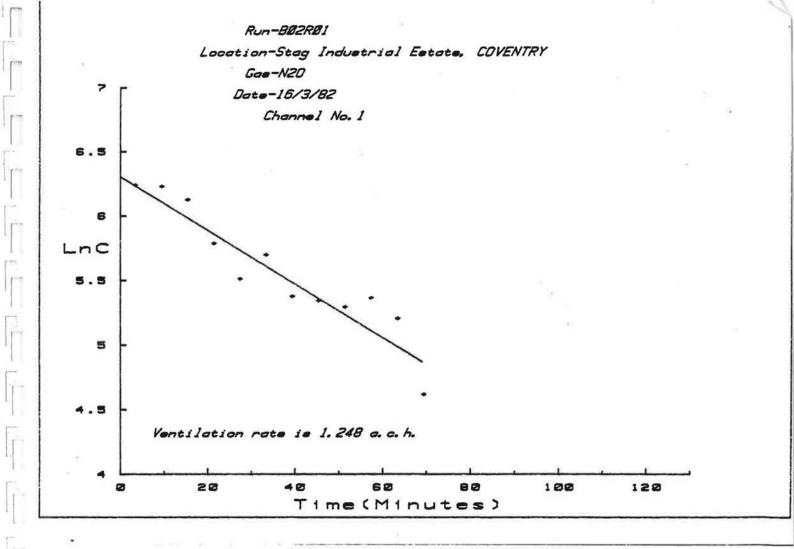
Source	DE ee	85	****			
Regression Residual	11	4.286	4.286	140.078		
The al	12	4 623				

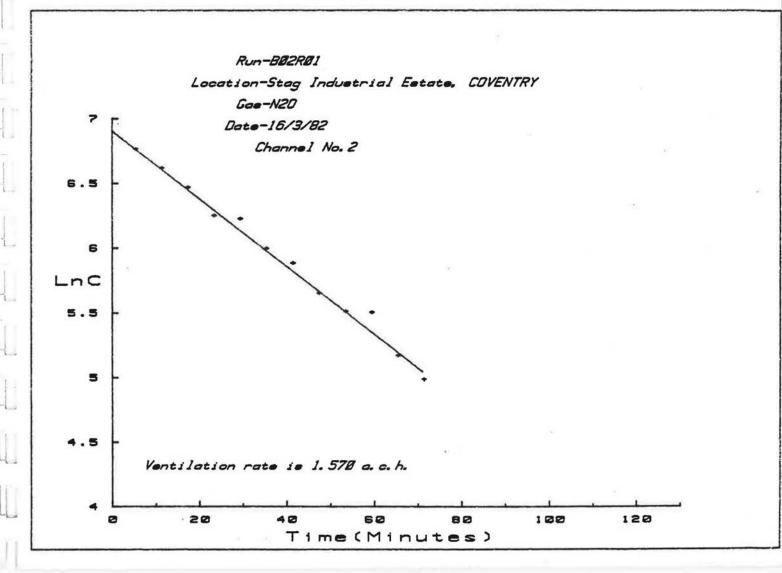
INTERCEPT- 6.78549716053 GBADIENT- -2.557738313158-02

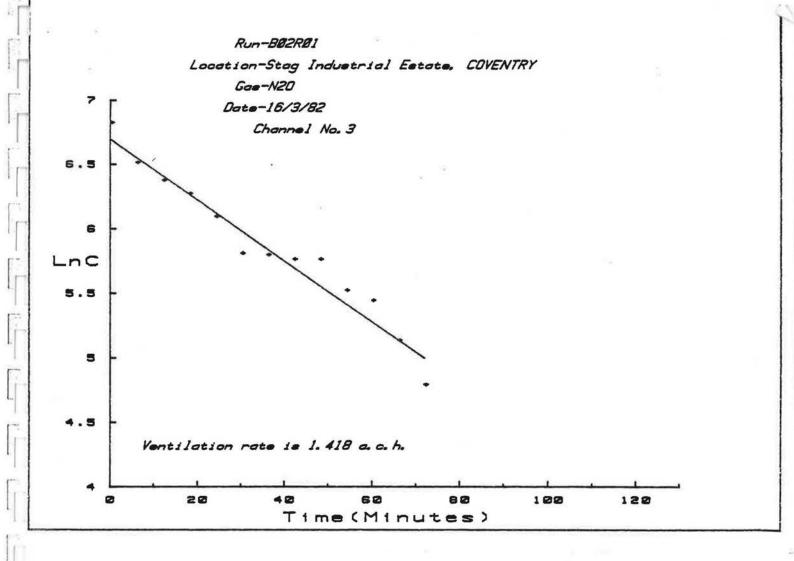
Ventilation rate is 1.535 air changes per hour

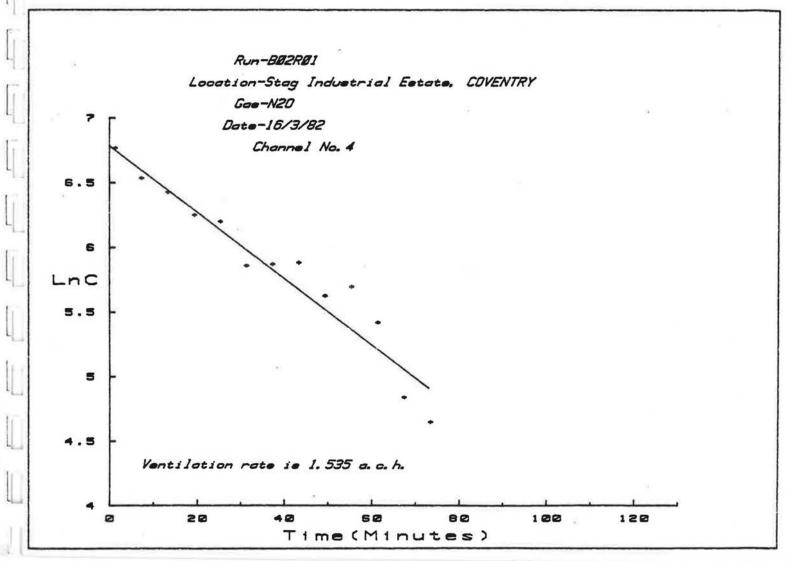
STATISTICAL AMALYSIS FOR CHANNEL 5

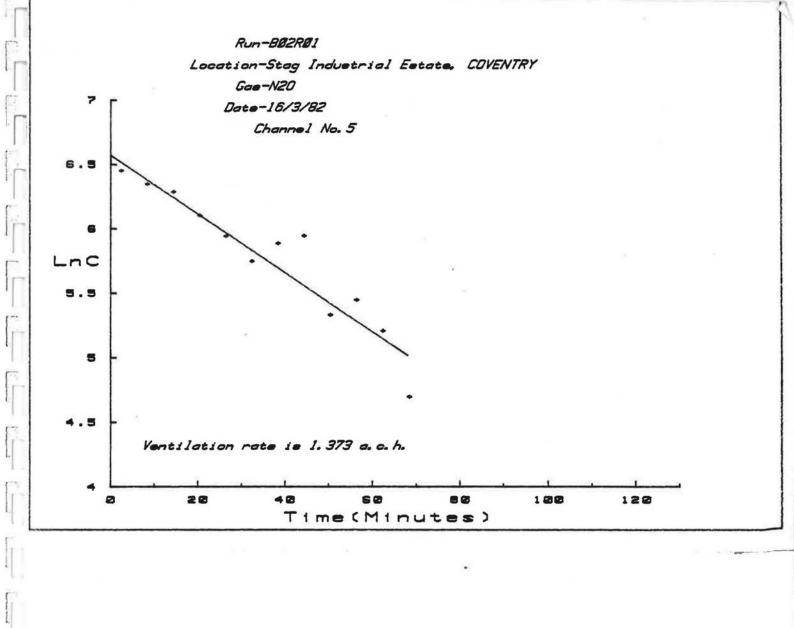
Source	DE	\$6	MS	P
Regression Residual	10	2.694 .332	2.694 .033	81.208
Total	11	3.026		

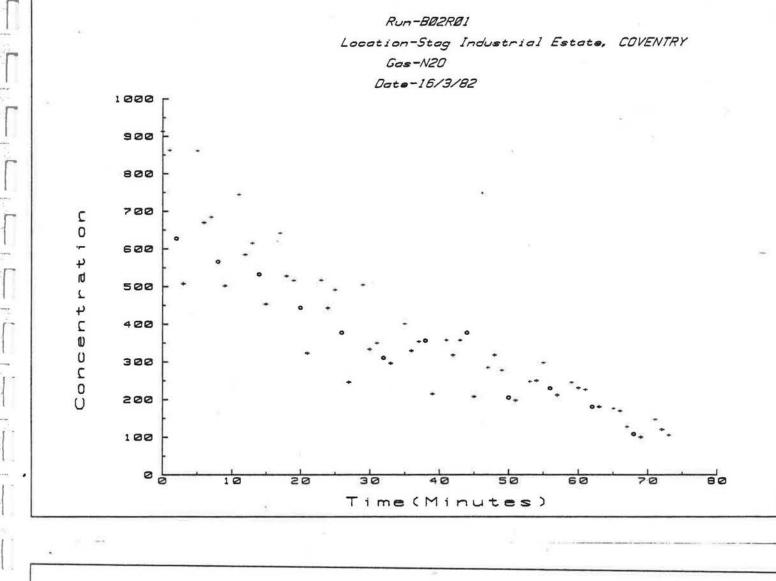

INTERCEPT- 6.57029854844 CRADIENT- -.022876597566

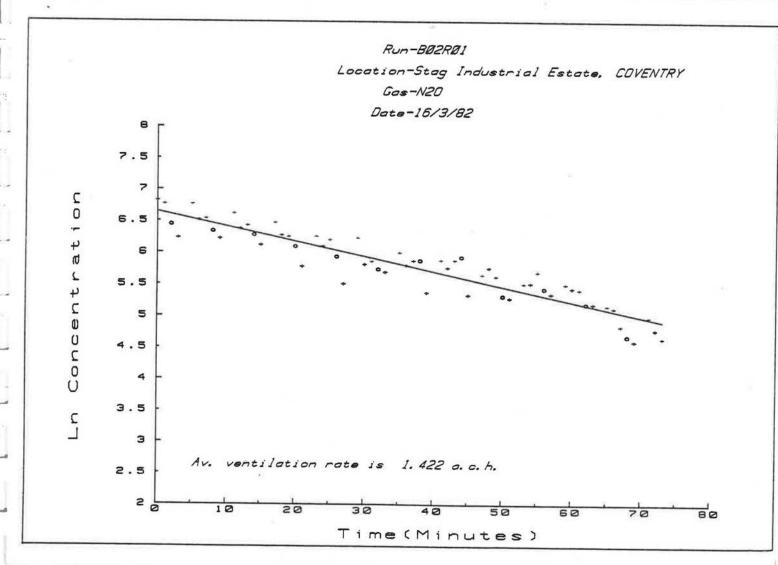

Ventilation rate is 1.373 air changes per hour


STATISTICAL		- ALL CHANNELS		
Source	DE	88	****	
Regression Residual Total	60 61	16.072 2.393 18.465	16.072 .040	403.036


INTERCEPT- 6.64824587844 GRADIENT- -2.37012294287E-02


Wentilation rate is 1.422 air changes per hour





- BO2 RO2

Date: 17th March, 1982

Time: 1400 hours to 1600 hours

Tracer Gas: Nitrous Oxide

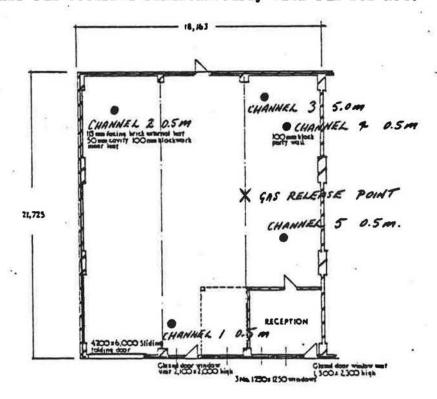
External Conditions:

Time		Windspeed (m/s)	Temperature	(°C)
1400	hrs	6.2	6.8	
1500	hrs	4.6	7.2	
1600	hrs	8.8	7.9	

Wind direction: west north west

Internal Conditions:

air velocity: 0.01 to 0.06 m/s temperature: 7.5 to 8.5 °C


Gas Release:

Gas released into path of small fan at point shown on plan.

Sample Positions:

As shown on plan. Channel 6 positioned outside the building to monitor external air as a zero check.

Comment: This run occurred simultaneously with run BO2 RO4.

PLAN

ANALYSIS OF FACTORY VENTILATION RATES **********

Experimental run number: B02R02
Location: Stag Industrial Estate, COVENTRY
Date: 17/3/82

Tracer gas: N2O

T-Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

TABLE OF RESULTS

Data					4										
Pt.	C	hannel	1	C	hannel	2	a	hannel	3	C	nannel	4	a	hannel	5
***	****	*****	****	****	****	***	****	*****	****	***	****	****	****	****	****
	T	C	LnC												
1	4.0	980	6.888	0.0	1000	6.908	1.0	810	6.697	2.0	920	6.824	3.0	900	6.802
2	10.0	800	6.685	6.0	890	6.791	7.0	785	6.666	8.0	880	6.780	9.0	835	6.727
3	16.0	650	6.477	12.0	835	6.727	13.0	770	6.646	14.0	845	6.739	15.0	710	6.565
4	22.0	645	6.469	18.0	740	6.607	19.0	690	6.537	20.0	710	6.565	21.0	650	6.477
5	28.0	615	6.422	24.0	670	6.507	25.0	595	6.389	26.0	615	6.422	27.0	600	6.397
6	34.0	540	6.292	30.0	620	6.430	31.0	555	6.319	32.0	595	6.389	33.0	480	6.174
7	40.0	460	6.131	36.0	565	6.337	37.0	400	5.991	38.0	550	6.310	39.0	550	6.310
8	46.0	490	6.194	42.0	520	6.254	43.0	280	5.635	44.0	500	6.215	45.0	490	6.194
9	52.0	335	5.814	48.0	465	6.142	49.0	285	5.652	50.0	430	6.064	51.0	430	6.064
10	58.0	305	5.720	54.0	395	5.979	55.0	335	5.814	56.0	355	5.872	57.0	405	6.004
11	64.0	285	5.652	60.0	385	5.953	61.0	370	5.914	62.0	360	5.886	63.0	370	5.914
12	70.0	265	5.580	66.0	370	5.914	67.0	435	6.075	68.0	340	5.829	69.0	315	5.753
13	76.0	270	5.598	72.0	345	5.844	73.0	355	5.872	74.0	350	5.858	75.0	270	5.598
14	82.0	275	5.617	78.0	295	5.687	79.0	265	5.580	80.0	325	5.784	81.0	310	5.737
15	88.0	270	5.598	84.0	275	5.617	85.0	220	5.394	86.0	315	5.753	87.0	295	5.687
16	94.0	260	5.561	90.0	260	5.561	91.0	215	5.371	92.0	285	5.652	93.0	270	5.598
17	100.0	215	5.371	96.0	230	5.438	97.0	185	5.220	98.0	255	5.541	99.0	240	5.481
18	106.0	190	5.247	102.0	220	5.394	103.0	175	5.165	104.0	200	5.298	105.0	210	5.347
19				108.0	215	5.371	109.0	225	5.416	110.0	185	5.220	111.0	190	5.247

STATISTICAL ANALYSIS FOR CHANNEL 1

Source	Df **	SS	MS	P
Regression Residual	1 16	3.786 .245	3.786	247.103
Total	17	4.032	17/5/7/5/6	

INTERCEPT- 6.7723487198 GRADIENT- -1.47337844731E-02

Ventilation rate is .884 air changes per hour

STATISTICAL	ANALYSIS	FOR	CHAMMEL	2
********			******	

Source	DE	SS	NS	P
Regression Residual	17	4.402	4.402	2912.021
Total	18	4.427	.002	

INTERCEPT- 6.86765065708 GRADIENT- -.014645872518

Ventilation rate is .879 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL 3

Source	Df	95	NS	
*****	**	*****	*****	*****
Regression	1	3.985	3.985	101.969
Residual	17	.664	.039	
Total	18	4.650		

INTERCEPT= 6.67977374153 GRADIENT= -1.39361657437E-02

Ventilation rate is .836 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL 4

Source	DE ••	S5	MS	P
Augression	1	4.079	4.079	603.975
Remidual	17	.115	.007	
Total	18	4.194		

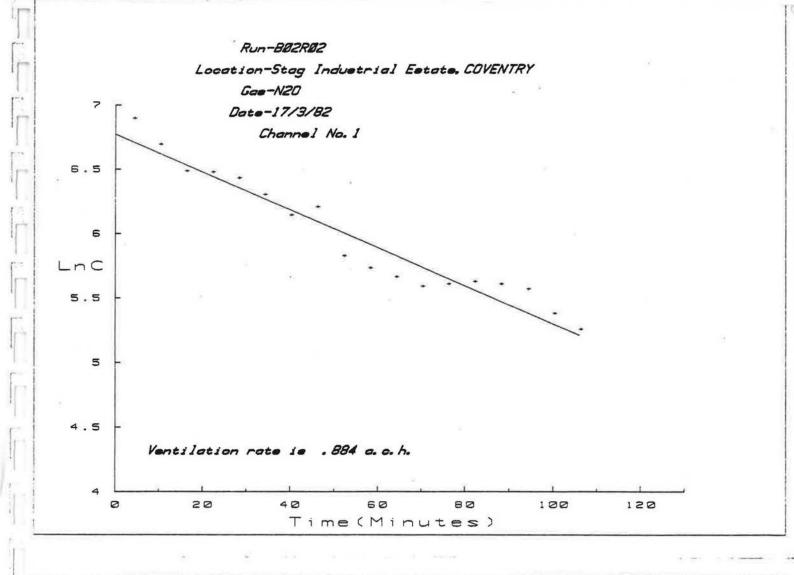
INTERCEPT= 6.84228971176 GRADIENT= -1.409980052498-02

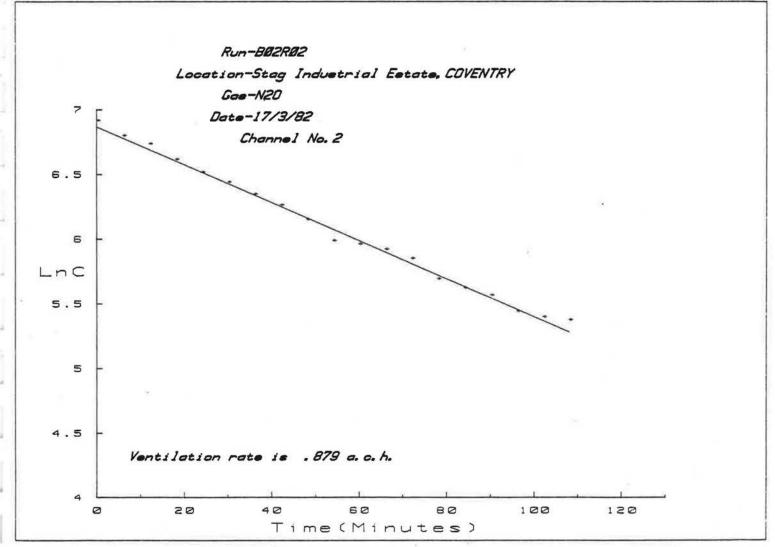
Ventilation rate is .846 air changes per hour

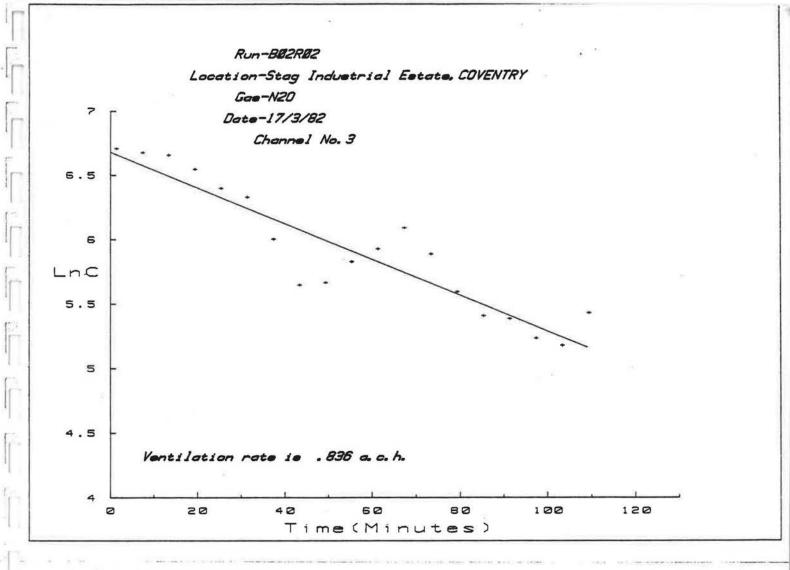
STATISTICAL ANALYSIS FOR CHANGEL 5

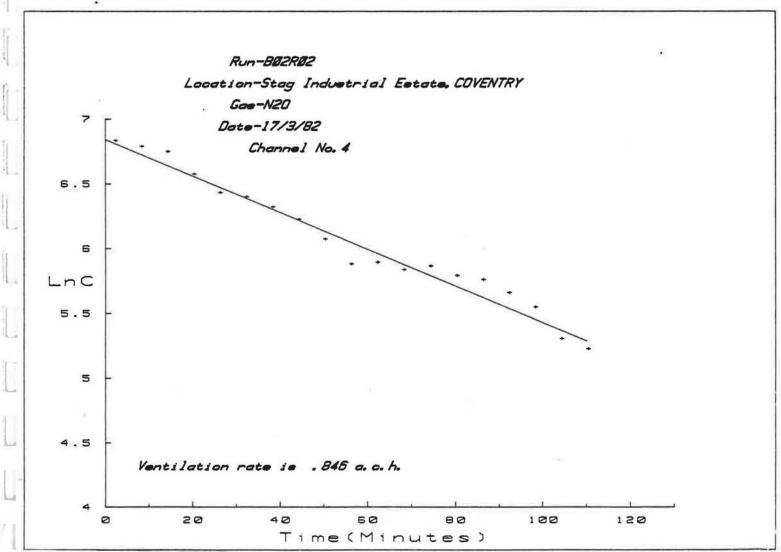
Source	DE	SS	116	F
Regression	1	3.773	3.773	678.847
Remidual Total	17 18	.094 3.867	.006	

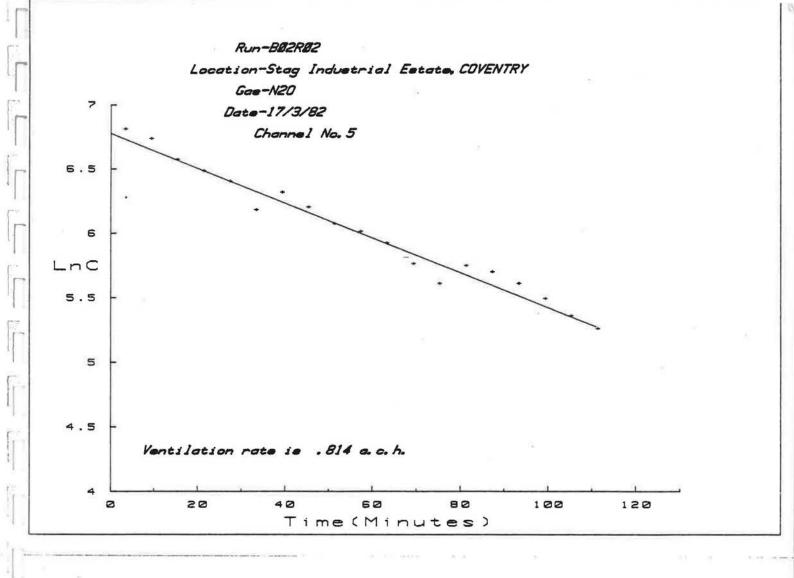
INTERCEPT= 6.77686199688 GRADIENT= -1.35589701501E-02

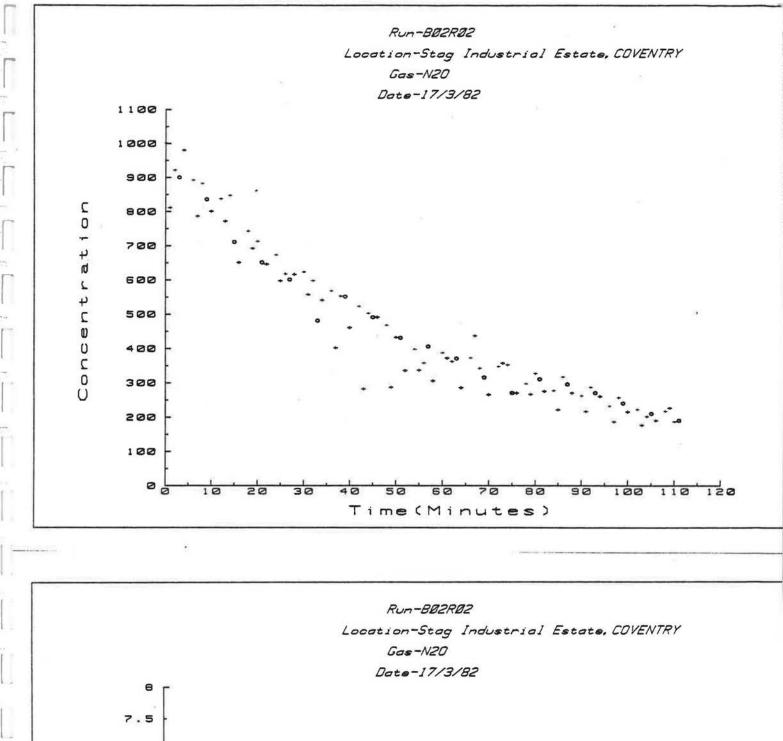

Ventilation rate is .814 air changes per hour

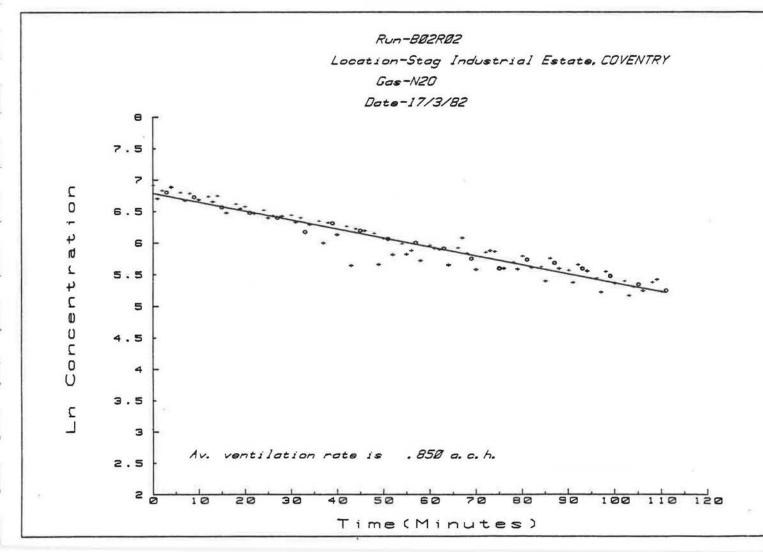

STATISTICAL		- ALL CHANNELS		
Source	Df	SS	MS	
*****	**	****	****	*****
Regression	1	19.997	19.997	1221.643
Residual	92	1.506	.016	
Total	93	21.503		


INTERCEPT- 6.78714653027 GRADIENT- -.014168108356


-.014260100330


Ventilation rate is .850 air changes per hour





BO2 RO3

Date: 18th March, 1982

Time: 1040 hours to 1250 hours

Tracer Gas: Nitrous Oxide

External Conditions:

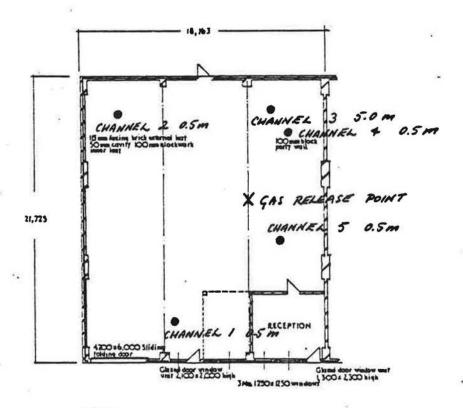
Time	Windspeed (m/s)	Temperature (°C)
1100 hrs	6.7	6.9
1200 hrs	4.6	6.7
1300 hrs	4.1	7.2

Wind direction: west north west

Internal Conditions:

air velocity: 0.001 to 0.08 m/s

temperature: 7.5°C


Gas Release:

Gas released into path of small fan at point shown on plan.

Sample Positions:

As shown on plan. Channel 6 positioned outside the building to monitor external air as a zero check.

Comment: This run occurred simultaneously with run BO2 RO5.

PLAN

ANALYSIS OF FACTORY VENTILATION RATES

Experimental run number: B02R03
Location: Stag Industrial Estate, COVENTRY
Date: 18/3/82

Tracer gas: N20

T-Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

TABLE OF RESULTS

Data					na terrore sina.										
Pt.	a	nannel	1	a	nannel	2	a	nannel	3	a	hannel	4	a	nannel	5
***	***	****	***	***	***	***	****	****	***	***	****	***	****	*****	****
	T	C	LnC	T	C	LnC	T	C	LnC	T	C	LnC	T	C	LnC
1	4.0	760	6.633	0.0	795	6.678	1.0	865	6.763	2.0	860	6.757	3.0	820	6.709
2	10.0	685	6.529	6.0	805	6.691	7.0	800	6.685	8.0	805	6.691	9.0	740	6.607
3	16.0	675	6.515	12.0	770	6.646	13.0	760	6.633	14.0	755	6.627	15.0	720	6.579
4	22.0	650	6.477	18.0	725	6.586	19.0	715	6.572	20.0	720	6.579	21.0	685	6.529
5	28.0	610	6.413	24.0	700	6.551	25.0	690	6.537	26.0	705	6.558	27.0	665	6.500
6	34.0	465	6.142	30.0	610	6.413	31.0	580	6.363	32.0	645	6.469	33.0	600	6.397
7	40.0	460	6.131	36.0	560	6.328	37.0	560	6.328	38.0	610	6.413	39.0	565	6.337
8	46.0	415	6.028	42.0	525	6.263	43.0	490	6.194	44.0	585	6.372	45.0	490	6.194
9	52.0	350	5.858	48.0	470	6.153	49.0	425	6.052	50.0	545	6.301	51.0	505	6.225
10	58.0	340	5.829	54.0	450	6.109	55.0	395	5.979	56.0	520	6.254	57.0	475	6.163
11	64.0	280	5.635	60.0	440	6.087	61.0	315	5.753	62.0	455	6.120	63.0	425	6.052
12	70.0	290	5.670	66.0	430	6.064	67.0	240	5.481	68.0	415	6.028	69.0	390	5.966
13	76.0	280	5.635	72.0	350	5.858	73.0	245	5.501	74.0	385	5.953	75.0	370	5.914
14	82.0	240	5.481	78.0	295	5.687	79.0	240	5.481	80.0	330	5.799	81.0	335	5.814
15	88.0	220	5.394	84.0	275	5.617	85.0	205	5.323	86.0	300	5.704	87.0	300	5.704
16	94.0	185	5.220	90.0	250	5.521	91.0	195	5.273	92.0	295	5.687	93.0	310	5.737
17	100.0	195	5.273	96.0	250	5.521	97.0	170	5.136	98.0	285	5.652	99.0	235	5.460
18	106.0	195	5.273	102.0	215	5.371	103.0	135	4.905	104.0	240	5.481	105.0	225	5.416
19	112.0	135	4.905	108.0	160	5.075	109.0	170	5.136	110.0	210	5.347	111.0	205	5.323
20	118.0	165	5.106	114.0	190	5.247	115.0	180	5.193	116.0	195	5.273	117.0	170	5.136
21				120.0	165	5.106									

STATISTICAL AMALYSIS FOR CHARMEL 1

Source	DE	35	PIS	F
******	••	*****	****	******
Regrossion	1	5.239	5.239	740.417
Residual	18	.127	-007	
Total	19	5.366		

INTERCEPT- 6.70974847244 GADIENT- -.01479292884

Ventilation rate is .860 air changes per hour

STATISTICAL ANALY 315 FOR CHANNEL 2

Source	D.	55	MS	******
Regression Residual	19	5.596 .133	5.596	798.661
Total	20	5.729		

INTERCEPT= 6.83220554107
GRADIENT= -1.42085495361E-02

Ventilation rate is .853 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL)

Source	DE ••	9S	MS	F
Regression Residual	1 18	6.887	6.887	455.588
Total	19	7-159	*****	

INTERCEPT- 6.84808381491 GRADIENT- -1.69609918459E-U2

Wentilation rate is 1.018 air changes per hour

STATISTICAL AMALYSIS FOR CHAMBEL 4

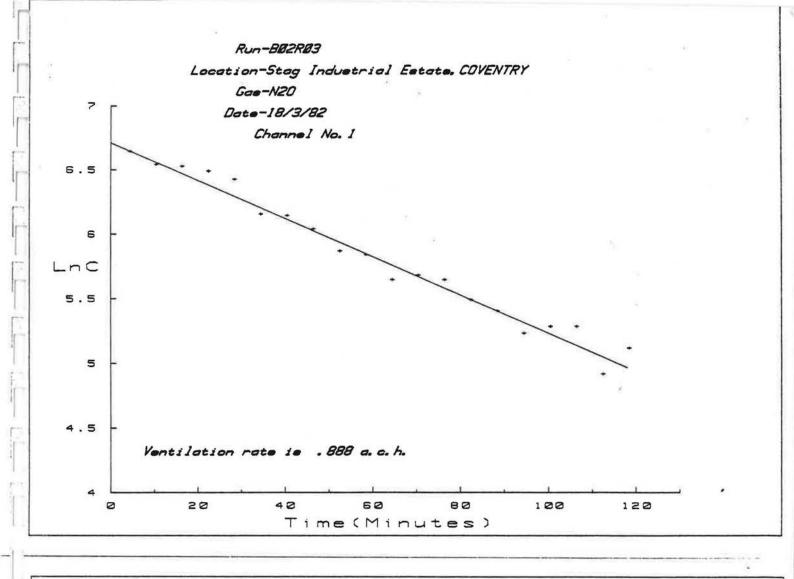
Source	DE	SS	PES	
*****	**	****	****	******
Regression	1	4.073	4.073	961.683
Residual	18	.076	-004	
Total	19	4 150	1500000	

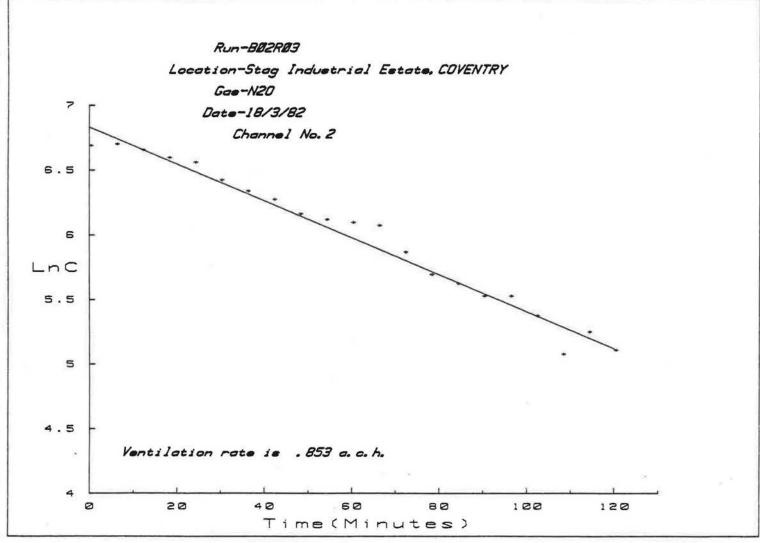
INTERCEPT- 6.87290211544 GRADIENT- -1.30442683041E-02

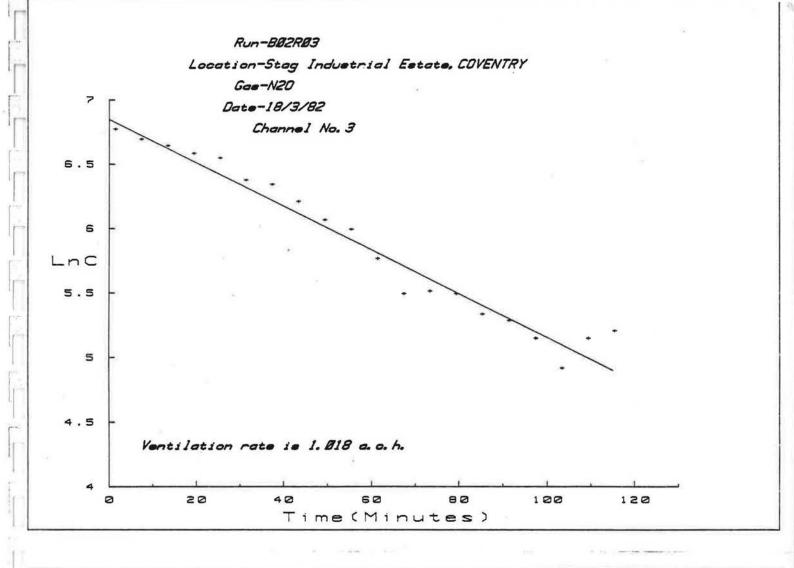
Ventilation rate is .783 air changes per hour

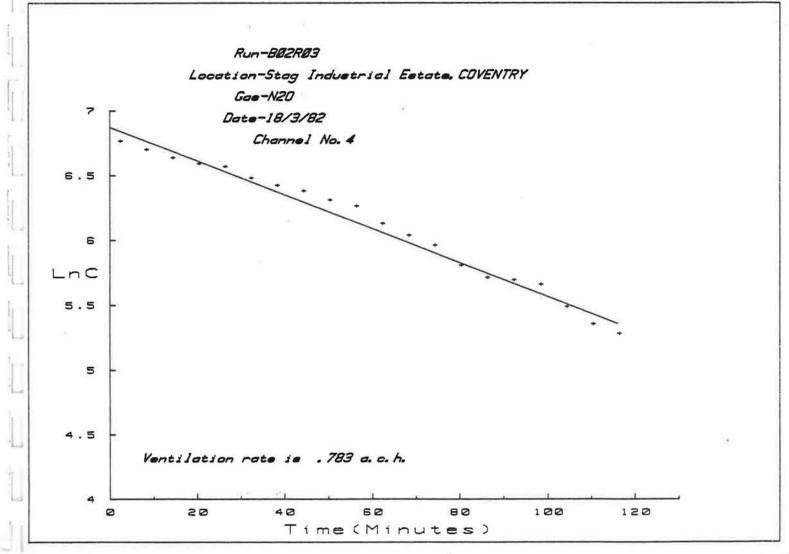
STATISTICAL ANALYSIS FOR CHANNEL 5

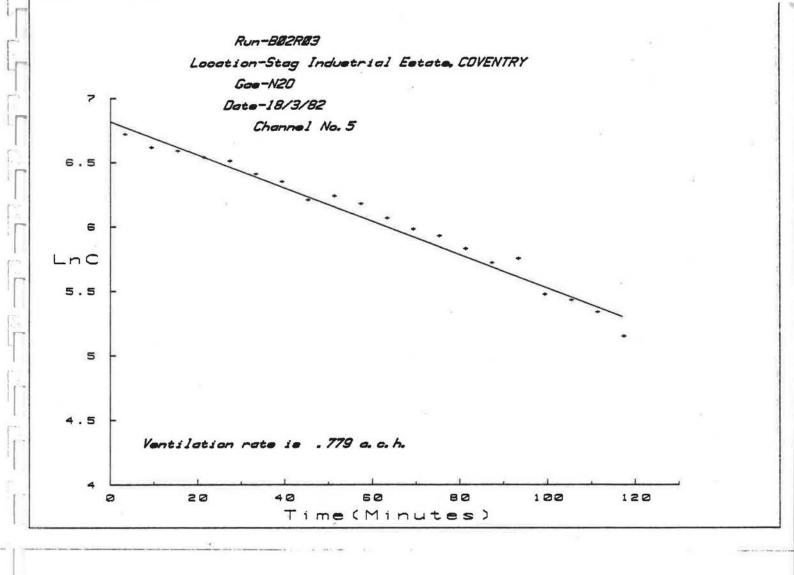
Source	Df	SS	MS	····
Regression Residual	1 16	4.039	4.039	761.795
Total	19	4.135	.003	

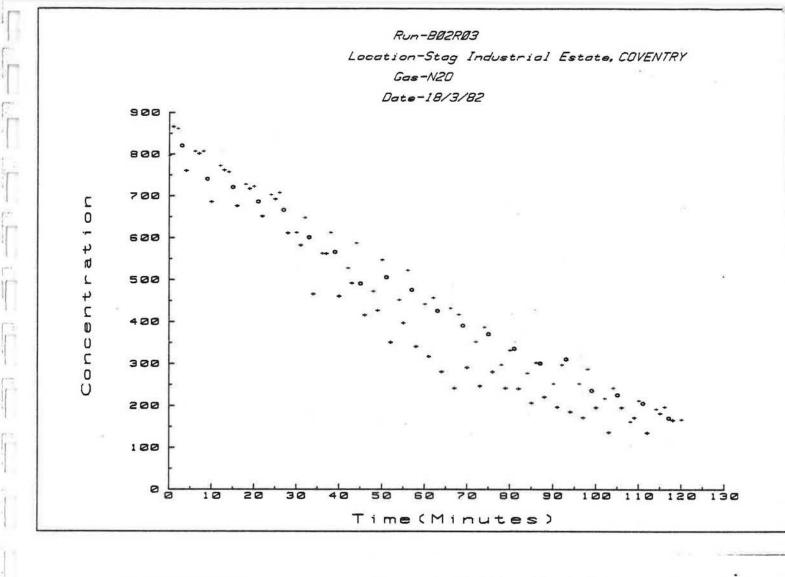

INTERCEPT- 6.81743502747
GMADIENT- -1.29896136429E-02

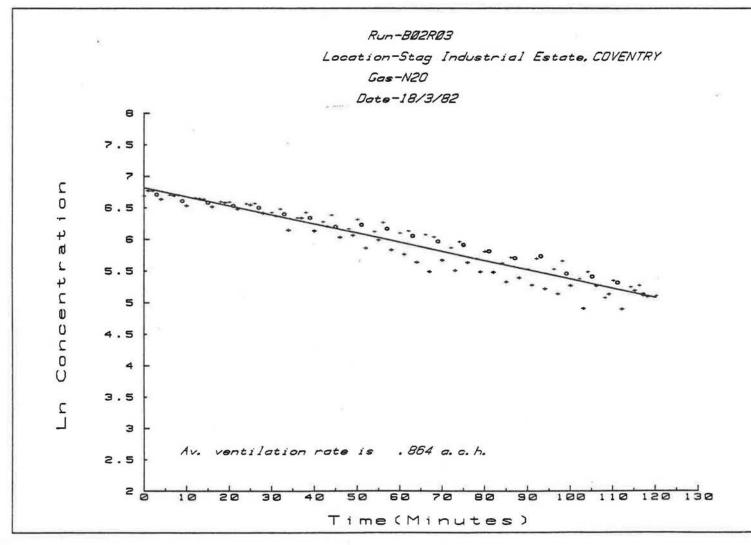

Wentilation rate is .779 air changes per nour


STATISTICAL	ANALYS1S	- ALL CHANNELS		
Source	D£	\$5 *****	MS	F
Regression Residual Total :	99 100	25.622 2.107 27.728	25.622 .021	1203.926


INTERCEPT- 6.81697815285 GRADIENT- -1.43986334188E-02


Ventilation rate is .864 air changes per hour





BO2 RO4

- Date: 17th March, 1982

<u>Time</u>: 1430 hours to 1605 hours Tracer Gas: Sulphur Hexaflouride

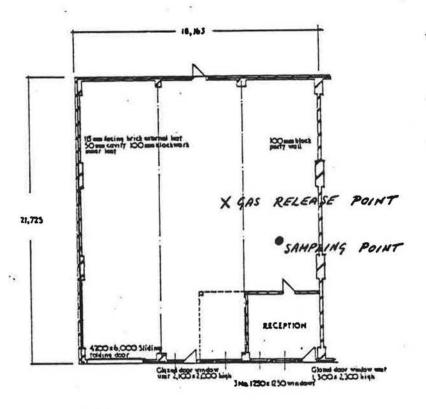
External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1400 hrs	6.2	6.8
1500 hrs	4.6	7.2
1600 hrs	8.8	7.9

Wind direction: west north west

Internal conditions:

air velocity: 0.01 to 0.06 m/s temperature: 7.5 to 8.5 C


Gas Release:

Gas released into the path of a small fan at point shown on plan.

Sample Positions:

As shown on plan.

Comment: This run occurred simultaneously with run BO2 RO2.

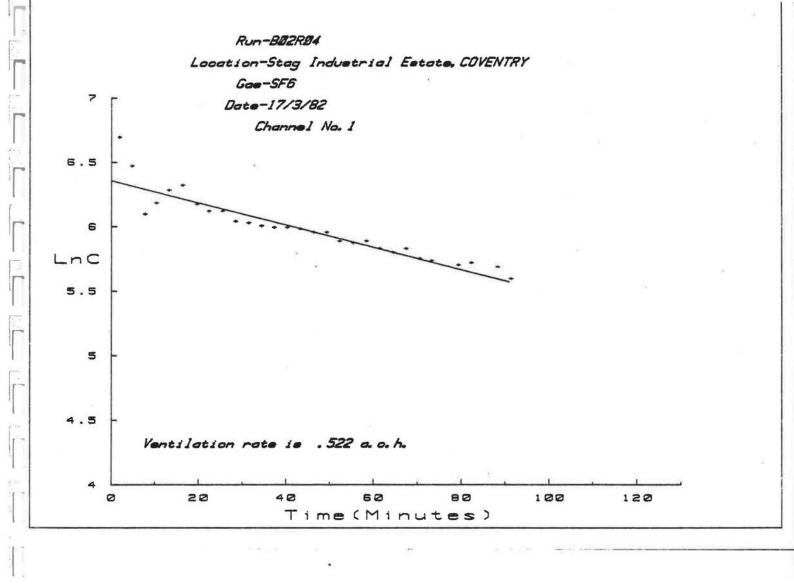
ANALYSIS OF PACTORY VENTILATION RATES

Experimental run number: B02R04
Location: Stag Industrial Estate, COVENTRY
Date: 17/3/82
Tracer gas: SF6

TABLE OF RESULTS

T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

uata						
Pt.	Channel 1					
***	*****		****			
	T	C	LnC			
1	1.5	800	6.685			
2	4.4	640	6.461			
3	7.4	440	6.087			
4	10.0	480	6.174			
5	12.9	530	6.273			
6	16.0	550	6.310			
7	19.3	475	6.163			
8	22.0	450	6.109			
9	25.1	450	6.109			
10	28.1	415	6.028			
11	31.1	410	6.016			
12	34.0	400	5.991			
13	37.0	395	5.979			
14	40.C	395	5.979			
15	43.0	390	5.966			
16	46.0	380	5.940			
17	49.0	380	5.940			
18	52.0	355	5.872			
19	55.1	350	5.858			
20	58.1	355	5.872			
21	61.1	335	5.814			
22	64.2	325	5.784			
23	67.1	335	5.814			
24	70.2	310	5.737			
25	73.0	305	5.720			
26	79.0	295	5.687			
27	82.0	300	5.704			
28	88.0	290	5.670			
29	91.0	265	5.580			


Data

STATISTICAL ANALYSIS FOR CHANNEL 1

Source	Df	SS	MS.	F
****	A R	****	****	*****
Regression	1	1.485	1.485	168.494
Residual	27	.238	.009	
Total	28	1.723		

INTERCEPT= 6.35664060834 GRADIENT= -8.69332835278E-03

Ventilation rate is .522 air changes per hour

BO2 RO5

Date: 18th March, 1983.

Time: 1100 hours to 1230 hours

Tracer Gas: Sulphur Hexaflouride

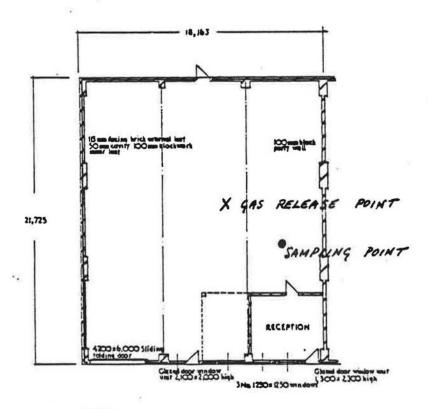
External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1100 hrs	6.7	6.9
1200 hrs	4.6	6.7
1300 hrs	4.11	7.2

Wind direction: west north west

Internal Conditions:

air velocity	0 to 0.08 m/s
temperature	7.5°C


Gas Release:

Gas released into the path of a small fan at point shown on plan.

Sample Position:

As shown on plan.

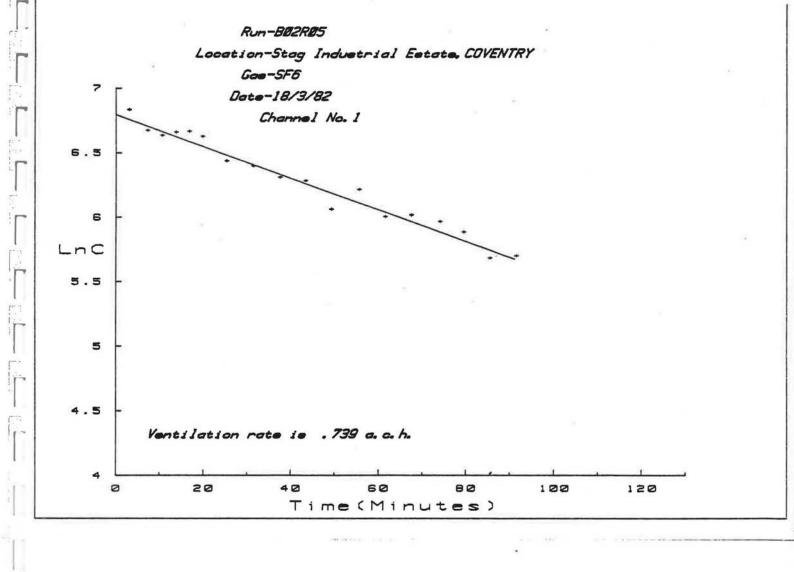
Comment: This run occurred simultaneously with run BO2 RO3.

PLAN

ANALYSIS OF FACTORY VENTILATION RATES

Experimental run number: B02R05
Location: Stag Industrial Estate,COVENTRY
Date: 18/3/82
Tracer gas: SF6

T⇒Time in minutes. C⇒Concentration (arbitrary units) Lnc=Natural log of concentration.


vata		• 1					
Pt.	Channel 1						
***	*******						
	T	C	LnC				
1	2.7	920	6.824				
2	6.9	784	6.664				
3	10.2	755	6.627				
4	13.4	775	6.653				
5	16.4	780	6.659				
6	19.4	750	6.620				
7	24.9	620	6.430				
8	31.1	595	6.389				
9	37.2	545	6.301				
10	43.1	530	6.273				
11	49.0	425	6.052				
12	55.3	495	6.205				
13	61.2	400	5.991				
14	67.2	405	6.004				
15	73.8	385	5.953				
16	79.2	355	5.872				
17	85.2	290	5.670				
18	91.2	295	5.687				

STATISTICAL ANALYSIS FOR CHANNEL 1

Source	DE	SS	MS	F
*****	**	****	****	*****
Regression	1	2.143	2.143	512.625
Residual	16	.067	.004	
Total	17	2.210		

INTERCEPT= 6.79618795154 GRADIENT= -1.23240720612E-02

Ventilation rate is .739 air changes per hour

BO2 RO6

Date: 17th March, 1982.

Time: 1110 hours to 1340 hours

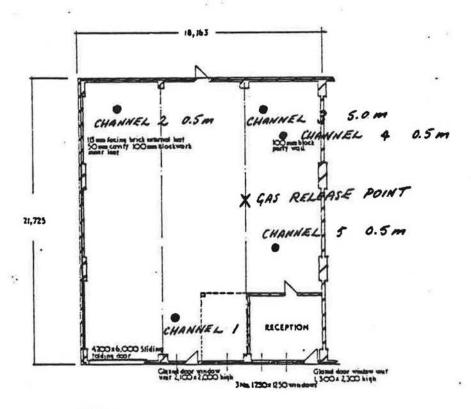
Tracer Gas: Nitrous Oxide

External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1100 hrs	5.1	7.3
1200 hrs	7.2	7.5
1300 hrs	4.6	6.8
1400 hrs	6.2	6.8

Wind Direction: west

Internal Conditions:


air velocity: 0.01 to 0.06 m/s temperature: 7.5 to 8.5 C

Gas Release:

Gas released into path of small fan at point shown on plan.

Sample Positions:

As shown on plan. Channel 6 positioned outside the building to monitor external air as a zero check.

PLAN

********* ANALYSIS OF FACTORY VENTILATION RATES

Experimental run number: B02R06 Location: Stag Industrial Estate, COVENTRY Date: 17/3/82

Tracer gas: N20

T-Time in minutes. C=Concentration (arbitrary units)
Inc=Natural log of concentration.

TABLE OF RESULTS ***** ** *****

a	nannel	1	a	nannel	2	. a	nannel	3	a	nannel	4	a	nannel	5
****	***	*****	****	*****	*****	****	****	*****	*****	****	****	****	*****	*****
T	С	LnC	T	C	LnC	T	C	LnC	T	C	LnC	T	C	LnC
0.0	915	6.819	2.0	873	6.772	3.0	602	6.400	4.0	895	6.797	5.0	903	6.806
	827	6.718	8.0	708	6.562	9.0	617	6.425	10.0	865	6.763	11.0	698	6.548
12.0	612	6.417	14.0	648	6.474	15.0	717	6.575	16.0	795	6.678	17.0	783	6.663
18.0	597	6.392	20.0	733	6.597	21.0	482	6.178	22.0	710	6.565	23.0	708	6.562
24.0	667	6.503	26.0	627	6.441	27.0	498	6.211		660	6.492	29.0	672	6.510
30.0	623	6.435	32.0	590	6.380	33.0	455	6.120	34.0	630	6.446	35.0	650	6.477
36.0	565	6.337	38.0	492	6.198	39.0	413	6.023	40.0	605	6.405	41.0	582	6.366
42.0	573	6.351	44.0	482	6.178	45.0	438	6.082	46.0	580	6.363	47.0	487	6.188
48.0	468	6.148	50.0	412	6.021	51.0	563	6.333	52.0	560	6.328	53.0	557	6.323
54.0	468		56.0	432	6.068	57.0	428	6.059	58.0	525	6.263	59.0	537	6.286
60.0	428	6.059	62.0	328	5.793	63.0	535	6.282	64.0	458	6.127	65.0	380	5.940
66.0	343	5.838	68.0	353	5.866	69.0	205	5.323	70.0	423	6.047	71.0	390	5.966
72.0	278	5.628	74.0	378		75.0	200	5.298	76.0	378	5.935	77.0	340	5.829
78.0	238	5.472	80.0	328		81.0	250	5.521	82.0	303	5.714	83.0	280	5.635
84.0	238	5.472	86.0	284	5.649	87.0	223	5.407	88.0	273	5.609	89.0	187	5.231
90.0	196	5.278	92.0	278	5.628	93.0	212	5.357	94.0	230	5.438	95.0	203	5.313
96.0	152	5.024	98.0	233	5.451	99.0	187	5.231	100.0	195	5.273	101.0	183	5.209
102.0	152	5.024	104.0	219	5.389	105.0	168	5.124	106.0	188	5.236	107.0	177	5.176
108.0	141	4.949	110.0	194	5.268	111.0	158	5.063	112.0	178	5.182	113.0	142	4.956
114.0	120	4.787	116.0	170	5.136	117.0	140	4.942	118.0	155	5.043	119.0	120	4.787
120.0	110	4.700	122.0	149	5.004	123.0	133	4.890	124.0	133	4.890	125.0	127	4.844
126.0	96	4.564												
	T 0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0 54.0 60.0 66.0 72.0 78.0 84.0 90.0 96.0 102.0 108.0 114.0 120.0	T C 0.0 915 6.0 827 12.0 612 18.0 597 24.0 667 30.0 623 36.0 565 42.0 573 48.0 468 54.0 468 60.0 428 66.0 343 72.0 278 78.0 238 84.0 238 90.0 196 96.0 152 102.0 152 108.0 141 114.0 120 120.0 110	0.0 915 6.819 6.0 827 6.718 12.0 612 6.417 18.0 597 6.392 24.0 667 6.503 30.0 623 6.435 36.0 565 6.337 42.0 573 6.351 48.0 468 6.148 54.0 468 6.148 60.0 428 6.059 66.0 343 5.838 72.0 278 5.628 78.0 238 5.472 84.0 238 5.472 90.0 196 5.278 96.0 152 5.024 102.0 152 5.024 108.0 141 4.949 114.0 120 4.787 120.0 110 4.700	T C InC T 0.0 915 6.819 2.0 6.0 827 6.718 8.0 12.0 612 6.417 14.0 18.0 597 6.392 20.0 24.0 667 6.503 26.0 30.0 623 6.435 32.0 36.0 565 6.337 38.0 42.0 573 6.351 44.0 48.0 468 6.148 50.0 54.0 468 6.148 56.0 60.0 428 6.059 62.0 66.0 343 5.838 68.0 72.0 278 5.628 74.0 78.0 238 5.472 80.0 84.0 238 5.472 80.0 84.0 238 5.472 86.0 90.0 196 5.278 92.0 96.0 152 5.024 98.0 102.0 152 5.024 98.0 108.0 141 4.949 110.0 114.0 120 4.787 116.0 120.0 110 4.700 122.0	T C InC T C 0.0 915 6.819 2.0 873 6.0 827 6.718 8.0 708 12.0 612 6.417 14.0 648 18.0 597 6.392 20.0 733 24.0 667 6.503 26.0 627 30.0 623 6.435 32.0 590 36.0 565 6.337 38.0 492 42.0 573 6.351 44.0 482 48.0 468 6.148 50.0 412 54.0 468 6.148 56.0 432 60.0 428 6.059 62.0 328 66.0 343 5.838 68.0 353 72.0 278 5.628 74.0 378 78.0 238 5.472 80.0 328 84.0 238 5.472 80.0 328 84.0 238 5.472 80.0 328 84.0 238 5.472 86.0 284 90.0 196 5.278 92.0 278 96.0 152 5.024 98.0 233 102.0 152 5.024 98.0 233 102.0 152 5.024 104.0 219 108.0 141 4.949 110.0 194 114.0 120 4.787 116.0 170 120.0 110 4.700 122.0 149	T C InC T C InC 12.0 6.0 873 6.772 6.0 827 6.718 8.0 708 6.562 12.0 612 6.417 14.0 648 6.474 18.0 597 6.392 20.0 733 6.597 24.0 667 6.503 26.0 627 6.441 30.0 623 6.435 32.0 590 6.380 36.0 565 6.337 38.0 492 6.198 42.0 573 6.351 44.0 482 6.178 48.0 468 6.148 50.0 412 6.021 54.0 468 6.148 50.0 412 6.021 54.0 468 6.148 56.0 432 6.068 60.0 428 6.059 62.0 328 5.793 66.0 343 5.838 68.0 353 5.866 72.0 278 5.628 74.0 378 5.935 78.0 238 5.472 80.0 328 5.793 84.0 238 5.472 80.0 328 5.793 84.0 238 5.472 80.0 328 5.793 84.0 238 5.472 86.0 284 5.649 90.0 196 5.278 92.0 278 5.628 96.0 152 5.024 98.0 233 5.451 102.0 152 5.024 98.0 233 5.451 102.0 152 5.024 98.0 233 5.451 102.0 152 5.024 104.0 219 5.389 108.0 141 4.949 110.0 194 5.268 114.0 120 4.787 116.0 170 5.136 120.0 110 4.700 122.0 149 5.004	T C LnC T C LnC T 0.0 915 6.819 2.0 873 6.772 3.0 6.0 827 6.718 8.0 708 6.562 9.0 12.0 612 6.417 14.0 648 6.474 15.0 18.0 597 6.392 20.0 733 6.597 21.0 24.0 667 6.503 26.0 627 6.441 27.0 30.0 623 6.435 32.0 590 6.380 33.0 36.0 565 6.337 38.0 492 6.198 39.0 42.0 573 6.351 44.0 482 6.178 45.0 48.0 468 6.148 50.0 412 6.021 51.0 54.0 468 6.148 56.0 432 6.068 57.0 60.0 428 6.059 62.0 328 5.793 63.0 66.0 343 5.838 68.0 353 5.866 69.0 72.0 278 5.628 74.0 378 5.935 75.0 78.0 238 5.472 80.0 328 5.793 81.0 84.0 238 5.472 80.0 328 5.793 81.0 84.0 238 5.472 80.0 328 5.793 81.0 90.0 196 5.278 92.0 278 5.628 93.0 96.0 152 5.024 98.0 233 5.451 99.0 102.0 152 5.024 98.0 233 5.451 99.0 102.0 152 5.024 98.0 233 5.451 99.0 108.0 141 4.949 110.0 194 5.268 111.0 114.0 120 4.787 116.0 170 5.136 117.0 120.0 110 4.700 122.0 149 5.004 123.0	T C LnC T C LnC T C C C C C C C C C C C C C C C C C C	T C InC T C InC T C InC T C InC C C C C C C C C C C C C C C C C C	T C InC T C In	T C LnC T C LnC T C LnC T C LnC T C C C C C C C C C C C C C C C C C C	T C LnC C C C C C C C C C C C C C C C C C	T C LnC T C EnC EnC T C EnC EnC T C EnC	T C InC T C In

STATISTICAL ANALYSIS FOR CHANGEL 1

Source	DE	55	MS	r
Regression	20	10.257	10.257	589.697
Total	21	10.605	135 F.T.(1)	

INTERCEPT- 6.90568407151 GRADIENT- -1.79377451791E-02

Ventilation rate is 1.076 air changes per hour

STATISTICAL AMALYSIS FOR CHAMMEL 2

Source	DE	22	MS	
******	••	****	*****	******
Regression	1	5.001	5.001	708.489
Pesidual	19	.134	.007	
Total	20	5 136		

INTERCEPT- 6.76627851211 GRADIENT- -1.343148537198-02

Ventilation rate is .806 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL 3

			-	10240
Sprice	D£	95	MS	
******	**	****	*****	8000000
Regression	1	5.415	5.415	125.974
Residual	19	.817	.043	
Total	20	6.232		

INTERCEPT- 6.6351164551 GRADIENT- -1.39772184989E-02

Ventilation rate is .839 air changes per hour

STATISTICAL ANALYSIS FOR CHANNEL 4

Source	DE	55	MS	
Regression	1	7.169	7.169	583.843
Residual	19	.233	.012	
Total	20	7.403		

INTERCEPT- 7.01002363415 GRADIENT- -1.60821175299E-02

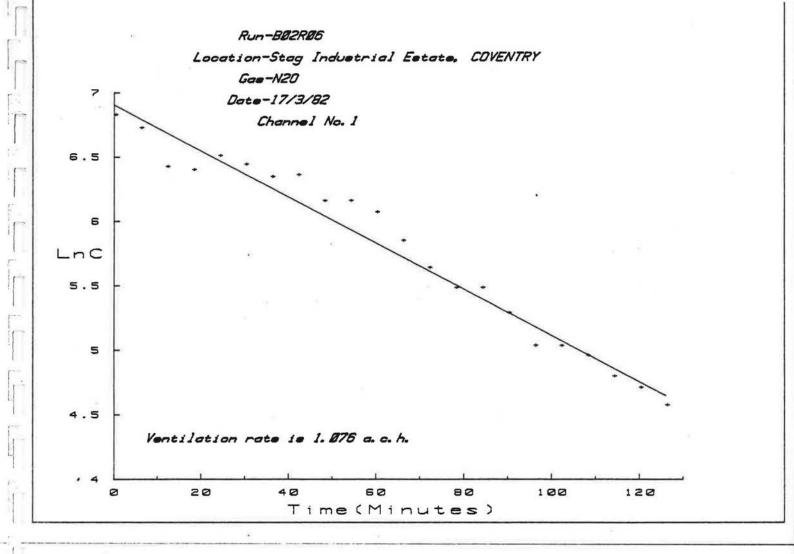
Ventilation rate is .965 air changes per hour

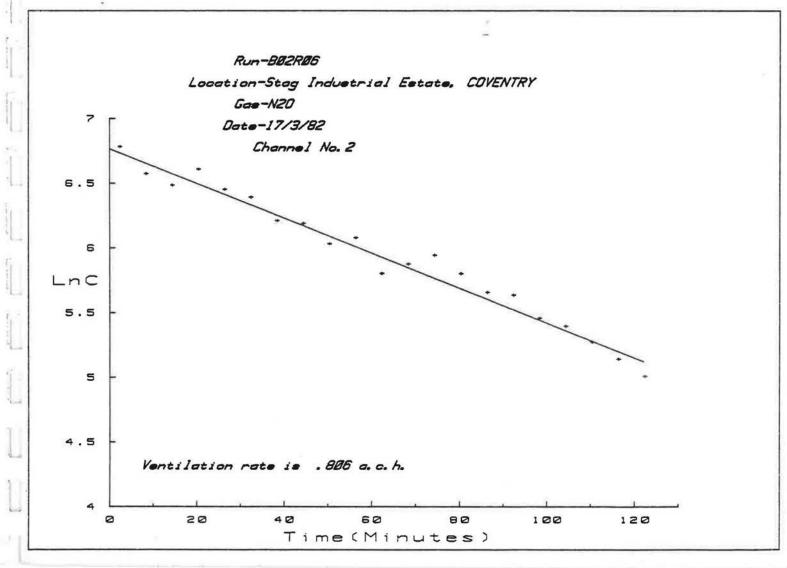
STATISTICAL ANALYSIS FOR CHANNEL 5

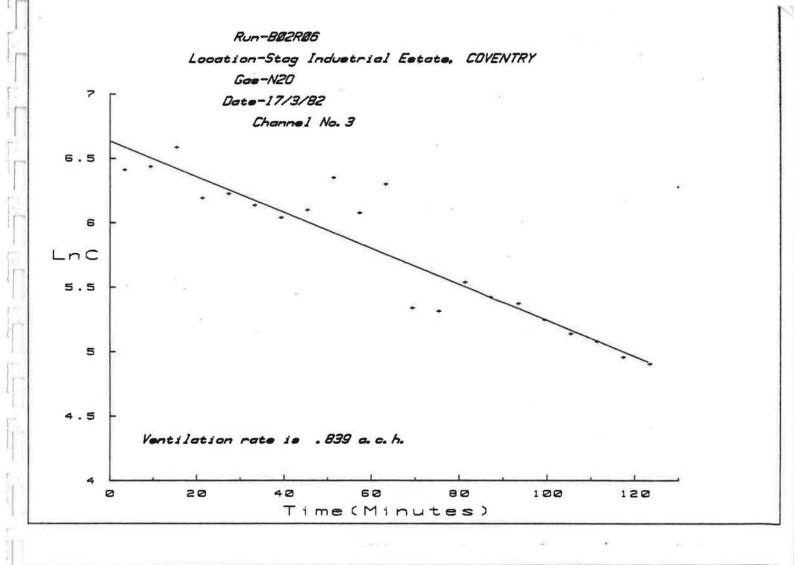
Source	Df	SS	PRE	
*****	••	****	****	*****
Regression	1	8.303	8.303	368.046
Sesidual.	19	-407	.021	
Total	20	A 700		

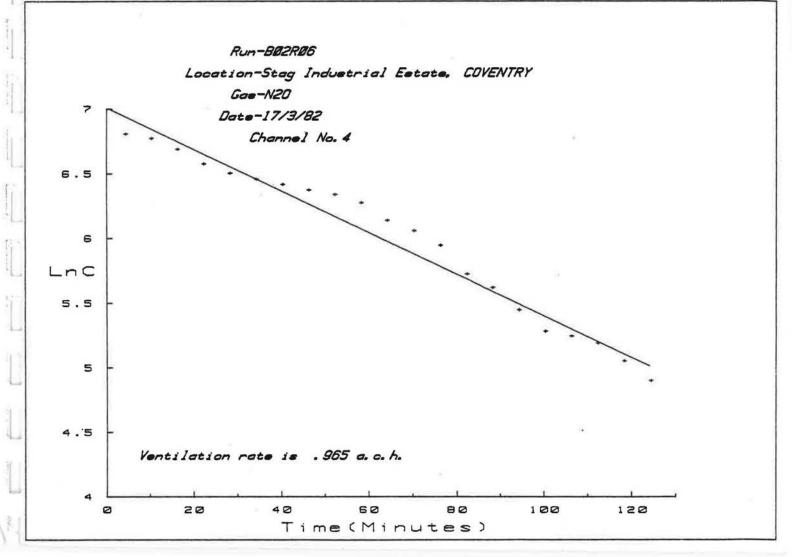
INTERCEPT- 7.01148411472 GAADIENT- -1.73066738265E-02

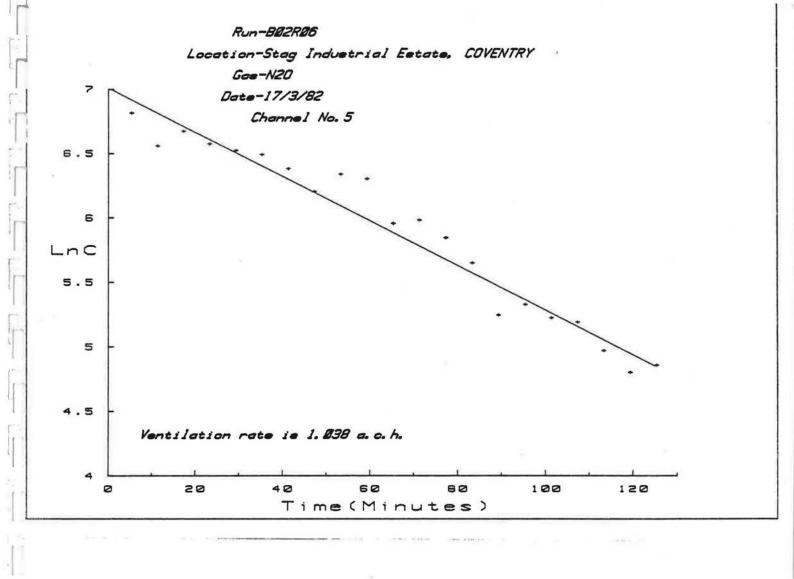
Wentilation rate is 1.038 air changes per hour

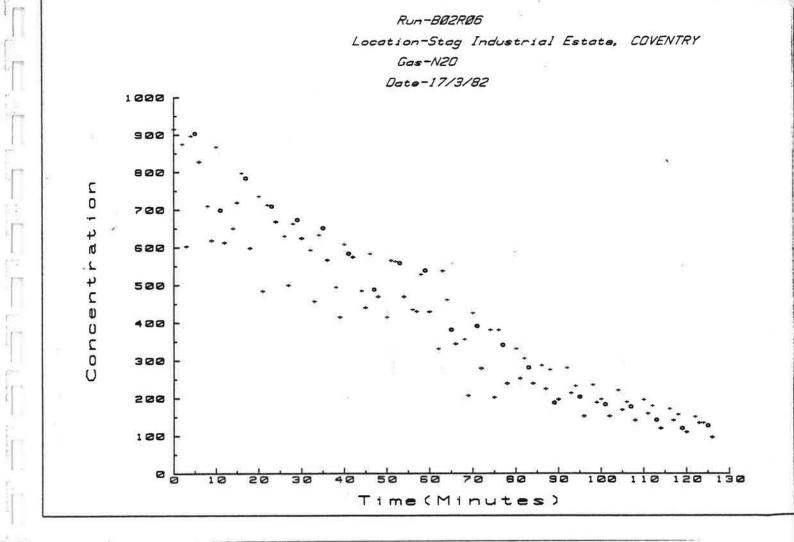

STATISTICAL ANALYSIS - ALL CHANNELS

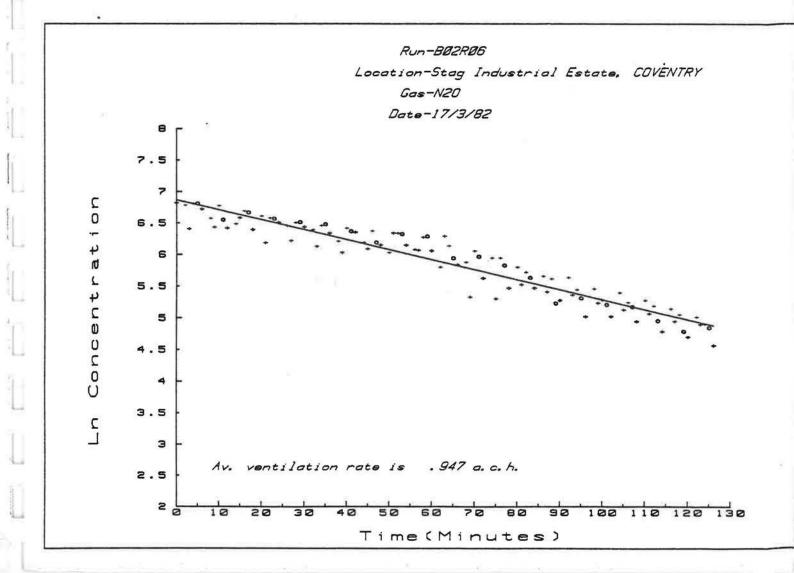

Source	DE	.ss	MS	F
Regression Residual	1	35.600	35.600	1120.054
104 MDD				

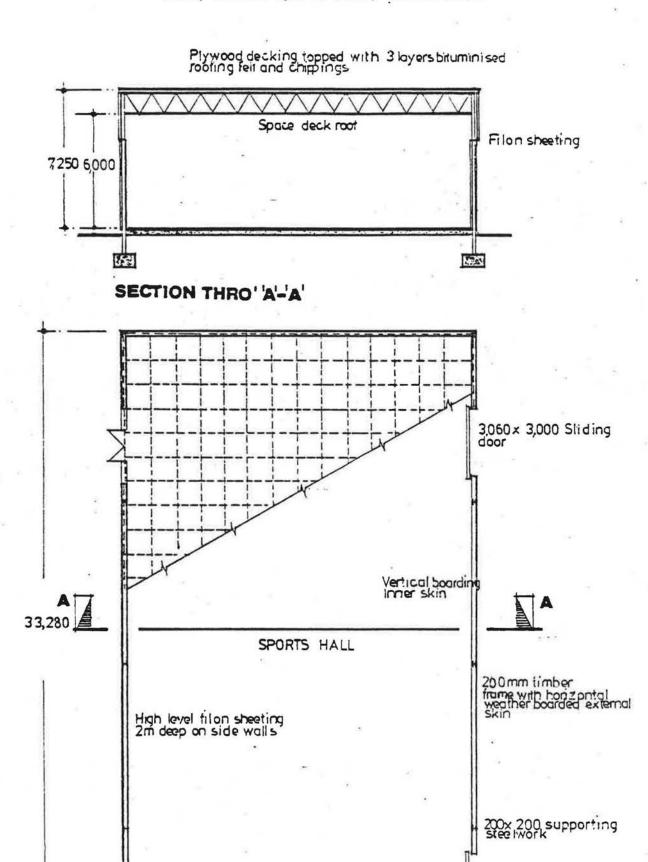

3.306 .032 Total 105 38.906


INTERCEPT= 6.86609173001 GRADIENT= -1.57655746651E-02


Wentilation rate is .947 air changes per nour







17,490

 $3,060 \times 3000$ Stiding door

75

7

BO3 RO1

Date: 25th October, 1982

Time: 1300 hours to 1500 hours

Tracer Gas: Sulphur Hexaflouride

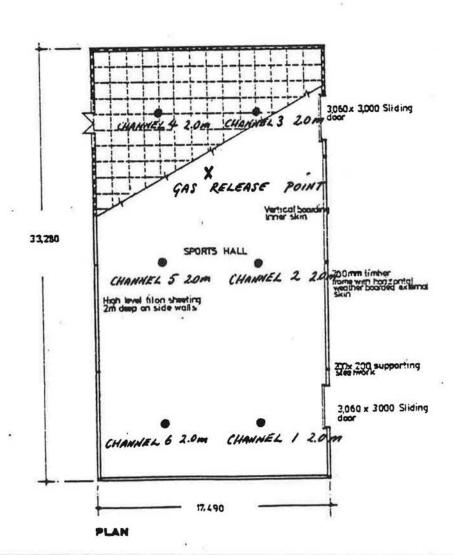
External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1300 hrs	zero	12.2
1400 hrs	2 m/s	12.0
1500 hrs	zero	12.3

Wind Direction: at 1400 hours: south

Internal Conditions:

air velocity: 0.02 to 0.08 m/s


temperature: 15°C

Gas Release:

Gas released into path of small fan at position shown on plan.

Sample Positions:

As shown on plan.

*********************** AWALYSIS OF FACTORY VENTILATION BATES

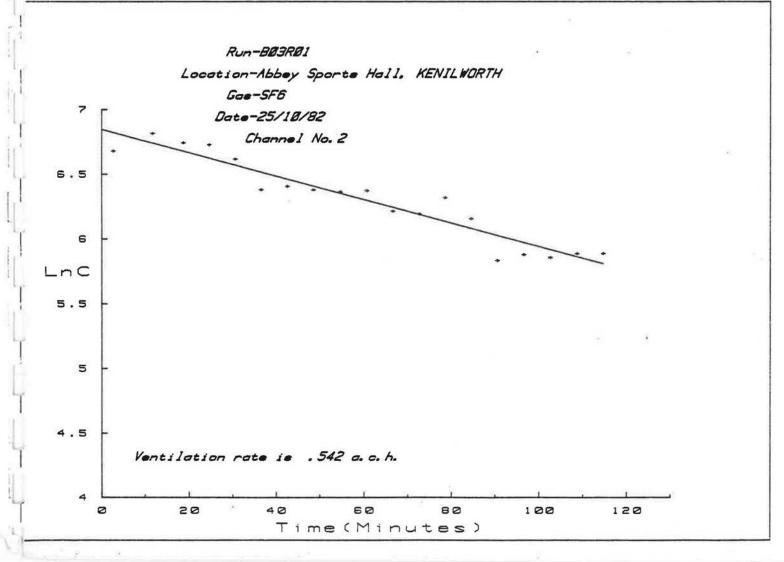
Experimental run number: 803R01 Location: Abbey Sports Hall, RENILWORTH Date: 25/10/82

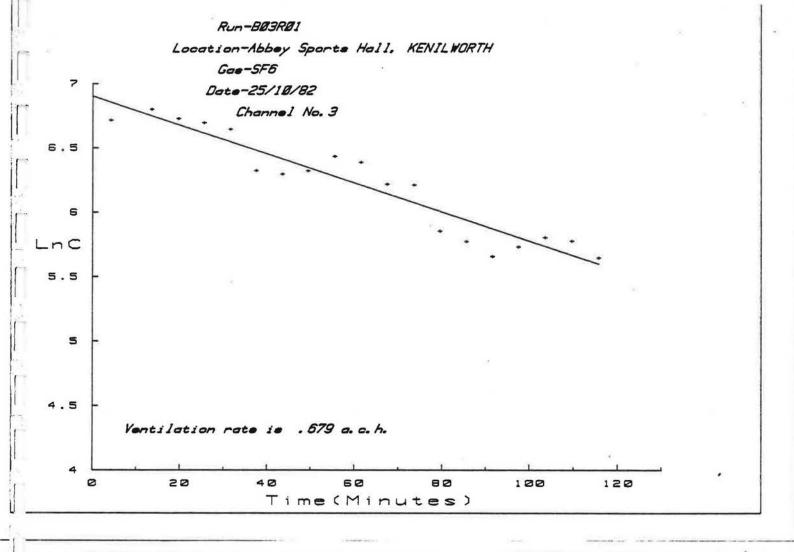
Tracer gas: SF6

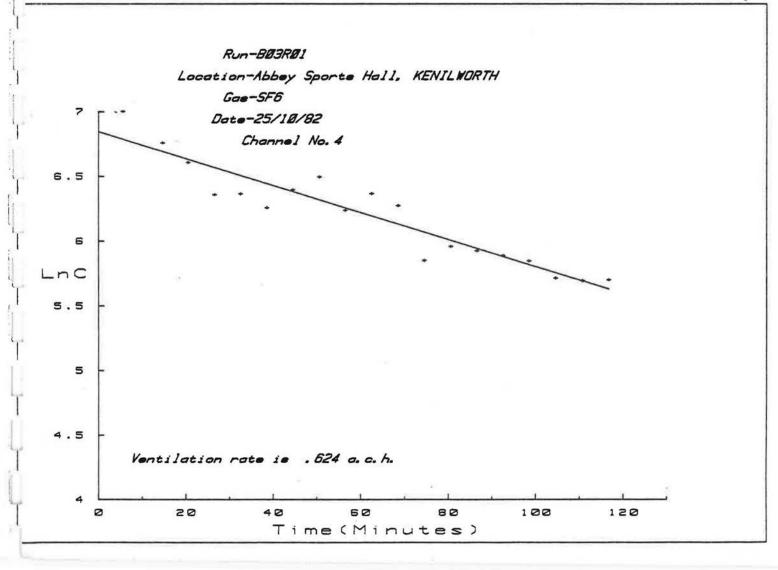
T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

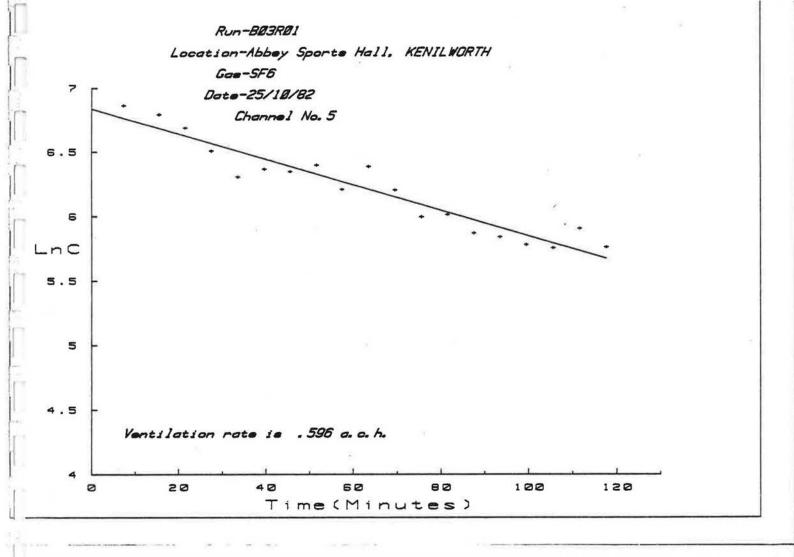
TABLE OF RESULTS

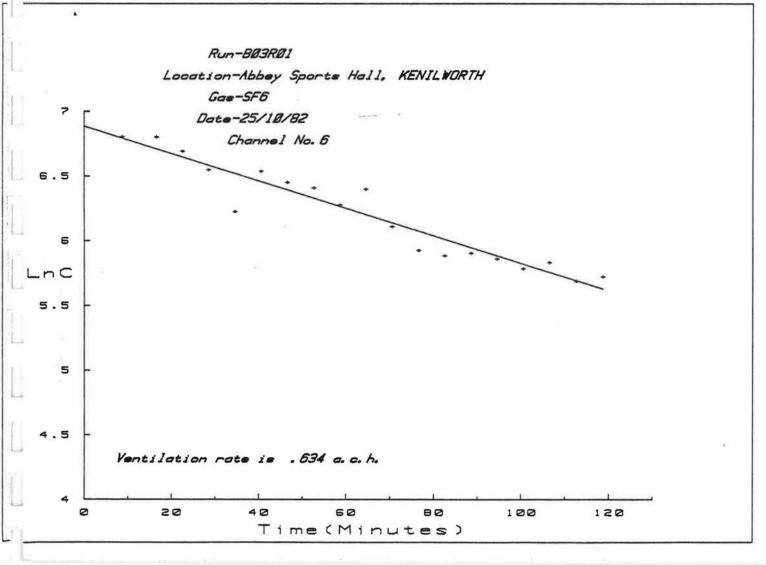
Data Pt.				a	Channel 2 Ch			hannel 3 Channel 4		4	Channel 5			Channel 6				
****	****	*****	*****	*****	*****	*****	************		************		**********			*****	*****	*****		
	T	c	LnC	T	c	LnC	T	c	LnC	T	C	LnC	1	C	LnC	T	С	LnC
1	1.2	809	6.696	2.7	796	6.680	4.2	826	6.717	5.6	1100	7.003	7.4	957	6.064	8.8	901	6.004
2	10.3	902	6.005	11.7	912	6.016	13.6	899	6.801	14.7	862	6.759	15.6	890	6.791	16.7	900	6.802
3	17.7	890	6.791	10.7	848	6.743	19.7	836	6.729	20.6	741	6.608	21.6	800	6.685	22.6	805	6.691
4	23.7	835	6.727	24.6	835	6.727	25.6	809	6.696	26.6	578	6.360	27.6	668	6.504	28.6	698	6.548
5	29.6	760	6.644	30.6	748	6.617	31.6	768	6.644	32.6	582	6.366	33.6	546	6.303	34.6	505	6.225
6	35.6	708	6.562	36.6	590	6.380	37.6	555	6.319	38.6	522	6.250	39.7	580	6.363	40.6	690	6.537
7	41.6	626	6.439	42.6	606	6.407	43.6	540	6.292	44.6	600	6. 397	45.6	569	6.344	46.6	633	6.450
8	47.6	589	6.378	48.6	589	6.378	49.5	554	6,317	50.7	663	6.497	51.7	598	6.394	52.7	607	6.409
9	53.7	584	6.370	54.7	580	6.363	55.6	620	6.430	56.6	512	6.230	57.6	495	6.205	58.7	532	6.277
10	59.6	578	6.360	60.7	586	6.373	61.6	592	6.384	62.6	583	6.368	63.6	591	6.382	64.6	601	6.399
11	65.6	564	6.335	66.6	500	6.215	67.6	499	6.213	68.6	531	6.275	69.6	492	6.198	70.6	450	6.109
12	1 71.6	507	6.229	72.7	490	6.194	73.7	496	6,207	74.6	348	5.852	75.6	400	5.991	76.6	375	5.927
13	77.6	504	6.223	78.6	555	6.319	79.6	347	5.849	80.6	388	5.961	81.6	407	6.009	82.6	360	5.886
14	83.6	470	6.153	84.6	472	6.157	85.6	320	5.768	86.6	375	5.927	87.6	352	5.864	88.6	367	5.905
15	89.6	401	5.994	90.6	342	5.035	91.6	285	5.652	92.6	362	5.892	93.6	342	5.835	94.6	351	5.861
16	95.6	358	5.881	96.6	358	5.881	97.6	307	5.727	98.6	347	5.849	99.6	322	5.775	100.6	326	5.787
17	101.6	335	5.014	102.6	350	5.850	103.6	330	5.799	104.6	304	5.717	105.7	314	5.749	106.6	342	5.835
18	107.7	325	5.784	108.7	361	5.089	109.7	321	5.771	110.7	298	5.697	111.7	365	5.900	112.7	296	5.690
19	113.7	324	5.781	114.7	361	5.889	115.7	282	5.642	116.7	300	5.704	117.7	316	5.756	118.7	306	5.724

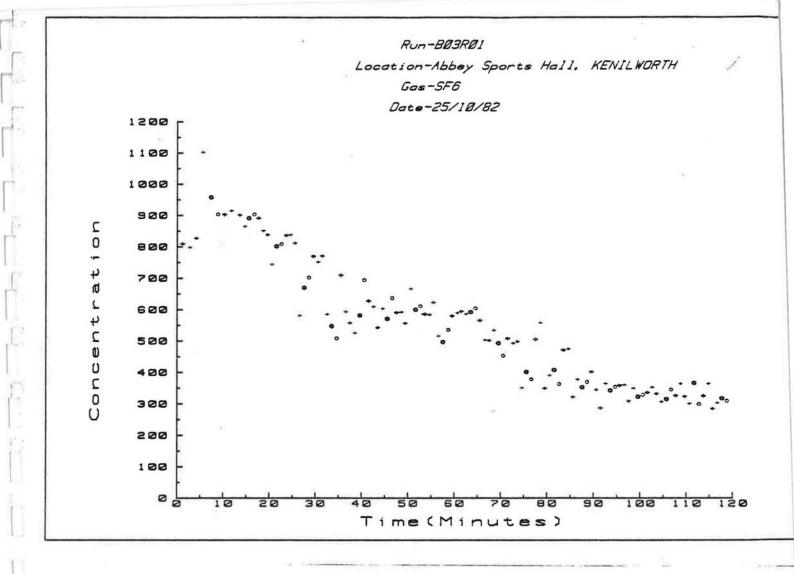

DATESCEPT- 6.	89416881757 81421914019	, ME-03									
Mencilatio	m cate is .	.509 air chaspen	pec hour								
STATISTICAL A	WALYSIS POR	CHANGE 2									
Source	Of		···								
Regression Residual Total	seidual 17 .166 .010 Stal 18 1.886										
DITECTIFF 6.											
Wentilatio	n cate is .	.542 air champan	bet post								
STATISTICAL A											
Source	DE	55	75								
Repression Residuel Total	17 18	2.679 .282 2.961	2.679 .017	161.610							
INTERCEPT- 6. GRADUST -1.	90354412921 1316178494	76-02									
Westlatio	m fate is .	.679 ALC CRARGOS	het perz								
STATISTICAL A	MALYSIS FOR	CHANGE 4	¥								
Bource	OÉ		15	r							
Regression Residual Total	- 17 18	2.255 .290 2.546	2.255 .017	132.116							
DITERCEPT - 6. GRADIENT0											
Ventilatio	m cate is .	.624 air champus	bet poet								
STATISTICAL A	WALYSIS FO	CHAMBLE 5									
Source verses	DE	M	146								
Regression Residual Total	1 17 18	2.054 .189 2.243	2.054	184.383							
DITERCEPTO 6. GRADIENTO -9.	.8371665222 .9411325595	98-03 28-03									
Ventilatio	on cate is	.596 mir champos	per hour								
STATISTICAL A	WALYSIS FO	R CHANNEL 6									
Source	**	20000	75 *****	*							
Regression Residual Total	17 18	2.317 .211 2.530	2.317 .012	106.650							
DITERCEPT- 6. CHADLENT1.	.0574447320	2 45-02									
Wintilatio	on rate is	.634 air champes	per hour								
	******	ALL CHAPPELS	122	H <u>4</u> 5)							
Source	#	*****		*******							
	.434	.013 14,573	13.135	1023.155							
Democer- 6	.8709163033										
GMOIBUT -1	.0216354033	85- 02									
	un tate 18	.613 air changes	has uppg								

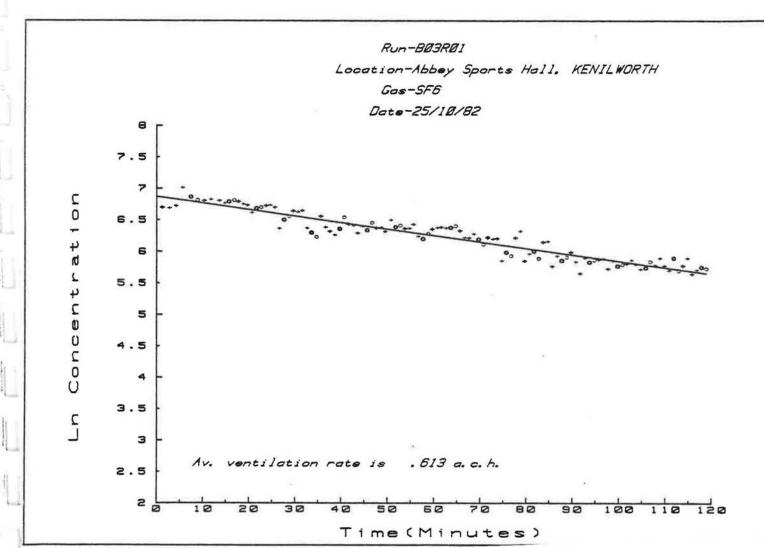

2.036 .092 2.128


7 376.531


1 17 18







BO3 RO2

Date: 26th October, 1982

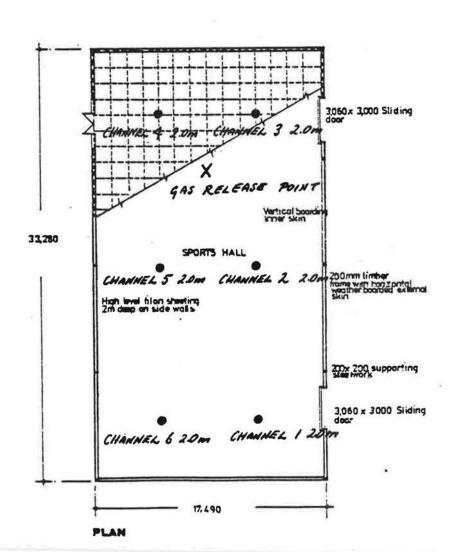
Time: 0930 hours to 1040 hours Tracer Gas: Sulphur Hexaflouride

External Conditions:

<u>Time</u>	Windspeed (m/s)	Temperature (°C)
0900 hrs	6.7	13.4
1000 hrs	7.2	13.8
1100 hrs	5.7	14.4

Wind Direction: south south west

Internal Conditions:


air velocity: 0.01 to 0.10 m/s temperature: 14 to 15°C

Gas Release:

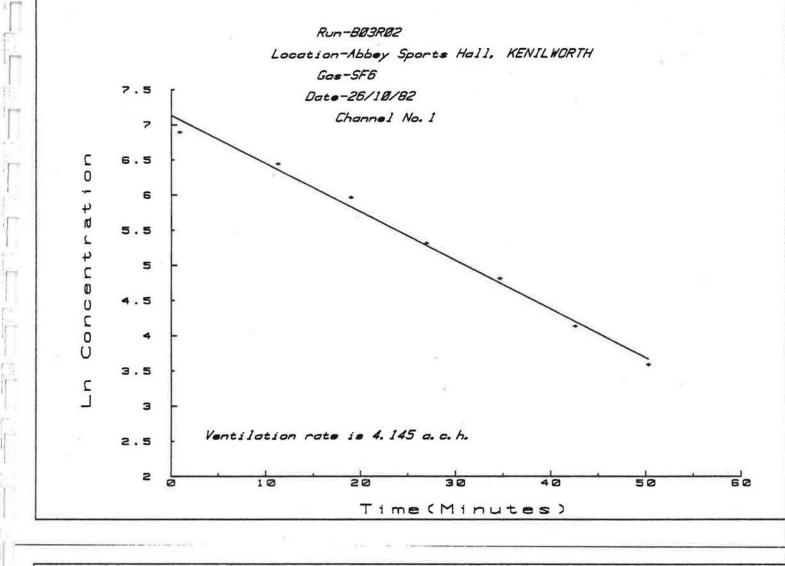
Gas released into path of small fan at position shown on plan.

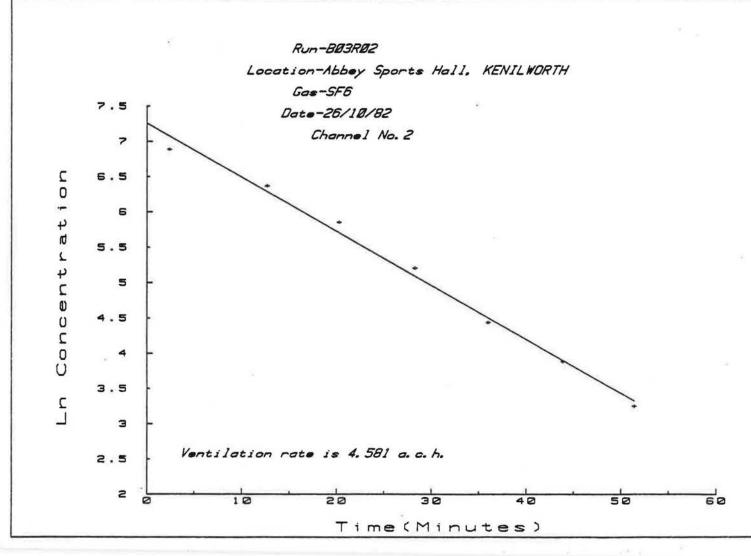
Sample Positions:

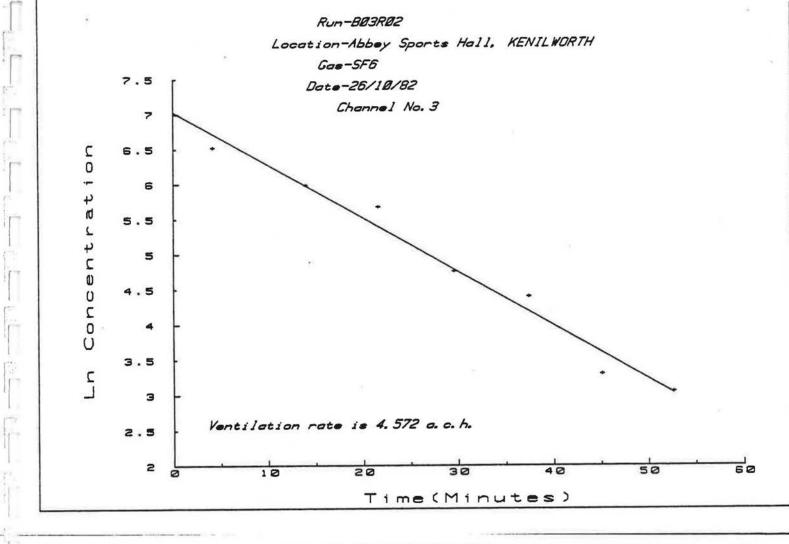
As shown on plan.

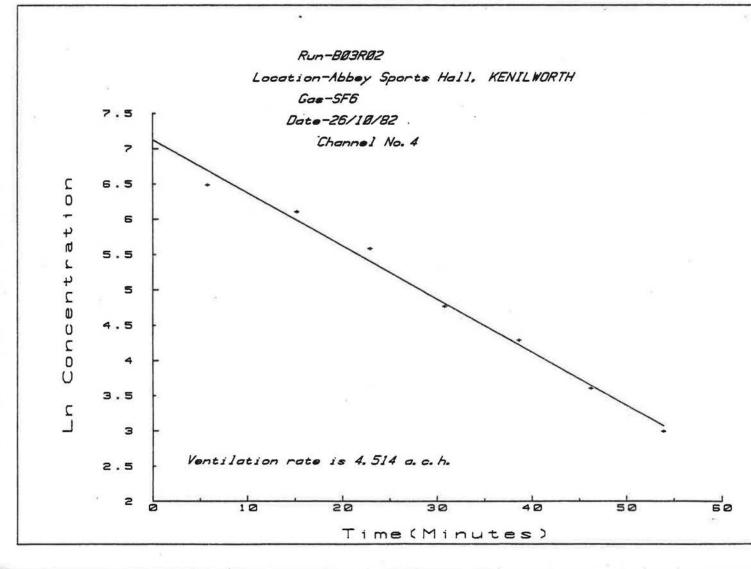
ANALYSIS OF PACTORY VENTILATION RATES

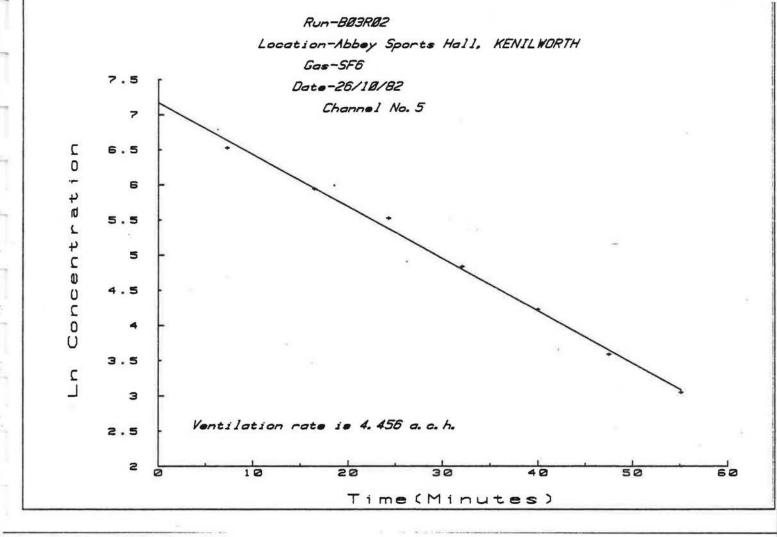
Experimental run number: B03R02
Location: Abbey Sports Hall, KENILHORTH
Date: 26/10/82
Tracer gas: SF6

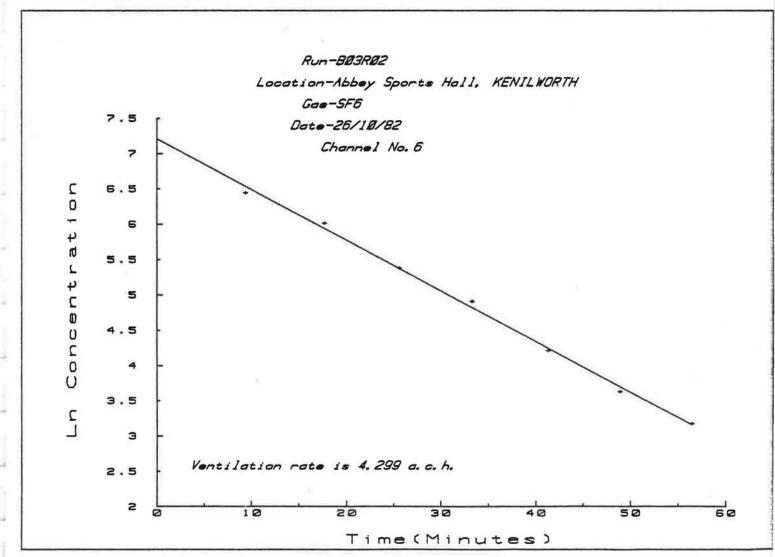

T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

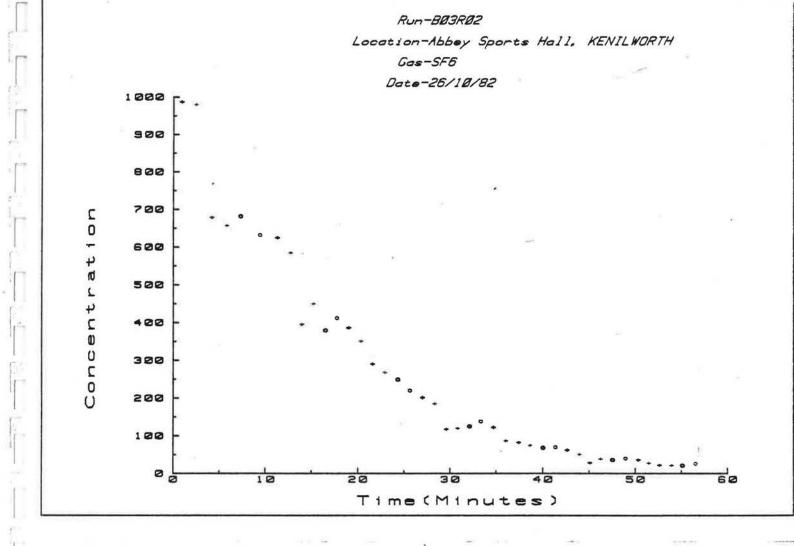

TABLE OF RESULTS

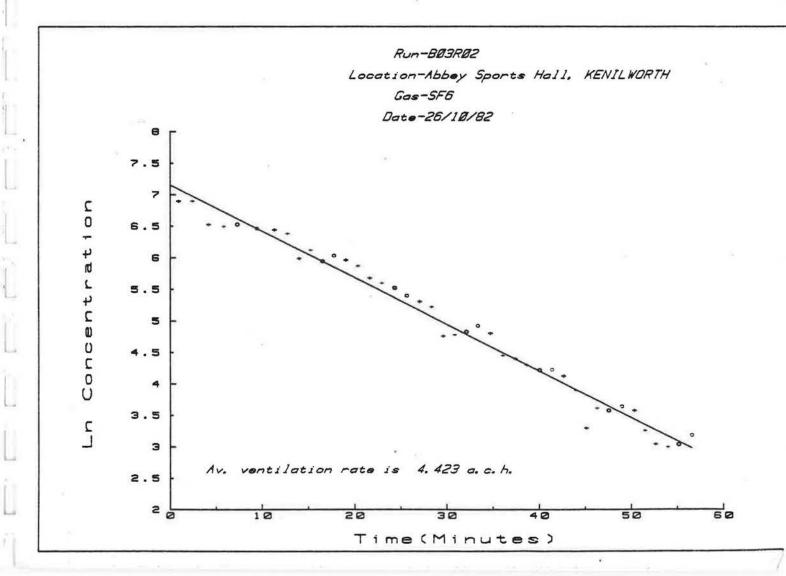

Data Pt.			Channel 2			a	Channel 3		Channel 4			Channel 5			Channel 6			
***	****	*****	*****	*****	*****	*****	*** ******		*******		**********		************			**********		
	T	С	LnC	T	С	LnC	T	c	LnC	T	С	LnC	T	C	LnC	T	c	LnC
1	.9	987	6.895	2.4	978	6.886	4.2	677	6.518	5.0	655	6.485	7.3	681	6.524	9.4	630	6.446
2	11.3	624	6.436	12.7	583	6.368	14.0	394	5.976	15.2	448	6.105	16.5	379	5.938	17.7	410	6.016
3	19.0	386	5.956	20.3	349	5.855	21.6	289	5.666	22.9	266	5.583	24.3	249	5.517	25.6	218	5.384
4	27.0	201	5.303	28.3	183	5.209	29.6	116	4.754	30.8	118	4.771	32.1	125	4.828	33.3	136	4.913
5	34.7	122	4.804	36.0	85	4.443	37.4	81	4.394	38.6	73	4.290	40.0	68	4.220	41.3	68	4.220
6	42.6	62	4.127	43.9	49	3.892	45.1	27	3.296	46.2	37	3.611	47.5	36	3.584	48.9	38	3.638
7	50.3	36	3.584	51.4	26	3.258	52.6	21	3.045	53.9	20	2.996	55.1	21	3.045	56.5	24	3.178


				-291
STREETSTEAL A	MANUEL FOR	Chieffe 1		
Structor	DE			
Improvesion Residual Total	3 6	8.768 .072 8.832	.014	609.406
DATESCEPT 7.	13420367135 99765255432	15-02		
Ventiletien	cate is 4.	.145 air changes	per hear	
STREETSTICAL A	MALMETS FOR	CIMPLE 2		
Source seeses	Œ		100	
Seprension Sepidenal Total	5 6	10.570 .067 10.667	10.570	409.385
umacare 7. Guesare -7.	25710073442 63532416253	-02		
Ventiletson	cate is 4.	SEL ALT Champso	ber pare	
SOMETHER A	MALBAIS FCS	Cluster, 3		
Street Co.	**	 .		
Ingressian Insideal Intal	1 3 6	10.343 .252 10.598	10.343	285.044
DOMEST 0	03399561139 7619482523	1		
Ventilacion	zoto io 4	.572 als changes	her por	
SERVICE A	MALINES FOR	CHINNEL 4		
Shares Totals	DE .			
Repression Recedent Total	1 5 6	9.973 .103 10.076	9_973 _031	64.315
BOUNCES 7.	1201343413 5240021846	3 20-02		
Ventiletie	man is 4.	.514 air changas	per laws	
	×			
SERVICE A	MANAGEMENT POL	CHOOSE, 5		
America mericas				
Regression Resident Total	1 5 6	9.637 .941 9.678	9.637 .006	1180-465
MANUAL T.	. 1715078101 . 4267371833	4 99-02		
Ventionie	n rete in 4	.484 air ebançan	per later	
	Ť			
CONTRACTOR A	MINLES FO	R COMMES. 6		14
Singress stronge	nd oo	<u>s.</u>	16	
Depression Desident	3	8.836 .028	8.820 .006	1990.436
Demonster 7				
CONSCION -7	25			
Westilatio	n cate ia 4	.299 air changes	put hour	
STATE OF	- 20000000	ALL CRASSILS		
600000 000000	Of so			
Population Actional Total	41	59,219 1,145 68,264	.029	2006.130


INTERCEPT= 7.15284141679 GMADIENT= -7.372486346228-02







BO3 RO3

Date: 26th October, 1982

Time: 1055 hours to 1200 hours

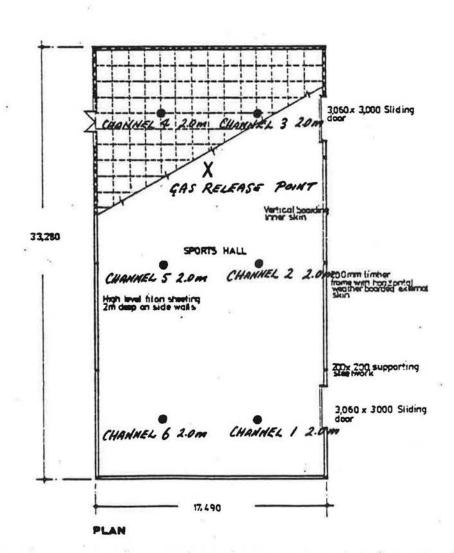
Tracer Gas: Sulphur Hexaflouride

External Conditions:

<u>Time</u>	Windspeed (m/s)	Temperature (°C)
1100 hrs	5.7	14.4
1200 hrs	7.7	15.4

Wind Direction: south south west

Internal Conditions:


air velocity: 0.01 to 0.10 m/s temperature: 14 to 15°C

Gas Release:

Gas released into path of small fan at position shown on plan.

Sample Positions:

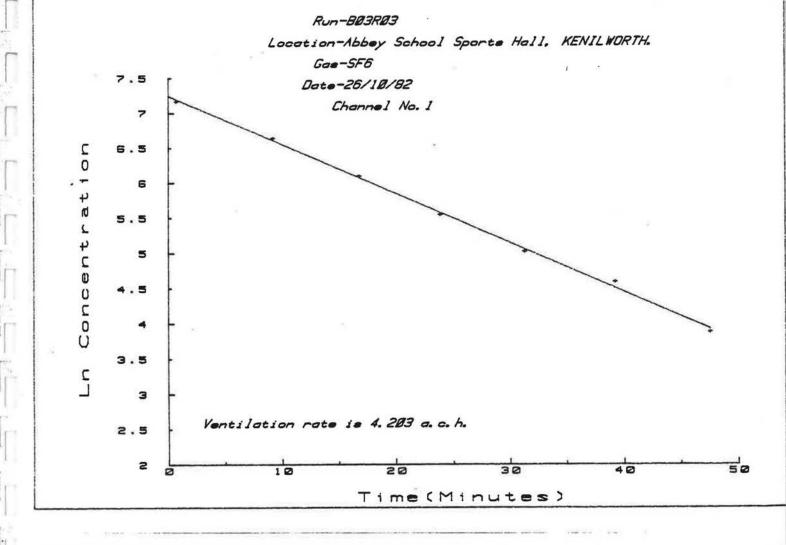
As shown on plan.

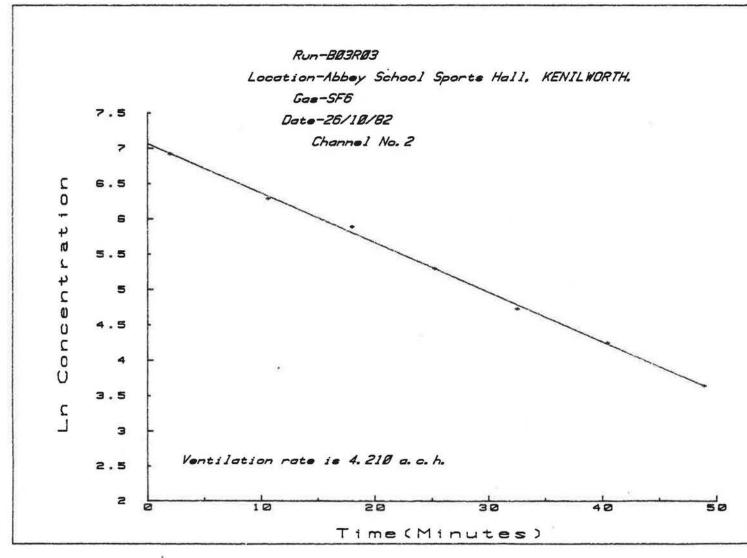
ANALYSIS OF FACTORY VENTILATION RATES

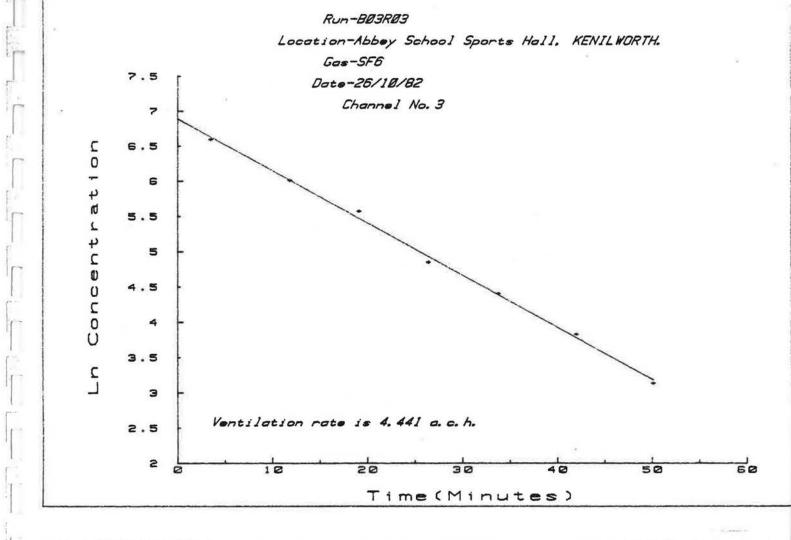
Experimental run number: B03R03
Location: Abbey School Sports Hall, KENILHORTH.
Date: 26/10/82

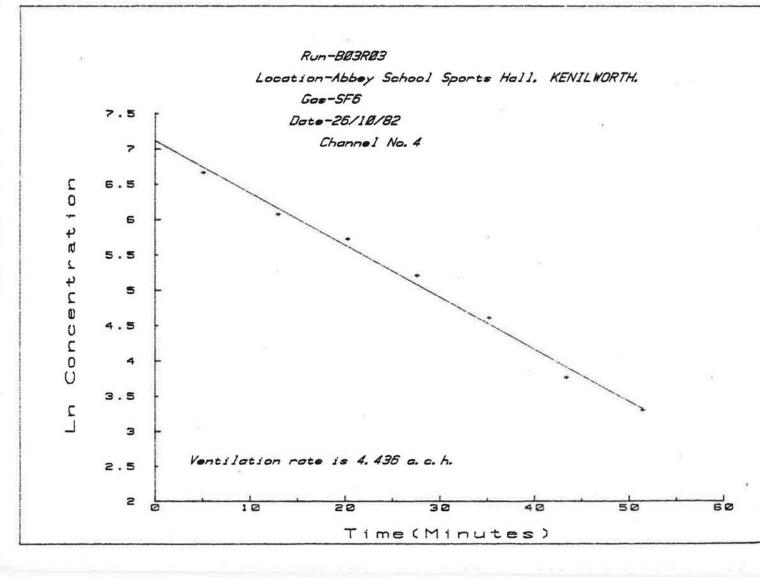
Tracer gas: SF6

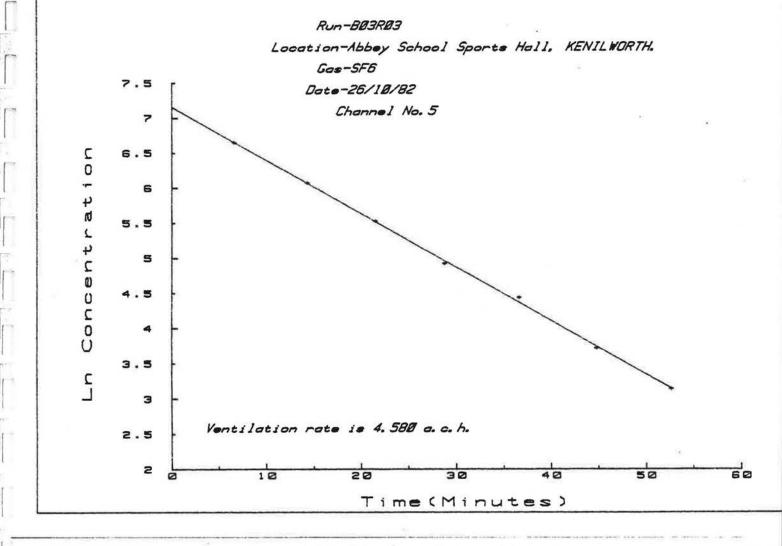
T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

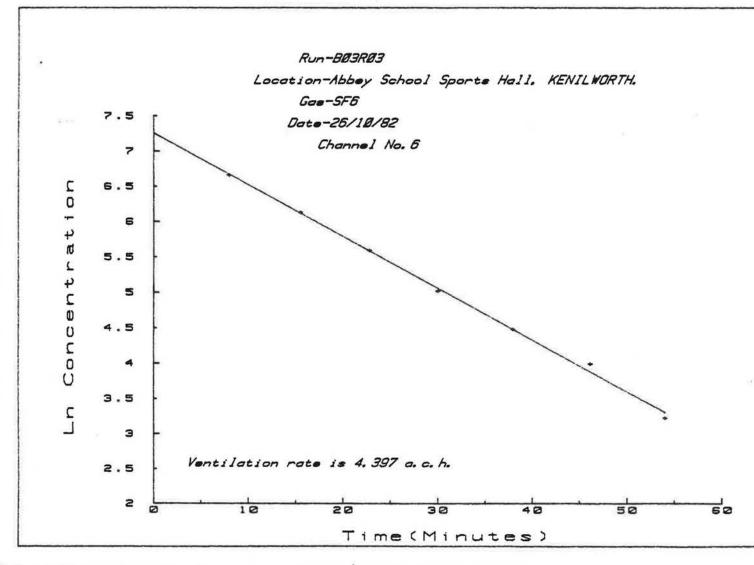

TABLE OF RESULTS ***** ** ******

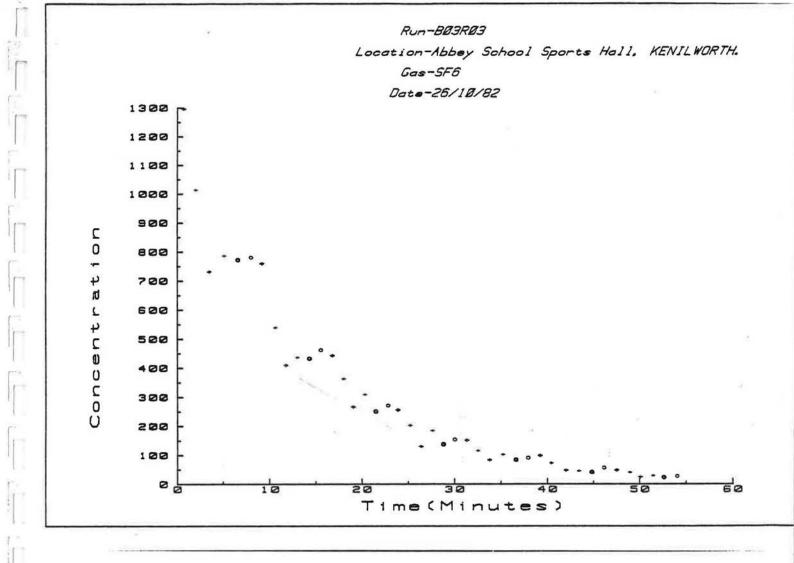

Data Pt.	c	hannel	1	c	hannel	2	a	nannel	3	a	nannel	4	a	hannel	5	a	hannel	6
****	** *********		*****			********		*****		********			*****					
	T	c	LnC	T	C	LnC	T	С	LnC	T	C	LnC	T	С	LnC	T	С	LnC
1	.7	1296	7.167	2.0	1011	6.919	3.5	730	6.593	5.1	784	6.664	6.6	772	6.649	8.0	778	6.657
2	9.2	759	6.632	10.6	537	6.286	11.8	408	6.011	13.0	434	6.073	14.3	432	6.068	15.5	459	6.129
3.	16.8	442	6.091	18.0	360	5.886	19.1	264	5.576	20.3	306	5.724	21.5	250	5.521	22.8	268	5.591
4	23.9	255	5.541	25.2	200	5.298	26.4	128	4.852	27.6	182	5.204	28.8	137	4.920	30.0	151	5.017
5	31.3	151	5.017	32.5	113	4.727	33.8	82	4.407	35.2	100	4.605	36.6	84	4.431	37.9	88	4.477
6	39.2	98	4.585	40.4	70	4.248	42.0	46	3.829	43.4	43	3.761	44.8	41	3.714	46.1	54	3.989
7	47.5	48	3.871	48.9	38	3.638	50.1	23	3.135	51.4	27	3.296	52.6	23	3.135	54.0	25	3.219

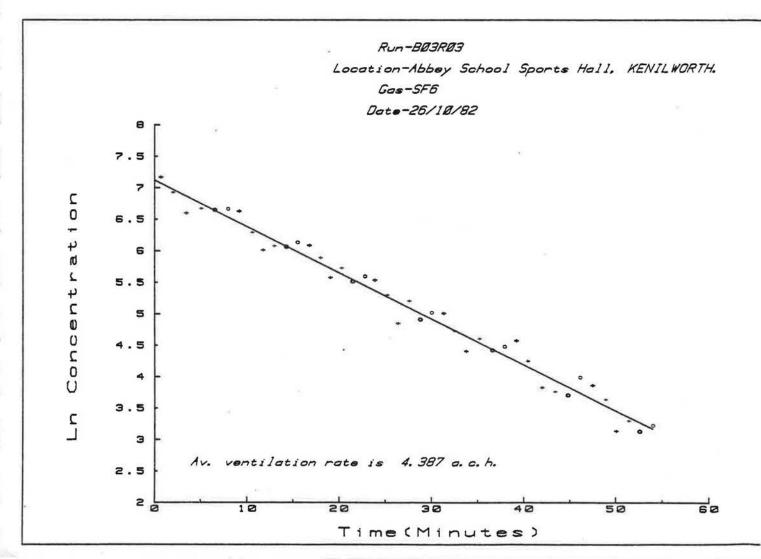

STATISTICAL A	MALYSIS FOR	CHANGEL 1			
Boures	œ.		16	!	
Augreenion Amendual Total	1 5 6	.096 .014 8.112	a.098 .003	2000.900	
INTERCEPT- 7.	.24502493176 .00481204881	s-02			
Wentilation	rate is 4.	203 mir changem	per hour		
STATISTICAL A	MALYSIS FOR	General 2			
200000 ********************************	#		15		
Regression Residual Total	5 6	0,120 .012 0,132	-002	3394.975	
DITERCET 7.	.04440518393 .01703306409	1 18-02			
Vencilation	n tato 18 4.	.210 air changes	pac base		
FIATISTICAL .	AMALYSIS FOR	CONNECT. 3			
Sources	DE	25	76 ******		
Repression Residual	1 5	9.840 .023 9.864	9.040	1951.972	
INTERCEPT- 6	6.8666612912				
CHOLDER -7		4			
ARMICTARETA	n rete 18 4.	.641 air champss	par mag		
SINGLETICAL .	AMALIBLE FO	CONTRACT 4			
	## ## ## ## ## ## ## ## ## ## ## ## ##				
Regression Residual Total	5	0.106 -071 9.066	.014 8.596	636,463	
DANIEL -7	.1170967103: .3939512557	5 10-02			
Ventiletio	n coto is 4	.436 als champes	per hour		
MATERIAL .		CHARL 3			
Sing eo	=		-		
Representate Resident Total	5	9.543 .007 9.549	9,543	1097.666	
DESCRIP7	.1574042730 .6330871593	6 20-62			
Ventilatio	m rote in 4	.900 air sharqoo	per bour		
SPC15TICAL	ANNLYSIS PO	a consta			
Angen			RE.		
Regression Register)	1	A.N.S	8.815	2133.333	
Social	i	0.421 0.426		100	
COMPLET -				,	
Wontiletic	m rete is 4	.397 air changes	pur hour		
STREET SCAL	ANDLESIS -	ALL CHARGES			
Street to townson	DÉ es	<u></u>	10		
Amproceion Amidual Socal	. 1 40 41	93.912 1.077 94.909	\$3.90.2 .027	2001.610	


DATESCOPY- 7.12206144579 GRADIENT- -7.211941131546-02


Ventilation cote in 4-307 air champes per less







Date: 26th October 1982

Time: 1440 hours to 1550 hours Tracer Gas: Sulphur Hexaflouride

External Conditions:

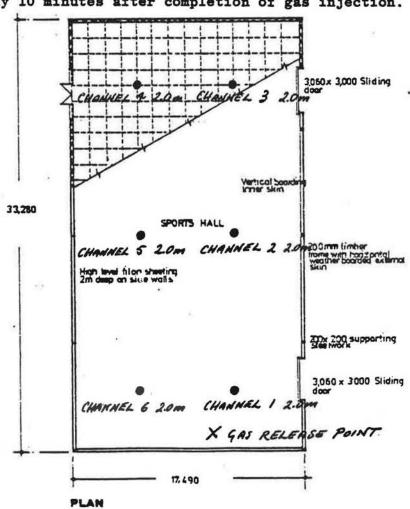
<u>Time</u>	Windspeed (m/s)	Temperature	(°C)
1400 hrs	5.7	14.3	
1500 hrs	4.6	13.8	8
1600 hrs	4.1	13.8	

Wind Direction: west south west

.Internal Conditions:

air velocity: 0.01 to 0.10 m/s

temperature: 14 to 15°C


Gas Release:

Gas bled into room without fan or any other mixing at point shown on plan.

Sample Positions:

As shown on plan.

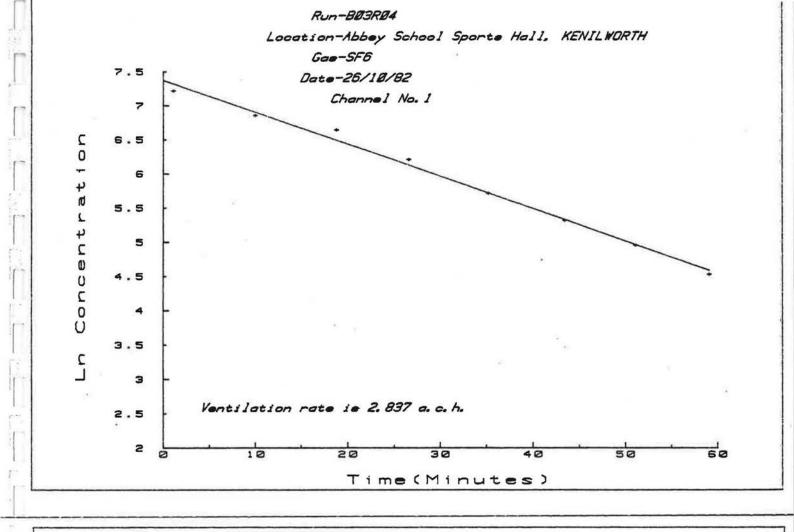
Comment: Gas bled in over a period of about 10 minutes and readings commenced approximately 10 minutes after completion of gas injection.

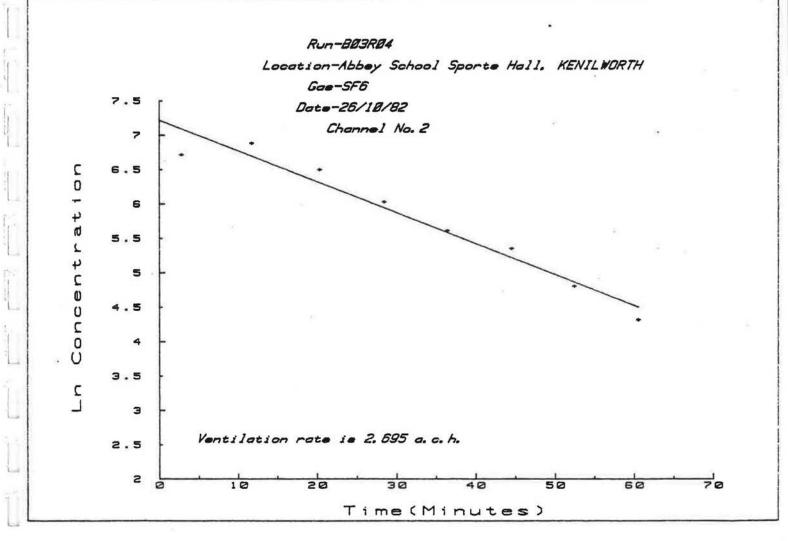
Experimental run number: 803R04
Location: Abbey School Sports Hall, KENILWORTH
Date: 26/10/82

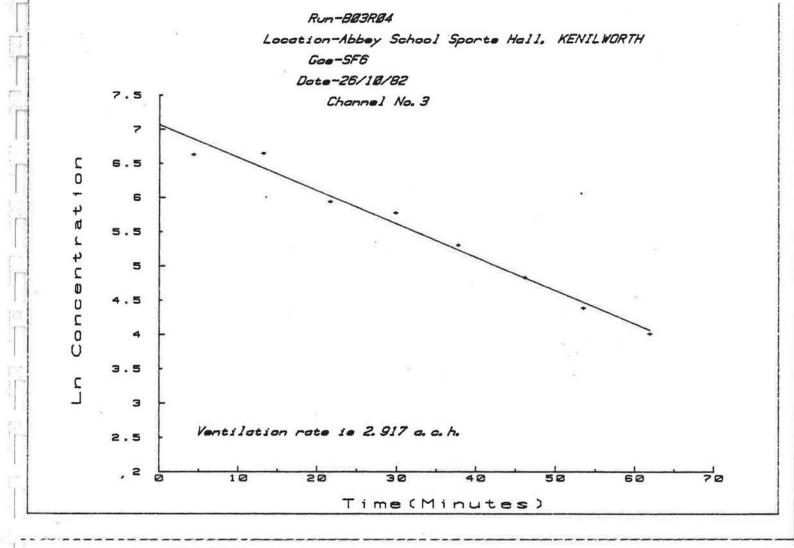
Tracer gas: SF6

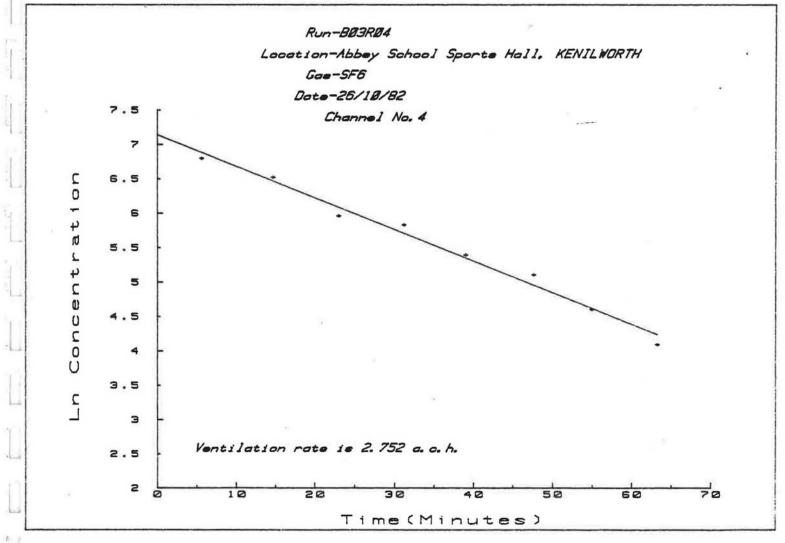
T=Time in minutes. C=Concentration (arbitrary units) Inc=Natural log of concentration.

TABLE OF RESULTS **** ** *****

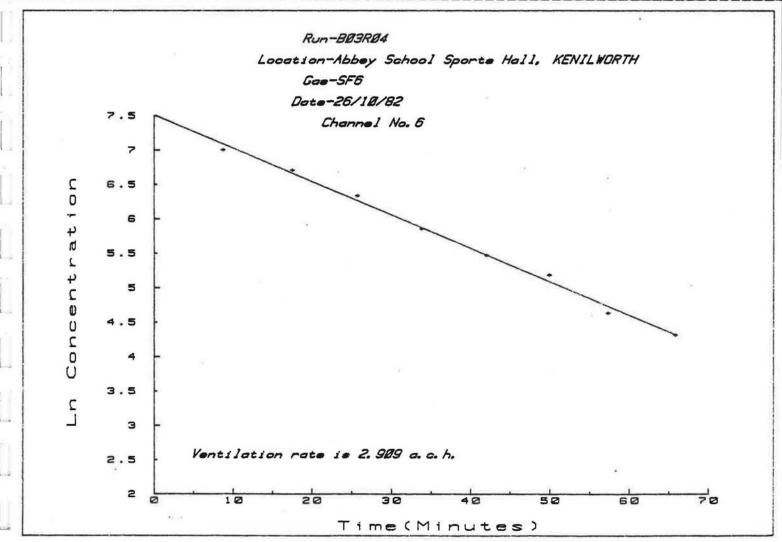

Data Pt.	c	hannel	1	a	nannel	2	æ	nannel	3	а	nannel	4	. с	hannel	5	c	hannel	6
****	*****	****	*****	****	****	****	****	*****	*****	****	*****	****	****	****	*****	****	****	*****
9	T	С	LnC	T	C	LnC												
1	1.1	1364	7.218	2.8	825	6.715	4.3	756	6.628	5.6	895	6.797	7.2	1149	7.047	8.7	1100	7.003
2	10.0	944	6.850	11.7	972	6.879	13.2	765	6.640	14.7	680	6.522	16.1	785	6.666	17.5	817	6.706
3	18.8	760	6.633	20.3	662	6.495	21.7	377	5.932	23.0	388	5.961	24.3	455	6.120	25.7	564	6.335
4	26.6	491	6.196	28.4	415	6.028	29.9	320	5.768	31.2	341	5.832	32.5	315	5.753	33.8	349	5.855
5	35.2	300	5.704	36.4	273	5.609	37.8	200	5.298	39.0	220	5.394	40.3	247	5.509	42.0	238	5.472
6	43.4	202	5.308	44.5	211	5.352	46.2	125	4.828	47.6	165	5.106	48.8	186	5,226	49.9	179	5.187
7	51.1	141	4.949	52.4	122	4.804	53.5	80	4.382	54.9	100	4.605	56.1	100	4.605	57.3	103	4.635
8	59.1	92	4.522	60.5	75	4.317	61.9	55	4.007	63.2	60	4.094	64.4	70	4.248	65.8	75	4.317

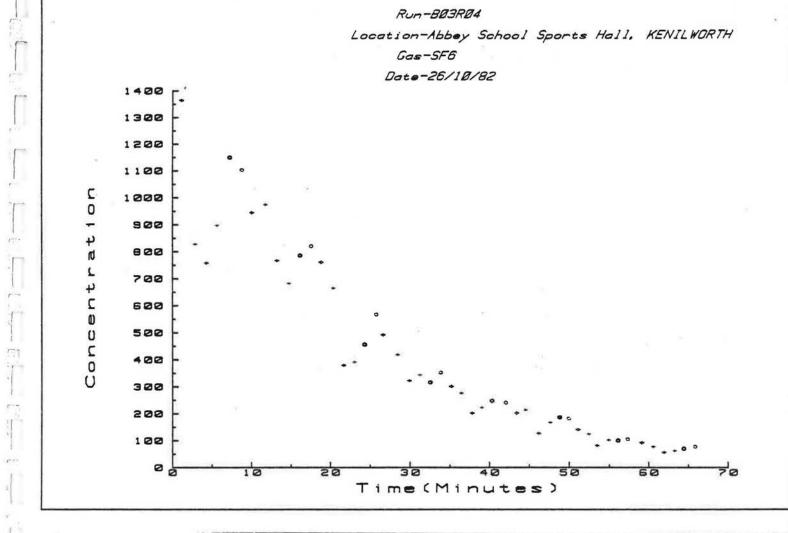

STATISTICAL A	MALTELS PO	CHAMBLE 1		
Source	DC	95	HS	
Regression Residual Total	6 7	6.409 .045 6.455	6.409 .008	646.945
UPTERCEPT= 7. GRADIDIT= -4.	3722892651! 7279453386.	5 3E-02		
Ventiletion	rate is 2	.637 all charges	per hour	
STATISTICAL A	MALYSIS PO	R (2MINEL 2		
Saucos	×		18	····
Regression Residual Total	1 6 7	5.685 _276 5.969	5.605 .046	121.001
DITECTOR 7.	21 7915217 4 4911281657	8 MB-02		
Ventilation	cate ia 2	.695 air Changes	hoc pant	
STATUSTICAL A	MALYELE PO	R CHARGE)		
Source	DE		75	
Regression Residual Total	6	6.623 -144 6.767	6.623 .024	276,364
DITERCEPTO 7. GRADIERTO ~4.	0669837586 8668550288	7 16-02		
Westlation	cete is 2	.917 air changes	her som	
-				
STATISTICAL A				12
Sources in	1	5.893	5.693	406.237
Regression Residual Total	6,	.067 5.960	.015	w
DITERCEFT- 7. CHADIDIT4.	1397343502 5470281876	6 22-02		
Wentiletion	coco is 2	.752 air cnasges	per hear	9
STATISTICAL A	MALTRIS FO	CHARLE 5		
Source *******	D2	25	AG.	r
Regression Residual Total	6 7	6.405 .064 6.470	-011	596.624
INTERCEPT- 7. GMOIBNT4.	3889436819 8111364065	2 56-02		
Ventiletion	rete is 2	.067 air changes	per hour	
STATISTICAL A	MALYBIS PO	CHANNEL 6		
Source seeses	D.C.			
Regression Residual Total	4	6.463 -023 6.496	6.463 .006	1164.659
DATESCEPT 7. GRADIBIT -4.				
Ventilation	fate 18 2	909 ALE Changes	per hour	

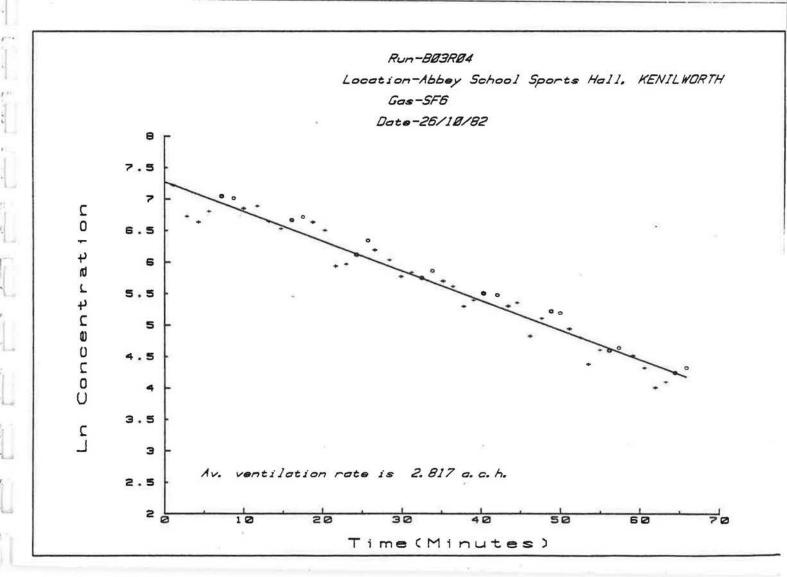

STATISTICAL MMALYSIS - ALL CHAMBLES
SOCIOSIS CONTROL OF SS
SOCIOSIS OF SS
SOCIOSIS
S MS. 37.639 1.673 39.312 - 37.639 -036 1035.166


INTERCEPT- 7.27261974145 GMADIENT- -.046954333642


Ventilation tate is 2.817 air changes per hour







Date: 26th October, 1982

Time: 1600 hours to 1700 hours Tracer Gas: Sulphur Hexaflouride

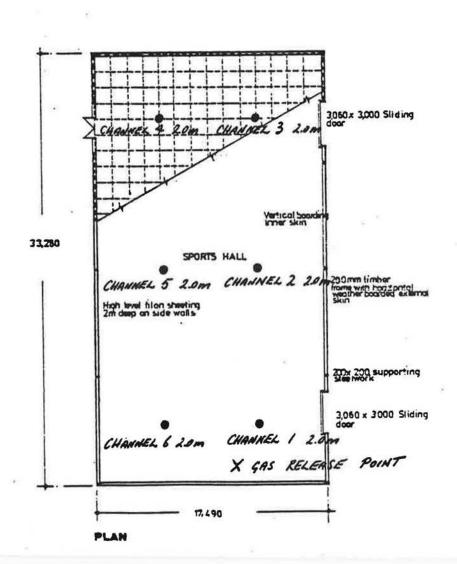
External Conditions:

Time	Windspeed (m/s)	Temperature (°C)
1600 hrs	4.1	13.8
1700 hrs	7.7	12.9

Wind Direction: west south west

Internal Conditions:

air velocity: 0.01 to 0.10 m/s temperature: 14 to 15°C


Gas Release:

Gas bled into room without fan or any other mixing at point shown on plan.

Sample Positions:

As shown on plan.

Comment: Gas bled in over a period of about 10 minutes and readings commenced approximately 10 minutes after completion of gas injection.

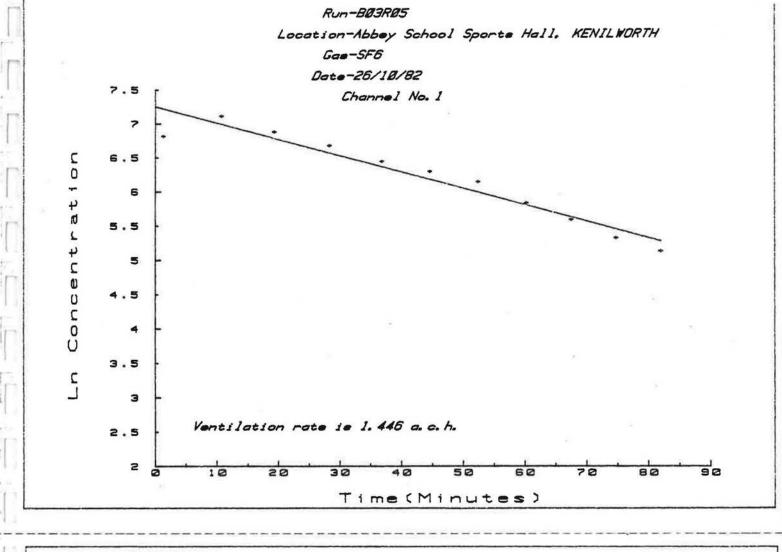
Experimental run number: BOJR05

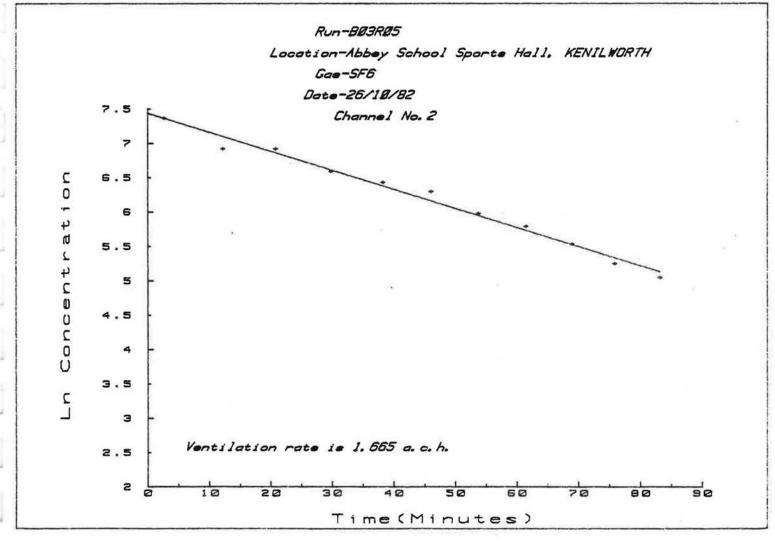
Location: Abbey School Sports Hall, KENILWORTH Date: 26/10/82

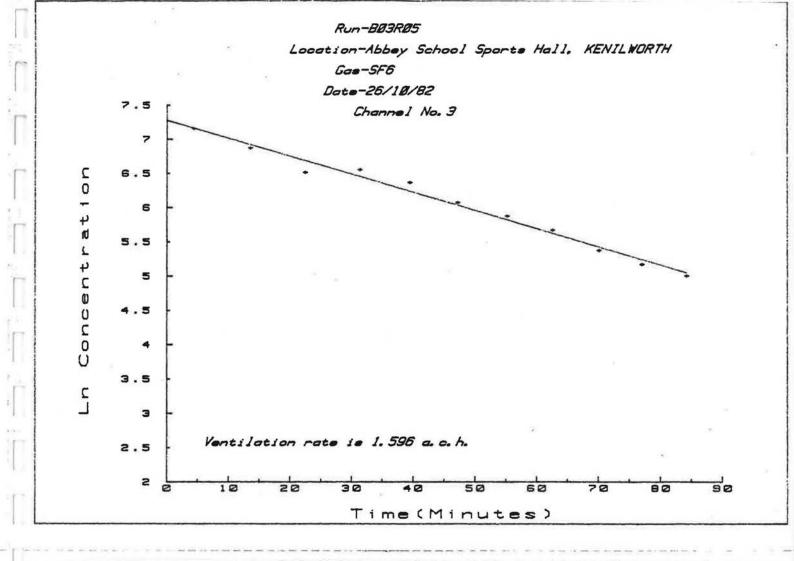
Tracer gas: SF6

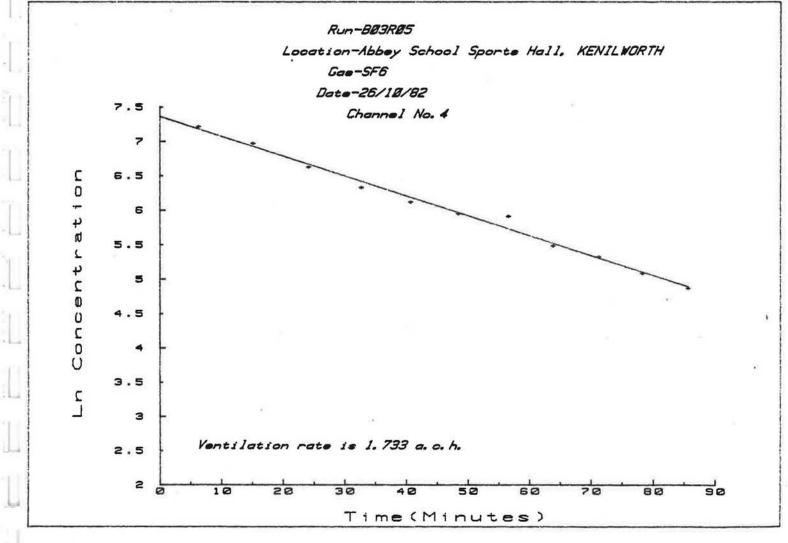
T-Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

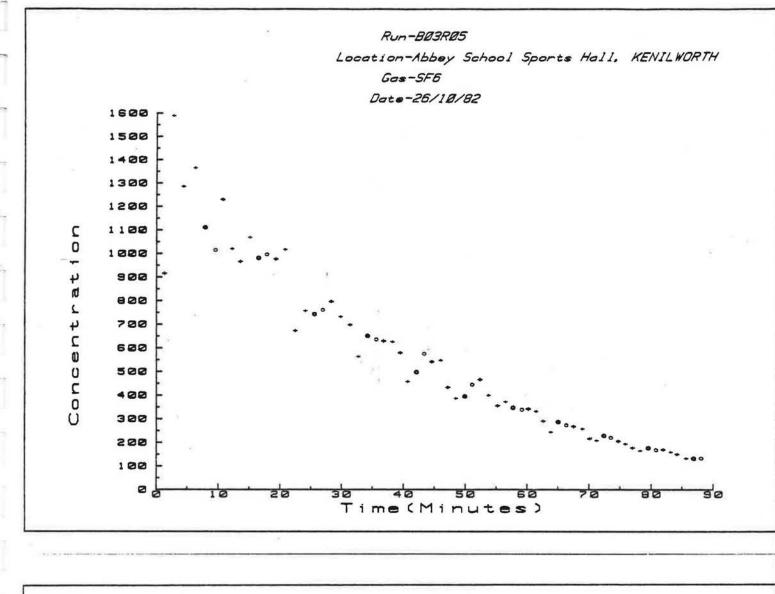
**** ** *****

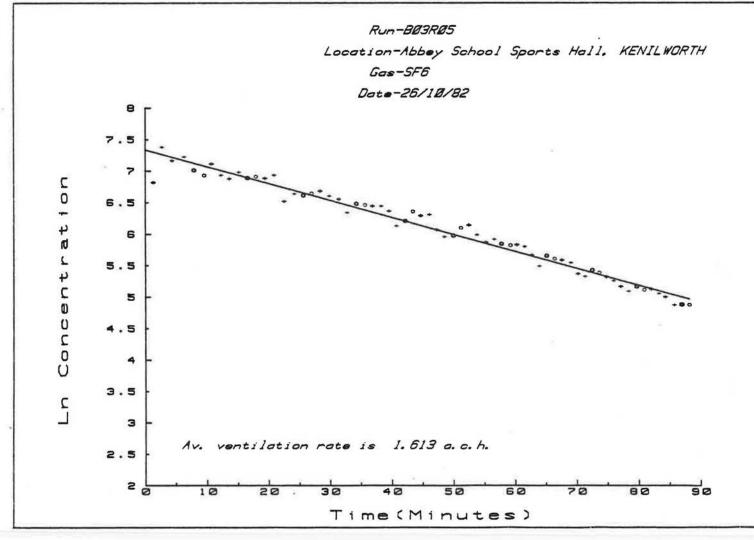

Data Pt.	c	hannel	1	c	hannel	2	c	hannel	3	c	hannel	4	c	hannel	5	c	hannel	6
***	****	****	*****	*****	****	*****	****	****	*****	****	****	*****	*****	*****	*****	****	****	*****
	T'	c	LnC	r	c	LnC	T	c	LnC	T	C	LnC	T	C	LnC	T	c	LnC
1	1.3	915	6.819	2.7	1586	7.369	4.4	1283	7.157	6.3	1361	7.216	7.9	1110	7.012	9.5	1011	6.919
2	10.7	1228	. 7.113	12.2	1016	6.924	13.6	963	6.870	15.1	1065	6.971	16.5	980	6.888	17.8	992	6.900
3	19.3	975	6.882	20.8	1013	6.921	22.5	671	6.509	24.1	754	6.625	25.6	742	6.609	26.9	757	6.629
4	28.3	795	6.678	29.8	728	6.590	31.4	695	6.544	32.7	560	6.328	34.2	650	6.477	35.6	632	6.449
5	36.8	628	6.443	38.2	622	6.433	39.5	576	6.356	40.7	454	6.118	42.1	496	6.207	43.3	571	6.347
6	44.6	540	6.292	46.0	544	6.299	47.2	430	6.064	48.4	383	5.948	49.9	394	5.976	51.1	441	6.089
7	52.4	465	6.142	53.7	396	5.981	55.2	353	5.866	56.5	369	5.911	57.7	346	5.846	59.1	335	5.814
. 8	60.2	341	5.832	61.4	328	5.793	62.6	288	5.663	63.8	241	5.485	65.0	286	5.656	66.3	270	5.598
9	67.5	267	5.587	68.9	254	5.537	70.1	214	5.366	71.2	205	5.323	72.4	228	5.429	73.5	217	5.380
10	74.7	205	5.323	75.8	191	5.252	77.0	175	5.165	78.2	162	5.088	79.5	176	5.170	80.7	165	5.106
11	81.9	169	5.130	63.1	156	5.050	84.2	148	4.997	85.6	130	4.668	86.8	132	4.883	88.0	130	4.868


STREETICAL A	MALYELS PO	R CHANGEL 1		(3)
Real or	Of .	. M.	18	
Ingrenaum Ingulumi Total	1 9 10	4_127 _280 4_607	-031	132.746
DATESCEPT- 7.	2506576958 4107603836	50- 02		
Ventilation :	rate is l	,446 alt changes	pac lunc	
STATISTICAL A	MALYSIS FO	R CHARGE 2		
dour co	OE	26		
Repression Residual Total	10 10	5.424 .075 5.499	5,424	649.911
INTERCEPT- 7.	4360094156 7748179715	5 69-02		
Ventilation	rate is 1	.465 als dampes		
STATISTICAL A	MALYBIS PO	GIAMBIEL)		
toures	of ••		*****	r
Augressian Desident Total	1 9 10	4.916 .074 4.960	.006	490.137
DITERCEPT 7. GMOLIBITY -2.	2780001243 6594411936	9 40-03		
Ventilation	cate to 1	.596 ALC Changes	per hour	
STATISTICAL A				(320)
Soutes sessos Regression	D £	5,729	5.729	976.976
Residual Total	10	.053 5.762	,006	7/4.7/4
INTERCEPT- 7. GRADIENT2.	3616725771 8891116699	8 28-02		
Ventilation	cate is 1	.733 air champas	ber part	
STATISTICAL A	MALYSIS FO	R CHANGEL 5		
Seurce respec	DE .		700	
Regression Residuel Total	1 9	4.814 .042 4.856	4.814	1034.270
INTERCEPT 7.	3145039693	9		
		.597 air changes	per hour	
STATISTICAL A	WALYSIS PO	OR CHARGEL 6		
Sources	DE .	25 00000	15	
Regression Smeather! Total	1 9	4.945 .096 5.041	4.945	464.480
DITERCEPT- 7.	3444696871 7064754856	1 11E-02		
Wentiletion	n rate is :	1.624 air champes	per hour	
Carrier Description of the Control o		14 5 27525e10-2710-1		
STATISTICAL SOME CO	DE -	ALL CHARRES	rs	
the state of the state of				


INTERCEPT- 7.33542#94619 GMADIBIT- -2.687961982056-02


Westiletian rate is 1.615 air champes pur besu


30.245 .847 31.052 30.245 .013



- Date: 27th October, 1982.

Time: 1533 hours to 1708 hours TracerGas: Sulphur Hexaflouride

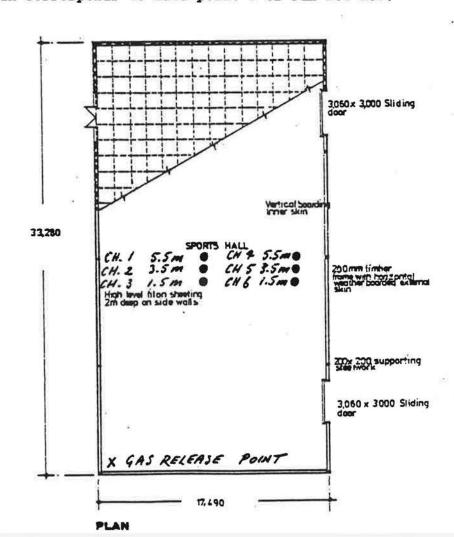
External Conditions:

Time	Windspeed (m/s)	Temperature	(°C)
1500 hrs	2.6	11.9	
1600 hrs	2.1	11.2	*
1700 hrs	2.6	8.8	

Wind Direction: south west

Internal Conditions:

air velocity: 0.02 to 0.08 m/s temperature: 14°C


Gas Release:

At position shown on plan without any artificial stirring.

Sample Positions:

As shown on plan.

Comment: These results are decay portion of run BO3 RO9. Data point 1 of this run corresponds to data point 5 of run BO3 RO9.

Experimental run number: B03R06
Location: Abbey School Sports Hall, KENILWORTH
Date: 27/10/82
'Tracer gas: SF6

T=Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

Data Pt.	c	hannel	1	c	hannel	2	c	hannel	3	a	nannel	4	c	hannel	5	a	nannel	6
***	*****	*****	*****	****	*****	*****	*****	****	*****	****	****	*****	*****	*****	*****	*****	*****	*****
	T	С	LnC	T	С	LnC	T	С	LnC	T	c	LnC	T	С	LnC	T	c	LnC
1	33.3	1518	7.325	35.1	1322	7.187	36.8	1126	7.026	38.3	980	6.888	39.6	1021	6.929	41.2	962	6.869
2	42.6	958	6.865	44,2	1010	6.918	45.7	1000	6.908	47.1	831	6.723	48.3	820	6.709	49.7	791	6.673
3	51.0	775	6.653	52.2	877	6.777	53.6	908	6.811	55.0	778	6.657	56.6	750	6.620	57.9	720	6.579
4	59.5	715	6.572	60.9	703	6.555	62.6	761	6.635	64.1	649	6.475	65.4	565	6.337	67.0	580	6.363
5	68.8	654	6.483	70.1	690	6.537	71.8	680	6.522	73.4	648	6.474	74.8	468	6.148	76.2	512	6.238
6	77.5	471	6.155	78.8	494	6.203	80.1	518	6.250	81.6	478	6.170	82.9	455	6.120	84.1	370	5.914
7	85.5	363	5.894	86.8	371	5.916	88.3	407	6.009	89.9	391	5.969	91.2	339	5.826	92.5	290	5.670
8	93.8	309	5.733	95.2	290	5.670	96.4	317	5.759	97.8	334	5.811	99.1	290	5.670	100.4	266	5.583
9	101.8	260	5.561	103.5	251	5.525	104.9	270	5.598	106.2	285	5.652	107.7	226	5.421	109.1	217	5.380
10	110.7	215	5.371	111.9	220	5.394	113.2	260	5.561	114.6	250	5.521	115.7	216	5.375	117.3	194	5.268
11	118.5	203	5.313	119.8	205	5.323	121.5	229	5.434	122.9	219	5.389	124.1	207	5.333	125.9	190	5.247

DITERCEFF- 7. 98466425894

Ventilation rate is 1.386 air changes per hour

STATISTICAL	AMALYSIS	POR	CHARLET 3		
Bource	2			165	
Regression Residuel Total	10		3.367 .965 3.433	3.367 .007	463.367

INTERCEPT- 7.87157889653 CRADIENT- -2.065917288448-02

Wentilation rate is 1.240 mir champes pur hour

STATISTICAL	*******	POR CHANGEL 4		
SOURCE	Dt		75	r
Dotal Sestimal Segression	1 9 10	2.666 .043 2.709	2,466	561.062

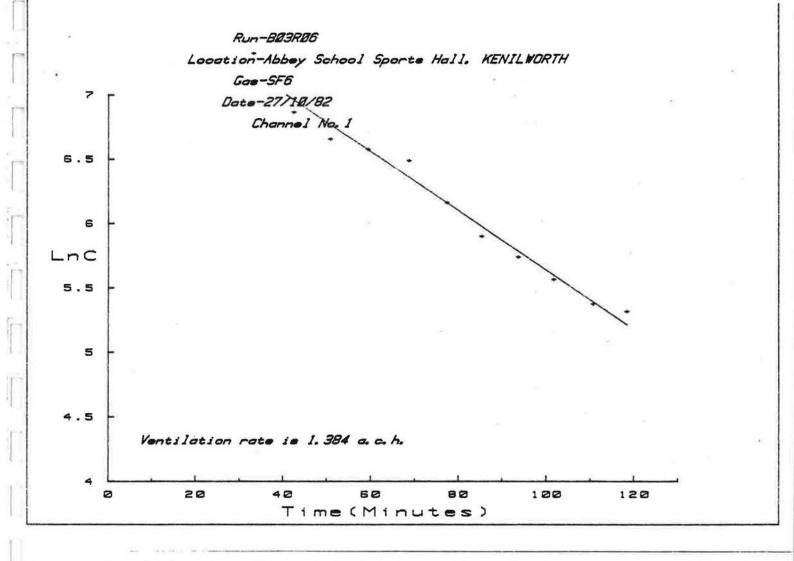
INTERCEPT- 7.64745360591 GBADIENT- -1.840000395978-02

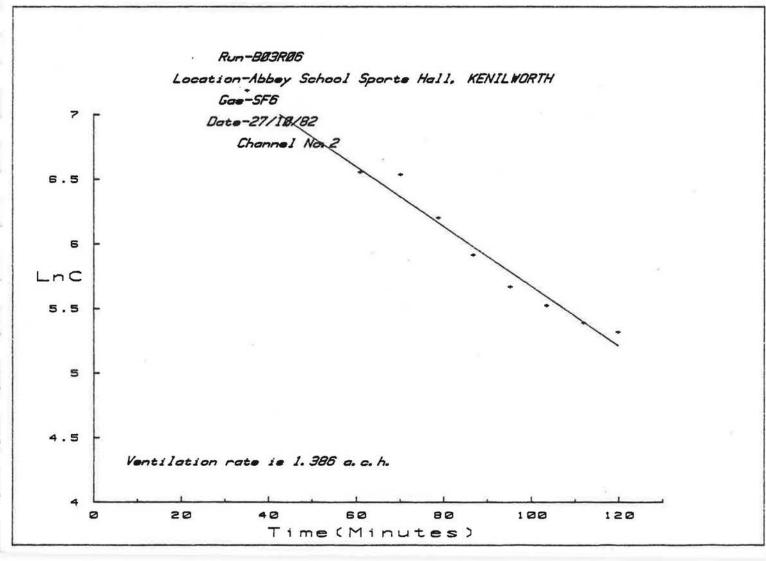
Ventilation rate is 1,104 air changes per hour

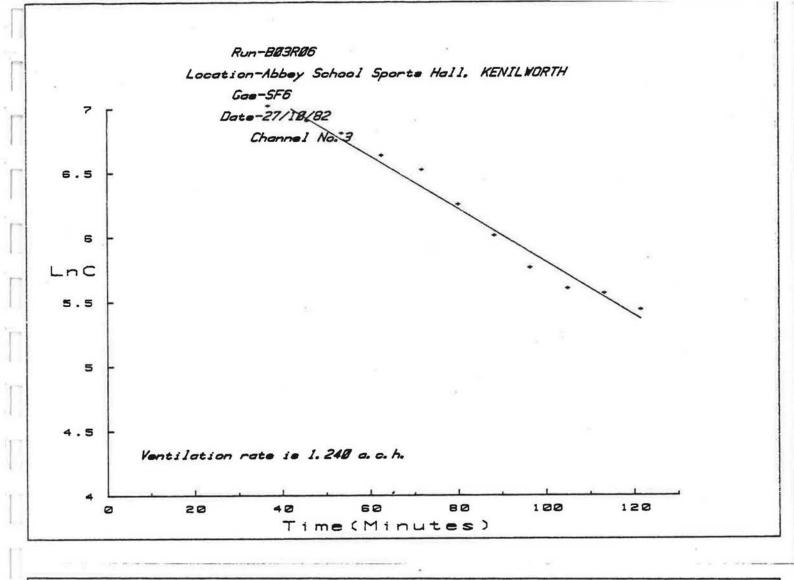
		POR CHANNEL 5		
	DE	85	76 ******	r
Appression Appression Total	10	3.140 .049 3.189	3.140 .005	578,405

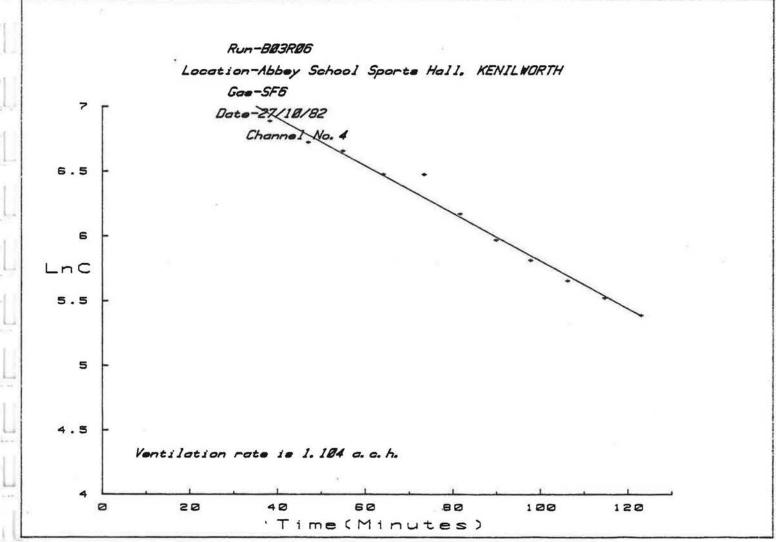
INTERCEPT- 7.69034741417 SMADIRWY- -1.999768225568-02

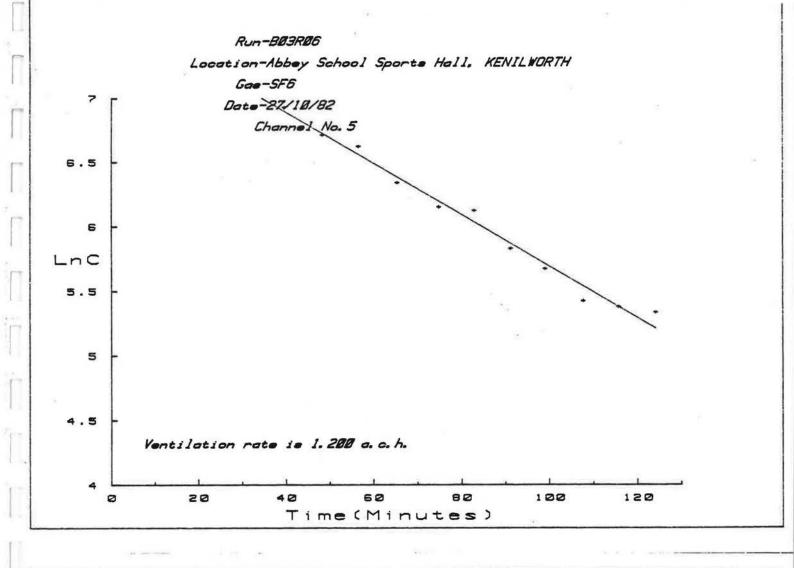
Westilation rate is 1,200 air champus por how

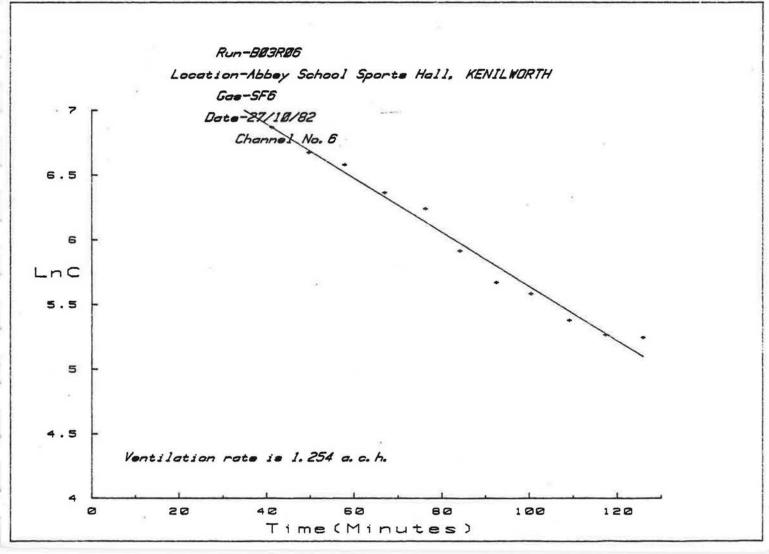

SPATISTICAL	*******	*** ********		
four ee	or or		76 *****	r
Regression Residual Total	10 3 1	3.642 .064 3.506	3.442 .007	483.979
INTERCEPT-				

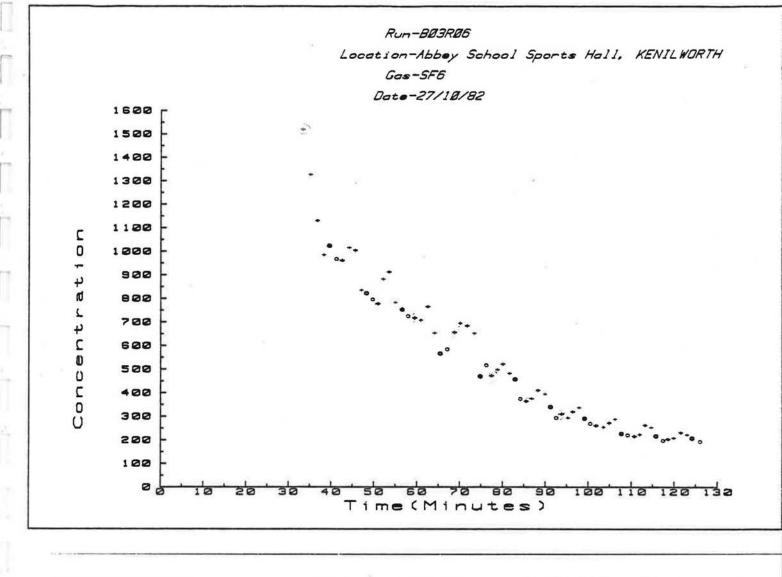

Wantilation rate is 1.254 air changes per hou

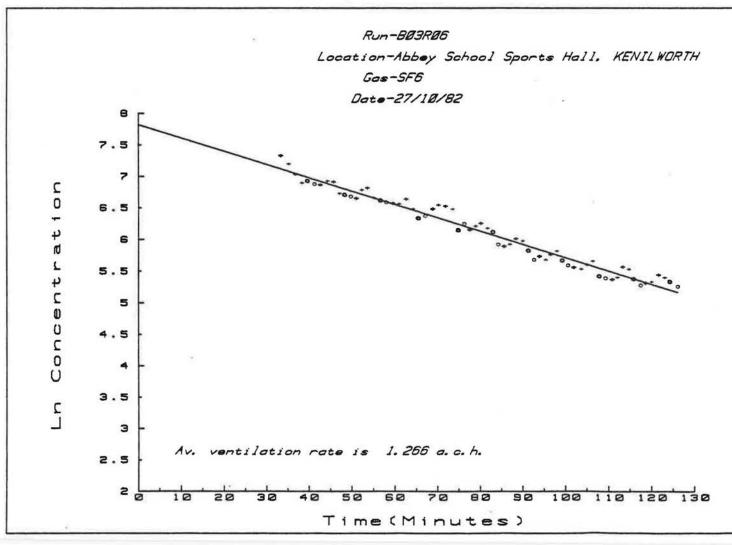

STATISTICAL.		- ALL	CHANNELS		
SOURCE	DE		95	PS	********
Regression Residual Total	64 65		21.254 .690 21.944	21.254 .011	1972.471


INTERCEPT- 7.81983556638 GBADIENT- -2.109293931628-02


Wentilation rate is 1,266 air changes per hour







Date: 28th October 1982

Time: 1030 hours to 1215 hours Tracer Gas: Sulphur hexaflouride

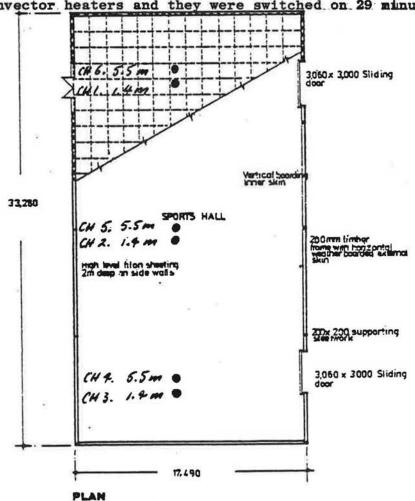
External Conditions:

Time	Windspeed (m/s)	Temperature
1000 hrs	3.6	8.0
1100 hrs	3.6	9.6
1200 hrs	4.6	11.8

Wind Direction: south

Internal Conditions:

air velocity: 0.02 to 0.06 m/s temperature: 8.5°C at 1104 hrs 11.5°C at 1142 hrs


Gas Release:

Tracer gas was mixed to an approximately uniform concentration before heating commenced.

Sample Positions:

As shown on plan.

Comment: Position of heater is shown on the plan. These were both 3 KW fan assisted convector heaters and they were switched on 29 minutes into the run.

Experimental run number: B03R07
Location: Abbey School Sports Hall,KENILWORTH
Date: 28/10/82
Tracer gas: SF6

T=Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

Data Pt.	3.5 mm		Channel 2		c	Channel 3		c	hannel	4	a	nannel	5	Channel 6				
****	*****	****	*****	*****	*****	*****	*****	*****	******	*****	*****	*****	*****	****	*****	*****	*****	*****
	T	С	LnC	T	С	LnC	T	С	LnC	T	С	LnC	T	C	LnC	T	, c	LnC
1	.8	829	6.720	2.2	1352	7.209	3.6	1307	7.175	5.7	1263	7.141	7.5	694	6.542	9.1	999	6.907
Ź	10.7	1097	7.000	13.9	1087	6.991	15.3	853	6.749	16.8	787	6.668	18.1	820	6.709	19.6	687	6.532
3	12.6	1094	6.998	23.2	1034	6.941	24.4	973	6.880	25.7	662	6.495	27.0	641	6.463	28.7	583	6.368
4	21.9	1027	6.934	32.4	823	6.713	33.7	844	6.738	35.2	488	6.190	36.6	474	6.161	37.9	332	5.805
5	30.9	788	6.669	41.1	633	6.450	42.7	677	6.518	44.1	279	5.631	45.8	353	5.866	47.0	269	5.595
6	39.6	696	6.545	50.1	425	6.052	51.5	467	6.146	53.0	297	5.694	54.3	283	5.645	55.7	167	5.118
7	48.6	474	6.161	58.8	337	5.820	60.0	399	5.989	61.4	203	5.313	62.7	204	5.318	63.9	126	4.836
8	57.3	341	5.832	66.6	255	5.541	67.8	242	5.489	69.3	149	5.004	70.7	138	4.927	71.9	110	4.700
9	65.3	206	5.328	75.2	210	5.347	76.5	182	5.204	78.0	89	4.489	79.3	98	4.585	80.8	47	3.850
10	73.4	131	4.875	87.7	111	4.710	89.0	112	4.718	90.5	101	4.615	91.7	41	3.714	93.0	30	3.401

INTERCEPT- 7.46726004726 CRADIENT- -.031635006928

Ventilation rate is 1.896 air champes pur hour

STRITSTICAL AMALYSIS FOR CHAMMEL 2

r = \[\frac{9.521}{9.947}

DATE 7.59223077074

Ventilation rate is 1.936 air champes por hom

STATISTICAL AMALYSIS FOR CHAMBEL)

Source Df 85 08. P
sense on sense consens
Sugramation 1 9.394 9.384 105.94
Becident 9 .796 .009
Total 10 10.192

DYSERCEPT- 7.59903171897

Ventilation rate is 1.927 air changes per bour

STATISTICAL ANALYSIS FOR CHANGEL 4

INTERCEPT- 7.35653845775 GMDLERT- -3.48617140991E-02

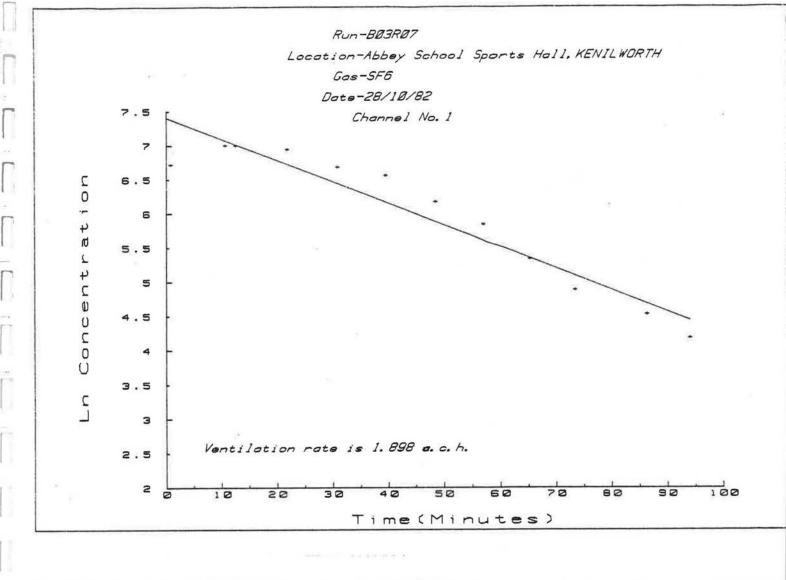
Ventilation rate is 2.092 air champes par baug

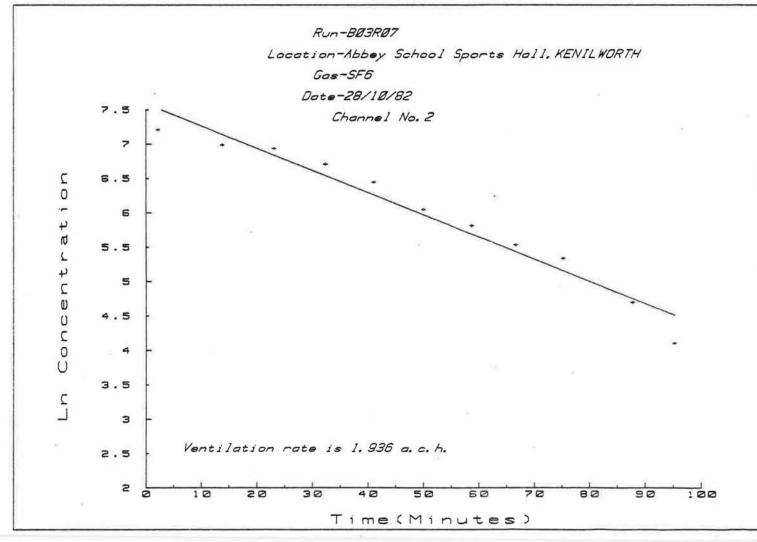
STATISTICAL ANALYSIS FOR CHANGE 5

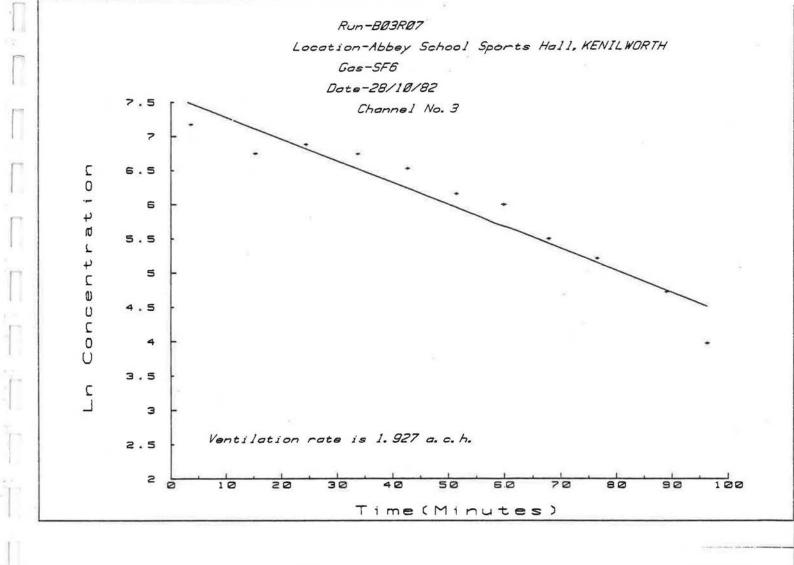
INTERCEPT- 7.34209283706 GRADISMY--3.596357094018-02

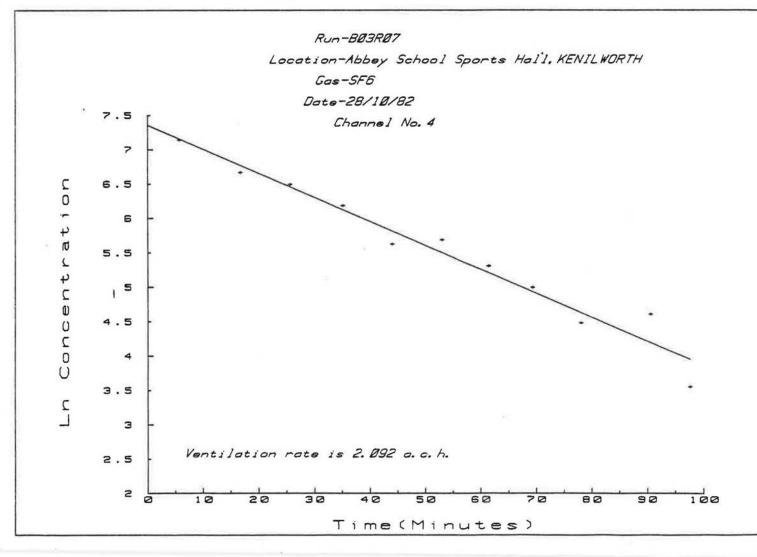
Ventilation rate is 2.150 air changes put hour

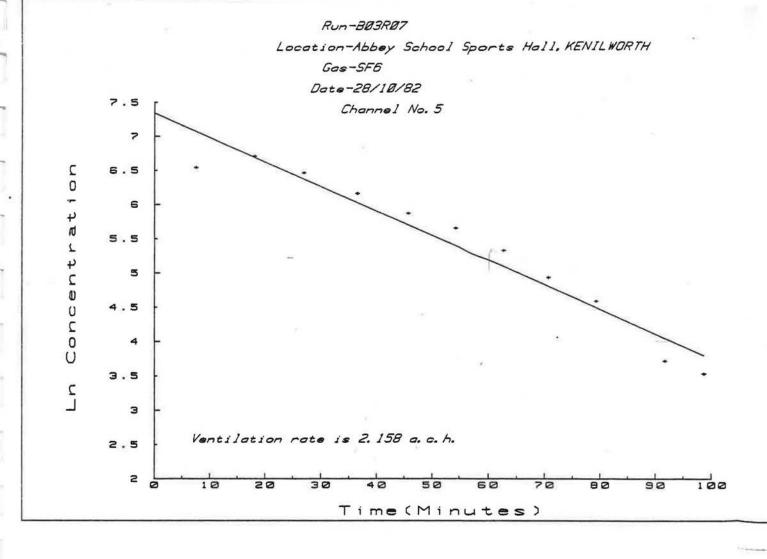
STATISTICAL ANALYSIS FOR CHANGEL 6

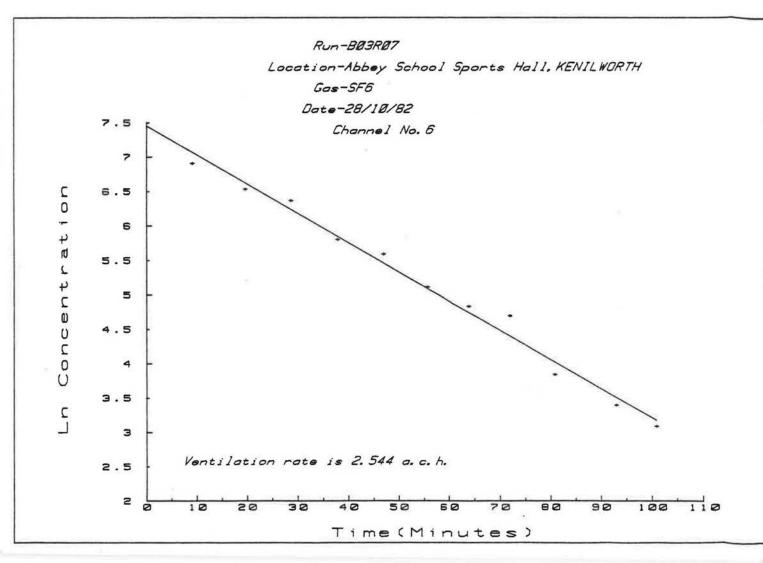

INTERCEPT- 7.45505163403 GBADIENT- -4.24014420#186-02


Wentilation rate is 2.544 air changes per hour

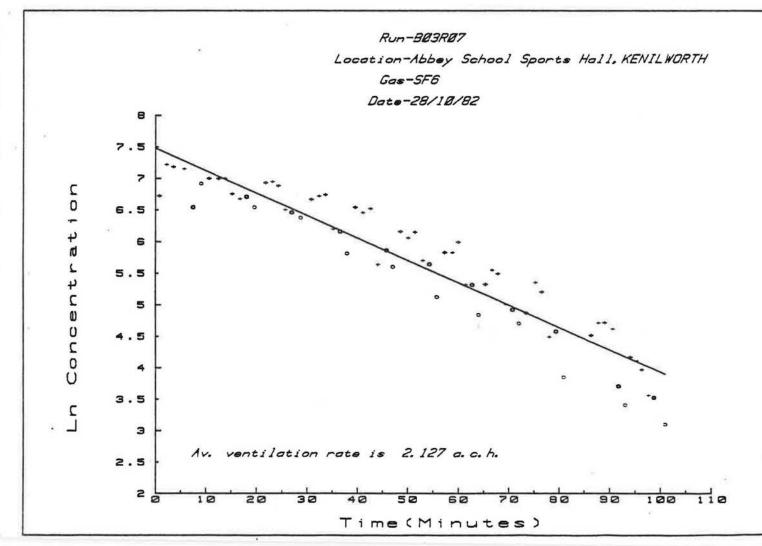

STATISTICAL AMBLYSIS - ALL CHAMBELS - ARE CHAMB


INTERCEPT 7.47973400603 GMADIENT -3.544419174248-02


Ventilation rate is 2.127 air changes put bour







Date: 20th October, 1982

Time: 1220 hours to 1350 hours

Tracer Gas: Sulphur Hexaflouride

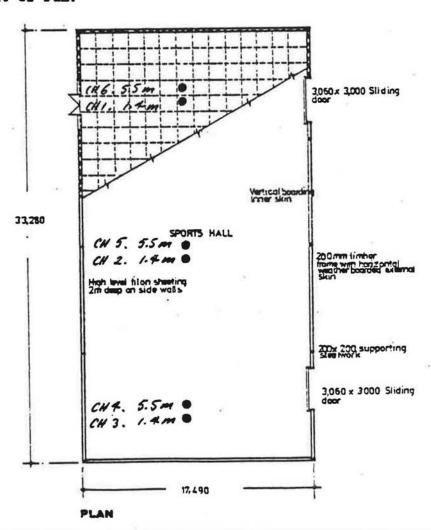
External Conditions:

Time		Windspeed (m/s)	Temperature	(°C)
1200	hrs	4.6	11.8	
1300	hrs	4.6	12.9	
1400	hrs	4.1	13.4	

Wind Direction: south

Internal Conditions:

air velocity: 0.02 to 0.06 m/s temperature: 13°C at 1218 hrs 14°C at 1245 hrs 15°C at 1350 hrs


Gas Release:

Tracer gas was mixed to an approximately uniform concentration before heating commenced.

Sample Positions:

As shown on plan.

Comment: Repeat of run BO3 RO7 except that heaters were switched on at commencement of run.

ANALYSIS OF FACTORY VENTILATION RATES *********

Experimental run number: B03R08
Location: Abbey School Sports Hall, KENILWORTH
Date: 28/10/82

Tracer gas: SF6

T=Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

Data Pt.	c	hannel	1	· c	hannel	2	c	hannel	3	c	hannel	4	c	hannel	5	c	hannel	6	
***	*****	****	*****	****	*****	*****	****	*****	*****	*****	*****	*****	****	****	*****	*****	****	*****	
	r	С	LnC	T	С	LnC	T	С	LnC	T	С	LnC	T	С	LnC	T	С	LnC	
1	.4	1644	7.405	1.9	1707	7.442	3.9	1716	7.448	5.5	1643	7.404	6.7	1646	7.406	8.1	1438	7.271	
2	, 9.5	1627	7.394	10.7	1664	7.417	11.9	1691	7.433	13.3	1573	7.361	14.7	1508	7.319	15.8	1224	7.110	
3	17.2	1582	7.366	18.5	1610	7.384	19.9	1540	7.340	21.4	1452	7.281	22.7	1332	7.194	24.0	1008	6.916	
4	25.3	1479	7.299	26.7	1400	7.244	28.1	1395	7.241	29.4	1199	7.089	30.7	1045	6.952	32.2	722	6.582	
5	33.7	1106	7.009	35.1	1303	7.172	36.9	1228	7.113	38.4	919	6.823	39.9	784	6.664	41.5	679	6.521	
6	42.8	1176	7.070	44.4	955	6.862	46.0	946	6.852	47.2	698	6.548	48.3	687	6.532	50.2	605	6.405	
7	51.3	780	6.659	52.4	719	6.578	53.7	654	6.483	54.8	581	6.365	56.0	418	6.035	57.2	404	6.001	
8	58.3	636	6.455	59.5	703	6.555	60.8	465	6.142	62.1	353	5.866	63.2	364	5.897	64.5	314	5.749	
9	65.7	476	6.165	66.9	451	6.111	68.1	441	6.089	69.2	279	5.631	70.4	279	5.631	71.5	257	5.549	
10	72.7	370	5.914	74.0	370	5.914	75.1	190	5.247	76.2	155	5.043	77.3	191	5.252	78.5	170	5.136	
11	79.7	168	5.124	80.8	244	5.497	82.1	149	5,004	83.5	149	5.004	84.9	140	4.942	86.1	140	4.942	

STATISTICAL MINLYSIS FOR CHANGE 1 53.427 INTERCEPT= 7.78531e4046 GRADIENT= -2.57945e531786-02 Wentilation race is 1.548 air champes per hour STATISTICAL ANALYSIS FOR CHANGEL 2 103.806

INTERCEPT- 7.78642645991 CRADIENT- -2.436506477756-U2

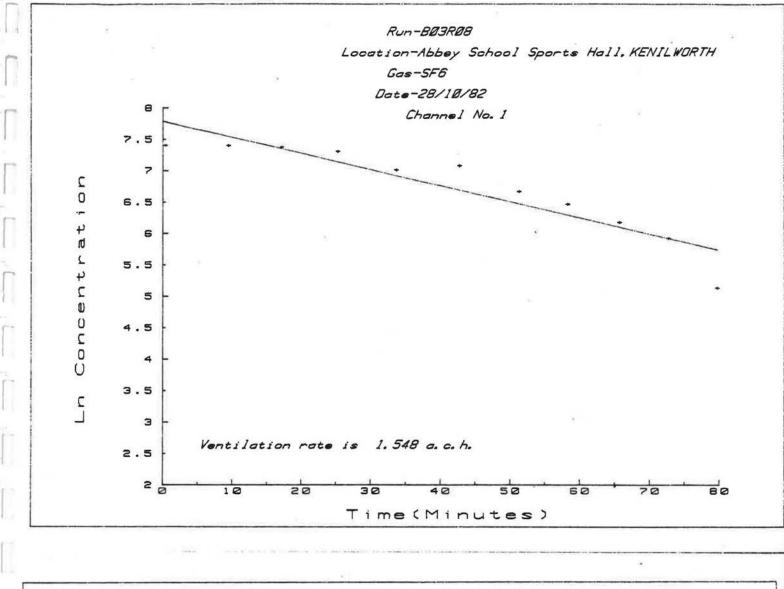
Ventalation rate is 1.462 air changes per hour

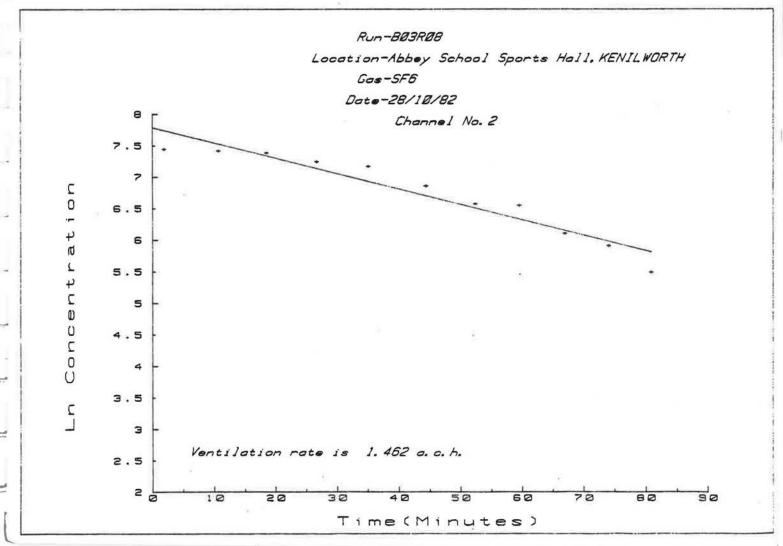
STATISTICAL		FOR CHANNEL 3		
Source	e			
Regression Residual Total	1 9 10	6.752 .404 7.555	6.752 .089	75.500

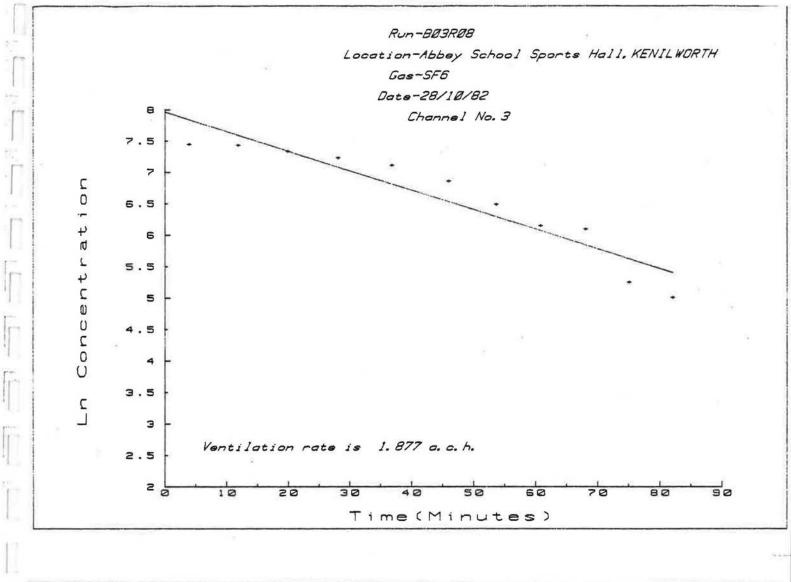
		FOR CHAMBLEL 4		
Source	DE	55	105	
Regression	1	7.619	7.619	159.075
Persidual	9	.401	.048	
TOCAL	10	4.050		

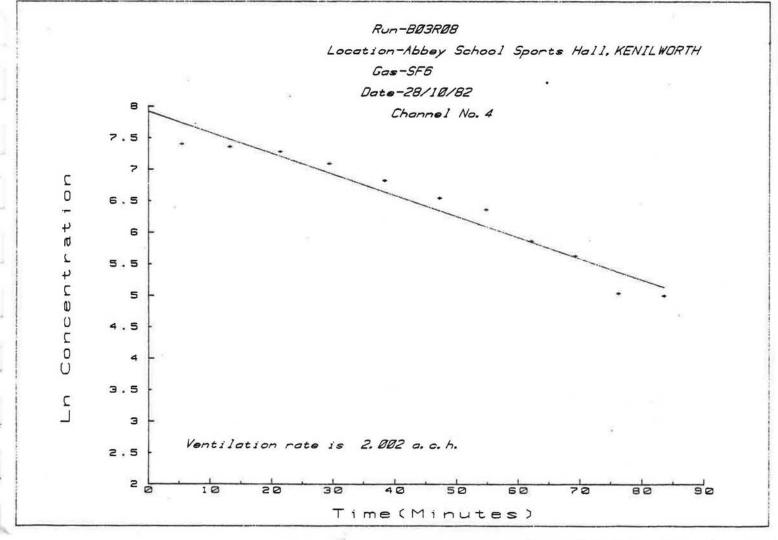
Wentilation rate is 2.002 air changes per hour

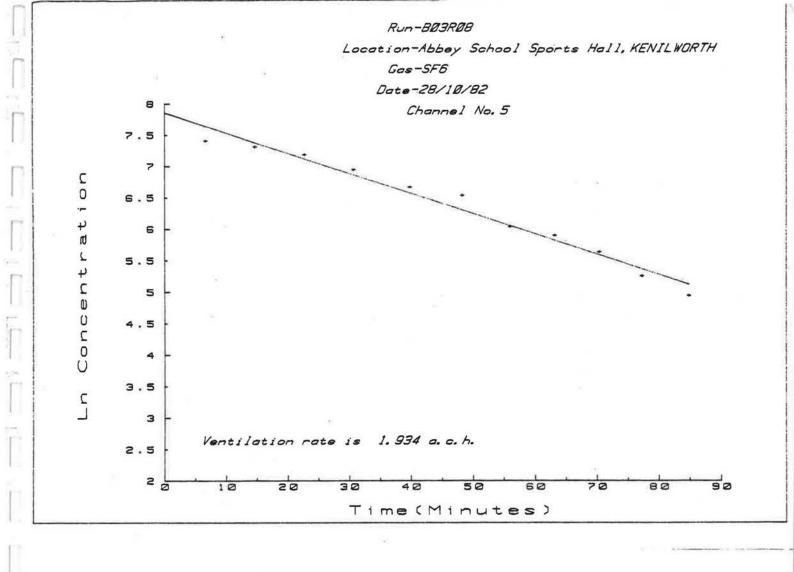
STATISTICAL	AMALYSIS PO			
Source	Df.		_	
*****	=	*****	*****	*******
Regression	1	7.083	7.983	341.259
Sesidue!	9	.187	.021	
TOTAL	10	7.270		

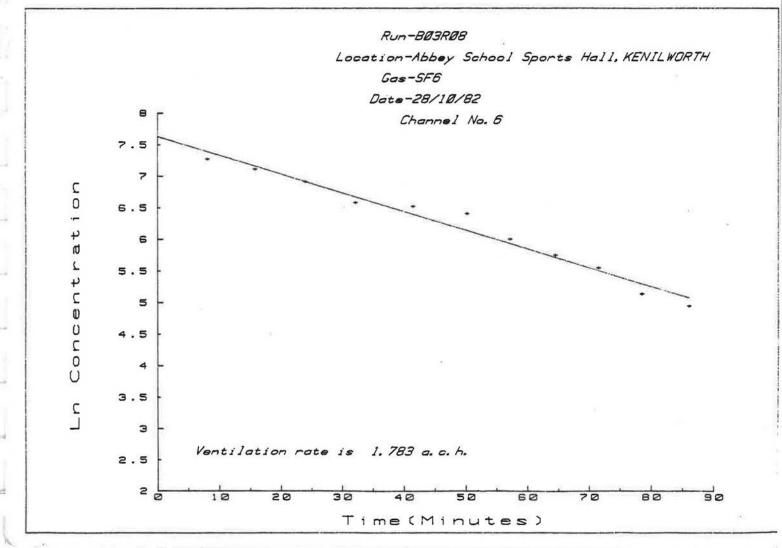

Ventilation rate is 1.934 air changes per bour

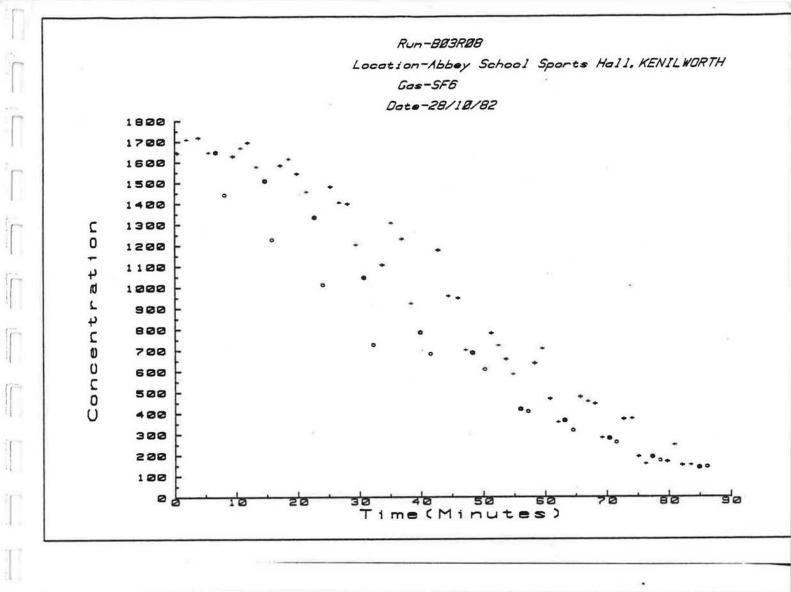

STATISTICAL		FOR CHANNEL 6		
Source ******	DC ••		***	r
Regression Residual Total	1 9	5.998 .163 6.160	5.998 .018	331.622

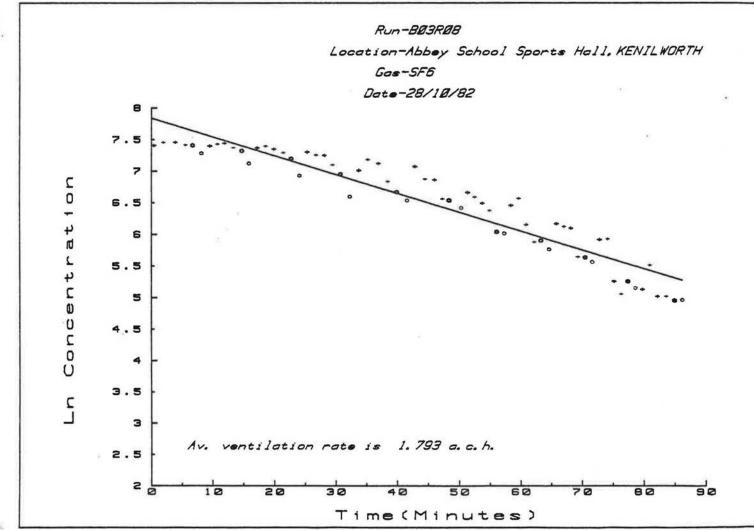

Wentilation rate is 1.783 air champes per hour


STATISTICAL	AMALYSIS	- ALL CHARGELS		
Source	DE		75	
Regression Residual Total	64 65	37.229 4.367 41.595	37.229 .064	545,640


INTERCEPT- 7.63747326778 GSADIENT- -2.96777979307E-02







Date: 27th October, 1982

<u>Time</u>: 1500 hours to 1708 hours Tracer Gas: Sulphur Lexaflouride

External Conditions:

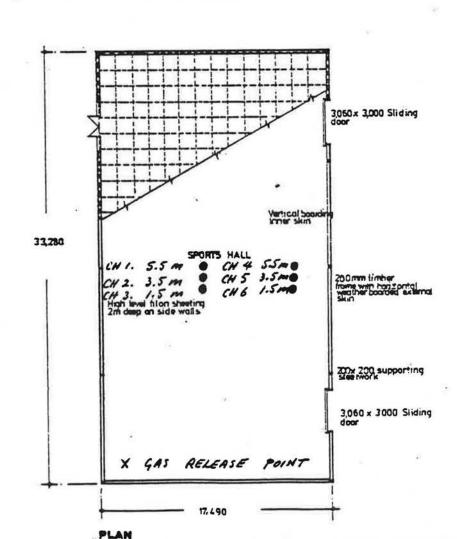
Time	Windspeed (m/s)	Temperature	(°C)
1500 hrs	2.6	11.9	
1600 hrs	2.1	11.2	i.
1700 hrs	2.C	8.8	

Wind Directions: south west

Internal Conditions:

air velocity: 0.02 to 0.08 m/s

temperature: 14°C


Gas Release:

At position shown on plan without any artificial stirring.

Sample Positions:

As shown on plan.

Comment: This is a complete set of results showing build up of gas during gas release phase as well as the subsequent decay. The single cell analysis of the results is therefore meaningless. Analysis of the decay portion only from data point 5 onwards forms run BO3 RO6.

****************** ANALYSIS OF FACTORY VENTILATION RATES

Experimental run number: 803R09
Location: Abbey School Sports Hall, KENILWORTH
Date: 27/10/82

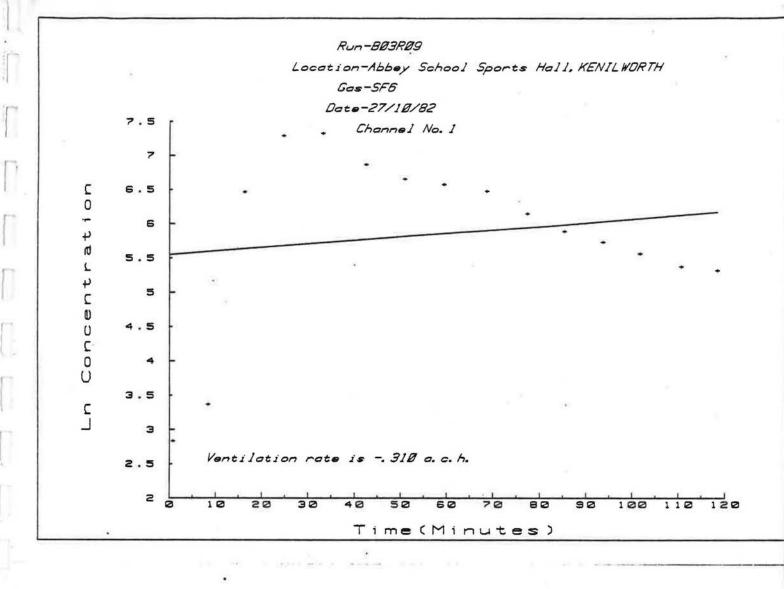
Tracer gas: SF6

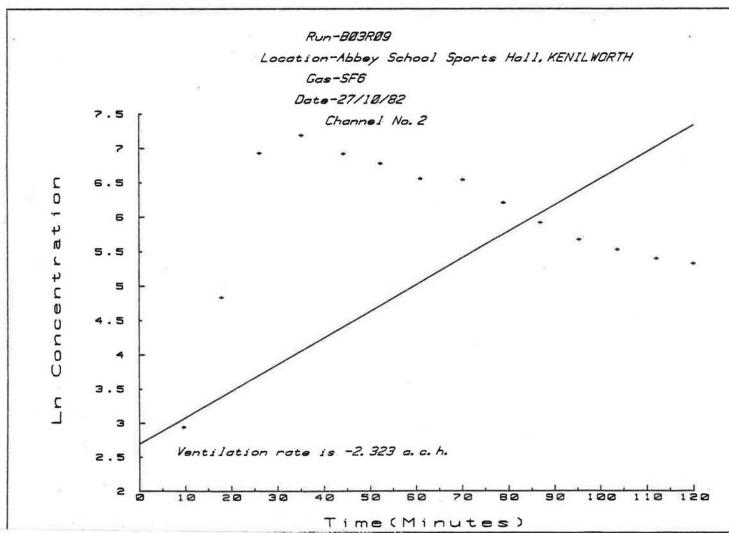
T-Time in minutes. C=Concentration (arbitrary units)
Lnc=Natural log of concentration.

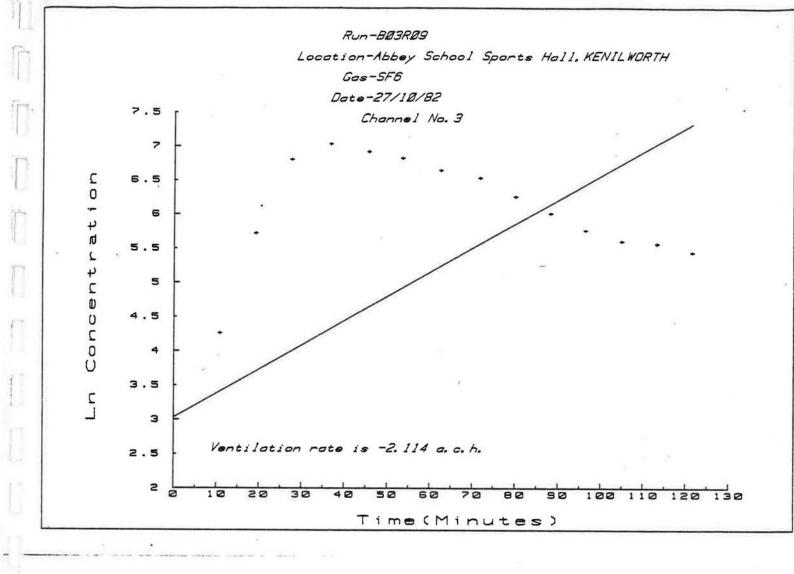
Data Pt.			Channel 1 Channel 2 Channel				hannel	nnnel 3 Channel 4					hannel	5	Channel 6			
****	*****	*****	*****	*****	****	*****	*****	*****	******	*****	****	*****	****	*****	******	*****	****	*****
	T	c	LnC	T	c	LnC	T	c	LnC	T	c	LnC	T	c	LnC	T	c	LnC
1	.8	17	2.833	2.0	0	-6.908	3.2	0	-6.908	4.3	20	2.996	5.6	60	4.094	7.2	61	4.111
2	8.4	29	3.367	9.6	19	2.944	10.8	71	4.263	12.0	121	4.796	13.4	130	4.868	14.7	1526	7.330
3	16.4	640	6.461	17.8	125	4.828	19.2	306	5.724	20.6	719	6.578	22.0	832	6.724	23.2	1497	7.311
4	24.8	1466	7.290	26.1	1018	6.926	27.6	900	6.802	29.2	1309	7.177	30.6	1251	7.132	32.0	1414	7.254
5	33.3	1518	7.325	35.1	1322	7.187	36.8	1126	7.026	38.3	980	6.888	39.6	1021	6.929	41.2	962	6.869
6	42.6	958	6.865	44.2	1010	6.918	45.7	1000	6.908	47.1	B31	6.723	48.3	820	6.709	49.7	791	6.673
, 7	51.0	775	6.653	52.2	877	6.777	53.6	908	6.811	55.0	778	6.657	56.6	750	6.620	57.9	720	6.579
8	59.5	715	6.572	60.9	703	6.555	62.6	761	6.635	64.1	649	6.475	65.4	565	6.337	67.0	580	6.363
9	68.8	654	6.483	70.1	690	6.537	71.8	680	6.522	73.4	648	6.474	74.8	468	6.148	76.2	512	6.238
10	77.5	471	6.155	78.8	494	6.203	80.1	518	6.250	81.6	478	6.170	82.9	455	6.120	84.1	370	5.914
11	85.5	363	5.894	86.8	371	5.916	88.3	407	6.009	89.9	391	5.969	91.2	339	5.826	92.5	290	5.670
12	93.8	309	5.733	95.2	290	5.670	96.4	317	5.759	97.8	334	5.811	99.1	290	5.670	100.4	266	5.583
13	101.8	260	5.561	103.5	251	5.525	104.9	270	5.598	106.2	285	5.652	107.7	226	5.421	109.1	217	5.380
14	110.7	. 215	5.371	111.9	220	5.394	113.2	260	5.561	114.6	250	5.521	115.7	216	5.375	117.3	194	5.268
15	118.5	203	5.313	119.8	205	5.323	121.5	229	5.434	122.9	219	5.389	124.1	207	5.333	125.9	190	5.247

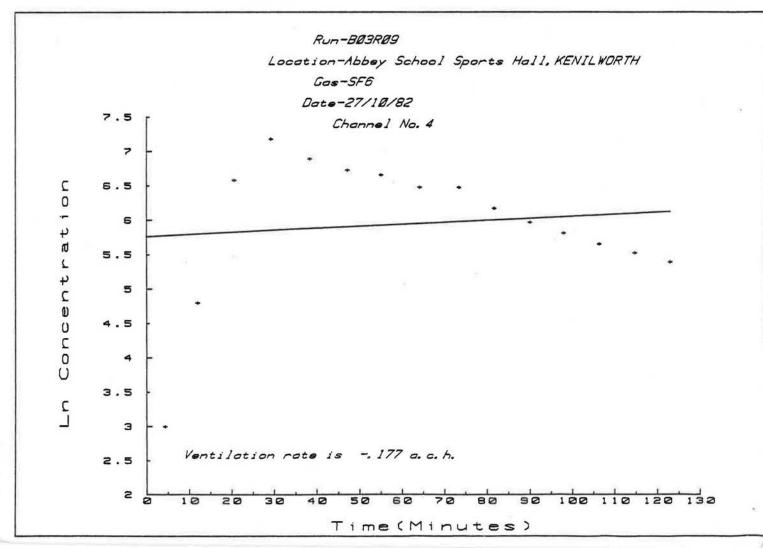
STRETISTICAL A	WALKES PO	R CHARREL 1		
State on	DE .			
Representati Received Total	1 13 14	.543 22_652 23_186	.543 1.742	.112
DESCRIPT S.	.5505213136 .1710633872	3 30-03		
Watheries	rete is -	.llG air dasges	per hour	
SUGISTICAL A	MANAGES PO	R CHOOSE, 2		
Street on	M		M9.	<u>'</u>
Approxima Annidual Mani	111	26.466 136.501 166.262	36.408 30.466	2.063
CONCERN 1.	6934276938 6723247 006	1 35-62		
Ventiletien	cate is -2	L323 air champs	her peer	
				185
CONTROL !	MARIE FO	R CHRISTE 3		
COURT CO:	at			
Approxima Approximal Total	1 13 14	25.200 149.005 166.375	25.200 10.776	2.367
GRACIAN- 1.	0279954843 5239701628	0 00-02		
Venilation	cabo im -2	LIIA air chaoga a	-	
SPERSION A	MANUEL PO	E CHARGE 4		
Steppes	DE .	.55		
Impromise Insideni Intal	13 14	.178 14.962 15.140	.178 1.151	.155
DESCRIPTO S.	7632317988 9836467935	6 -01		
Westleties	- al eas	.177 air dhampan	box poem	,
STATISTICAL A	WALKSIS FO	R CHANGE 5		4
Source	DE .			
Regression Residual	13	9.709	.146	.143

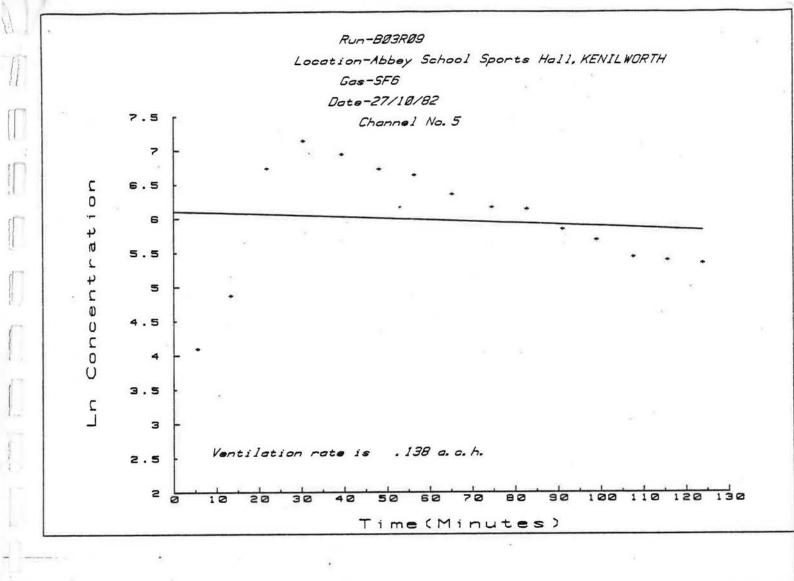
1


**********	******	********		24
Bource	DE .			
Regression Residual Total	13 14	9.709 9.897	.140 .753	.141
CONTRACTOR - 1.	10343041038 30219974308			


#6006000000		R CHARGE 6		
	M			
Ingression Insideal Intal	13 14	2.488 9.439 11.927	2, 480 ,736	3.42


Ventilation rate is .662 air changes per he


STATES OF THE PROPERTY OF T	AMPLIANTS DE	- ALL CAPABILIS and seconds at sense		
Impromise Speiduni Total	20 89	17.078 392.412 609.600	17.078 4.499	3,830


MINICEST 4.9090343205 MALEST 1.179672180220-02

