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Zonal models have been proposed to bridge the gap between the whole-building macroscopic 
modeling methods of programs like CONTAM or COMIS and the more detailed microscopic 
modeling metho.ds based on solutions of the time-smoothed Navier-Stokes equations for room 
airflows. This paper identifies a critical shortcoming of conventional approaches to zonal modeling by 
introducing alternative approaches a) to formulate the key cell-to-cell flow relations upon which zonal 
models are based and b) to assemble the zonal system equations. Conventional cell-to-cell flow 
relations based on boundary power-law formulations appear to capture gross aspects of the flow 
structure in rooms but fail by orders of magnitude to properly model the resistance offered to airflow. 
Cell-to-cell flow models based on surface drag momentum transfer may mitigate this shortcoming and 
appear to capture room airflow structure more accurately. Furthermore, these flow models offer a 
means to provide quick approximate solutions of room airflow problems (i.e., based on linear 
formulations of cell-to-cell flow relations) that may be acceptable for certain purposes or can be used 
as initial estimates for the solution of the more accurate nonlinear formulations of zonal problems. 
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INTRODUCTION 

A number of innovative mechanical and natural ventilation, cooling and heating strategies put forward 
in recent years depend critically on the details of airflow within rooms and their variation with time. 
Whole building macroscopic models, such as the CONTAM and COMIS models (Pelletret and 
Keilholz 1997; Walton 1997), have been developed to predict time histories of bulk airflows into, out 
of and between rooms in building systems but ignore the details of room airflows altogether. 
Microscopic models, on the other hand, provide this detail but can not yet be applied to studies of 
complex whole building systems, are often limited to steady conditions, and demand personnel and 
computational resources well beyond that of current macroscopic modeling tools. Consequently, a 
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number of proposals have been offered to extend available macroscopic mouds to provide at least an 
approximate evaluation of the details ofroom airflows for whole building anm�l simulation studies. 

These zonal models have quite logically been formulated by subdividing rooms into a relatively small 
number of discrete control volumes or cells, formulating heat and mass transfer relations that 
approximate exchanges between these cells, and assembling these relations into system equations 
using fundamental conservation principles. In the Systems Dynamics literature such formulations are 
identified, generically, as continuity laws and are often contrasted to the alternative compatibility laws 
that may be used to formulate macroscopic system equations (Shearer, Murphy et al. 1971). In the 
zonal modeling context a compatibility approach would use a similar subdivision of a room into cells 
but would assemble system equations based on so-called path laws or loop equations. 

The compatibility approach to zonal modeling has, apparently, been largely ignored. This paper will 
explore this alternative approach. In addition, the formulation of the key mass transfer relations that 
describe cell-to-cell airflow rates in existing zonal models will be critically reviewed and an alternative 
approach based on momentum transfer to surrounding walls will be presented. Comparisons to 
existing zonal models will be made and simple applications of these alternative methods explored. 

THEORY 

The general approach to zonal modeling employed here follows what has become common practice in 
the field (Allard 1998; Wurtz, Nataf et al. 1999). A room is subdivided into a number of control 
volumes or cells; temperature and pressure fields within the room, T(x,y,z) and p(x,y,z), are 
approximated by discrete values, T; and p;, associated with nodes located within each cell; and system 

equations are formulated that relate the cell-to-cell air mass flow rate, m;,j, with these approximate 

state variables, Figure l a. This common zonal model is analogous to a resistance network laid out on 
an orthogonal grid or mesh, Figure 1 b, with node voltages V; and currents i;J corresponding to node 
pressures P; and air mass flow rates m;,j· 
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a) Typical Zonal Model b) Analogous Resistance Network 
Figure 1 A multi-cell room model and analogous electrical resistance network. 

Here, within each cell, temperatures are assumed to be uniform and equal to the cell discrete value T; 
and pressures are assumed to vary hydrostatically about the cell discrete value P; as: 

T(x,y,dcell i = T; p(x,y, dee//;= P; - P; g Z; ( 1, 2) 

where x and y are taken as horizontal coordinates, z is the vertical coordinate, z; is the local elevation 

relative to the cell node, and P; is the uniform air density within the cell. 
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svstem equations may then be formulated using one of two fundamental principles -continuity of flow 
ai each node (i.e., mass or energy conservation in the zonal model or current continuity in the 
resistance network), or compatibility of state variable changes as one traverses any path around a 
continuous loop in the model: 

Continuity L,mkJ-L,mj,I = 0 ; {LikJ-Lij.1= o} (3) 
k I k I 

Compatibility �(P; -pJ= 0 ; 1�(1-i-VJ= o} (4) 
IJ IJ 

where k and I are permuted through the indices of all adjacent cells (i.e., up to six cells in the 3D case) 
and i,j in Equation 4 are permuted through the indices around a given loop. 

Si·stem Equations: Commonly, the continuity approach has been applied in zonal modeling by 
t�)rmulation of inverse expressions that relate the cell-to-cell air mass flow rates to the linked state 
,·ariables as: 

Inverse Flow Expression: m;, j = g(p ;, T;, pj, Tj) ; {i;,j = 1!,.V;j R;,J} (5) 

System equations are then assembled by systematically applying the continuity equation (Equation 3) 
to each node using Equation 5 or semi-empirical expressions for known jets or plumes in the room. 
Coupled systems of nonlinear equations are thus obtained that may be solved to determine the cell state 
variables p; and T;. Unknown air mass flow rates are then recovered using Equation 5. 

/\ltematively, forward expressions may be formed that relate pressure changes to air mass flow rates 
and node temperatures as (with dP;, j = P; -p): 

Forward Flow Expressions: dPi,J = J(m;,j,'I'; :rJ ; { dV;,1 = i;JRi,J} (6) 

In this approach system equations are then assembled by systematically applying the compatibility 
equation (Equation 4) to each of a set of independent loops and complementing this set of equations 
with the node continuity equation (Equation 3) applied at (n-1) of the n nodes of the zonal model. 
Graph theory reveals that the simple mesh loops linking four adjacent nodes (e.g., the directed loops 
with hypothetical flow rates Ma, Mb, ... in Figure la or analogously 10, lb, ... in Figure 1 b) yield an 

independent set of loop equations (Shearer, Murphy et al. 1971). Furthermore, for linear forward flow 
expressions the system equations may be defined in terms of these hypothetical mesh loop flow rates to 
minimize the number of system equations. The influence of known room jets or plumes is, in this 
case, used to constrain individual loop equations. 

Cell-to-Cell Mass Flow Expressions: Inverse flow expressions have been based on methods used for 
large openings. In this approach flow resistance is assumed to occur at the boundary between cells, 
Figure 2a, and a power-law relation is assumed to govern the differential mass flow dm;,J through 

differential areas of the boundary dA as: 

din .. = Cp(M . )" dA l, J 1,J (7) 

C is an empirical "permeability" constant, analogous to the orifice discharge coefficient, that is 
assumed to have a value less than 1.0 with one recent study concluding a value of 0.83 m·s·1·Pa-n being 
most reliable (Wurtz, Nataf et al. 1999). The power-law exponent n is often taken as n = 1/2 which 
corresponds to the orifice equation and the air density p taken as the average of adjacent cells. 
Finally, the driving pressure difference /!,.f';J follows directly from Equation 2 above: 

df';,1=(p;-p;gz;)-(p1-P1gz1) (8) 
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a) Cell Boundary Power-Law Flow Model 
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b) Surface-Drag Momentum Balance Flow Model 

Figure 2 Conventional a) and proposed b) cell-to-cell flow idealizations. 

Expressions for the cell-to-cell air mass flow rate m;,j may then be derived by integrating Equation 7 

over the cell boundary area. For isothermal flow in a 2D flow regime of arbitrary depth 8 one obtains: 

,n. ·=fdm·. =Jt::.s1
2 

cp(ti.P -)118ds=Cp8ti.s(ti.P . )" 
(9) I,) l,J -1!.s /2 I,) I,) 

This model implicitly assumes viscous dissipation occurs only at the boundary - a reasonable 
approximation for an orifice but not room airflows dominated by surface drag. Thus when applied to 
airflow through a room, the total pressure drop will depend linearly on the number of cells used -
clearly not a reasonable outcome. Furthermore, when recast in forward form and used to form loop 
equations, the flow solution proves to be independent of the permeability coefficient C! 

An alternative approach may be developed by considering the transfer of shear stress near wall 
surfaces using a momentum balance on differential flow conduits linking adjacent cells, Figure 3b. 
For a flow conduit oriented parallel to the nearest room surface, pressures integrated over the ends of 
the conduit must balance (time-smoothed) shear stresses :rs,acting over the length of the conduit: 

<ff ti.P;1-8ds=-=8ti.rds (10) · ds' 
where s' and r' are local normal and tangential coordinates to the surface and ti.r is the cell width 
parallel to the surface. The shear stress may be related to the (time-smoothed) velocity profile 
perpendicular to the wall u(S) using the fundamental relation for Newtonian fluids for laminar flow 
and, here, Prandtl's mixing length relation for turbulent flow that has proven to be effective in CFD 
simulations of room air flow (Chen and Xu 1998): 

Laminar Flow: 1',, =-µau 
ds 

_ 2 2(du )2 
Turbulent Flow: 7:sr = - p1C s' -

ds' 
(11, 12) 

where IC is a "universal constant" with empirically determined values ranging from 0.36 to 0.40. 

To effect closure, relations for the velocity profiles are needed - for this empirical equations of the 
following form for laminar and turbulent flow respectively may be used: 

Laminar Flow: u=umaxsin(7ts/2S) Turbulent Flow: u=umax(s/st (13, 14) 
where umax is a hypothetical asymptotic maximum approached as s' � S, S is a characteristic room 

dimension taken as half the dimension between opposing room walls, and a is an empirically 
determined coefficient. Well-developed turbulent velocity profiles in tubes and ducts are well 
approximated with a= 1/7 - the value that will be used in subsequent applications. 
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Finally, flow relations may be derived by substituting these expressions into 'the momentum balance, 
Equation I 0, and integrating over the cell height tis. For isothermal condition:: one obtains: 

µ rr.2 fir :,.2a3 fir 
20 Laminar: tiP; 1. = 2 m; 1· 20 Turbulent: tiP; 1. = 2k ,.-2--3 m,· 1.2 (15, 16) 

· 4pS 8 tis · ' p8 tis · 

l lcrc, ks is defined uniquely for each cell position n5 = 1, 2, :S, . .. relative to the nearest surface with 

k 1 = 4/ ( 4n, - 3) for central cells of odd meshes or k 5 = '2/ (2n5 - l) for all other cells. The extension of 

tl;is cell-to-cell airflow model to 30 flow regimes and nonisothermal conditions is straightforward. 
)).:tails are available from the author and will be presented in other publications. 

APPLICATIONS 

1 so thermal applications of zonal models should reasonably be used for validation before consideration 
(lr more challenging nonisothermal cases are considered. Two cases are considered below. 

J)11c1 Flow Modeling: The 30 variants of both the laminar and turbulent surface drag cell-to-cell flow 
models, Equations 15 and 16, and the power-law boundary flow model, Equation 9, with n=l/2 were 
applied to the problem of modeling airflow through a 6m length of a square duct 2m x 2m. Four 
turbulent surface-drag idealizations were considered utilizing lxl, 2x2, 3x3, and 4x4 cell subdivisions 
across the section and 4 cell subdivisions along the length of the duct. These were compared to lx lx4 
cell subdivisions of both the laminar surface-drag model and the conventional power-law model as 
cross-sectional subdivision has no impact on the results using these flow models for this particular 
flow problem. 

- --

1000 1-- 1 ... -:---
__ - - - - - nxnx4 Laminar Surface Drag Models 

100 

(kg Is) 
1 

------

--- --- - nxnx4 Turbulent Surface Drag Models 
- .- ······� --Ctassic oU.cl Relatlon .... .... .. -····· .......... . : ..... :::·:.:::::::.::. ...... . .. . 

0.01 

f= o,9g2...I. . . :.:::::: .... 
::.:.:::::::::::::::::::.: .... ..... ..... -.. ..... ..

....... . · 

- - ---

0.1 �P(Pa) 10 
Figure 3 Comparison of modeled duct pressure-flow relations for the surface drag and power-law flow 

models and the classic Darcy-Weisbach equation for friction factors from/= 0.01to0.002. 

The turbulent surface drag idealizations produced duct pressure-flow relations essentially identical in 
form to the classic Darcy-Weisbach equation, adapted to rectangular cross-sections via the hydraulic 
radius approximation, with effective duct friction factors off.ff= 0.0034, 0.0034, 0.0038, and 0.0040 
for the lxl, 2x2, 3x3, and 4x4 cross-sectional subdivisions respectively, Figure 3. Likewise the 
laminar surface drag idealization yielded duct pressure flow relations essentially identical in form to 
the classic Hagen-Poiseuille solution for the laminar case. Given the appearance of the cell­
subdivision length f:i.r in both of these surface drag models, these idealizations yielded results that 
were independent of the number of longitudinal cell subdivisions used. Furthermore, the turbulent 
surface drag idealizations provided reasonable approximations to the velocity profiles across the duct 
that improved with cross-sectional subdivision. 

The power-law idealization, on the other hand, yields pressure-flow relations that depend on the 
number of longitudinal cells used and does not provide any approximation of the velocity profile. For 
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the 4-cell subdivision considered the resulting pressure-flow relation exhibited significantly greater 
resistance (i.e., by greater than an order of magnitude) for turbulent flow than the classic solution. 

2D Forced Convection: The proposed surface drag and conventional power-law models were 
combined with well-established semi-empirical wall jet relations (Rajaratnam 1976) to model a 20 
forced convection case studied by Chen (Chen and Xu 1998). Computed mass flow rates are shown 
below in Figure 4 for all idealizations. In this particular problem air is injected at the ceiling at a mass 
flow rate of 90 g/s (Re= 5,000) and is exhausted at the opposite floor. 

Computed results are ordered by model as: (turb. surface drag, boundary power-law, lam. surface drag). 

E 
70,56, 101 � 0 

eo.G-O. ts s 90 

Figure 4 Comparison of computed results for a 20 forced convection problem. 

Broadly speaking all cell-to-cell flow models provide similar results that compare reasonably well with 
the measured data and CFO computed results reported by Chen, although the turbulent surface drag 
model captures the nature of the flow intensification at the right wall more faithfully. Again, the 
power-law flow model resulted in a pressure drop from inlet to outlet that was over two orders of 
magnitude greater than that produced by the turbulent surface drag model. The success of the laminar 
surface drag model is perhaps most significant as this model produces linear system of algebraic 
equations, by either the continuity or compatibility approach, that may be easily solved. Furthennore, 
a very compact compatibility (loop) formulation of the system equations is possible using the 
hypothetical mesh loop flow rates discussed above. For quick approximate analysis the (linear) 
laminar surface drag solution may be acceptable. Alternatively, it may be used as a starting point for 
the solution of the much more difficult nonlinear analyses resulting from the use of the other models. 
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