The BKL-Method

A simplified method to predict energy consumption in buildings

Kurt Källblad
Bo Adamson

THE BKL-METHOD
A simplified method to predict energy consumption in buịldings

Kurt Källblad
Bo Adamson

This document refers to research grant 790507-5 from the Swedish Council for Building Research to Lund Institute of Technology, Departement of Building Science, Lund Sweden

The report series published by the Building research Council contains report by the researchers on their grant projects. Publication does not imply that the Council has drawn any conclusions regarding views, conclusions or results.

CONTENTS

INTRODUCTION

1 THE METHOD

1.1 Daily energy balance
1.2 Monthly energy balance

2 CALCULATION INSTRUCTIONS
2.1 Transmission losses
2.2 Ventilation losses
2.3 Internal heat gain
2.4 Solar heat gain
2.5 Heating requirements
2.6 Calculation examples

3 CLIMATE DATA
3.1 Required basic data
3.2 Sorting and linear regression
3.3 Examples of climate data

4 SOLAR GAIN FACTORS
4.1 Diffuse radiation
4.2 Direct radiation

5 VALIDATIONS

6 REFERENCES

APPENDIX A

1. List of FORTRAN program BKLCLF
2. List of FORTRAN program BKLALF

Today several computer programs, based on detailed models of buildings, are available for calculation of heat consumption. Nevertheless, there is still a need for simplified methods, for example to be used as design tools in the early lay-out of a building when main frame computers are not accessible or when complex programs are too expensive to use.

The method described herein was developed to be used as a hand calculation method but the development of personal computers gives the possibility to use the method as a very quick design tool. The method cannot replace complex computer programs and should be seen as an improved degree-day method. In a low-energy house, where the heat losses are reduced by a high level of insulation etc., the free heat becomes an important part of energy used for space heating. Thus, calculation of solar gain is the most complex part of the method.

A simplified method to take solar gain into account when predicting the energy consumption in a building was used by Elmarsson in her diploma work, in 1977. The method was improved and a version was presented by Källblad \& Adamson, 1978 Further studies and comparisons between the method and detailed computer calculations gave the method presented first at the CIB-symposium in Copenhagen (Källblad-Adamson, 1979).

This document presents the method, which in this version is called the BKL-method.

In chapter 1 the basics of the method are presented while chapter 2 gives a more practical view of the use of the method together with an illustrative example. The method requires climatic data in a specific form and the way to calculate these data is discussed in chapter 3. To determine the solar gain through windows, precalculated factors are used and the background for these is given in chapter 4. Chapter 5 gives some comparisons between results from this method and detailed computer simulations.

Finally it should be noticed that the method is developed for normal Swedish climate and problems may arise using the method for warmer climates.

In order to utilize free heat from occupants, household, appliances, hot water and direct solar gain the heating system must be thermostatically controlled. The heating load will then be just what is necessary to maintain the desired indoor temperature; or equal to zero if the free heat is sufficient. Excess free heat has to be reduced through increased ventilation through windows. The "BKL-method" assumes that heating loads are thermostatically controlled on the indoor temperature.

1.1 Daily energy balance

If there is no free heat in a building the heat losses for a 24-hour period will be

$$
P_{f}=\left\{\begin{array}{l}
24\left(F_{T R}+F_{V}\right)\left(T_{i}-T_{\text {od }}\right), \text { if } T_{i}>T_{\text {od }} \\
\text { otherwise 0 }
\end{array}\right.
$$

where

$$
P_{f}=r e q u i r e d ~ e n e r g y ~ f o r ~ h e a t i n g ~ d u r i n g ~ a ~ 24-h o u r ~ p e r i o d ~
$$

$$
\begin{aligned}
\mathrm{F}_{\text {TR }}= & \text { transmission losses through walls, windows, } \\
& \text { floor, roof, etc. }\left(\mathrm{W} /{ }^{\mathrm{O}} \mathrm{C}\right)
\end{aligned}
$$

$$
F_{V}=\text { ventilation losses }\left(W /{ }^{\circ} C\right)
$$

$$
\mathrm{T}_{\mathrm{i}}=\text { desired indoor temperature }\left({ }^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{T}_{\text {od }}=m e a n \text { daily outdoor temperature }\left({ }^{\mathrm{O}} \mathrm{C}\right)
$$

Heat gain from occupants, appliances, solar radiation etc. can be utilized to compensate for heat losses during this 24-hour period. If the available free heat is insufficient, heat from the heating system is required. The relationship can be illustrated as in Figure 1.1. In one case the available energy ($\mathrm{P}_{\text {sol }}+\mathrm{P}_{\text {bo }}$) is more than sufficient to cover losses; in the second case extra heating ($\mathrm{P}_{\mathrm{till}}$) is required.

The accessible "occupancy heat" (P_{bo}) consists of heat from people, electrical appliances, water heaters etc. It can be reduced by such things as heating of cold water as it pas-

A summer-day

A winter-day, heat req. $=$ Ptill

Figure 1.1 Energy balance for one day of 24 hours.

Figure 1.2 Solar and sky radiation on a facade.
ses through the building. Normally, occupancy heat can be assumed to be the same from day to day and can be determined through experience.

In order to calculate solar gain ($\mathrm{P}_{\text {sol }}$) with acceptable accuracy it must be divided into direct solar radiation and diffuse sky radiation. Figure 1,2 shows, schematically, how the various radiation components strike an unshaded facade. A part of this radiation will be transmitted into the building through glass - depending on screening and the type of glass used.

The solar and sky radiation for each day can be divided into their respective direct and diffuse parts:

$$
\left.\begin{array}{rl}
\mathrm{I}_{\mathrm{dH}} \text { - } & \text { diffuse sky radiation on a horizontal } \\
& \text { surface (Wh } / \mathrm{m}^{2} \text {, day) }
\end{array}\right\} \begin{aligned}
& \mathrm{I}_{\mathrm{rH}} \text { - direct solar radiation on a horizontal } \\
& \text { surface (Wh } / \mathrm{m}^{2} \text {, day) }
\end{aligned}
$$

In order to simplify the calculations, the ratios between the above values and radiation through different glazing combinations under various screening conditions have been calculated. This was done with the help of computer programs that take into consideration sun path, ground reflection, reflections between window panes, etc.

With ratio α_{d} (for diffuse radiation) and α_{r} (for direct radiation) the solar heat gain can be determined for a window area of $A \mathrm{~m}^{2}$:

$$
P_{\text {sol }}=\varphi_{A}\left(\alpha_{d} I_{d H}+\alpha_{\Gamma} I_{r H}\right) \quad \text { Wh/day }
$$

φ is the estimated reduction factor for solar radiation due to use of curtains, blinds and use of glazing types other than those considered in the α-values.

The α_{d} and α_{r} values vary with the slope of the window, type of glazing and screening. Furthermore, α_{r} is dependent on the orientation of the window and the time of year. Cons-

Lall x_{r}-values can be assumed for each month. Section 4 gives a detailed description of how α-values are determined.

Finally, the heating load (Wh/day) is calculated:
$P_{\text {till }}=\left\{\begin{array}{l}P_{f}-\left(P_{b o}+P_{s o l}\right) \text { if } P_{f}>P_{b o}+P_{\text {sol }} \\ 0, \text { otherwise }\end{array}\right.$
1.2 Monthly energy balance

Primarily, the monthly heating load is comprised of the heating requirements of various days. Daily calculations are however, exceedingly comprehensive and can be avoided by representing a given month's climate in a cuitable way.

Solar and sky radiation on a horizontal surface can be represented graphically by a snlar duration curve. If, for a given month, the day with the most total radiation is placed as day 1, the day with the next highcot ratc as day 2 etc. and the day with the least total radiation last; the total radiation for Stockholm in April, 1971 can be illustrated as in Figure 1.3. This diagram can be approximated by a rectilinear figure of the same area. Figure 1.4 shows some variations of this method which can be obtained from different monthly climate data. Values of only two or three days are necessary to be able to describe the total radiation for each day of an entire month. Section 3 gives a detailed description of how available climate data is treated.

Since the earlier mentioned α-values can be considered constant during the month, the given equation can be used to determine radiation for the two or three days which represent the total radiation diagram. (The first day and days d_{1} and d_{2} in Figure 1.3 and Figure 1.4). A diagram for a given month's radiation can then be attained as in the example shown in Figure 1.5. If this diagram is supplemented by occupancy heat, which is considered constant during one month, the diagram will be as shown in Figure 1.6.

Figure 1.4 Some different types of distribution for solar and sky radiation during a month with dm days.

If the heat losses for each day of the month are assumed to be equal and are calculated with the mean monthly outdoor temperature, they can be represented by a horizontal line $\left(P_{f m}\right)$ in the diagram with total available heat. This is shown in Figure 1.7 where the available heat is sufficient to heat the building during part of the month. Extra heating is required on certain days and the amount of energy is represented by the hatched area.

2 CALCULATION INSTRUCTIONS

The purpose of this section is to serve as a teaching aid or as a guide for engineers and architects. It can also serve as a supplement to the method described in section 1.

2.1 Ihe building's heat loss due to transmission

The method of calculation does not take into account the building's heat capacity. Transmission losses are:

$$
F_{T R}=\sum_{i} U_{i} \Lambda_{i}\left(W /{ }^{\circ} \mathrm{C}\right)
$$

where

$$
\begin{aligned}
& U_{i}=\text { the building component's } U \text {-value }\left(W / m^{2},{ }^{0} \mathrm{C}\right) \\
& A_{i}=\text { the building component's area }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

In the above equation all of the building's exterior areas must be included (exterior walls, windows, doors, floor, roof etc.).

How the U-values for the individual cases are to be calculated is omitted here. It should, however, be noted that U-values for windows should be so-called "darkness U-values". Some "equivalent U-values" including solar radiation should not be used since solar and sky radiation are treated separately in this method.

Where moveable insulation is employed, for example, insulating shutters, the mean daily values might possibly be used. This method has not been tested for detailed calculations in such cases, so caution is advised.

Ventilation is usually comprised of several components which is illustrated in a simplified way in Figure 2.1. These components which among other things depend on wind, temperatures and living habits, are of course, very difficult to predict.

In all cases, the total volume of inlet air $v_{t}\left(m^{3} / h\right)$ has to be heated to the desired room temperature. If v_{t} is known, ventilation losses can be calculated using

$$
F_{v}=0.33 v_{t} \quad\left(W /{ }^{\circ} \mathrm{C}\right)
$$

where 0.33 is the air's heat content per m^{3} and ${ }^{\circ} \mathrm{C}$.

Since we are in thís case only discussing heating, humidity is not discussed. Since the method assumes constant ventilation the daily mean value for ventilation is used.

Heat exchanger

If there is a heat exchanger between exhaust and inlet ducts, the ventilation volumes are determined basically in the same manner as the regular exhaust/inlet system, but in order to take the heat exchanger into account, the controlled air flow is reduced by the same ratio as the degree of temperature efficiency for the heat exchanger.

When evaluating energy savings due to heat exchangers the following, often by-passed phenomena should be considered:

- Not all the air passes through the heat exchanger, infiltration and airing practices contribute to ventilation entirely outside the system. Furthermore poorly sealed or uninsulated ducts reduce the system's efficiency.
- Reduction of ventilation losses by using heat exchangers doesn't necessary imply energy

Natural ventilation
t : inlet through windows \& cracks
f1: outlet through ducts
f2: outlet through windows \& cracks

Exhaust air system
t : inlet through windows \& cracks
f1: controlled exhaust air
f2: outlet through windows \& cracks

Inlet \& exhaust air system
t1: controlled inlet
t2: inlet through windows \& cracks
f1: controlled exhust air
f2: outlet through windows \& cracks
Figure 2.1 Air flows through a building with different HVAC-systems.
savings. If for example, available internal heat generation and passive solar gain cover losses then heat exchangers are redundant. This is why heat exchangers of this type should be included in heat loss calculation and not counted as an energy supplement.

2.3 Internal Heat Generation

Occupants

Since heat from occupants constitutes a part of the total energy load for a house, it should be quantified in some way. This is, of course, difficult since a family's living habits vary so greatly The only possibility is to make a good guess and we have used the following estimate for available heat from occupants:

1200 Wh/day/person
and assumed that 2 people live in a one-bedroom apartment, 3 in a two-bedroom and 4 in a three-bedroom apartment or larger.

Heat from electrical appliances

All of the electricity consumed by appliances such as refrigerators, lamps or T.V.s is converted to heat energy, mainly convective heat and part of it can be utilized for heating up the building.

As in the case of persons, it is difficult to estimate the actual heat contribution from these sources. We have used the following estimate for calculation purposes:

```
single family houses 8000 Wh/day
apartments 7000 Wh/day
```

These values can be used as an approximate average for the
whole year. If more accurate calculations are to be done, consumption should be considered greater in the winter than the summer. The figures chosen here are no more valid than any other good guess!

Heat from/to the water system

Many measurements and estimates pertaining to annual energy consumption for water heating have heen carried out. Until recently, the average figures for houses and apartments in Sweden were about 5000 kWh and 4000 kWh , respectively. Recent studies have shown that hot water consumption in new houses has been considerably reduced. A reasonable figure today should be about 4000 kWh for a single-family house. Apartments can be assumed to consume about 3000 kWh if they have separate laundry facilities that aren't included in the total energy load.

Part of this energy can be available for heating in such ways as through cooling off in the bathtub. If the hot water boiler is placed within the heated space which normally is the case in single family houses, the losses from the boiler will also be available for heating. How much of a contribution such fac tors make is determined on a very loose basis. An additional factor, which makes estimates even more complicated, is that the cold water is heated up during its way through the building. The heat for this is taken from the building.

A recent study, Lindskoug 1983, shows that the waste water temperature is approximately $20-25{ }^{\circ} \mathrm{C}$ higher than the temperature of the cold water, supplied to the building. Using average values of the total water volume and the hot water volume used in the actual single family houses it can be shown that $150-250 \mathrm{~W}$ is used for heating up the cold water. It is advisable to assume that the total effect of heat losses to cold water and heat gain from the hot water boiler is a heat loss of $150 \mathrm{We.g}$.$3600 \mathrm{~Wh} / day in a single family house. For$ apartment buildings no measurements at all are available and the heat losses to cold water and the useful heat gain from
the hot water boiler are unknown. In order not to forget them a guess can be $3600 \mathrm{kWh} /$ day per apartment. For calculation purpose these losses should be taken into account by reducing the heat gain from occupants, electrical appliances etc.

Other

Besides the above mentioned sources of "extra" heat, there are fans and pumps etc. that can be considered. All the excess energy from a totally enclosed fan in an inlet duct can be counted as heating while the corresponding amount of energy in an exhaust duct fan is lost.

Solar Heat Gain

Available solar heat is calculated according to the method described in section 1. α_{d} and α_{Γ} are found in tables as in section 4 . The calculations should be carried out in the following order.

All the windows are arranged so that each category (j) includes glass surfaces that have construction (type of glazing, number of panes etc.), orientation, slope and shading in common. For example, all the windows of an unshaded facade can be considered in the same group. For each window category (j) the following can then be determined:
A_{j} - which pertains to the glazed surfaces only, excluding frames!
$\alpha_{d j}$ - transmission and shading factor with respect to diffuse radiation in the given orientation, slope and shading conditions.
$\alpha_{r j}$ - as above, but for direct solar radiation for months $m=1-12$.

When the α-values for all the glazed surfaces have been deter-
mined, the sum will be as follows:

$$
\begin{aligned}
& \alpha_{d t o t}=\sum_{j} \alpha_{d j} A_{j} \\
& \alpha_{r t o t, m}=\sum_{j} \alpha_{r j, m^{A}}
\end{aligned}
$$

For the sunniest day of each month the available solar heat is calculated by:

$$
P_{s O}=\varphi\left(\alpha_{d t o t} I_{d H O}+\alpha_{\text {rtot } \left., m^{I}{ }_{r H O}\right) \text { Wh/day } .}\right.
$$

where $I_{d H O}$ and $I_{\text {rHO }}$ are solar radiation on a horizontal surface during the sunniest day of that month. $\varphi_{\text {is }}$ an estimate of how much solar heat is reduced because of curtains etc. or because of another type of glass being used than the one that the α-values apply for.

For day d_{1} (see Figure 2.2) the available solar heat is calculated by:

$$
P_{s 1}=\varphi\left(\alpha_{d t o t} I_{d H 1}+\alpha_{r t o t}, \mathrm{~m}_{\mathrm{rH} 1}\right) \text { Wh/day }
$$

where $\mathcal{P}, \alpha_{d t o t}$ and $\alpha_{\text {rtot, } m}$ are as above, and $I_{d H 1}$ and I_{rH} are found in section 3.

Data for one more day, d_{2}, is needed at times to be able to completely specify the monthly solar and indirect radiation, see Figure 2.2.

The available solar radiation for that day can be calculated by:

$$
P_{s 2}=\rho_{\alpha_{d t o t}} I_{d H 2}
$$

where φ and $\alpha_{d t o t}$ are as above, and $I_{d H 1}$ as in section 3. In these cases where this day is not necessary for specifying solar radiation, $d_{2}=d_{1}$ and $I_{d H 2}=0$ have been used in appendix C to attain generally valid equations.

Figure 2.2 Determination of Solar Heat Gain.

Depending on the distribution of solar radiation during the month and screening etc. that effects α-values, the distribution of totally available solar heat varies a great deal. $\mathrm{P}_{\mathrm{s0}}>\mathrm{P}_{\mathrm{s} 1}$ is usually valid but the opposite is possible. In some cases, even $\mathrm{P}_{\mathrm{sD}} \leq \mathrm{P}_{s 2}$, applies. Nevertheless, $P_{s 1}$ is always greater than $P_{s 2}$. Figure 2.3 shows a few examples of some possible distributions of available solar heat.

To be able to use a standardized calculation for arriving at heating requirements, it is advisable to give the duration diagrams a more general form. This is shown in Figure 2.4. The necessary steps to att.ain the general form in different cases are shown below. In most cases $P_{s 0} \geqq P_{s 1}$, so that no changes in the form are necessary.

If $P_{s 0}=P_{s 1}$:

$$
\begin{aligned}
& A=P_{s 0} \quad, \quad B=P_{s 1} \text { and } C=P_{s 2} \\
& d_{b}=d_{1}
\end{aligned}
$$

If $P_{\mathbf{s 1}}>\mathrm{P}_{\mathbf{s 0}}>\mathrm{P}_{\mathbf{s} 2}$:
$A=P_{s 1} \quad, \quad B=P_{s 0}$ and $C=P_{s 2}$
$d_{b}=\frac{d_{1}\left(P_{s 0}-P_{s 2}\right)+d_{2}\left(P_{s 1}-P_{s 0}\right)}{P_{s 1}-P_{s 2}}$

If $\mathrm{P}_{\mathrm{sO}}=\mathrm{P}_{\mathrm{s} 2}$:
$A=P_{s 1}, B=P_{s 2}$ and $C=P_{s 0}$
$d_{b}=d_{2}-\frac{d_{1}\left(P_{s 2^{-P}} P_{s 0}\right)}{P_{s 1^{-P}} P_{s 0}}$

Figure 2.3 Some variations of distribution of solar heat gain through windows during a month with dm days..

Figure 2.4 General format of distribution of solar heat gain.

The total available solar energy for one month can be calculated as follows:

$$
w_{\text {sol }}=\frac{A+B}{2} d_{b}+\frac{B+C}{2}\left(d_{2}-d_{b}\right) W h / \text { month }
$$

2.5 Heating requirements

First the average of the energy losses during one month $\left(P_{f m}\right)$ is calculated

$$
P_{f m}=\left\{\begin{array}{l}
24\left(F_{T R^{+}}{ }_{v}\right)\left(T_{i} T_{o m}\right) W h / \text { day, if } T_{i}>T_{o m} \\
0, \text { otherwise }
\end{array}\right.
$$

$F_{T R}$ and F_{V} are losses due to transmission and ventilation as described in sections 2.1 and $2.2 . T_{i}$ is the desired indoor temperature and $T_{\text {om }}$ is the mean monthly outdoor temperature.

The average heat loss is then weighed against available internal heat generation and solar gain to determine the required heatinq load. The first step is to see if internal heat. generation ($P_{b o}$) is sufficient to compensate heat losses. $P_{b o}$ is assumed constant during the entire month and the remaining heating load is calculated as follows:

$$
P_{\text {rest }}=\left\{\begin{array}{l}
P_{f m}-P_{\text {bo }} \text { if } P_{f m}>P_{\text {bo }} \\
0, \text { otherwise }
\end{array}\right.
$$

In some cases, the heating load can be partially if not completely covered by solar gain. How much of the available solar energy can be utilized depends on its distribution over the various days. A few examples of this are shown in Figure 2.5 where $P_{\text {rest }}$ (heating load) is represented as well. d_{m} is the total number of days in the month.

Those days on which $\mathrm{P}_{\text {sol }}>\mathrm{P}_{\text {rest }}$ require no extra heat-

Figure 2.5 Principal formats for predicting monthly heat requirement.

$$
P_{\text {till }}=P_{\text {rest }}-P_{\text {sol }} \text { Wh/day }
$$

The total heating load ($W_{t i l l}$) for a given month is the sum of $P_{\text {till }}$ for all the days of the month. This sum is directly proportional to the hatched area in Figure 2.5. Instead of adding up all the days of the month, this area can be calculated in the following way:

If $P_{\text {rest }}<C$

$$
W_{\text {till }}=P_{\text {rest }}\left(d_{m}-d_{2}\right) \quad \text { Wh/month }
$$

Figure 2.5 a shows an example where $d_{2}<d_{m}$. Where $d_{2}=d_{m}$, $W_{\text {till }}=0$

If $C<P_{\text {rest }}<B$
$W_{\text {till }}=P_{\text {rest }}\left(d_{m}-d_{2}\right)+\frac{\left(P_{\text {rest }}-C\right)^{2}}{2(B-C)}\left(d_{2}-d_{b}\right)$ Wh/month

Figure 2.5b shows an example of this case where $d_{2}>d_{b}$. In certain cases, $d_{2}=d_{b}$ so the last part of the equation will be 0 .

If $B>P_{\text {rest }}\langle A$:
$W_{\text {till }}=P_{\text {rest }} * d_{m}-W_{\text {sol }}+\frac{\left(A-P_{\text {rest }}\right)^{2} d_{2}}{2(A-B)}$ Wh/month
with

$$
W_{\text {sol }}=\frac{A+B}{2} d_{b}+\frac{B+C}{2}\left(d_{2}-d_{b}\right)
$$

See Figure 2.5c.

If $A<P_{\text {rest }}$:

$$
W_{\text {till }}=P_{\text {rest }} d_{m}-W_{\text {sol }} \quad W h / \text { month }
$$

with
$W_{\text {sol }}$ as above. In this case, all available solar energy is utilized, see Figure 2.5 d .

2.6 Calculation examples

The example shown here is a single-family house with no basement and total losses due to transmission and ventilation of $125 \mathrm{~W} /{ }^{\mathrm{O}} \mathrm{C}$ and an indoor temperature of $20^{\circ} \mathrm{C}$. The climatic data used is for Malmö, 1971 as shown in section 3.

The energy balance without solar gain is calculated first. The results of this calculation are shown in the table below (in $\mathrm{kWh})$. For example, the calculation for March is as follows

$$
P_{f m}=24^{*} 125(20-0.52) / 1000=58.44 \mathrm{kWh} / \mathrm{day}
$$

Internal heat generation was assumed constant for each month and based on 4 persons at $1200 \mathrm{~Wh} /$ day each, and the heat from electrical appliances was assumed to be $8000 \mathrm{~Wh} /$ day. This figure could be adjusted to a slightly higher value during the winter and lower during the summer.

Daily value (kWh/day) Monthly value (kWh/month)

		$P_{f m}$	P bo	P rest	W fm	W bo	W rest
JAN 31	0.34	58.98	12.80	46.18	1828	397	1432
FEB 28	1.82	54.54	"	41.74	1527	358	1169
MAR 31	0.52	58.44	"	45.64	1812	397	1415
APR 30	6.12	41.64	"	28.84	1249	384	865
MAY 31	12.21	23.37	"	10.	724	397	328
JUN 30	14.67	15.99	"	3.19	480	384	96
JUL 31	17.78	6.66	"	0	206	397	0
AUG 31	17.19	8.43	"	0	261	397	0
SEP 30	12.31	23.07	"	10.27	692	384	308
OCT 31	9.82	30.54	"	17.74	947	397	550
NOV 30	5.00	45.00	"	32.20	1350	384	966
DEC 31	4.88	45.36	"	32.56	1406	397	1009
Annual total $\mathrm{kWh} / \mathrm{year}$					12482	4673	8183

In the next step, $P_{\text {rest }}$ is determined, whereupon the monthly values can be calculated. These values are not needed to calculate the heating load but can be of interest when studying the total energy balance. They are easily arrived at by multiplying the daily values by the number of days in the month and can then be added up to annual totals. The next step is to calculate the available solar gain for those months where $P_{\text {rest }}>0$. This is also shown in a table. Triple glazed windows are assumed in the following four groups:

1. $12 \mathrm{~m}^{2}$ facing south with a roof overhang that can be treated as a horizontal shade.
2. $2 \mathrm{~m}^{2}$ facing south, unshaded
3. $4 \mathrm{~m}^{2}$ facing east, unshaded
4. $2 \mathrm{~m}^{2}$ facing north, unshaded

The solar gain is assumed to be reduced by 25% due to use of curtains and blinds. The α-values are obtained as described in section 4 and $\alpha_{d t o t}$ and $\alpha_{\text {rtot }}$ are determined as described in section 2.4. Note that $\alpha_{d t o t}$ is not affected by orientation but is dependent on shading, while $\alpha_{\text {rtot }}$ is dependent on both factors.

Glazed surfaces (m^{2})
$A_{1}=12.0 \quad A_{2}=2.0 \quad A_{3}=4.0 \quad A_{4}=2.0$

Reduction factor for curtains etc. $\varphi=0.75$
α-factor for diffuse radiation
$\alpha_{d 1}=0.259 \quad \alpha_{d 2}=0.396 \quad \alpha_{d 3}=0.396 \quad \alpha_{d 4}=0.396$
$\alpha_{\text {dtot }}=12 * 0.259+2 * 0.396+4 * 0.396+2 * 0.396=6.28$

	α-factors for direct radiation					Solar gain (kWh/day)		
	$\alpha_{r 1}$	α_{T}	$\alpha_{\Gamma} 3$	$\alpha_{\Gamma} 4$	$\alpha_{\text {rtot }}$	$P_{s 0}$	$P_{s 1}$	$P_{s 2}$
JAN	3.352	3.778	0.644	0.079	50.51	18.56	1.36	0
FEB	1.705	2.126	0.599	0.079	27.27	31.89	2.99	0
MAR	0.779	1.181	0.552	0.079	14.08	35.33	6.43	1.39
APR	0.287	0.630	0.500	0.083	6.87	38.37	8.56	4.41
MAY	0.120	0.390	0.455	0.119	4.28	30.49	12.92	0
JUN	0.083	0-301	0.438	0.156	3.66	27.66	12.45	7.88
JUL	0.092	0.330	0.444	0.142	3.82	26.93	15.32	14.43
AUG	0.184	0.493	0.471	0.096	5.27	28.59	13.12	0
SEP	0.492	0.872	0.515	0.079	9.87	38.98	8.03	2.33
OCT	1.205	1.621	0.577	0.079	20.17	41.43	4.19	0.12
NOV	2.573	2.998	0.620	0.079	39.51	28.18	2.04	0
DEC	4.046	4.472	0.640	0.079	60.21	18.87	0.93	0

For example, in the month of September:

$$
\alpha_{\text {rtot }}=12 * 0.492+2 * 0.872+4 * 0.515+2 * 0.079=9.87
$$

$P_{s 0}, P_{s 1}$ and $P_{s 2}$ can be calculated as described in section 2.4 with the help of the solar radiation tables for

Malmö in section 3.

$$
\begin{aligned}
& P_{s 0}=0.75(6.28 * 1.159+9.87 * 4.530)=38.98 \mathrm{kWh} / \text { day } \\
& P_{s 1}=0.75(6.28 * 1.707+9.87 * 0.0)=8.03 \mathrm{kWh} / \text { day } \\
& P_{s 2}=0.75 * 6.28 * 0.495=2.33 \mathrm{kWh} / \text { day }
\end{aligned}
$$

The last table of calculations includes $W_{\text {till }}$ as described in section 2.6. The first step is to transfer $P_{\text {rest }}$ and the solar radiation data to the table. Since $P_{s 0}>P_{s 1}$ for all the months the solar duration diagram is not affected.

$$
\begin{aligned}
& A<P_{\text {rest }} \text {, for January, hence: } \\
& W_{\text {sol }}=0.5(18.56+1.36) * 20+0.5(1.36+0.0)(30-20)=206 \mathrm{kWh} / \text { month }
\end{aligned}
$$

and

$$
W_{\text {till }}=46.18 * 31-W_{\text {sol }}=1226 \mathrm{kWh} / \text { month }
$$

The same calculation applies for February, November and December.

For March, April, September and October, $B<P_{\text {rest }}<A$ and the heating load for those months is determined as in the following example for April:
$W_{\text {sol }}=0.5(38.37+8.56) * 26+0.5(8.56+4.41)(30-26)=636 \mathrm{kWh} /$ month and
$W_{\text {till }}=28.84 * 30-W_{\text {sol }}+\frac{(38.37-28.84)^{2}}{2(38.37-8.56)} * 26=269 \mathrm{kWh} /$ month
kWh/day kWh/day kWh/day kWh/day

JAN	46.18	18.56	1.36	0	20	30	31	206	1226
FEB	41.74	31.89	2.99	0	19	27	28	343	825
MAR	45.64	53.33	6.43	1.39	22	31	31	494	920
APR	28.84	38.37	8.56	4.41	26	30	30	636	269
MAY	10.57	30.49	12.92	0	31	31	31	673	0
JUN	3.19	27.66	12.45	7.88	26	30	30	562	0
JUL	0	26.93	15.32	14.43	30	31	31	649	0
AUG	0	28.59	13.12	0	31	31	31	646	0
SEP	10.27	38.98	8.03	2.33	23	30	30	577	37
OCT	17.74	41.43	4.19	0.12	23	31	31	542	181
NOV	32.20	28.18	2.04	0	18	26	3	280	686
DEC	32.56	18.87	$0-93$	0	19	26	31	191	818
				Annual	total (kWh/year)	5799	4962		

The available solar gain covers heating requirements in May and June, even on the cloudiest days so the heating loads can be added up to give annual totals.
$W_{\text {sol }}$ for each month is not necessary but can be of interest when studying the toal energy balance.

The following table shows the final total energy balance for heating the house (note that household electricity and heating of water is not included in the table).
losses ternal heat heat genertion load generation and and solar gain solar gain

$k W h / k W h / k W h / k W / k W h / k h /$ month month month month month month

JAN	1828	397	206	397	206	1226
FEB	1527	358	343	358	343	825
MAR	1812	397	494	397	494	920
APR	1249	384	636	384	596	269
MAY	724	397	673	397	328	0
JUN	480	384	562	384	96	0
JUL	206	397	649	206	0	0
AUG	261	397	646	261	0	0
SEP	692	384	577	384	271	37
OCT	947	397	542	397	369	181
NOV	1340	304	200	344	280	686
DEC	1406	397	191	397	191	818
SUM	12482	4673	5799	4346	3174	4962

As described in chapter 1, the method needs monthly climatic data in a specific form. It is obvious how to get the average outdoor air temperature, while the solar radiation data require some explanations. Appendix A gives a list of a FORTRANprogram, BKLCLI, to carry out the following calculations for each month.

3.1 Required basic data

As the method primarily is based on daily average of temperatures and daily sum of solar radiation, the necessary input data are:
$\mathrm{I}_{\mathrm{GL}} \quad \begin{aligned} & \text { Daily sum of global radiation on } \\ & \text { horizontal surface }\end{aligned}$
$\mathrm{I}_{\mathrm{dH}} \quad \begin{aligned} & \text { Daily sum of diffuse radiation on } \\ & \text { horizontal surface }\end{aligned}$

Tout Daily average of outdoor air temperature

When reading these values, the program accumulates $T_{\text {out }}$ to get the monthly average of the outdoor temperature and sets the daily sum of direct radiation on horizontal surface as $I_{R H}=I_{G L}-I_{d H}$.

3.2 Sorting and linear regression

The next step is to sort the days after decreasing global radiation which, in the program, is carried out by a simple "bubble"-sort.

If linear regression is applied on the two sets of sorted data, we get two lines determined by their values for $d=0$ and their slopes:
${ }^{\mathrm{I}} \mathrm{GLO}$
Global radiation for $d=0$

Gslope The slope of the regression line for global radiation
$\mathrm{I}_{\text {RHO }} \quad$ As above but for direct radiation

$$
\mathrm{R}_{\text {slope }} \quad-"-
$$

The global radiation for the last day of the month $\left(d_{m}\right)$ is then determined by

$$
\mathrm{I}_{\mathrm{GL} 2}=\mathrm{I}_{\mathrm{GL} 0^{+}} \mathrm{G}_{\text {slope }} \mathrm{d}_{\mathrm{m}}
$$

If this value is positive or zero, as shown in Figure 3.1(a), we sel the lasl day wilh radialiun $d_{2}=d_{m}$. Otherwise, the regression line is adjusted to get d_{2} as the nearest integer whereafter $I_{\text {GLO }}$ is adjusted to keep the monthly sum of global radiation. In this case we get $I_{G L 2}=0.0$ as shown in Figure 3.1(b). These adjustments are mainly done for pedagogical reasons to avoid negative solar radiation and split days. The next step is to determine the last day with direct radiation $\left(d_{1}\right)$ and the global ($\left.I_{G L 1}\right)$ and direct radiation ($I_{\text {RH1 }}$) for that day. First d_{2} is used to determine if that day has any direct radiation

$$
\mathrm{I}_{\mathrm{RH} 1}=\mathrm{I}_{\mathrm{RH}}+\mathrm{R}_{\text {slope }} \mathrm{d}_{2}
$$

If this value is positive or zero we set $d_{1}=d_{2}$, otherwise we adjust d_{2} to the nearest integer and $I_{\text {RHO }}$ to keep the monthly sum of direct radiation. In this case we get $I_{R H 1}=0.0$.

Finally we determine $I_{d H O}, I_{d H 1}$ and $I_{d H 2}$ as differences between global and direct radition for $d=0, d_{1}$ and d_{2}.

Within IEA-Solar Heating and Cooling - Task 8 - Passive and Hybrid Solar Low Energy Buildings, hourly climatic data from Copenhagen in Denmark and Denver, Colorado in U.S. have been given. Adding these data into daily values and then using the program in Appendix A gives Tables 3.1 and 3.2. Table 3.3 gives the climate data for Malmö, Sweden, used in section 2.

As can be seen from the second table, $d_{1}=d_{2}=d_{m}$ for all months in Denver whereas in Copenhagen we have some winter days without any direct radiation and a few without any solar radiation at all due to the linearized representation.

Figure 3.1 Two types of regression lines for monthly global radiation.

Table 3.1 Climate data for Copenhagen.
Dat.a from TFA-Snlar Heating and Cooling.
Latitude 56 N .

IdHO	IRHO	IdH1	IRH1	IdH2	$d 1$	$d 2$	$d m$	Tout
.424	.415	.308	.000	.000	19	30	31	-.60
.965	1.695	.532	.000	.000	20	25	28	-1.09
1.779	2.137	1.044	.000	.000	22	30	31	2.61
1.698	5.083	2.082	.000	1.142	25	30	30	6.60
2.484	5.633	2.317	.000	1.917	29	31	31	10.64
2.251	7.053	2.974	.097	2.974	30	30	30	15.65
2.668	5.606	2.500	.000	2.101	29	31	31	16.44
1.975	4.588	1.984	.154	1.984	31	31	31	16.65
1.741	2.478	1.213	.115	1.213	30	30	30	13.69
1.078	1.706	.752	.000	.045	23			
.585	.689	.343	.000	.005	22	30	31	9.17
.323	.470	.185	.000	.000	23	30	31	1.05

Table 3.2 Climate data for Denver.
Data from IEA-Solar Heating and Cooling. Latitude 39 N .

	IdHO	IRHO	IdH1	IRH1	IdH2	d1	d2	dm	Tout
JAN	. 335	3.510	. 690	. 727	. 690	31	31	31	-1.68
FEB	. 602	4.848	1.138	. 226	1.138	28	28	28	-. 60
MAR	. 988	6.057	1.670	1.433	1.670	31	31	31	3.56
APR	1.212	7.711	2.345	. 777	2.345	30	30	30	9.31
MAY	1.279	8.420	2.995	1.217	2.995	31	31	31	14.04
JUN	1.394	8.667	2.668	2.063	2.668	30	30	30	18.16
JUL	1.277	7.936	2.265	3.183	2.265	31	31	31	22.69
AUG	1.032	7.514	2.294	1.869	2.294	31	31	31.	21.16
SEP	. 879	6.586	1.606	2.134	1.606	30	30	30	16.85
OCT	. 626	5.160	1.046	1.611	1.046	31	31	31	9.49
NOV	. 172	3.741	1.001	. 642	1.001	30	30	30	3.49
DEC	. 241	2.900	. 746	. 809	. 746	31	31	31	-. 71

Table 3.3 Climate data for Malmö,Sweden.
Data for 1971 from SMHI.

	IdHO	IRHO	IdH1	IRH1	IdH2	d1	d2	dm	Tout
	JAN	.426	.437	.288	.000	.000	20	30	31
JAN	.758	1.385	.635	.000	.000	19	27	28	1.84
FEB	1.142	2.837	1.365	.000	.295	22	31	31	.52
MAR									
APR	1.202	6.348	1.819	.000	.937	26	30	30	6.12
MAY	.928	8.143	2.578	.244	.000	31	31	31	12.21
JUN	1.571	7.380	2.644	.000	1.674	26	30	30	14.67
JUL	.765	8.136	3.254	.000	3.066	30	31	31	17.78
AUG	.917	6.141	2.295	.586	.000	31	31	31	17.19
SEP	1.159	4.530	1.707	.000	.495	23	30	30	12.31
OCT	.926	2.451	.890	.000	.025	23	31	31	9.82
NOV	.547	.864	.434	.000	.000	18	26	30	5.00
DEC	.353	.381	.198	.000	.000	19	26	31	4.88

The method requires precalculated solar gain factors which can be calculated with the FORTRAN-program, BKLALF, listed in Appendix A. The program uses the theories described in this section.

4.1 Diffuse radiation

If the diffuse sky radiation on a horizontal surface is $i_{d H}\left(W / m^{2}\right)$ the diffuse radiation striking on a window surface is

$$
i_{d s}=F_{s s^{i} d H^{+r}} g^{F} g s^{i} d H\left(W / m^{2}\right)
$$

where

$$
\begin{aligned}
& F_{s s}=\text { view factor between the sky and the surface } \\
& F_{g s}=\text { view factor between the ground and the sky } \\
& r_{g}=\text { ground reflectivity }
\end{aligned}
$$

This incident radiation is partly transmitted through the window, partly absorbed in the panes of the window and partly reflected out. Some of the absorbed energy will go into the room and some to the outdoor air. Totally we get following energy transfered into the room:

$$
i_{d t o t}=T_{d^{i}} d s^{+} \sum_{n} \frac{m_{n}}{m_{t o t}} A_{d n^{i}}{ }_{d s}
$$

where
$T_{d}=$ diffuse transmission factor for the window
$A_{d n}=$ diffuse absorption factor for the n :th pane
$m_{n}=$ heat resistance between the n : th pane and the outdoor air
$m_{\text {tot }}=$ heat resistance for the window

Substition of the above equations gives

$$
i_{d t o t}=\left(F_{s s^{r}} g_{g s}\right)\left(T_{d^{+}} \sum \frac{n}{m_{t o t}} A_{d n}\right) i_{d H}
$$

To get the daily sum of the total transmitted diffuse radiation we have to integrate the last equation over the day, but since all coefficients in the equation are constants, we directly get the solar gain factor for diffuse radiation

$$
\alpha_{d}=i_{d t o t} / i_{d H}
$$

The program in Appendix A uses the SHADOW-routine to calculate the view factors. This routine is based on TRNSYS's TYPE34 routine. The ground reflectivity is set to 0.25 and a heat resistance of 0.06 on the outside, 0.17 between panes and 0.11 $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ on the inside of the window is used.

The TDIFF-routine gives the transmission and absorption factors for the window. The values given in the DATA-statements of that routine are calculated with use of Fresnel's laws and taking two polarisation directions and all inter reflections into account, see Källblad, 1973.

4.2 Direct radiation

Direct radiation with a normal intensity of $i_{R_{n}} \mathrm{~W} / \mathrm{m}^{2}$ gives $i_{R n} \sin (h)$ on a horizontal surface where h is the solar altitude. This gives a daily sum of direct radiation on a horizontal surface

$$
I_{R H}=\int_{24 h} i_{R_{n}}(t) \sin (h(t)) d t
$$

which in the program is approximated by a sum of the values for each half hour of true solar time. The normal intensity $i_{R_{n}}(t)$ is calculated as for clear days in Sweden according to Brown, G and Isfält, E (1974),
tion onto the window caused by the direct radiation

$$
i_{R s}=i_{R s 1}+i_{R s 2}
$$

where

$$
\begin{aligned}
& i_{R s 1}=\left\{\begin{array}{l}
i_{R n} \cos \theta, \text { if } \cos \theta>0 \\
0 \text { elsewhere }
\end{array}\right. \\
& i_{R s 2}=r_{g} F_{g s} i_{R n} \sin (h)
\end{aligned}
$$

The ground reflectivity and the view factor are the same as above and, as the reflection is assumed as diffuse, $\mathrm{i}_{\text {Rs2 }}$ is diffusc radiation going into the room in the same way as described in section 4.1. The direct part, $i_{R s 1}$, is going into the room in a similar way but now with absorption and transmission factors for direct radiation which are depentlenl. on the incident angle. We get a total solar heat gain due to direct radiation as

$$
i_{\text {Rtot }}=i_{\text {Rt1 }}+i_{R t 2}
$$

where

$$
\begin{aligned}
& i_{R t 1}=\left(T_{R}(0)+\sum_{n} \frac{m_{n}}{m_{\text {tot }}} A_{R n}(0)\right) i_{R s 1} \\
& i_{R t 2}=\left(T_{d^{+}} \sum_{n}^{m_{n}} m_{\text {tot }} A_{\text {dn }}\right) i_{R s 2}
\end{aligned}
$$

The solar angles and thus the intensity, the incident angle, the absorption and transmission factors vary during the day and during the year, the solar gain factors cannot be calculated direct as for the diffuse radiation. For the 15 th of each month, the daily sum of solar heat gain $I_{\text {Rtot }}$ is obtained by integration of $i_{\text {Rtot }}$ over the day. In the program this
is approximated by a sum of the values for each half hour. The program uses the SOLAR-routine to calculate the solar declination according to Spencer, 1971, the sun rise and the sunset time for each month. Through the entry point SUN, the necessary time dependent solar angles and direct normal radiation is obtained. The SHADOW-routine, through its entry-point SHDWR, gives the cosine for the incident angle and the shading factor for this solar angles and the TDIFF-routine's entrypoint TDIR performs an interpolation to serve with absorption and transmission factors for the actual incident angle.

After the integrations of daily sum of direct radiation on a horizontal surface $I_{R H}$ and the daily sum of solar heat gain $I_{\text {Rtot }}$ we get the solar gain factor as

$$
\alpha_{\mathrm{I}}=\mathrm{I}_{\text {Rtot }} / \mathrm{I}_{\mathrm{RH}}
$$

The listed program carries out the above calculation for 12 months and 16 different directions for each case specified by the input and produce tables as below.

Table 4.1 Example of output from the program BKLALF in Appendix A.
ALFA-VALUES FOR THE BKL-METHOD, LATITUDE: 56 O NORTH.
Solar gain factors for unshaded, vertical windows

CASE	DIFF. RAD.								SE	SSE	
				NNE	NE	ENE	EAST	ESE			
			NORTH	NNW	NW	WNW	WEST	WSW	SW	SSW	SOUTH
		JAN	. 088	. 088	. 088	. 193	. 735	1.711	2.916	3.944	4.314
		FEB	. 088	. 088	. 110	. 295	. 677	1.176	1.712	2.189	2.403
		MAR	. 088	. 095	. 180	. 371	. 619	. 874	1.099	1.266	1.334
		APR	. 093	. 140	. 259	. 412	. 560	. 673	. 733	. 732	. 713
		MAY	. 135	. 190	. 304	. 420	. 508	. 550	. 533	. 475	. 444
2-pane	. 440	JUN	. 179	. 227	. 332	. 423	. 490	. 498	. 448	. 377	. 345
		JUL	. 162	. 213	. 322	. 426	. 496	. 516	. 477	. 409	. 377
		AUG	. 109	. 163	. 280	. 412	. 527	. 601	. 620	. 586	. 559
		SEP	. 088	. 111	. 213	. 384	. 578	. 755	. 891	. 969	. 985
		ОКт	. กถห	.088	. 138	. 336	. 650	1.015	1.377	1.683	1.829
		NOV	. 088	. 088	. 090	. 228	. 702	1.447	2.324	3.103	3.401
		DEC	. 088	. 088	. 088	. 161	. 744	1.936	3.464	4.714	5.147
		JAN	. 079	. 079	. 079	. 165	. 650	1.531	2.62 .3	3.563	3.900
		FEB	. 079	. 079	. 096	. 260	. 605	1.056	1.540	1.973	2.171
		MAR	. 079	. 084	. 159	. 332	. 556	. 786	. 990	1.140	1.200
		APR	. 083	. 124	. 231	. 370	. 503	. 605	. 659	. 657	. 639
		MAY	. 119	. 169	. 273	. 377	. 457	. 494	. 479	. 424	. 396
3-pane	. 396	JUN	. 158	. 202	. 298	. 386	. 440	. 448	. 401	. 335	. 305
		JUL	. 143	. 190	. 289	. 383	. 447	. 464	. 428	. 365	. 335
		AUG	. 096	. 145	. 250	. 370	. 474	. 541	. 558	. 525	. 500
		SEP	. 079	. 098	. 190	. 344	. 519	. 679	. 802	. 872	. 885
		OKT	. 079	. 080	. 121	. 298	. 582	. 912	1.239	1.516	1.650
		NOV	. 079	. 079	. 081	. 198	. 624	1.297	2.091	2.801	3.075
		DEC	. 079	. 079	. 079	. 137	. 654	1.731	3.116	4.260	4.653
		JAN	. 073	. 073	. 073	. 147	. 587	1.392	2.388	3.240	3.555
		FEB	. 073	. 073	. 087	. 235	. 550	. 961	1.402	1.798	1.981
		MAR	. 073	. 077	. 144	. 301	. 506	. 715	. 901	1.039	1.094
		APR	. 076	. 112	. 211	. 336	. 458	. 551	. 601	. 599	. 582
		MAY	. 108	. 154	. 248	. 344	. 416	. 451	. 437	. 386	. 360
4-pane	. 363	JUN	. 144	. 184	. 271	. 352	. 401	. 409	. 366	. 305	. 277
		JUL	. 130	. 173	. 263	. 349	. 407	. 424	. 390	. 332	. 304
		AUG	. 087	. 132	. 228	. 337	. 432	. 493	. 509	. 479	. 455
		SEP	. 073	. 089	. 172	. 313	. 473	. 619	. 731	. 795	. 807
		OKT	. 073	. 073	. 109	. 271	. 530	. 830	1.128	1.381	1.506
		NOV	. 073	. 073	. 074	. 177	. 566	1.180	1.903	2.553	2.804
		DEC	. 073	. 073	. 073	. 121	. 589	1.573	2.837	3.886	4.240

The BKL-method has been compared with detailed computer calculation carried out with the JULOTTA-program (Källblad and Higgs, 1981). Some comparisons with other programs have also been carried out within the International Energy Agency (IEA).

In the first comparison a two-storey terrace house with a total of $147 \mathrm{~m}^{2}$ floor area has been studied. The thermal characteristics of the building are given in Table 5.1 and climatic data from the period September 1945 - August 1946 in Stockholm, Sweden, are used in the calculations.

Table 5.1 Common thermal characteristics of the building studied in Table 5.2 - 5.4.

Building part	Area m^{2}	U-value $\mathrm{W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}$
Roof	73.4	Var.
Floor	73.4	0.162
Windows, 2-panes	Var.	3.0
Windows, 3-panes	Var.	2.0
Windows, 4-panes	Var.	1.5
North facing windows	4.5	Var.
Outer walls and south windows	69.1	Var.

Space volume: $353 \mathrm{~m}^{2}$
Concret slabs (In table 5.3 this is valid for the high cap.) The heat input is controlled by room thermostats which do not allow the room air temperature to exceed $20^{\circ} \mathrm{C}$.

The results from the BKL-method are compared with the computer calculations in Table 5.2 and the agreement between the methods are good. Table 5.3 gives some ideas about the variations one can obtain. The table shows the monthly heat re-quirement for three cases with exactly the same transmission and ventilation losses, they differ only by different heat capacity. As the BKL-method neglects the heat capacity, differences in the same order as shown in Table 5.3 must be accepted.

Table 5.2 Comparison between the BKL-method and computer calculatins with the JULOTTA-program.

Case No.	South window area $\left(\mathrm{m}^{2}\right)$	Number of panes in all windows	Ventilation $\left(m^{3} / h\right)$	U-value of walls \& roof ($\mathrm{W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}$)	Annua requi BKL (kWh)	heat ement JULOTTA (kWh)	BKL/JULOTTA
1	6.7	2	176	0.279	12030	11740	1.02
2	"	"	395	0.098	17420	17670	0.99
3	11	"	1	0.279	20140	19710	1.02
4	"	3	71	0.098	4970	5050	0.98
5	"	"	176	"	8570	8810	0.97
6	"	"	"	0.279	11130	10880	1.02
7)	"	"	"	"	7200	7100	1.01
8	"	4	71	0.098	4610	4670	0.99
9	"	"	"	0.279	7040	6720	1.05
10	"	"	176	"	10810	10500	1.03
11	10.5	2	176	"	11720	11770	1.00
12	"	3	"	"	10580	10610	1.00
13	"	4	"	"	10150	10120	1.00
14	20.9	3	71	"	6890	6940	0.99
15	"	11	176	"	9960	10330	0.96
16	"	"	282	"	13260	13920	0.95

*) Internal heat gain $15.9 \mathrm{kWh} / \mathrm{day}$, elsewere 0 .

Table 5.3 Monthly energy requierments for case 6 in table 5.2 with different heat capacity.

Month	Result	Results from JULOTTA		
	BKLmethod	Low cap.	Midium cap.	$\begin{aligned} & \text { High } \\ & \text { cap. } \end{aligned}$
1945-09	240	230	230	180
10	950	930	930	920
11	1550	1530	1520	1530
12	1960	1920	1920	1920
1946-01	1920	1890	1880	1890
02	1870	1840	1840	1840
03	1520	1500	1500	1500
04	730	700	700	680
05	350	410	410	400
06	10	30	30	10
07	0	0	0	0
08	30	30	30	10
Annual	11130	11010	10990	10880

In these comparisons, the solar gain factors have been calculated slightly different from the method shown in section 4, the actual solar radiation for each hour has been used. Table 5.4 on the other hand, shows a comparison where the solar gain factors have been calculated exactly as described in section 4 and the results are still in good agreement with the computer calculations.

Table 5.4 Comparison between the BKL-method and computer calculations with the JULOTTA-program

Case No.	South window area $\left(\mathrm{m}^{2}\right)$	Number of panes in all windows	Ventilation $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	U-value of walls \& roof $\left(w / m^{2},{ }^{\circ} \mathrm{C}\right)$	Annua requi BKL (kWh)	heat ment JULOTTA (kWh)	BKL/JULOTTA
17	20.9	3	176	0.283	8383	8301	1.01
18*)	20.9	3	176	0.283	5374	5231	1.03
19	20.9	4	71	0.098	2910	2895	1.01
20 *)	20.9	4	71	0.098	1078	807	1.35
21 **)	20.9	3	176	0.283	9761	10548	1.08
22	10.5	3	176	0.283	17068	17009	1.00

*) Internal heat gain $15.9 \mathrm{kWh} /$ day, elsewhere 0 .
**) South facing windows shaded by an overhang of 1.1 meter on top of the 1.2 meter high window, elsewere no shading.

In one of the cases in Table 5.4 the south windows are shaded and the agreement is in this case not as good as for the other cases. This can indicate some problems to handle shadings with precalculated solar gain factors which in fact assume the same cloudiness during a whole day.

Case 20 in this table, however, indicate a more serious problem when dealing with extremely well insulated buildings with heat recovery on ventilation and relatively high internal and solar heat gain To overcome this problem, one might introduce some form of variable utilization factor for the free heat.

The comparisons within the IEA are fully reported by Källblad, 1983 and one of the results is shown in Figure 5.1. The Vetlanda house is a one-storey low-energy house without basement and situated in Vetlanda, Sweden. In this case, the south windows are shaded by an overhang and solar gain factors have been precalculated according to section 4 with use of daily sums of the measured radiation. In the figure, the DD-method is a simple Degree-Day estimation of the heat requirement and the other methods are of different complexities. The BKLmethod seems to give acceptable results in this comparison as well .

Figure 5.1 Five month heat requirement for the Vetlanda House.

Brown,G and Isfält,E, 1974, Solinstrålning och solavskärmning, Report R19:1974, Swedish Council for Building Research, Stockholm-Sweden. (Swedish edition only).

Elmarsson, B, 1977, Energihushållning i småhus med beaktande av fönsterytor, husets orientering och planlösning. Department of Building Science, LTH, Lund-Sweden. Report BKL 1977:11 (Swedish edition only).

Källblad, K, 1973, Strålning genom glaspartier. Department of Building Science, LTH, Lund-Sweden. Report BKL 1973:12 (Swedish edition only).

Källblad, K and Adamson, B, 1978, Byggnaders energibalans. En handberäkningsmetod - preliminär utgåv. Department of Building Science, LTH, Lund-Sweden. Report BKL 1978:2 (Swedish edition only).

Källblad, K and Adamson, B, 1979, Hand Calculation Method for Estimation of Heat Consumption in Buildings. CIB-symposium, Copenhagen 1979.

Källblad, K and Higgs, F, 1981, Building Energy Use Modelling in Sweden by JULOTTA. Proceedings of the Third International Conference on Energy Use Management, Berlin (west), October 26-30, 1981.

Källblad, K, 1983, Calculation Methods to Predict Energy Savings in Residential Buildings. Swedish Council for Building Research, Stockholm, Sweden. Document D4:1983.

Lindskoug, N-E, 1983, Täby-projektet - Energịsnåla hus i Täby, Swedish Council for Building Research, Stockholm, Sweden (Will be published 1983).

Spencer, J.W, 1971, Fourier Series Representation of the Position of the Sun. Search, Vol.2, No5, May 1971, Australia.

TRNSYS, June 1979, Engineering Experiment Station, Report 38-10, University of Wisconsin, USA.

List of FORTRAN programs

1. BKLCLI to calculate condensed climate data for the BKL-method
2. BKLALF to calculate solar gain factors for the BKL-method

TAV $=T A V+T O U T$ CONTINUE TAV=TAV/NDM(MO)
DO $60 \mathrm{I}=\mathrm{NDM}(\mathrm{MO}), 2,-1$
DO $50 \mathrm{~J}=2$, I

IF (IGL(J).GT.IGL(J-1)) THEN $X=I G L(J)$ $\operatorname{IGL}(\mathrm{J})=\operatorname{IGL}(\mathrm{J}-1)$ IGL ($\mathrm{J}-1$) $=\mathrm{X}$ $\mathrm{X}=\mathrm{IRH}$ (J) $\operatorname{IRH}(J)=\operatorname{IRH}(J-1)$ $\operatorname{IRH}(\mathrm{J}-1)=\mathrm{X}$ $\mathrm{L}=1$
END IF CONTINUE
50
CONTINUE
86060
$C=======================================$ LAST DAY WITH DIRECT RADIATION
IRH1=IRHO + RSLOOP *REAL (D2)
IF (IRH1.GE.O.0) THEN
D1=D2

ELSE

D1=NINT (2.0*SUMRH/IRHO)
IRHO $=2.0^{*}$ SUMRH/REAL(D1)
IRH1 $=0.0$

END IF

```
        1300
    IDHO=IGLO-IRHO
1310 IDH1=IGLO+(IGL2-IGLO)*REAL(D1)/REAL (D2)-IRH1
1320 IDH2=IGL2-IRH1
1330 C==================================================== PRINT MONTHLY VALUES
1340 WRITE(6,80) MONTH(MO),IDHO,IRHO,IDH1,IRH1,IDH2,D1,D2,NDM(MO),TAV
1350 80 FORMAT(6X,A3,3X,5F7.3,I6,?T4,FR.?)
1360 IF (MO.LT.12 .AND. MOD(MO,3).EQ.O) WRITE(6,30)
1370 90 CONTINUE
1380 C====================================================== PRINT END OF TABLE
1390 WRITE (6,100)
1400 100 FORMAT(6X,63('-'))
1 4 1 0
1420 END
```

```
1 0 0
110 C**
120 C#
140 C**
150 C**
160 C**
170 C**
1 8 0
```

```
PROGRAM:
```

PROGRAM:
130 C\#* BKL-METHOD-ALFA-VALUES.
130 C\#* BKL-METHOD-ALFA-VALUES.

```
C*****************************************************************
```

C***
AUTHOR:
AUTHOR:
KURT KÄLLBLAD, 1983.
KURT KÄLLBLAD, 1983.
Department of Building Science
Department of Building Science
University of Lund
University of Lund
P.O.Box 725, S-220 07 LUND, Sweden.
P.O.Box 725, S-220 07 LUND, Sweden.
PURPOSE:
PURPOSE:
C** Calculation of alfa-values for the BKL-method.
C** Calculation of alfa-values for the BKL-method.
C** For further information, see the report on the method.
C** For further information, see the report on the method.
C**
C\#\#
C\#\#
C**
C** valid only for north, south and partly east-orientaded windows.
C** valid only for north, south and partly east-orientaded windows.
C** For partly west-orientated windows, the wings must shift places.
C** For partly west-orientated windows, the wings must shift places.
C**
C**
C** LANGUAGE:
C** LANGUAGE:
UNIVAC ASCII FORTRAN Level 9R1
UNIVAC ASCII FORTRAN Level 9R1
(Very few, if any, extentions from ANSI FORTRAN 77 is used.)
(Very few, if any, extentions from ANSI FORTRAN 77 is used.)
SUBPROGRAMS:
SUBPROGRAMS:
Subroutine TDIFF with Entry Point TDIR.
Subroutine TDIFF with Entry Point TDIR.
Subroutine SOLAR with Entry Point SUN.
Subroutine SOLAR with Entry Point SUN.
Subroutine SHADOW with Entry Point SHDWR.
Subroutine SHADOW with Entry Point SHDWR.
NOTE: Current version does not handle shaded AND tilt windows,
NOTE: Current version does not handle shaded AND tilt windows,
only shaded OR tilt windows.
only shaded OR tilt windows.
REAL IRN
REAL IRN
REAL IRN
CHARACTER MONTH*3,CASE*6,HDL*72
CHARACTER MONTH*3,CASE*6,HDL*72
CHARACTER MONTH*3,CASE*6,HDL*72
DIMENSION MONTH(12),ALFR(9),AB(4),RX(4),DIM(4,3)
DIMENSION MONTH(12),ALFR(9),AB(4),RX(4),DIM(4,3)
DIMENSION MONTH(12),ALFR(9),AB(4),RX(4),DIM(4,3)
DATA RX,RXI,REFL,DTR/.06,.23,.40,.57,.11,.25,.017453292/
DATA RX,RXI,REFL,DTR/.06,.23,.40,.57,.11,.25,.017453292/
DATA RX,RXI,REFL,DTR/.06,.23,.40,.57,.11,.25,.017453292/
DATA MONTH/'JAN','FEB','MAR','APR','MAY','JUN',
DATA MONTH/'JAN','FEB','MAR','APR','MAY','JUN',
DATA MONTH/'JAN','FEB','MAR','APR','MAY','JUN',
\& 'JUL','AUG','SEP','OKT','NOV','DEC'/

```
            & 'JUL','AUG','SEP','OKT','NOV','DEC'/
```

 & 'JUL','AUG','SEP','OKT','NOV','DEC'/
    ```
    \(=============\)
\(\operatorname{READ}(5,1) \mathrm{HDL}\)
    7201 FORMAT(A72)
    730 READ \((5,2)\) LATD, LATM,NOCASE
    7402 FORMAT()
    750 ALAT=DTR*(REAL (LATD)+REAL(LATM)/60.0)
    760 C================================================================ HEADLINES
    \(770 \quad \operatorname{WRITE}(6,3)\) LATD,LATM,HDL
    7803 FORMAT('1 ALFA-VALUES FOR THE BKL-METHOD,'
    790 \&,' LATITUDE:',2I3,' NORTH.'/6X,A72//26X,'DIRECT RADIATION,'
    \(800 \quad \&, '\) DIFFERENT FACADE ORIENTATION'/13X,'DIFF.',15X
    810 \&,'NNE NE ENE EAST ESE SE SSE \(1 / 6 \mathrm{X},{ }^{\prime} \mathrm{CASE}\) RAD.'
    820 \&,9X,'NORTH NNW NW WNW WEST WSW SW SSW SOUTH')
    830
    840 DO 120 NC=1,NOCASE
    850 C=ュュ============================================== READ DATA FOR ONE CASE
    \(860 \operatorname{READ}(5,10)\) CASE
    87010 FORMAT (A6)
    \(880 \operatorname{READ}(5,2)\) NPAN,TILT,WH,WW, L
    890 TILT=DTR*TILT
    LSH=0
    IF (L.GT.0) THEN
        READ \((5,2)\) DIM
        DO \(20 \mathrm{I}=1,3\)
                                IF (DIM(1,I).GT.O.O) LSH=1
    END IF
\(960 \mathrm{C}================================================\) DIFFUSE COEFFICIENTS
9\% CALL SHADOW(WH,WW,IIHL'I,LSH, DIM, FWS, FWG)
980 CALL TDIFF (NPAN, PT, AB)
\(990 \quad\) ST=0.0
1000 DO \(30 \mathrm{I}=1, \mathrm{NPAN}\)
\(101030 \quad \mathrm{ST}=\mathrm{ST}+\mathrm{RX}(\mathrm{I}) * \mathrm{AB}(\mathrm{I})\)
\(1020 \quad\) ST=ST \(/(\) RX (NPAN \()+\) RXI \()\)
1030 TDT=PT+ST
1040 ALFS=(FWS+REFL*FWG)*TDT
1050 C
\(1060 \quad \operatorname{WRITE}(6,2)\)
1070 DO \(110 \mathrm{MO}=1,12\)
\(1080 \quad\) SUMRH \(=0.0\)
1090 CALL SOLAR(ALAT, MO,SRT,SST)
\(1100 \quad\) IT1=INT(2.0*SRT)
\(1110 \quad\) IT2=INT (2.0*SST \()\)
1120 IF (IT1.LE.O) IT1=1
1130 DO \(40 \mathrm{~N}=1,9\)
\(114040 \quad \operatorname{ALFR}(N)=0.0\)
1150
            DO 70 IT=IT1, IT2
                CALL SUN(0.5*REAL(IT), CW,CS,CZ,IRN)
                        IF (CZ.GT.0.0) THEN
                                SUMRH=SUMRH + IRN*CZ
                                DO \(60 \mathrm{NR}=1,9\)
                                ORIENT=DTR*22.5*REAL (NR-1)
                                CALL SHDWR(CW,CS,CZ,ORIENT,CIF,FI)
                                IF (CIF.GT.O.0 .AND. FI.GT.O.0) THEN
                                CALL TDIR(NPAN,CLF, PT, AB)
                                \(\mathrm{ST}=0.0\)
                                DO \(50 \mathrm{I}=1\), NPAN
                                \(\mathrm{ST}=\mathrm{ST}+\mathrm{RX}(\mathrm{I}) * \mathrm{AB}(\mathrm{I})\)
                                    ST=ST/(RX(NPAN)+RXI)
1280
\(\operatorname{ALFR}(N R)=\operatorname{ALFR}(N R)+I R N * C I F * F I *(P T+S T)\)

1300
131060
1320
133070

\section*{CONTINUE}

END IF

\section*{CONTINUE}

1340 C DO \(80 \mathrm{NR}=1,9\)
\(\operatorname{ALFR}(N R)=(\operatorname{ALFR}(N R)+S U M R H * R E F L * F W G * T D T) / S U M R H\)
IF (MO.NE.6) THEN
WRITE (6,90) MONTH(MO), (ALFR(I), I=1,9)
FORMAT(19X, A3, F8.3,8F6.3)
ELSE
WRITE (6,100) CASE,ALFS,(ALFR(I), \(\mathrm{I}=1,9\) )
FORMAT(6X,A6,F5.3,' JUN',F8.3,8F6.3)
END IF
CONTINUE
1440110

1460120 CONTINUE
1470 C======ニ==================================================== END OF TABLE
1480 END
1490

1510
1520 SUBROUTINE TDIFF(N,T,A)
1530 C***************\#***********
1540
1550 DIMENSION A(*),TSK(4),ASK (4,4),TDK (11,4), \(\operatorname{ADK}(11,4,4)\)
1560 DATA TSK
1570 \&/ .77978, .64427, .54763, .47333/
1580 DATA ASK
1590 \&/ . \(08057, .00000, .00000, .00000\)
1600 \& , .08835, . \(06507, .00000, .00000\)
1610 \& , .09227, . \(07178, .05429, .00000\)
1620 \&, .09438, .07537, .05965, .04619/
1630 DATA TDK
1640 \&/ . \(00000, .23664, .45597, .61099, .71111\)
\(1650 \quad \&, .77289, .81014, .83222, .84505, .85224, .85604\)
1660 \& . .00000, .11055, .28133, .44121, . 56012
\(1670 \quad \&, .63590, .68068, .70672, .72209, .73138, .73712\)
1680 \& , .00000, . \(05765, .18682, .33496, .45878\)
\(1690 \quad \&, .53903, .58363, .60767, .62163, .63079, .63750\)
\(1700 \quad \&, .00000, .03136, .12841, .26061, .38354\)
1710 \&, .46490, .50687, .52689, .53795, .54602, .55314/
1720 DATA (( \(\operatorname{ADK}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{I}=1,11), \mathrm{J}=1,4), \mathrm{K}=1,2)\)
\(1730 \quad \& / .00000, .07780, .08312, .08377, .08276\)
\(1740 \quad \&, .08090, .07854, .07588, .07308, .07023, .06739\)
1750 \& , . \(00000, .00000, .00000, .00000, .00000\)
\(1760 \quad \&, .00000, .00000, .00000, .00000, .00000, .00000\)
\(1770 \quad \&, .00000, .00000, .00000, .00000, .00000\)
\(1780 \quad \&, .00000, .00000, .00000, .00000, .00000, .00000\)
\(1790 \quad \&, .00000, .00000, .00000, .00000, .00000\)
\(1800 \quad \&, .00000, .00000, .00000, .00000, .00000, .00000\)
\(1810 \quad \&, .00000, .10044, .10380, .09919, .09373\)
\(1820 \quad \&, .08899, .08496, .08137, .07804, .07487, .07184\)
\(1830 \quad \&, .00000, .03424, .04849, .05756, .06278\)
\(1840 \quad \&, .06494, .06507, .06401, .06229, .06024, .05803\)
1850 \& , .00000, . \(00000, .00000\), . \(00000, .00000\)
\(1860 \quad \&, .00000, .00000, .00000, .00000, .00000, .00000\)
\(1870 \quad \&, .00000, .00000, .00000, .00000, .00000\)
1880 \& . .00000, . \(00000, .00000, .00000\), .00000, .00000/
1890 DATA (( \(\operatorname{ADK}(I, J, K), I=1,11), J=1,4), K=3,4)\)

1900
1910
1920
1930 \&, .07190, .07073, .06894, .06680, .06450, .06213
\(1940 \quad \&, .00000, .01694, .03088, .04215, .04997\)
1950 \&, .05397, .05514, .05472, .05351, .05193, . 05019
1960 \& , .00000, . \(00000, .00000, .00000\), . 00000
\(1970 \&, .00000, .00000, .00000, .00000, .00000, .00000\)
1980 \& . .00000, . 10673, .11396, .10902, . 10141
\(1990 \quad \&, .09515, .09069, .08718, .08395, .08078, .07763\)
\(2000 \quad \&, .00000, .05199, .07018, .07580, .07652\)
\(2010 \quad \&, .07557, .07405, .07217, .07000, .06764, .06520\)
\(2020 \quad \&, .00000, .02449, .04131, .05123, .05695\)
\(2030 \quad \&, .05948, .05984, .05898, .05751, .05577, .05391\)
2010 \& . .00000, .00880, .02047, .03185, .04081
\(2050 \quad \&, .04577, .04740, .04720, .04621, .04493, .04355 /\)
2070 T=TSK(N)
2080 DO \(10 \mathrm{~L}=1, \mathrm{~N}\)
209010
\(A(L)=\operatorname{ASK}(L, N)\)
2100
2110
2120
2130
2140
2150
2160
2170
2180
219020
2200
2210
2220
\(2230 \mathrm{~T}=\mathrm{TDK}(\mathrm{I}+1, \mathrm{~N})+(\mathrm{X}-\operatorname{REAL}(\mathrm{I})) *(\operatorname{TDK}(\mathrm{I}+2, \mathrm{~N})-\operatorname{TDK}(\mathrm{I}+1, \mathrm{~N}))\)
2240
225030
2260
2270
2280
229040
2300
2310
2320

2360 SUBROUTINE SOLAR(ALAT,MO,SRT,SST)
2370 C************\#\#***************
2380
2390 REAL IRN
2400 DIMENSION A (2) , B(4,2), NDM (12)
2410 DATA EPS, A, B, NDM / 1.E-8, 0.139, 0.109,
2420 \& 5838.27, \(-26704.97,70722.19,-72678.86\),
\(2430 \quad \& 6714.56,-31165.97,83437.14,-88563.88\),
\(2440 \quad \& 0,31,59,90,120,151,181,212,243,273,304,334 /\)
2450
2460 C========================================================= SUN DECLINATION
\(2470 \quad \mathrm{PI}=\operatorname{ATAN} 2(0.0,-1.0)\)
\(2480 \quad \mathrm{~V}=2.0 * \mathrm{PI}\) *REAL (NDM (MO) +14 )/365.0
\(2490 \quad \mathrm{DEK}=0.006918-0.399912^{*} \operatorname{COS}(\mathrm{~V})+0.070257^{*} \operatorname{SIN}(\mathrm{~V})\)
    ELSE IF (SDSL.LE.-CDCL) THEN
    2640 C* 24 HOURS OF NIGHT
    2650 SRT=0.0
    ELSE
        DAY AND NIGHT
        \(\mathrm{X}=\mathrm{ACOS}(-\mathrm{SDSL} / \mathrm{CDCL})\)
        SRT=12.0-X*12.0/PI
        SST=12.0+X*12.0/PI
    END IF
    2730 RETURN
2740
2750
2760
2770
2780
2790 C==================================== SOLAR ANGLES AT TRUE SOLAR TIME TST
2800 H=PI* (TST/12.0-1.0)
\(2810 \quad \mathrm{CDH}=\mathrm{CD} * \operatorname{COS}(\mathrm{H})\)
\(2820 \quad \mathrm{CSW}=\mathrm{CD} * \operatorname{SIN}(\mathrm{H})\)
2830 CSS=CDH*SL-SD*CL
\(2840 \quad\) CSZ \(=\) CDH* \(\mathrm{CL}+\) SD*SL
2850 IF(ABS(CSW).GT.1.0) CSW=SIGN(1.0,CSW)
\(2860 \operatorname{IF}(A B S(C S S) . G T .1 .0) \operatorname{CSS}=\operatorname{SIGN}(1.0, C S S)\)
2870 IF (ABS (CSZ).GT.1.0) CSZ=SIGN(1.0,CSZ)
2880 C========================================== DIRECT NORMAL SOLAR RADIATION
2890 IF (CSZ.LT.EPS) THEN
2900 IRN=0.0
2910 ELSE
\(2920 \quad \mathrm{~N}=1\)
2930 IF(MO.LT.5.OR.MO.GT.9) N=2
2940 ALT=ASIN(CSZ)
2950 IF (ALT.GT.0.261799) IRN=1071.*EXP (-A(N)/CSZ)
2960 IF (ALT.LE.0.261799) IRN=B(1,N)*ALT
2970 \&
    \&
                                    \(+B(2, N) * A L T * * 2\)
2980 \&
    \& \(+B(3, N) * A L T * * 3\)
2990 \&
    \& END IF
3000 END IF
3020 END
3030
3040
3050 C**
3060 C** This routine is based on the TRNSYS's TYPE34-routine.
3070 C** All changes from that routine are marked as follow:
3080 C** C**X This line is excluded (comment out).
3090 C** C**START NEW Start of new lines.
\(3100 C^{* *}\) C**END NEW End of new lines.

3180 C**X SUBROUTINE TYPE34(TIME,XIN,OUT,T,DTDT,PAR,INFO)
3190 C**X DIMENSION PAR(15),OUT(10), INFO(10),F12(2,3),XIN(6)
3200 C**X DIMENSION FP(3),G(3),EL(3),ER(3)
3210 C**X DATA IUNIT/O/,RD/O.017453292/,PI/3.141592654/
3220 DATA STPNUM/10./
3230 C**X IF (INFO(7).GT.O) RETURN
3240 C**X IF (INFO(1).EQ.IUNIT) GO TO 1102
3250 C**X HT \(=\operatorname{PAR}(1)\)
3260 C**X WT=PAR(2)
3270 C**X AREA=WT*HT
3280 C \(\# * \mathrm{X} \quad \mathrm{FP}(1)=\operatorname{PAR}(3)\)
3290 C**X G(1)=PAR(4)
3300 C**X EL(1)=PAR(5)
3310 C**X ER(1)=「AR(6)
3320 C**X \(\quad \mathrm{FP}(2)=\mathrm{PAR}(1 /)\)
\(3330 \mathrm{C} * * \mathrm{X} \quad \mathrm{G}(2)=\operatorname{PAR}(8)\)
3340 C**X EL(2)=PAR(9)
3350 C**X ER(2)=PAR(10)
3360 C**X \(\operatorname{FP}(3)-\operatorname{PAR}(11)\)
3370 C**X G(3)=PAR(12)
3380 C**X EL(3)=PAR(13)
\(33900^{* * * X \quad E R(3)=P A R(14)}\)
3400 C**X WAZI=PAR (15)*RD
3410 C..THIS COMPONENT CALCULATES THE AVERAGE SOLAR FLUX ON A
3420 C..SHADED VERTICAL RECEIVER
3430 C..ALPH SOLAR AZIMUTH ANGLE (+VE WEST OF SOUTH - DEG.)
3440 C..COSZ COSINE OF SOLAR ZENITH ANGLE
3450 C..FI SHADE RATIO: SUNLIT RECEIVER AREA TO TOTAL RECEIVER AREA
3460 C..HT WINDOW HEIGHT
3470 C..WT WINDOW WIDTH
3480 C..FP(1) DEPTH OF OVERHANG
3490 C..G(1) DISTANCE FROM TOP OF WINDOW TO OVERHANG
3500 C..EL(1) DISTANCE OVERHANG EXTENDED BEYOND LEFT EDGE OF WINDOW
3510 C..ER(1) DISTANCE OVERHANG EXTENDED BEYOND RIGHT EDGE OF WINDOW
3520 C. .FP(2) DEPTH OF LEFT FIN
3530 C..EL(2) DISTANCE LEFT FIN EXTENDS ABOVE TOP OF WINDOW
3540 C..G(2) DISTANCE FROM LEFT EDGE OF WINDOW TO LEFT FIN
3550 C..ER(2) DISTANCE FIN STOPS SHORT OF BOTTOM OF WINDOW
3560 C..FP(3) DEPTH OF RIGHT FIN
3570 C..EL(3) DISTANCE RIGHT FIN EXTENDS ABOVE TOP OF WINDOW
3580 C..g(3) DISTANCE FROM RIGHT EDGE OF WINDOW TO RIGHT FIN
3590 C..ER(3) DISTANCE RIGHT FIN STOPS SHORT OF BOTTOM OF WINDOW
3600 C..WAZI WINDOW AZIMUTH ANGLE (+VE WEST OF SOUTH - DEG.)
3610 C..TTLT WINDOW TILT FROM VERTICAL (=0. - DEG.)
3620 C**X 1102 IUNIT=INFO(1)
3630 C**X IF (INFO(7).GT.-1) GO TO 3000
3640 C**X CALL TYPECK ( 1, INFO,6,15,0)
3650 C**START NEW
\(3660 \quad \mathrm{HT}=\mathrm{WH}\)
\(3670 \quad W T=W W\)
3680 AREA=WT*HT
3690 D0 \(999 \mathrm{I}=1,3\)

3700
\(F P(I)=\operatorname{DIM}(1, I)\)
\[
G(I)=D I M(2, I)
\]
\[
\operatorname{EL}(I)=\operatorname{DIM}(3, I)
\]
\[
\operatorname{ER}(I)=\operatorname{DIM}(4, I)
\]

3820 C.. CALCULATE THE RADIATION VIEW FACTORS
\(X X=W T\)
3840

F12 \((2, I)=F 12(2, I)+F D 2 * S T E P 1\) CONTINUE
F12 (1, I) \(=\) F12 ( \(1, I\) I) /WT/HT F12 (2,I) \(=\) F12 ( \(2, I\) ) /WT/HT
\(\mathrm{YY}=\mathrm{HT}\)
DO 2100 I=1,3
\(\mathrm{F} 12(1, \mathrm{I})=0\).
F12 \((2, I)=0\).
IF(FP(I).LT.O.001) GO TO 2050
STEPI=XX/STPNUM
STEP2=YY/STPNUM
FPL=XX \(+E L(I)+E R(I)\)
\(\mathrm{X}=-\mathrm{STEP} 1 / 2.0\)
DO 200 I1=1,10
\(\mathrm{X}=\mathrm{X}+\mathrm{STEP} 1\)
\(\mathrm{BB} 1=\mathrm{EL}(\mathrm{I})+\mathrm{X}\)
BB2 \(=\) FPL-BB1
\(\mathrm{Y}=-\) STEP2 \(/ 2.0\)
FD1 \(=0.0\)
FD2=0.
DO 210 I2=1,10
\(\mathrm{Y}=\mathrm{Y}+\) STEP2
\(\mathrm{C}=\mathrm{Y}+\mathrm{G}(\mathrm{I})\)
\(\mathrm{X} 1=\mathrm{FP}(\mathrm{I}) / \mathrm{BB} 1\)
X2=FP(I)/BB2
Y1=C/BB1
\(\mathrm{Y} 2=\mathrm{C} / \mathrm{BB} 2\)
SUM1=X1*X1+Y1*Y1
SUM2=X2*X2+Y2*Y2
ARG1=SQRT (SUM1)
ARG2=SQRT (SUM2)
ARG11=1./ABS (Y1)
ARG12=1. \(/\) ARG1
ARG21=1./ABS (Y2)
ARG22=1. /ARG2
F1=ATAN (ARG11)-ABS (Y1) *ATAN(ARG12)/ARG1
\(\mathrm{F} 2=\operatorname{ATAN}(\operatorname{ARG21)}-\operatorname{ABS}(\mathrm{Y} 2) * \operatorname{ATAN}(\operatorname{ARG22)} / \operatorname{ARG} 2\)
IF (BB1.LT.0.0) F1=-F1
IF (BB2.LT.0.0) F2=-F2
FD1=FD1+STEP2*F1/PI/2.0
FD2=FD2+STEP2*F2/PI/2.
CONTINUE
F12 (1,I) \(=\) F12 (1, I \()+\) FD1*STEP1
\(\mathrm{XX}=\mathrm{HT}\)

4300
43102100
\(Y Y=W T\)
CONTINUE
4320 C**X OUT(8)-F12(1,1)+F12(2,1)
\(4330 \mathrm{C} * * \mathrm{X} \quad \operatorname{OUT}(9)=\mathrm{F} 12(1,2)+\mathrm{F} 12(2,2)\)
\(4340 \mathrm{C} * * \mathrm{X} \quad \operatorname{OUT}(10)=\mathrm{F} 12(1,3)+\mathrm{F} 12(2,3)\)
4350
4360
4370
4380
4390
4400 C**X
\(\operatorname{IF}(F 12(1,2) . \operatorname{LT} .0.) \operatorname{F12}(1,2)=0\).
\(\operatorname{IF}(F 12(2,2) . \operatorname{LT} .0) F .12(2,2)=0\).
\(\operatorname{IF}(F 12(1,3) . \operatorname{LT} .0.) \operatorname{F12}(1,3)=0\).
\(\operatorname{IF}(F 12(2,3) . \operatorname{LT} .0.) \operatorname{F12}(2,3)=0\).
\(\mathrm{C}^{* * X} \operatorname{OUT}(6)=0.5-\operatorname{OUT}(8)-F 12(1,2)-F 12(1,3)\)
C**X OUT (7) \(=0.5-\) F12 \((2,2)-F 12(2,3)\)
44103000 CONTINUE
4420 C
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660 C 4670
4680
4690
4700
\(4710 \quad \operatorname{COSG}=\operatorname{COS}(\) GAMMA \()\)
4720 IF (COSZ.GT.0.999999) GO TO 100
4730 IF (COSG) \(100,100,104\)
\(4740 \quad 100 \mathrm{FI}=0.0\)
\(4750 \quad\) ARSHA \(=H^{*}\) WT
4760 GO TO 2000
4770104 CONTINUE
4780
4790

4900
                                    ......SUN ON CENTER
4910157 T=FP(1)*VERT - A
        \(\mathrm{ARSHF}=0.0\)
        ARSIF \(=0.0\)
        AREAO \(=0.0\)
        AREA1 \(=0.0\)
        ARSH1 \(=0.0\)
        \(\mathrm{K}=1\)
        \(\mathrm{L}=1\)
        T1=FP(1)*VERT
        FM1=FP(1)*HORIZ
        IF (FP(1))37,37,153
5070
5080
        \(153 \mathrm{~T}=\mathrm{T} 1\)
        FM=FM1
\(5100 \quad \mathrm{AB}=\mathrm{B}^{*}\) TCETA
\(5110 \quad \mathrm{UG}=(\mathrm{WT}+\mathrm{B})\) *TCETA
5120 DE=(H+A)/TCETA
5130 C .....SHADING FROM HORIZONTAL OVERHANG - AREAO
5140 IF(T-A)37,37,2
\(51502 \mathrm{IF}(\mathrm{AB}-\mathrm{A}) 14,14,3\)
51603 IF(DE-B) 12,12,4
51704 IF (FM-B)11,11,5
\(51805 \mathrm{IF}(\mathrm{DE}-(W T+B)) 8,8,6\)
51906 IF(FM-(WT+B))9,7,7
5200 C ......HORIZ 9
52107 AREAO=WT* (0.5* (AB+UG)-A)
5220 GO TO 37
\(52308 \mathrm{IF}(\mathrm{T}-(\mathrm{H}+\mathrm{A})) 9,10,10\)
5240 C ......HORIZ 7
52509 AREAO=(T-A)*WT-(FM-B)*(FM-B)*TCETA*0.5
5260 L=2
5270 GO TO 37
5280 C ......HORIZ 8
529010 AREAO=H*WT-(DE-B)*(DE-B)*TCETA*O. 5
5300 GO TO 37
5310 C ......HORIZ 3
532011 AREAO=WT* (T-A)
5330 L=2
5340 GO TO 37
535012 IF(T-(H+A))11,13,13
5360 C .....HORIZ 2
\(5370 \quad 13\) AREAO=WT*H
5380 GO TO 68
539014 IF (UG-A) \(37,37,15\)
\(540015 \operatorname{IF}(\mathrm{DE}-(W T+B)) 18,18,16\)
\(541016 \operatorname{IF}(\mathrm{FM}-(\mathrm{WT}+\mathrm{B})) 20,17,17\)
5420 C ......HORIZ 6
543017 AREAO \(=(\) UG-A \() *(\) UG-A \() /\) TCETA \(* 0.5\)
5440 GO TO 37
\(545018 \operatorname{IF}(\mathrm{~T}-(\mathrm{H}+\mathrm{A})) 20,19,19\)
5460 C .....HORIZ 5
547019 AREAO \(=\mathrm{H}^{*}\left(\mathrm{WT}-\left(\mathrm{A}+\mathrm{O} .5^{*} \mathrm{H}\right) /\right.\) TCETA +B\()\)
5480 GO TO 37
5490 C .....HORIZ 4
20
    621 AF=AT
        L=1
        G0 T0 73
    6 2 2 ~ A R E A 1 = W T * ( T 1 - A ) - A R E A O ~
        AF=T1-A+AF1
        H=H+AF1-AF
    73 AB=BF*TCETA
        UG=(WT+BF)#TCETA
        DE=(H+AF)/TCETA
        DJ=CX/TCETA
    IF (FM-BF)69,69,38
38 IF (AB-AF) 39,50,50
5860 39 IF (UG-AF)48,48,40
5870 40 IF(T-AF)47,47,41
5880 41 IF(UG-(H+AF))44,44,42
5890 42 IF(T-(H+AF))91,80,80
5900 C .....FIN 9
5910
    8 0 ~ A R E A 1 = H * ( ( A F + H * O . 5 ) / T C E T A - B F ) + A R E A 1 ~
    GO TO 58
5 9 3 0
5940 C
    4 4 ~ I F ( F M - ( W T + B F ) ) 9 1 , 8 9 , 8 9
    C .....FIN 8
    5 9 5 0
5 9 6 0
5970 C
5 9 8 0
5990
6 0 0 0
6 0 1 0 ~ C ~
6 0 2 0
            47 AREA1=H*(FM-BF)+AREA1
            GO TO 63
            4 9 ~ A R E A 1 = H * W T + A R E A 1 ~
6 0 6 0 ~ G O ~ T O ~ 5 8 ~
                            50 IF(DE-BF)69,69,51
                            51 IF(UG-(H+AF))55,55,52
6090 52 IF(T-(H+AF))93,94,94
```

```
6 1 0 0 ~ C ~
6 1 1 0
6 1 2 0
6130 C
6 1 4 0
6 1 5 0
6 1 6 0
6170 C
6 1 8 0
6190 C .....UNSHADED AREA UNDER SHORT FIN SHADOW (ARSH1)
6190 C .....UNSHADED AREA UNDER SHORT FIN SHADOW (ARSH1)
AREA1=WT*(H-(BF+WT*O.5)*TCETA+AF)+AREA1
6200 58 IF(DJ-BF)69,69,59
6210 59 IF(DJ-(WT+BF))61,61,60
6220 C
6 2 3 0
    60 ARSH1=-WT*(CX-(BF+WT/2.0)*TCETA)
6 2 4 0
6 2 5 0 ~ C
6 2 6 0
6 2 7 0
6280
6290
6 3 0 0 ~ C
    64 IF(DJ-FM)61,61,65
.....SHORT 2
6310 65 ARSH1=-(FM-BF)*(CX-(T+AB)*O.5)
6320 69 GO TO (77,76),K
6330 76 ARSH1=-ARSH1
6340 AREA1=-AREA1
6350 77 ARSHF=ARSHF+ARSH1
6360 ARSIF=ARSIF+AREA1
6370 C .....TOTAL SHADED AREA (ARSHA)
6380 68 ARSHA=AREAO+ARSHF+ARSIF
6390 FI=1.-ARSHA/AREA
6 4 0 0 2 0 0 0 ~ C O N T I N U E ~
6410 C*#X GB=XIN(5)
6420 C**X GD=XIN(4)
6430 C**X GR=XIN(3)
6440 C**X RHO=XIN(6)
6450 C**X OUT(2)=GB*FI
6460 C**X OUT(3)=GD*OUT(6)
6470 C**X OUT(4)=RHO*GR*OUT(7)
6480 C**X OUT(1)=OUT(2)+OUT(3)+OUT(4)
6490 C**X OUT(5)=FI
6500 C**START NEW =
6510 END IF
6 5 2 0
```



```
6 5 4 0
6 5 5 0
RETURN
    END
```

