AIVC #13,411

EFERENCES

- 1. Perera M D A E S, Stephen R and Tull R, BRE Information Paper IP 6/89 "Use of BREFAN to measure the airtightness of non-domestic buildings", BRE, Garston, 1989.
- 2. R K Stephen "Determining the airtightness of buildings by the fan-pressurisation method: BRE recommended procedure". BRE Occasional paper 1987.
- 3. British standard BS1042: Section 1.1: 1981; and Sections 1.2 & 1.4: 1984. "Measurement of fluid flow in closed conduits, Part 1. Pressure differential devices". British Standards Institution, London.
- 4. British Standard BS848: Part1: 1980. "Fans for general purposes, Part 1. Methods of testing performance". British Standards Institution, London.
- 5. C Y Shaw, J T Reardon and M S Cheung, "Changes in air leakage levels of six Canadian office buildings", NRCC report 3206, National Research Council Canada, 1993.
- 6. R A Grot & A K Persily, "Air infiltration and air tightness tests in eight U.S. office buildings", 3rd AIC Conference, September 1982, London.
- 7. Canadian General Standards Board -149.15-96 "Determination of the overall envelope airtightness of buildings by the fan pressurisation method using the building's air handling systems", Canada General Standards Board, 1996.
- 8. Draft CEN Standard, prEN WI 00089005:1998-05, "Determination of building airtightness, Fan pressurisation method",
- 9. I N Potter, "Air tightness specifications", BSRIA 10/98, Bracknell 1998.
- 10. Approved Document Part L "Conservation of Fuel and Power", Building Regulations 1995 edition, Department of the Environment and Regions, HMSO.
- 11. Perera M D A E S, Turner C and Scviyer C, "Minimising Air Infiltration in Office Buildings" Building Research Establishment Ltd. Report BR 265: 1994.
- 12. BRE Digest 399, "Natural Ventilation in Non-Domestic Buildings", BRE 1994.
- 13. DETR Good Practise Guide 237, "Natural Ventilation in Non-Domestic Buildings", DETRR< London, 1998.
- 14. Liddament M, "A Guide to Energy Efficient Ventilation", AIVC, Coventry, 1996.
- 15. CIBSE Applications Manual AM10: 1997, "Natural Ventilation in Non-domestic Buildings, CIBSE, London.

Chapter 4

Guidelines for Minimising the Ingress of Urban Pollution

Paul Ajiboye*

INTRODUCTION

The aim of this Chapter is to breakdown barriers to concepts of natural ventilation. The study is part of a Pan European project titled NatVent, that involves seven countries in the north of Europe. The project leaders are the UK Building Research establishment. Urban pollution is a major barrier to the adoption of natural ventilation, so successful ways of avoiding these problems need to be found.

The traditional approach to ventilating non domestic buildings located in urban areas is to specify mechanical ventilation. This strategy can seal buildings from pollution along facades, and where necessary draw air via cleaning filters to remove contaminants; the pressure drop associated with this process is not a practical option for passive ventilation. The draw back in relying upon air conditioning systems is in the amount of energy required to run them, hence the negative environmental impact. If natural ventilation systems are not adversely affected by external pollution then it offers an ideal alternative.

*Paul Ajiboye is an Environmental Scientist, Willan Building Services, Tonbridge, Kent

Indoor Air Quality

SOURCES OF POLLUTION IN URBAN ENVIRONMENTS

Urban pollution arises from a range of sources, all of which should be considered when deciding upon the ventilation strategy for non domestic buildings. Pollution sources include local industries, cooling towers, building exhaust vents and traffic emissions arising from vehicles including aircraft and trains (1). Vehicles pollutants have the largest impact on ambient air quality. Particles (PM_{10}) and noise are the primary pollutants of concern, although other forms of pollution include the gases NO_2 , NO, $CO SO_2$ and O_3 . All sources should be identified prior to positioning air intakes on buildings.

Buildings in close proximity to busy roads are exposed to noise and contaminants. A recent investigation revealed that in one of two naturally ventilated buildings had 33% higher concentration of CO; this building was beside a busy road, whereas the 'cleaner' building was 400m away (2). Ambient pollution derived from vehicles emissions reflect traffic intensity and mobility, hence during rush hour periods when vehicles are stationary or congested, air quality will be at it poorest (3).

Aircraft and trains generate noise pollution, for buildings located near airports and railway stations. Emissions from building exhaust vents and industrial stacks may also negatively impact on air quality within buildings. Wind direction and speed are critical factors that will affect air quality at air intakes, (4).

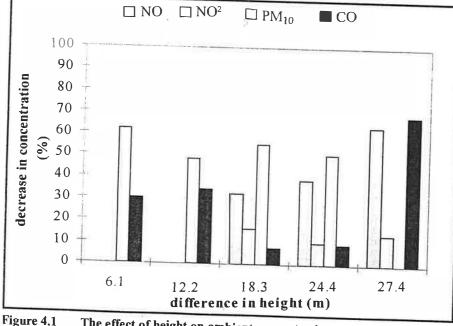


Figure 4.1 The effect of height on ambient concentrations of pollutants

Guidelines for Minimising the Ingress of Urban Pollution

MINIMISING THE IMPACT OF URBAN POLLUTION

A number of simple steps can be taken to reduce the impact of external pollution on air quality within non domestic buildings. These involve the intelligent location of air intakes to office blocks. Sheltered facades such as courtyards and enclosures are ideal for locating air inlets, as they are protected from pollutants derived from busy roads. Both contaminant pollutants and noise exposure are significantly reduced by this strategy (5). See Figure 4.1. Buildings with central air inlets at high level are less exposed to pollutants generated at road level, particularly in the case of $PM_{10}(6)$, and also in the case of gaseous pollutants such as CO and the oxides of N (7). Figure 4.1 is an example of the dilution of pollutants observed along a building facade situated besides a busy London road.

Rooflevel installation of central air inlets may have some drawbacks if noise from planes is a local problem. If exhaust vents from host or neighbouring buildings are close to air intakes problems will arise. A simple model has been developed to evaluate the effect of exhaust vent emissions on air quality at air intakes (8). The model is defined by equation 4.1.

$$D_{\min} = 0.11 \left(\frac{U_{\text{H}} r_2}{Q_e} \right)$$
 4.1

Although wind direction is not important in the model wind speed is. The value of U_H should closely reflect typical local conditions. Figure 4.2 indicates minimum dilution factors that have been calculated for a range of conditions, and can be used to determine suitable distances between exhaust emmissions and building air intakes.

Rush hour traffic generates high levels of pollution along roads. A sensible control option is to shut down passive ventilation systems and use mechanical alternatives on a temporary basis where polluted air can be drawn across filtration devices. This approach is best applied between 07.00h and 10.00h and also from 16.00h onwards.

Car parking reflects rush hour traffic flows so in dedicated zones air quality can be poor. It is essential that air intakes are located away from these areas.

WIND FLOWS AROUND BUILDINGS

Buildings downwind of pollution sources are more exposed to contaminants than those upwind (4). However the situation is made complex by the way neighbouring buildings also affect air flow patterns. National meteorological wind flows are often not reflected on a local scale (9), so even buildings perceived to be downwind from pollution sources are subjected to re-ingestion of exhaust emissions. In a similar way relying on prevailing winds to avoid and / dilute exhaust emissions ignores the fact that significant sub prevailing winds may be derived from the opposite direction.

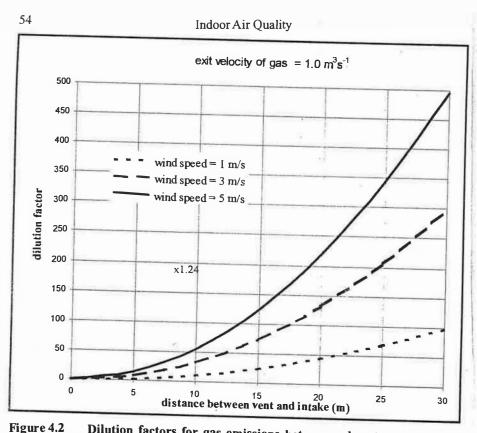


Figure 4.2 Dilution factors for gas emissions between exhaust vents and air intakes.

Wind forces acting on building generate leeward and windward facades as well as downwash and up-wash zones (8). Air intakes and exhausts should be positioned on buildings so that are located in different zones. This will minimise the possibility of exhaust fumes re-entering the building. The size of the down-wash and up-wash zones depends on the size and shape of the building. A good design practice is to distance air intakes from exhaust vents by at least a third of the building height.

SUITABLE AIR INLETS FOR URBAN ENVIRONMENTS

It is not always possible to prevent outdoor pollution entering air inlets. To reduce the negative impact on indoor air quality air inlets will need to offer some means of attenuating pollution levels. A range of pollution attenuation strategies for air inlets is provided in Table 4.1. The aim of the design tool is to suggest suitable air inlets for buildings in relation to their environment. The tool is fully interactive, so allows the user to determine their inlet requirements.

Guidelines for Minimising the Ingress of Urban Pollution

Table 4.1Air inlet pollution control strategies, suitable for non domestic
buildings

type	pollution control strategy						
1	inlets without pollution control features						
2	inlets that can be closed during peak traffic periods						
3	inlets with noise attenuation features alone						
4	inlets with particle attenuation features alone						
5	inlets with both noise and particle attenuation features						

SIZING AIR INLETS

A minimum ventilation rate of 5 air changes per hour should ensure "sensible cooling" for most of the summer, in temperate climates (10). This requirement partly influences the size of air inlets suitable for non domestic buildings, as will the natural ventilation strategy adopted. Three models have been developed based on three approaches to natural ventilation (11). The models are based upon stack, wind and combined stack-wind driven ventilation. Equations 4.2 and 4.3 describe the models available in the design tool.

Stack Driven Ventilation

$$A = \left(\frac{Q}{C_{d}}\sqrt{\left(\frac{2}{\rho_{ins}}\right) \rho_{ins} g \left(h - h_{NPL}\right) \left(\frac{T_{ins} - T_{out}}{T_{ins}}\right)}\right)$$
 4.2

Wind Driven Ventilation

$$A = \frac{Q}{C_{d} \sqrt{\left(\frac{2}{v_{ref}^{2} \Delta C_{p}}\right)}}$$
4.3

where;

$$\Delta C_{p} = \{C_{p}(0.5\rho_{out}v_{ref}^{2})_{inlet}\} - \{C_{p}(0.5\rho_{out}v_{ref}^{2})_{outlet}\}$$

$$4.4$$

The combined stack-wind ventilation model draws on both equations 4.2 and 4.3. The models can be used for buildings of any number of floors and each can have different ventilation rates if so required. The design temperature can be selected to reflect local meteorological conditions, the same applies to the choice of reference wind speed. Other data inputs relate to the dimensions of a building.

55

CONCLUSIONS

All issues that have been raised in this review are contained within the interactive design tool. Information can be accessed as a simple summary schematic, or if more detail is required, as a series of tables that address the full range of pollution issues associated with urban environments. The goal is to suggest the most suitable type of air inlet given the environment surrounding a building, and then to size them in order to provide adequate ventilation for most of the year. In appendix 1 the start options of the design tool are shown. These amount to the option of entering the full checklist by table format, or referring to the schematics that summarise all noise and contaminant pollution issues. Appendix 2 summarises the air inlet pollution attenuating options that are available, whilst appendix 3 outlines data inputs and outputs relevant to sizing inlets.

ACKNOWLEDGEMENTS

This work is part of the Pan-European NatVentTM project coordinated by Belgian Building Establishment with the participation of Belgian Building Research Institute (Belgium), TNO Building & Construction Research (The Netherlands), Danish Building Research Institute SBI (Denmark), J&W Consulting Engineers AB (Sweden), Willan Building Services (UK), Sulzer Infra Lab (Switzerland), Delftt University of Technology (The Netherlands) and Norwegian Building Research Institute (Norway). The UK participation in the project is funded in part by the European Commission under the JOULE-3 programme and the Department of the Environment under the Partners in Technology (PiT) Programme.

REFERENCES

- 1 Liddament, M., (1996); 'A Guide to Energy Efficient Ventilation', AIVC, p.23.
- 2 Kruger, U.,(1994); 'Location of Air Inlets to Buildings situated in Urban Environments', Air Distribution in Rooms, proceedings of 4th international conference, vol. 2, pp 373-387.
- 3 DoE, (1993); 'Diesel Vehicle Emissions and Urban Air Quality', Quality of Urban Air Review Group, University of Birmingham.
- 4 Perera, M.D.A.E.S., et al., (1991); 'Assessing Intake Contamination from Atmospheric Dispersion of Building Exhaust', AIVC, proceedings of 12th international conference, pp 347-357.
- 5 Peliza, S., (1994); 'Noise and Natural Ventilation', J. Building Services, pp 49-50.
- 6 Ajiboye, P. et al., (1997); The Significance of Urban Pollution and its Dilution associated with Height', Ventilation and Cooling, AIVC, proceedings of 18th international conference, pp 257-266.

- 7 Booth, W.B., et al., (1996); 'Location of Ventilation Air Intakes', The Building Services and Information Association, DOE.
- 8 Wilson, D., (1976); 'Contamination of Air Intakes from Roof Exhaust Vents', ASHRAE TRANS., vol. 82, part 1.
- 9 Lepage, M.F. and Schuyler, G.D., (1990); 'How fresh is Fresh Air', Indoor Air Quality and Climate, proceedings of 5th international conference, pp 347-357.
- 10 Irving, S., (1996); 'The Role of Ventilation in Cooling Non-Domestic Buildings', Technical Note 48, AIVC, p.1.
- 11 Irving, S., et al., (1997); 'Natural Ventilation in Non-Domestic Buildings', CIBSE Design and Applications Manual, pp. 55-57.

LIST OF SYMBOLS

NO_2	nitrogen dioxide.
NO	nitrogen monoxide.
CO	carbon monoxide.
SO ₂	sulphur dioxide.
O ₃	ozone.
D _{min}	minimum dilution factor at a fixed distance from an exhaust vent.
$U_{\rm H}$	reference wind velocity (m/s) at height H.
Qe	volume flow rate of exhaust emissions $(m^{3/s})$.
r	distance between exhaust vent and air intake (m).
Α	area of inlet (m ²).
Q	air flow rate $(m^3 s^{-1})$.
C _d	discharge coefficient.
ρ_{ins}, ρ_{out}	air density inside and outside a building, respectively (kg/m^3) .
g	acceleration due to gravity (m/s^2) .
h, h _{NPL}	height of inlet and height of neutral pressure level, respectively (m).
Tins, Tout	temperature inside and outside building, respectively (K).
v ² _{ref}	reference wind velocity (m/s ¹).
ΔC_p	difference in pressure coefficient between inlet and outlet.

APPENDIX 1 Front end of interactive design tool, for locating and sizing air inlets

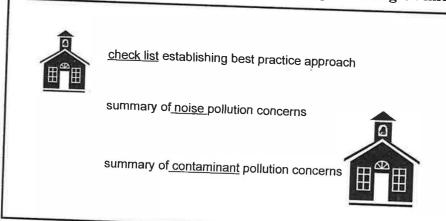
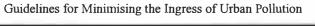



Figure 4.3 Best practice when installing air inlets into buildings that are situated in urban environments

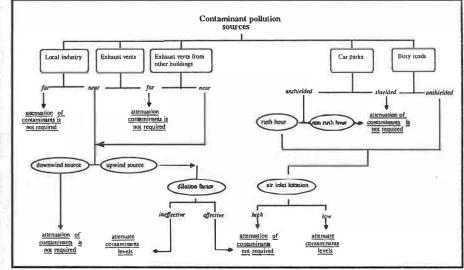
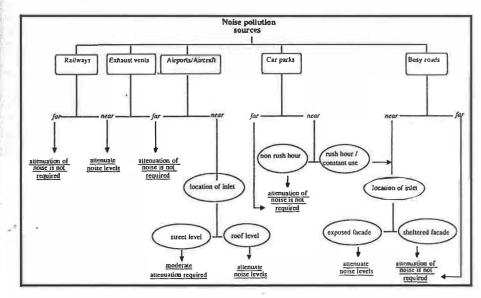
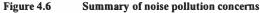
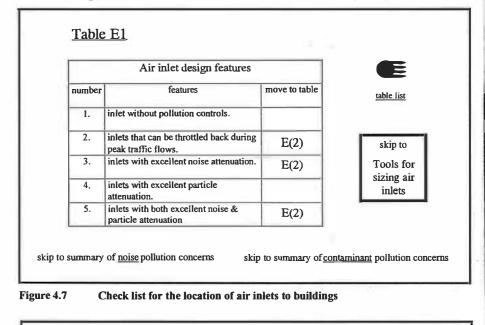




Figure 4.5 Summary of contaminant pollution concerns

	Table A: Table B(1): Table B(2): Table C(1): Table C(2): Table D(1): Table D(2): Table D(3):	Location of facade relative to transport generated pollutants. Height of air intakes. Alternative pollution sources. Building exhaust vent problems. Dilution of exhaust gases. Proximity to other buildings. Noise associated with environment.
	Table D(3):	Proximity to industrial emissions.
	Table E(1):	Air inlet design features.
	Table E(2):	Office use in relation to noise attenuation requirements.
F	igure 4.4 Check	list for the location of air inlets tobuildings



59

Indoor Air Quality

APPENDIX 2 Air inlet options for naturally ventilated buildings in urban areas

<u>Table E (2)</u>

Nature of office on noise attenuation requirements :						
description of room	noise attenuation features desired	table list				
Noise sensitive offices.	 locate rooms on sheltered facades if possible. locate rooms near ground level where aircraft noise is a problem. 	skip to				
Open plan offices.	- additional air inlet noise attenuation required to account for reduction in partition area.	Tools for				
Cellular offices.	- comparatively less noise attenuation required for air inlet due to greater room absorption.	sizing air inlets				

skip to summary of noise pollution concerns skip to summary of contaminant pollution concerns

Figure 4.8 Check list for the location of air inlets to buildings

	5774	1.17	SIZING	15 P. 1	(Mondal)	Te65	De	ita 1	Mind	am' is	Becg:	alt C	15 John			
H3	_			and the second		all officially										
	_	10	0 10	and the second	COLUMN TOCIMA	Column a strengt	SOLUTION OF	STATES.	MABE	CAC	AD' =	10 AEM		TAGE!!!	AH	INTERNA INTERN
2011			State of the local division of the	Contraction of the											8	
							-									-
letermi	nation	of ope	ning ve	nt size f	or stack an	nd wind ve	ntilatio	n								
										1		?	data ou	puts		
		put are	as	-		Tems. ("S)	Values	waitz	1			1 1				-
lata inpi	sts							-				Data or	utputs			-
	Hants	in build					6			-	1					
	Theers	m bune		1 2	1			1				-				
low high	is each	fiont 7					3	m				Outlet	opening	area:	1.6003	m
		A Contractor					-	-				Floor	ACH	lolat or	pening a	real
tow high	is the	stack ou	tlet regi	on			5					1	5	0.0735		
								-		-		2	5	0.0797		200
that is t	the floor	ntes d	each lle	or 7			40	m²				3	5	0.0827		
												4	5	0.0871		1
How high	is open	hing from	flost T				1 85	m				At the lot of the lot	5	0.0984		
1				-				-				5	4	0.0304		
New high	h is out!	et from I	IPL T		1.5		2	m	1		1	0	-	0.0113		
		-				27		K								
What is	the tem	permute	in the l	over sta	ch slices ?	20	300	K			100	1	1			
			1		CONTRACTOR OF	Contraction of the local division of the loc	1	K	-	1.	-	-	T		1	1
What is	the tem	perature	diferen	ce betw	een stack sli			10	-	1	1		-			
When is	-	ide sta	ck tempe	rature 7		25	298	ĸ			-		-			
WALL IS	the out		1	1				1				-	1	-		1
What is	the rele	tence w	ind velo	city at th	e top of the	building t	3	ms		-		Basic a	ir inlet a	hit	no. per	
What is	the des	ired sir	change :	ste per	leer (sch-1)	r		1		-		Size =	1 40000	1 2	THOOT	
1	2	3	4	5	5	-	-	1		-		- Outersteiner	1.			1
5	5	5	5	5	4			-		-		(Le.)	0.04	m		
leave Al	CH data	entry a	reas BLA	NK when	e there are	no floors	1	-			-	Floor				
what pe	rcent of	the flee		is nech	inically venti	ilated ?		-					0.073	1.2	2	1
10	5	5	5	0	10		-	-				1	1		2	
		1	1.200		1						-	2	0.080		2	
							1	1	1	1		3	0.08		- 4	

APPENDIX 3

Figure 4.9 Data inputs and outputs of the combined windstack ventilation model