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ABSTRACT 

Part I of this paper discussed the theoretical consider­
ations of creating a nonlinear black box model. In Part JI, the 
constraints on the nonlinear model imposed by the app lication 
are discussed.followed by presentation of the model structure, 
training method, input selection, and input transformation. 
The test results of app lying the proposed model with the 
selected features to five test bu ildings are discussed nex t. One 
of the test buildings (Zachry Engineering Center) selected for 
this study was also used in a previous study as a p art of energy 
prediction competition (Haber! and Thamilseran 1996). The 
proposed model is also compared with other black box models 
(l inear and nonlinear). The conclusion of this paper is that the 
prediction accuracy depends heav ily on the building to which 
the method is app lied. The more regular the operation of a 
bu ilding is! the better the model approx imates the actual data. 
In this respect, the Zachry Engineering Center is an ideal 
candidate for modeling, while some of the other buildings 
exh ibit more irregular behav ior. 

MODEL SELECTION 

Application Constraints 

The man hours put into designing a building-specific 
model cannot be justified in practice. The goal of this study is 
to design a model that can be used on any building without 
changes to the model's design. A number of constraints can be 
drawn up to ensure minimum changes to the model design. 

Fixed design. Over- or underfitting cannot be compen­
sated by changing the structure of the model but must be 
avoided in the algorithm. 

Reproducibility. The output of the model must be inde­
pendent of initial settings. In other words, if the same 
day is tested a second time with the same inputs and 
training set, the output must be the same. 

Automated input selection. The input selection and 
transformation should be automated as much as possi­
ble. 

Data update. Since the building state is not static, the 
database from which the model estimations are made 
tend to become outdated. As a result, the model must 
adapt to new data in the database. It is necessary to 
ensure that the quality of the database is good before 
model estimations are made. 

Robustness. The model must be robust with respect to 
incomplete data. 

Choice of Structure and Training 

The following decisions must be made in order to fulfill 
the requested goal: 

Model structure 

Global/local training range 

Data point selection 

• Clustering 

• CBR method 

Model Structure 

As stated in Part I, the selected model structure is static. 
The main reason for not investigating dynamic structures is 
their complexity compared to static structures. Since the 
model must perform with any building data, the model should 
be as simple as possible. 
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The static model structure used in the proposed model as 
discussed in Part I is the general regression neural network 
(GRNN) or conditional mean as a normalized radial basis 
function (RBF) network. The following considerations were 
made to cltoose a normalized RBF over a multi-layer percep­
tron (MLP) structure: 

The advantage of RBFs compared to the distributed 
architecture of MLPs i U1at local units can .adapt to 

local patterns in the data without having unwanted s ide 

effects in other regions. fo a distributed architecture 
such as a MLP, adapting the n.etwork to fit a local pat­

tern in the data can cause unwanted side effects in other 
parts of the input space. This is Lnte especially since data 
updates may only pertain to a certain area of the input 

space (e.g., a ch i ller replacement woul.d probably only 

affect lhe cooling season). MLPs could cause such 
changes in other parts of the inputs space (e.g., heating 
season). 

Since U1e model must perform well with any given data 
set, the MLP could result in overfitting with one data set 
and underfitting with another due to the fixed number 
of neurons in the hidden layer. Although it is possible to 
use an algorithm that adds neurons depending on the 
data set, it is easier to select a normalized RBF architec­
ture that automatically adapts the number of activation 
functions to the number of training vectors. 

Based on these two considerations, a normalized RBF 
network is preferred over an MLP. The next consideration is 
the reason for choosing a GRNN as the normalized RBF. 

Compared to GRNN, other normalized RBF networks 
(and the MLP as well) have more free parameters to be 
optimized. This increases the chaL1ce of achieving local 
minima during optimization, tbereby possibly compro­
mising the reproducibility. With GRNN, only one 
parameter (the smoothing parameter) has to be opti­
mized. 

Global/Local Training Range 

Local training has been selected for the proposed model 
based on two considerations. 

1. Local training can be faster than global training since not 
all training data are used during computation. If there 
were 10,000 training vectors in the whole set, a GRNN 
trained globally with a validation set of 2000 vectors 
would take 20 million distance calculations. Using local 
training with a subset can reduce calculations drastically. 

2. With GRNN, only one smoothing vector is calculated for 
all kernels. Using GRNN with local training still has the 
benefit of optimizing only one free parameter but also the 
benefit of having a different smoothing parameter per 
subspace. This enables a better adaptation to local 
patterns. 
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Data Point Selection 

The next decision concerns using a clustering algorithm 
or a case based reasoning (CBR) method for data point selec­
tion for local training. 

Clustering Algorithms 

Jn 1,art I clustering was proposed for local training. 
Ce1tain constraints however, apply to the clustering algorithm 
for benclunarki1lg. 

a. The algoritlun must be robust. The algorithm must a.lways 
resu.lt in tbe same clusters regardless of its initial settings 
or the presentatiou order of the data points. This con­
straint is directly related to the reproducibility constraint. 

b. The number of clusters should be defined by a conditional 
distance or probability density rather Uian by a prior cho­
sen number. For different buildings different clusters can 
be distinguished in the data sets, as well as a different 
number of clusters (e.g., for an office building, weekends 
and workdays may need distinct clusters; whereas for a 
hotel or a hospital, weekend loads may not be distinguish­
able from general workday [weekday] load ). 

c. The clustering should be fast since the data sets used for 
the modeling must be easy to update. Robust clustering 
methods require a lot of computation time, since all 
points in the data set must be compared to one another. 

Knowledge-based clustering 

It is not easy to find clustering criteria relevant to any data 
set . Clustering based on knowledge ofbuilding operations for 
every building is too expensive and commercially notjm;tifi­
ablc. 

K-mean clustering 

It is already obvious from the name of this technique that 
it does not comply with the second constraint. As mentioned 
in Part I, this method assumes a fixed number of clusters. Part 
I also mentions that the k-mean algorithm is influenced by the 
initial assignment of the centroids and, therefore, does not 
comply with the first constraint either. However, the latter 
problem could be solved with a pseudo-random selection of 
the i11itial assignment. However, this does not guarantee an 
optimal clustering and does not solve the fixed cluster prob­
lem. 

Kohonen's self-organizing feature 

map (SOFM) algorithm 

With Kohonen's self-organizing feature maps (SOFM), 
the fost constraint poses a problem. The fon11ing of the clus­
ters does not depend on the initial settings but is influenced by 
the presentat ion order. TI1is problem may be elimiuated by 
offering the data points in a pseudo, or nonra1idom, way to the 
Kohonen algorithm. To compare simulations a constant seed 
is often used. Another problem is that SOFM suffers from 
boundary effects. This boundary effect is due to the fact that 
the output nodes at the boundary of the neuron-grid need too 
much time to adapt to the extremes of the input set. 
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Figure 1 Both clustering methods in A and B have the 
same clustering error and, therefore, have a 
correct representation. lf the X is a test input, the 
vectors belonging to the winning cluster (l ight  
grey) are comparable vectors. The vectors 
belonging to the winning cluster are located in 
th e lowest quarter of the circle in A, but in B the 
v ectors belonging to the winning cluster are 
located in the lower right quarter. The test vector 
X will be comp ared with a different subset for A 
and B. 

Figure 1 shows the problem of random presentation for 
clustering vectors divided evenly over a circle with a two-by­
two Kohonen SOFM. 

The second constraint poses an even bigger problem. 
As already mentioned, with SOFM, the number of neurons 
(= clusters) must be preselected. An adaptive algorithm, 
which adds or reduces the number of clusters depending on 
the underlying distribution, is not incorporated in a SOFM. 

Self-creating and organizing 

neural networks (SCONNs) 

The SCONN neither has the boundary problems related to 
SOFM nor does it need a prior decision on the number of clus­
ters. This cluster method could be a suitable cluster algorithm 
for the application of benchmarking because it complies with 
all three constraints related to clustering. But because this 
algorithm was not found until the end of the project, it was not 
considered. 

There are several other clustering methods, but none of 
the reviewed cluster techniques comply with all three 
constraints. Furthermore, there are application constraints of 
corrupted data. Although the proposed model was not tested 
for this constraint, it should still be taken into consideration 
during model selection. A missing element from an input 
vector would require total reclustering since the clustering 
must be based on one less input dimension. As a result, clus­
tering is not used in the proposed model. 

CBR Method 

There are three reasons for using case based reasoning 
(CBR) for local training. 

1. CBR finds the same training subset every time the same test 
vector is used. 

4373 

2. It is easy to add new training vectors since a newly calcu­
lated approximation is made for every new test vector. A 
new training vector will, therefore, be included automati­
cally if it lies close enough to the test vector. 

3 .  If  a test vector is  corrupted and an element in the vector is 
missing, the distance criterion can easily be based on one 
less dimension . 

CBR Choices 

In Part I, the following four CBR methods are presented: 

• Knowledge-based decisions 

• Fixed radius 

• Fixed number of vectors 

• Adaptive radius with a preset minimum number 
of training vectors 

The decisions for selecting the relevant training vectors 
for all four methods are based on a rule of thumb or are deter­
ministic. For the first method, the question is on which infor­
mation to base the selection. The radius and the number of 
vectors still have to be chosen for both the second and third 
methods, respectively. For the last method, the relationship 
between the density estimation and the adaptive radius must 
be defined. 

With a fixed radius, the radius selected may not lead to a 
training set that is big enough for a good estimation. On the 
other hand, a fixed number of vectors may compromise the 
ability of the model to adapt to local patterns. 

For the proposed model, a combination between the first 
and the last possibility is used. The first selection will be 
knowledge-based, after which the number of vectors in the 
subset is further reduced using an adaptive radius method. 

Knowledge-based decisions 

Since weather conditions and the occupancy level are 
mostly dependent on the time of year and the time of day, the 
data set is reduced by assuming the following: 

Most buildings are occupied during office hours. The 
load at night and during the day probably have different 
dependencies. Consequently, only training vectors fea­
turing a similar hour time-stamp are used. 

The load dependencies in summer and in winter are 
most likely different because different systems are often 
in operation (heating in the winter and cooling in the 
summer). As a result, training vectors that are not more 
than 60 days apart from the test vector in the date stamp 
are selected. 

Adaptive radius with a preset minimum 

number of training vectors 

Reduction of this subset of training vectors is performed 
using a radius dependent on the Parzen density estimation, as 
suggested in Part I .  The relationship between the adaptive 
radius and the density estimation is determined by trial and 
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Figure 2 The relationsh ip between f(x) and p as found 
with experiments. 

error during experiments. Thus, this method equates to a mere 
rule of thumb. The following relationship is used: 

PW = Pmin + e {�) 
where 

p = selection radius. 

(1) 

f(x) = probability estimation oftest vector1_calculated with 
the Parzen density estimation. The fix) can be 
estimated from any suitable function expression as 
indicated in Equations 9, 10, or 1 1  in Part I. 

Pmin = constant minimum radius (Pmin is set to 0.1 for all 
tests). 

c = constant (c is set to 0.3 for all tests). 

The case based reasoning (CBR) method is based in part 
on knowledge and the adaptive radius method. Hereafter, 
CBR will be used to refer to this selection method. 

The proposed model is locally trained :with a training 
subset that is obtained with the CBR method. The general 
regression neural network (GRNN), as a normalized radial 
basis function (RBF) structure, is used for the calculation of 
the approximation. 

INPUT SELECTION 

It is advantageous to make a fully automated input selec­
tion from a building database to model the energy usage of a 
building. For the selection to be automated, it must first be 
clear what kind of time-series are present in the database and 
where in the building the measurements are taken. Secondly, 
information is needed to indicate the relevance ofa particular 
time-series to the whole building energy usage. 

4 

A practical problem arises with the first condition. There 
are several BEMS with their own database structure. The 
signal information and the location are described in a descrip­
tive field as a string of characters instead of by special 
predefined codes. Therefore, an automated interface to select 
the requested inputs is often problematic or even impossible. 

The second condition is not easy to comply with either . 
The purpose of the modeling is to find the underlying relation­
ship between the measured signals obtained from a building 
and its energy usage. It is possible to use all available inputs 
in a neural network that updates the input weights during train­
ing (e.g., a feed-forward back-propagation network). The 
weights for nonrelevant inputs should tend to move toward 
zero. In reality, these weights do not become exactly zero 
because a relationship always exists between two finite time­
series. With fairly short time-series, a cross-correlation may 
be quite big, even between two physically independent vari­
ables. 

With networks such as GRNN, the inputs are not 
weighted and other methods have to be used to find the rele­
vant inputs. There are some linear multiple-regression tech­
niques that can discriminate between the inputs. A Bayesian 
framework (MacKay 1994) is used for this purpose. It is, 
however, not proven that either method finds the relevant 
inputs for every possible problem. Extensive trial-and-error 
runs for every building in order to find the best combination of 
input variables represent another option but may take very 
long and are therefore commercially unattractive. 

The design of an automated input selection procedure 
would probably be very difficult. Since building an automated 
selection procedure is not the main objective of this study, 
designing such a procedure is left to further study. In the 
proposed model, the building operator (or user) chooses the 
inputs because a building operator is able to interpret the text 
in the description field of a database and guess which variables 
are relevant and which are not. 

A selection must be made from the following possible 
inputs: 

Date-stamp: year, month, and day 
Day-type information: working or nonworking day 
Outside air temperature 
Relative or absolute outside air humidity 
Solar radiation 
Time-stamp: depends on the sample frequency (e.g., 
daily, hourly, or ones per 10 minutes) 
Wind speed 

Certain building data sets include all inputs or even multi­
ple inputs of the same class. The building operator could be 
guided by a setup program that asks for the point-name repre­
senting a given input class (e.g., most relevant outside air 
temperature). 

In the "Input Transformation" section, a more complete 
list of possible input variables is given. Many building data­
bases do not include all of these variables, and some variables 
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are available only for specific zones within the building 
instead of for the whole building. 

It is also important to keep the number of inputs to a mini­
mum to avoid dimensionality problems as mentioned in Part 
I. In this study, only the date- and time-stamps, the day-type 
information, and the outside air temperature are used. 

Input Transformation 

To make use of the information hidden in the measured 
data, input transformations must be made. The transformation 
depends on the type of variable that has to be preprocessed. 

Representation of Time and Date Variables 

Date-stamp: the date information is converted into the 
day-number of the year (e.g., January 1 = 1 ,  May 5 = 
125, or 1 26 if it is a leap year). 

Time-stamp: this is converted into hours if necessary 
(e.g., 07:40 h = 7.67, 1 8: 12 h = 18.20). 

Day type (working or nonworking day [l or O]): this 
variable should give an indication of the occupancy 
level in the building. In a previous study (Breekweg 
1 995), it was found that a binary occupancy indicator 
can cause discontinuities in the model's output at the 
point of a day-type change. To avoid this discontinuity, 
the occupancy indicator can be made continuous. 

It is also possible to incorporate holiday influences into 
the occupancy indicator instead of having an additional vari­
able. This reduces the input dimension as well. 

The conditional mean is used on the binary signal. As a 
result, the influence of a holiday season is incorporated and the 
signal is no longer discrete (see Figure 3). 

Three occupancy indicators are used. The preceding 
occupancy of 24 hours, the current occupancy, and the occu-

0 

Figure3 
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The continuous output of the conditional mean 
with a binary input. 

pancy in 24 hours. The influence of past and future occupancy 
levels can then be optimized within the model by weighting. 

Representing Environmental Variables 

In this study, a static nonlinear model is used. This means 
that the environmental variables have to either be filtered or 
delayed to include the dynamics of the building in the model. 

With physical insight about the system at hand, this infor­
mation should be used to form new variables by transforming 
the raw measurements. The filter time constants should be 
based on physical considerations if possible. 

Slow-changing environmental variables are expected to 
have a relatively large influence on the building structure since 
the building's thermal capacity is fairly massive. Since 
temperature and humidity are relatively slow changing vari­
ables, larger time windows are chosen for those signals (24-
hour moving average windows). 

Using the current outside air temperature is not expected 
to have an instant influence on the inside air conditions or the 
energy usage. It is possible to calculate a time lag from a cross­
correlation between the outside air temperature and the build­
ing thermal load. Using the temperature corresponding to the 
lag-time gives a better relationship to the energy usage than 
using the current temperature. 

Since the capacity of the structure is relatively large, fast­
changing signals are expected to have relatively little impact 
on the building structure. The long-term effects of fast-chang­
ing signals, such as solar radiation and wind, are eventually 
lumped into the outside air temperature. Conversely, the inside 
air temperature can also be directly influenced by the solar 
radiation. Therefore, short time constants are used for this kind 
of environmental variable. 

As previously mentioned, the only environmental vari­
able used in this study is the outside air temperature. This vari­
able is transformed into three input variables described as 
follows: 

1 .  Outside air temperature with a lag calculated from the 
cross-correlation with the building energy usage. 

2. Twenty-four-hour moving window average temperature 
before the observed value as indicated in item 1 .  

3 .  Twenty-four-hour moving window average temperature 
before the calculated temperature as indicated in item 2. 

Input Scaling 

After the input transformation, the inputs must be scaled. 
This is necessary so that the data are in the range where the 
activation functions are not in saturation. Additionally, all the 
input variables should be approximately equal in size, which 
makes them of equal importance. For networks that don't 
update input weights (e.g., GRNN), prior knowledge of the 
importance of the input variables could be integrated in the 
model by weighting the scaled input according to importance. 
Generally this type of input weighting is not used. For back 
propagation (BP) models, this is not necessary because this 
algorithm incorporates input weight updating. 
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Each of the time series is normalized by subtracting the 
mean value of the time series and dividing it by twice its stan­
dard deviation. 

where 

X-E X' = __ x 

2. <Jx 

X = the normalized time series, 

X = the original time series, 

Ex = mean of the original time series, 

crx = standard deviation of the original time series. 

(2) 

The reason for using this normalization is that the outliers 
were not included in the normalization process. If normaliza­
tion occurs so that all data points lie in the range [- 1 ,  1] or [O, 1 ], 
it is based on the outliers. If outliers are subsequently omitted, 
the normalization of the different data series is no longer the 
same (see Figure 4). The reason for using twice the standard 
deviation is that approximately 95% of the data points will lie 
in the range [-1 ,  1]. In this range, the sigmoid function and the 
radial basis function have a high gradient. 

MODEL PROPOSAL 

The proposed structure of the system is now as follows 
(see Figure 5). 
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Input selection. Only four different raw inputs are 
selected. 

1. Outside air temperature 

2. Time-stamp 

3 .  Date-stamp 

4. Binary signal: working/nonworking indicator 

Input transformation. The following input transforma­
tions are performed: 

1. Outside air temperature is converted into three signals: 

• Tl = outside air temperature with a lag of h 
hours. Lag h is calculated from the cross-corre­
lation between the outside air temperature and 
the energy usage. 

• T2 = average temperature over the 24 hours 
before h. 

• T3 = average temperature over the 24 hours 
before T2. 

2. Time-stamp is converted into hours. 

3 .  Date-stamp is converted into the day number ofthe year. 

4. Binary indicator is converted into three signals: 

• 01 =smooth signal obtained by using the condi­
tional mean with a smoothing parameter of 1 8  
hours (see Figure 3). 
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Figure 4 Graphs Al and A2 are two signals (e.g., two different inputs) that are scaled wi th respect to the maximum and 
minimum v alue of the signal. Graphs Bl and B2 show the same signals normaliz ed wi th Equation 2 .  More than 95% 
of the data points of A2 lie in the range [-I, -0.2], whereas for Al, the range is [-1, l]. The normalization of the 
two sig nals in  Bl and B2 is no t made wi th respect to the outliers, and 95% of the data points lie in approximately 
the same range ([-1, l]). 
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Figure 5 Overview of the different phases in the modeling system. 

• 02 = 0 1  shifted 24 hours back in time. 

• 03 = 01 shifted 24 hours forward in time. 

This adds up to eight input vectors. For daily sampled 
data, Tl is the actual temperature of the day and T2 the temper­
ature of yesterday. T3 is the average temperature of the day 
before yesterday. The binary indicator is directly shifted back 
and forth by one day without using conditional mean. 

Selection of relevant training sets (case based reason­

ing). For each case and test vector, the training set is first 
limited to the training vectors that comply with the following 
conditions: 

a. The day number of the training vector data set must 
be within 60 days of the test vector data set. 

b. The hour of the training vector data set must be 
within three hours of the test vector data set. 

A second reduction of training vectors is performed using 
the Parzen density estimation on the other six inputs and calcu­
lates the radius according to Equation 1 .  

NONLINEAR INTERPOLATION 

GRNN (or conditional mean) is used to compute the 
energy usage estimation. The GRNN returns the estimation by 
performing a nonlinear interpolation. The smoothing param­
eter is not calculated using the holdout method, as this method 
is very time consuming for larger training sets. Instead, the 
smoothing parameter is calculated by taking the nearest five 
data points closest to the test vector from the subset of selected 
training vectors and by using these five data points as a vali­
dation set to calculate the optimum smoothing parameter. The 
smoothing parameter is calculated by minimizing the SSE of 
the GRNN on the five data points taken from the subset. A 
built-in optimization function in a commercial software 
(Beale and Demuth 1994) was used for this purpose. This 
function finds the minimum within a data range based on 
golden section search and parabolic interpolation. After the 
smoothing parameter is calculated, the five nearest data points 
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are again included in the subset and the load estimation is 
computed. The calculation is performed once. The holdout 
method is used once to check both performance of estimation 
and calculation time. Table 6 shows the difference in estima­
tion accuracy and calculation time between the hold-out 
method and the method using a validation set composed of the 
five training vectors closest to the test vector. 

PERFORMANCE CRITERIA 

Three performance measures are used to compare the 
results of different tests. 

Mean bias erro r (MBE): 

" 
L (y pred, i -Y data,;) 

MBE = ·=I x100% 
n · Ydata 

Coefficient of variation ( CV): 

i =I 

CV = -=------n 
____ x 100% 

Ydata 
where 

Ypred, ; = predicted dependent variable value 

Ydata,; = data value of the independent variable 

Ydata = mean value of the dependent-variable test set 

n = number of records of data in the test set 

Robust CV (RCV): 

/) 

L (Ypred, ;-Y data, ;)�0%best 
i= I 

RCV = -=----- --n _____ x 100% Y data, 95% -y data, 5% 

(3) 

(4) 

(5) 
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The third criterion was suggested by MacKay (1994). 
This performance measure neglects the outliers. In this 
measure, the 10% of worst predictions are omitted and 
normalization occurs by dividing the data set by the distance 
between the 5th and 95th percentile of the entire data set. 
MacKay added this performance measure because the CV 
measure implicitly assumes that the residual error from the 
prediction is Gaussian. MacKay's RCV measure corresponds 
roughly to a model that assumes that the residual is Gaussian, 
except for glitches that occur 10% of the time, which are 
uniformly distributed and are much larger than the normal 
residual level. For example, these glitches can be caused by 
sensor failures or data corruption. 

RESULTS 

This section discusses the results with simulated and real 
data. A total of four buildings and one set of simulated data are 
tested. Three of the four building data sets and the simulated 
data set contain hourly time-series. The fourth building data 
set consists of daily time-series. 

All data sets are tested with the proposed model and with 
five to six other models. Two of the models, a GRNN and a 
MLP BP, are implemented in a commercial software package 
(Ward 1995). These models are referred to as NS GRNN and 
NS BP hereinafter in this paper. Three other models follow the 
proposed model except for the nonlinear interpolation/ 
approximation module. This module is replaced with linear 
interpolation, MLP nonlinear interpolation, and the average of 
the selected data points, respectively. 

The Zachry Engineering Center data and the test building 
3 data are also compared with the model designed in a previous 
study (Breekweg 1995). This model is referred to as the Combi 
Net because of its hybrid training method. This model consists 
of two MLPs that are trained with a subset of the training data 
(local training). The outputs of these two MLPs are then 
combined in a third MLP trained globally. 

Unfortunately, it is impossible to give an exact definition 
of the algorithms implemented in the software package (Ward 
1 995). Information of that sort is not provided by the software 
vendor. 

The next section begins with an overview of the extra 
models for comparison, and the selected inputs per method are 
given. Then the results on the simulated data are presented. 
Finally, the results on the real building data are presented. 

Training Methods and Input Variables 

Each data set is tested with six models (Zachry Engineer­
ing Center and test building 3 with seven models). These 
models can be divided according to their training methods, 
global training and local training methods, as discussed in Part 
I. The global training methods are performed with an applica­
tion from commercially available software (Ward 1995). The 
results from these methods are used for comparison. The local 
training methods are based on the CBR approach. 

8 

The following models with global training methods are 
used. 

1. NS GRNN Global. The built-in genetic algorithm (part 
of NET-PERFECT function in the commercial neural 
network software (Ward 1995) is used to find the best set 
of smoothing parameters (GRNN with the NET­
PERFECT option). The genetic algorithm works by 
selective breeding ofa population of potential smoothing 
parameters. The genetic algorithm is seeking to breed the 
set of smoothing parameters that minimizes the mean 
squared error of the validation set. The larger the breed­
ing pool size, the greater the potential of it producing 
better smoothing parameters. However, each breeding set 
of smoothing parameters is tested with the validation at 
each cycle, so larger breeding pools take longer training. 
The breeding pool size is set to 20 for all data sets. The 
algorithm finds a general smoothing parameter plus indi­
vidual smoothing parameters for each input. These input 
smoothing parameters are the weights for the inputs as 
noted in Equation 9 in Part L The larger the factor for a 
given input, the more important that input is to the model 
(with respect to the validation set). The validation set is 
obtained by extracting 10% of the training vectors 
randomly. The calculation is performed once. 

2. NS BP Global. The back-propagation (BP) algorithm is 
also used with the NET-PERFECT option. For back­
propagation (BP) networks, NET-PERFECT uses a vali­
dation set (selected from the training set) for cross-vali­
dation to compute the optimum point to save the network 
as discussed in Part L This prevents the network from 
overfitting the data. Furthermore, the option TurboProp 
(another special built-in function of the neural network 
software) is used, which does not require a preset learning 
rate or momentum. All tests are performed with a three­
layer neural network with 25 hidden neurons. This rela­
tively high number of hidden neurons is chosen to ensure 
that the network has enough freedom to avoid underfit­
ting. Overfitting is avoided with the NET-PERFECT 
option. The calculation is performed five times; the best 
performance on the validation set is chosen for the even­
tual estimation. The validation set is obtained by extract­
ing 10% of the training vectors randomly. 

The following models with local training methods are 
used. 

3 .  CBR GRNN Local. See the "CBR Method" and "CBR 
Choices" sections of this paper. 

4. CBR BPLM Local. CBR BPLM Local has an MLP 
neural network structure that uses BP with the Leven­
berg-Marquardt (BPLM) optimization to compute the 
energy usage estimation. This nonlinear interpolation 
algorithm is taken from a commercial software (Beale 
and Demuth 1994). A three-layer, back-propagation, 
feed-forward neural network is used. The hidden layer 
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has three hidden neurons with sigmoid activation func­
tions. The output neuron has a linear amplifier as an acti­
vation function. The network is randomly initialized. The 
Levenberg-Marquardt optimization was used as part of 
the back-propagation algorithm. No attempt is made to 
optimize the neural network to prevent the algorithm 
from getting stuck in local minima. No measures are 
taken to see if there is over- or underfitting. The calcula­
tion is performed five times, and the best performance on 
the validation set is chosen for the eventual estimation. 
The validation set is obtained by extracting 10% of the 
training vectors randomly. 

5. CBR Linear Local. Here the energy usage estimation is 
a linear estimator of the loads corresponding to the 
selected subset. The solution to such a problem can be 
directly calculated or derived by training a linear network 
with the Widrow-Hoff learning rule (Hassoun 1995; 
Beale and Demuth 1994). Since training a linear network 
takes a lot more calculation time, the problem is solved 
directly. It might, however, occur that the equation is 
underdetermined. In that case a zero error solution is 
returned. However, this solution is not unique. The solu­
tion was obtained using a packaged software solver 
(Beale and Demuth 1994). The solution yields smallest 
weights and biases. The linear interpolation might, there­
fore, be a poor generalization. An approximation of the 
ideal solution to an underdetermined problem can still be 
found by training a linear network. This is, however, not 
implemented to minimize calculation time. The calcula­
tion is performed once. 

6.  CBR Average Local. This estimation is calculated by 
taking the average of the energy targets corresponding to 
the selected data points. 

7. Combi Net BPLM Global (hybrid trained model: two 
locally trained MLPs combined in a third globally trained 
MLP). The data sets of the real building and test building 
3 are also tested with an extra network. This network was 
designed in a previous study (Breekweg 1995; Breekweg 
and Gruber 1996). The calculation is performed five 
times; the best performance on the validation set is 
chosen for the eventual load estimation. 

The target output for all tests is the building energy usage. 
As mentioned in Part I, it is not easy to automatically select the 
relevant inputs. It will be left up to the building operator to 
select the appropriate inputs. For all tests, the following inputs 
were selected for the hourly respectively daily time-series. 

Inputs for hourly sampled data Inputs for daily sampled data 

I Year 1 Year 

2 Month 2 Month 

3 Day 3 Day 

4 Hour 
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Inputs for hourly sampled data Inputs for daily sampled data 

5 Binary workday/ 4 Binary workday/ 
nonworkday indicator nonworkday indicator 

6 Temp (h) 5 Temp (d) 

where Temp (h) =temperature at time h. 

For the hourly data, the following transformed input sets 
are used. 

Transformed inputs for global Transformed inputs for local 

training (NS GRNN and NS training (CBR) with hourly 

BP) with hourly sampled data sampled data 

1 -cos(21t [h + 8532 hours] I Day of the year (I to 366) 
I 8760) 

2 -sin(21t [h + 8532 hours] 
I 8760) 

3 cos(2rc [ h I 24]) 2 Hour of the day (0 to 23) 

4 sin(2rc [h I 24]) 

5 LoCh - 24) 3 L0(h - 24) 

6 L0(h) 4 L0(h) 

7 L0(h+24) 5 L0 (h + 24) 

8 Temp (h - lag) 6 Temp (h - lag) 

I lag+ 24 I lag+ 24 

9 - I Temp(h - i) 7 I Temp(h-i) 
24 24 

i= lag+ L i =  lag+ I 

I lag+ 48 I lag+4B 

10 
24 I Temp(h - i) 8 

24 I Temp(h-i) 
i =lag+25 i =lag+ 25 

where h =hour of the year (1 to 8760), L0(h) =level of occu­

pancy at time h, and Temp(h) =temperature at time h. 

There is a difference in time representation between the 

global and the local approach. This is done because it is not 

possible to create a correct time representation in one dimen­

sion in the global approach. For the local approach, this prob­

lem does not occur since a new training set is selected for every 

test vector. By taking the day and hour differences between the 

selected training vectors and the test vector, a correct one­

dimensional representation of time is available. The advan­

tage is a direct dimension reduction. 

With global training, a time difference cannot be calcu­

lated because there is no reference time. One could directly use 

the time in hours, but that would cause a discontinuity pro bl em 

going from 2300 hours to 0000 hours. Although only one hour 

has passed, these two hours are at opposite extremes of the 

time scale. To avoid such problems with global training, time 

is represented by the cosine and sine of the day angle instead. 
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For test building 3 and the Zachry Engineering Center, an 

extra global network is trained. The inputs used for this 

network are based on the previous study (Breekweg 1995). 

The influences of the sun, wind, and humidity are omitted for 

comparison with the other models. The following table shows 

the inputs for this network. 

Transformed inputs for global Combi Network 
(Breekweg 1995) with hourly samJJled data 

1 -cos(21t [ h + 8532 hours] I 8760) 

2 -sin(21t [h + 8532 hours] I 8760) 

3 cos(21t [h I 24]) 

4 sin(21t [ h I 24]) 

5 cos(21t [h I 12]) 

6 sin(21t [h I 1 2]) 

7 L0(h - 24) 

8 L0(h) 

9 L0 (h + 24) 

1 0  Temp (h - lag) 

1 
lag+ 24 

1 1  - I. Temp(h - i) 
24 

i � laK+ I 

1 
lag+ 48 

1 2  
24 I. Temp(h - i) 

i � laz + 25 

where h =hour of the year (1 to 8760), Lo(h) =level of occu­
pancy at time h, and Temp(h) =temperature at time h. 

The occupancy indicators are created as described before. 
The temperature is cross-correlated to find a lag constant. 
Furthermore, two signals are created from this delayed input. 
The first derived input is a 24-hour moving average. The 
second signal is the same moving average but with a time 
delay of another 24 hours. For the daily data set (test building 
5), the following transformed inputs are used. 

Transformed inputs for global Transformed inputs for local 
training (NS GRNN and NS BP) training (CBR) with daily 

with daily sampled data sampled data 

1 -cos(21t [d + 355.5 days] I 365) 1 Day of the year (1 to 365) 

2 -sin(21t [d + 355.5 days] I 365) 

3 L0(d - l) 2 L0(d - I) 

4 L0(d) 3 L0(d) 

5 L0(d + I) 4 L0(d + I)  

6 Temp(d) 5 Temp(d) 

7 Temp(d - 1) 6 Temp(d - 1 )  
7 7 

8 � I, Temp(d - i) 7 � I, Temp(d - i) 
i =  I j :;;:: I 

1 0  

where d = day o f  the year ( 1  to 365), L0(d) = level of occu­
pancy at day d, and Temp(d) = average temperature at day d. 

The temperature variable, Temp(d), does not have a lag 
since the lag in buildings is typically in the order of hours. 
Such lags are smaller than the sample frequency and are there­
fore negligible. 

The inputs and the output are scaled according to Equa­
tion 2 for all the methods. No prior weighting is applied at the 
first trials. 

Since scaling influences the selection of the training 
subset with CBR, prior weighting of the inputs could have a 
significant contribution to the accuracy of the CBR models. In 
this study, no algorithm is designed to find such weights. 
However, for NS BP, the software package includes a module 
to evaluate a contribution factor of each input that is a rough 
measure of the importance of that input in estimating the load. 
Although one cannot compare contribution factors of different 
models or functions, an extra trial is performed with each data 
set to check ifthere is a significant performance change when 
these contribution factors are used as prior weights to the CBR 
inputs. This is only performed with the CBR GRNN method. 

Since the inputs of the CBR models and the NS BP for 
global training with hourly sampled data are not the same, the 
following conversion is used to come up with prior weights. 

VI + V2 i = I 
L,vj 

V3 + V4 i = 2 (6) u .  = I L,vj 
Vi + 2  i > 2  
L,vj 

where 

v1 = thejth NS model's input contribution factor (note 
that the NS models have 10 inputs whereas the CBR 
model has eight inputs) 

u; = the ith CBR input contribution factor 

Once the conversion of contribution factors from NS 
models to CBR is  completed, the next step is the normalization 
of CBR contribution factors as expressed in Equation 7:  

W; 
= 

lllllX [r'.J'l 
I S. J S. N 

(7) 

where w; is the ith normalized CBR input contribution factor. 
The validation data set for the NS models is randomly 

selected from the CBR training set. The remaining data points 
are designated as the NS training set. The validation set is 
approximately 10% of the CBR training set. 

Simulated Data (Test Building 1 )  

The purpose of this simulated data set is to test the differ­
ent methods on regular data. The simulated data are generated 
with a very simple model that resembles the behavior to the 
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TABLE 1 
Information on the Simulated Data Set 

Sample frequency Hourly 

Size training set (NS) 7635 data points 

Size validation set (NS) 850 data points 

Size training set (CBR) 8485 data points 

Size test set 1 259 data points 

Mean ofload in training set 775.5 (tons) 

Standard deviation ofload in training set 1 290.44 (tons) 

Ratio Std./Mean 0.60 

data set of test building 2 but without any noise. More details 
about the model can be found in Breekweg (1996). Table 1 
gives some information on the data set. The training set covers 
a whole year of data. The test set follows directly after the 
training set. For the NS models, the training set is divided into 
two subsets, one smaller training set and a validation set. The 
unit of mean load and standard deviation is in tons of refrig­
eration ( 1 ton =3.52 kW). The same units ofloads are used for 
all test buildings. 

Table 2 shows the performance of the different models. 
For the CBR methods, no training and testing time is available 

since training takes place for every test vector separately. The 
proposed CBR model with GRNN has the lowest CV and 
RCV values. The total time for training and testing is far 
higher for the NS models and the CBR BPLM model. For the 
BP models (indicated with t), this is the total training time of 
five trials. The genetic algorithm that is used to find the best 
smoothing parameter for the NS GRNN model (designated 
with *) is causing the long training time for this model. It is 
interesting to see that even the CBR method with linear inter­
polation performs better than the NS models. Apparently the 
selection of the training subset with CBR performs well 
enough to get a good approximation even with linear interpo­
lation. 

Table 3 shows the improvement in performance when 
contribution factors found with the NS BP model are applied 
as prior input weights for the CBR GRNN model. 

The weighting shows a small performance improvement, 
indicating that weighting could result in a better performance 
(Table 4). It must be noted again, however, that the weights 
used are probably not the optimal weights since they were 
derived from a different model. The contribution factors of the 
NS models are apparently improving the performance on this 

TABLE 2 
Results of the Benchmark for Simulated Data Using Six Different Models 

MBE CV 

NS GRNN Global• - 1 .35 1 6.45 

NS BP Globalt -2.69 22.96 

CBR GRNN Local 1 . 10 1 1 .03 

CBR BPLM Localt 1 .98 1 5.48 

CBR Linear Local 1 .77 1 4.60 

CBR Average Local -0.29 1 8.78 

The long training time of this mclhod is cou!l<d by !he gcnclic algorl!hm. 
t The training time of these me1hodsis the lutttl tmining time over five trials. 

Feb. 1 
1996 

F&b. 2 
1996 

Actual load 

Feb. 3 
1986 

NS GRNN 

RCV 

8. 1 1  

1 0. 1 8  

5.55 

6.84 

7.04 

1 1 .5 1  

Feb. 4 
1996 

Training Time 

2 h, 1 8 m, 1 6.0 s 

2 h, 27 m, 4.8 s 

Feo. 6 
19116 

x 
x 
x 
x 

Fob, 6 
1996 

Testing Time 

l m, 35 .4 s 

1 m, 47 . 1  s 

Feb. 1 
11198 

x 
x 
x 
x 

CBR GRNN CBR Average 

Total Time 

2 h, 1 9  m, 5 1 .4 s 

2 h, 28 m, 5 1 .9 s 

36 m, 6.2 s 

1 h, 57 m, 12 . 1  s 

1 4 m, 2.9 s 

1 3  m, 5 1 .9 s 

Figure 6 Graphical representation of a section of the test set of the simulated data set. The actual (or simulated) data and 
the corresponding estimations of three of the models are shown. 
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TABLE 3 
Results of the Benchmark for Simulated Data 

With and Without Prior Input Weights 

MBE CV RCV Total Time 

CBR GRNN Local w1 = wi 1 . 1 0  1 1 .03 5.55 36 m, 6.2 s 

CBR GRNN Local W; ;t. wj 0.56 10 . 10  5 . 1 3  35 m ,  56.3 s 

data set. These contributing factors give a reasonable indica­
tion for the importance of the inputs, independent of the model 
or function used. 

Although the RCV values are quite good, they are still 
higher than expected for simulated data. The CV values are 
relatively poor given that the goal of the accuracy is set to a 
5 .0% CV value. The lowest CV value is more than double the 
expected value of 5%. Taking into consideration that this data 
set is a simulated data set without noise, this suggests a poor 
performance for all models. The relatively poor performance 
is probably caused by two factors. 

First, the function used for the simulated model is not 
differentiable. The discontinuities at 7:00 in the morning 
and in the evening are causing extra approximation 
errors, reducing the overall performance. This can also 
explain the large difference between the CV and the 
RCV values, since extreme errors are omitted with the 
RCV measure. 
The second reason for the relatively poor performance is 
that the selected inputs and input translation do not fully 
match the variables in the underlying function. There is, 
for example, no influence of the occupancy levels of the 
previous and next days on the simulated output; how­
ever, these variables are used as inputs. 

Test Building 2 
This building has approximately 65 floors and consists 

mainly of offices and a data processing center. The system 
used in this building is not conventional. The building is run 
solely with chillers and has five chillers. Two chillers with a 
capacity of 1 500 tons provide both cooling and heating. For 
heating, the chiller condensation water is used. The other chill­
ers are used for cooling only. One of these chillers is exclu-

sively for the data processing center, while another one is only 
used as a summer chiller. Although not conventional, the heat­
ing by the chiller 's heat losses may make sense if the heating 
demand is low and cost savings are obtained by not having 
heating equipment. The occupancy profiles are characterized 
by a weekday schedule of08:00 to 1 8 :00. 

This data set has the same input variables as the simulated 
data set. The training, validation, and test set have the same 
inputs. The output (or load) is different and has an unknown 
function. The training set covers a whole year of data. The test 
set follows directly after the training set. For the NS models, 
the training set is divided into two subsets, one small er training 
set and a validation set. 

Since the input data are the same as for the previous set, 
the CBR methods will select the same training subset as in the 
previous case. The only difference is the underlying function. 
Table 5 shows the results. 

The result is significantly worse than with the simulated 
data. The real data from building 2 are clearly harder to model. 
This can be caused by several factors. First, this data set has 
noise that cannot be estimated, thus causing the accuracy to be 
less. Furthermore, it could be that some external influence is 
not incorporated in the model. In this case, it is known that the 
solar radiation has a significant influence on the building. This 
variable is not included as an input. This could be done at a 
later stage. A third factor that can cause this poor performance 
is that the training set and the test set do not have the same 
input dependency because of changes in building usage or 
system changes. 

TABLE 4 
Information on Test Building 2 Data 

Sample frequency Hourly 

Size training set (NS) 7635 data points 

Size validation set (NS) 850 data points 

Size training set (CBR) 8485 data points 

Size test set 1 259 data points 

Mean of load in training set 1 5 87.46 (tons) 

Standard deviation ofload in training set 1 129.63 (tons) 

Ratio Std./Mean 0.7 1 

TABLE 5 
Results of the Benchmark for Test Building 2 Using Six Different Models 

MBE CV RCV Training Time Testing Time Total Time 

NS GRNN Global
' 

1 .65 20.65 1 4.72 2 h, 2l m, 59.8 s 1 m, 42.2 s 2 h, 23 m, 42.2 s 

NS BP Globalt 1 .03 1 8.53 12 .67 2 h, 25 m, 42.6 s 2 m, 0 . 1  s 2 h, 27 m, 42.7 s 

CBR GRNN Local 2.93 23.3 1 14 .82 x x 35 m, 1 .8 s 

CBR BPLM Localt 1 .57 27.04 1 6.57 x x 1 h, 55 m, 43.8 s 

CBR Linear Local 7.53 26.53 1 6.53 x x 1 3  m, 44.9 s 

CBR Average Local 1 . 2 1  1 9.44 14.06 x x 1 3  m, 36.3 s 

The long training time of this m1:1hod is cou.scd by 01c genetic aly.orithm. 
t The training time of these methods is the loU'T training, time over livo trials. 
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Figure 7 Graphical representation of a section of the test set of test building 2. The actual data and the corresponding 
estimations of three models are shown. 

With this data set, both NS model methods perform better 

than the first three CBR methods. Furthermore, the CBR 
methods with (non)linear interpolation are performing worse 
than the CBR method with an average as the estimation phase. 

Two extra tests are performed with this data set. The first 
extra test was also performed on the previous data set. That is, 
the contribution factors obtained with the NS BP model are 
used to weight the inputs of the CBR GRNN model. The 
second test was performed by choosing an optimal smoothing 
parameter for GRNN using a hold-out method. The hold-out 
method is explained in the next paragraph. Table 6 gives the 
results of these two extra tests compared to the CBR GRNN 
performance. 

With the hold-out method, the smoothing parameter is 
found by taking out one vector from the training set at a time 
and calculating the error of the GRNN on the vector taken out, 
given a certain smoothing parameter. Next the vector is put 
back in the training set, a new vector is taken out, and a new 
error calculation is performed. This is continued until the last 
vector of the training set is put back in. The smoothing param­
eter is computed to minimize the SSE over all the training 
vectors. This is very time consuming. Therefore, the hold-out 
method is only performed on the nearest five training vectors. 

Compared to the method used in this study, these five vectors 
are not taken out at the same time but in sequential order. 

The prior weighting does not improve the model nor does 
the hold-out method. Even though the hold-out method is only 
performed on the nearest five vectors, calculation time is very 
long. 

Figure 7 clearly illustrates that the CBR GRNN models 
have a large estimation error for February 20 and 2 1 .  The CBR 
average model performs better. After checking the training 
subset for these days, an explanation can be given. The train­
ing subsets for these days include several load values that are 
indeed in the range from 2750 to 3500 tons. These values are 
weighted high since their Euclidean distance to the test vector 
was small compared to the vectors that had values in the range 
1 250 to 2000 tons. The CBR average model can still perform 
better since all selected load values are weighted equally. In 
the previous year (training set), unexpected higher loads 

occurred under the same input conditions as in 1995. Since this 
is only a small part of the total training set, the global models 
(NS) were not influenced as much by these relatively high load 
values. The local models with interpolation suffer consider­
ably from such outliers since these outliers can be a large 
percentage of the selected subset. 

TABLE 6 
Results of the Benchmark for Test Building 2 With and Without Prior Weighting of the Inputs 

MBE CV RCV Total Time 

CBR GRNN Local w; = wj 2.93 23.3 1 1 4.82 35 m, 1 . 8  s 

CBR GRNN Local w; � W; 2.47 24.27 15 .07 36 m, 3 . 1  s 

CBR GRNN Local w; = W; hold-out 2.8 1 23.44 1 4.88 2 h, 44 m, 43 .6 s 
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Test Building 3 

Test building 3 is a 100-story commercial office building 
located in downtown Chicago. Retail/ commercial offices 
occupy the building's lower 44 floors while the upper floors 
have a total of 700 apartments. The total floor area of retail 
space is about a million square feet. The building's central 
plant serving retail space cooling needs consists of a total of 
seven chillers with a total capacity of 6000 tons. Although the 
building has a modern BAS, the building operator primarily 
selects the chiller operation. 

The whole data set only covers four months. Therefore, 
the training set and the test set are selected from the same 
period. Several full weeks are selected as the test set. Test data 
are never located at the end or beginning of a time series to 
avoid extrapolation. The rest of the data form the training set. 
For the NS models, the training set is again divided into two 
subsets, one smaller training set and a validation set. 

This data set is clearly smaller than the previous sets. The 
total set includes a total of 3000 data points. Unfortunately, 
approximately 1 000 of these data points seem to be corrupted, 
or at least questionable, based on graphical analysis. There­
fore, these data points are omitted from both the training and 
test set. 

The results are shown in Table 8. The first thing that 
attracts attention is the very large MBE and CV values for 
CBR with linear interpolation. This is caused by the fact that 
the equation x = bl A is underdetermined in those circum­
stances, at least to the working precision of the computer. 

The RCV value is not influenced by these errors, since 
1 0% of the worst estimations are omitted. The CBR GRNN 
method performs well compared to the other models with 
respect to the RCV value. Both NS models, especially the BP 
method, are clearly worse than the CBR methods. The extra 
model designed in a previous study (Breekweg and Gruber 
19996) performs similarly to the NS GRNN model. 

The results of the extra test with weighted inputs are given 
in Table 9. Here the contribution factors found with the NS 
models seem to give a good general indication of the impor-

tance of the individual inputs to the load independent of the 
model. 

Figure 8 clearly shows that the CBR linear estimation 
(the line that goes out of the scale) has some very poor esti­
mations. These are probably caused by the singularity of the 
matrix A in the equation x = b I A . Apart from these outliers, 
the linear model seems to follow the load, although not very 
accurately. The NS GRNN model has problems estimating 
the load on Tuesdays, Wednesdays, and Thursdays. These 
dates are August 7, 8, and 9 in Figure 8. There was no appar­
ent reason for such performance on these specific days. The 
other days are estimated with about the same accuracy as the 
CBR GRNN models. The actual load of the test building 
seems to be inconsistently high beginning the night of Friday, 
August 10, and then extending to Saturday, August 11, 1995. 
This estimation error should not be considered as a model 
error. Instead, this is a good example of the purpose of bench­
marking. It can be concluded, from the difference between 
the benchmark signal (e.g., CBR GRNN) and the actual load, 
that the load is high considering the given input variables. 
The operator should try to find an explanation for this high 
load. There is a similar load during the next night. Moreover, 
here is a peak load. It seems to be rather odd to have a peak 
load on a Saturday or Sunday night. Starting on Sunday 
evening (August 12, 1995) all models are estimating a far 
higher load than the load that occurred in reality. All models 

TABLE 7 
Information on Test Building 3 Data 

Sample frequency Hourly 

Size training set (NS) 898 data points 

Size validation set (NS) 1 00 data points 

Size training set (CBR) 998 data points 

Size test set 982 data points 

Mean ofload in training set 689.49 (tons) 

Standard deviation ofload in training set 353.59 (tons) 

Ratio Std./Mean 0.5 1 

TABLE 8 
Results of the Benchmark for Test Building 3 Using Seven Different Models 

MBE CV RCV Training Time Testing Time Total Time 

NS GRNN Global• -2.25 35 .05 1 7.87 46 m, 23.7 s 1 8 .4 s 46 m, 42. 1  s 

NS BP GlobaJt 1 .64 43.34 30.36 37 m, 1 2.3 s 1 6 . 1  s 37 m, 28.4 s 

CBR GRNN Local 2.44 24.07 9.27 x x 1 2  m, 20.5 s 

CBR BPLM Localt -0.75 2 1 .45 1 2.68 x x 53 m, 38.9 s 

CBR Linear Local - 1 65 . 1 3  3952.97 1 5 .35 x x 2 m, 54.2 s 

CBR Average Local -0.45 26.42 14.37 x x 2 m, 50. 1 s 

NS GRNN Globalt 1 .09 35 .07 1 6.74 26 m, 36.8 s 12 .9 s 26 m, 49.7 s 

The Jong training time or this method is couscd by lhe genetic algorilhm. 
t The training time of those 111e1hods is the 10�11 tminlng time over livt trials. 
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Actual load NS GRNN CBR GRNN CBR GRNN (weighted) CBR Linear 

Figure 8 Graphical representation of a section of the test set of the test building 3 data set. The actual data and the 
corresponding estimations of four of the models are shown. 

TABLE 9 
Results of the Benchmark for Test Building 3 
With and Without Prior Weighting the Inputs 

MBE CV RCV Total Time 

CBR GRNN Local w1 = w1 2.44 24.07 9.27 12 m, 20.5 s 

CBR GRNN Local w1 '* w; 1 .66 22. 1 1  8.30 1 2  m, 53 . 1  s 

estimated pre-cooling starting on Sunday to get the building 
at the right temperature on Monday morning. A week earlier, 
precooling did occur, but on this particular Sunday it did not. 
In the training set, precooling on Sundays or early Monday 
morning was used in all but one case (under similar weather 
conditions). If the training and test sets were chosen differ­
ently, the estimation might have been different again. The 
time precooling started, if it took place at all, differed as well. 
Some days precooling would start at 8 o'clock on Sunday 
evening and sometimes at 3 o'clock on Monday morning. 
Many times the load would drop considerably again between 
7 o'clock and 8 o'clock on Monday morning. Apparently, the 
building operator overestimated the load needed to precool 
the building. Sometimes, early Monday morning, the load 
would be the peak load of the day. The above observation 
further emphasizes the need for quality training data for 
obtaining good prediction accuracy from a neural network. 
The training data should contain adequate samples to capture 
the general behavior of the building load characteristics. 

The overall problem with test building 3 is the inconsis­
tency or high noise in the data set. This is probably caused by 
the building being mainly operated manually. Since there is 
more than one building operator, the load characteristics could 
be influenced by the difference in operation. One could say 
that the input variable "human behavior" is not incorporated 
and will probably never be incorporated. Furthermore, it 
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might be that an important input variable is not available, 
which could explain the high noise level. 

Test Building 4 

The Zachry Engineering Center is a multipurpose build­
ing located on a Texas university campus. The building 
contains classrooms, laboratories, faculty/staff offices, and a 
large central computer facility. The building has four floors 
and was built in the early 1970s. The building can be charac­
terized as a high-mass structure. The occupancy has a week­
day schedule of 08:00 to 19:00 hours. Furthermore, the 
building is used in the evening hours between 19:00 and 00:00 
hours and is moderately used during weekends. Additional 
information on the building can be found in Haber! et al. 
(1 993). The data were obtained from the LoanStar program 
carried out in Texas. Additional information concerning this 
program can be found in Claridge et al. ( 1991) .  

In the previous study (Breekweg 1995), this data set was 
used exclusively. Therefore, the model designed during that 

TABLE 1 0  
Information on the Zachry Engineering Center Data 

Sample frequency Hourly 

Size training set (NS) 1 500 data points 

Size validation set (NS) 1 69 data points 

Size training set (CBR & Combi Net) 1 669 data points 

Size test set 1093 data points 

Mean of load in training set 654.76 (tons) 

Standard deviation of load in training set 1 54.78 (tons) 

Ratio Std./Mean 0.24 
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TABLE 11  
Results of  the Benchmark for the Zachry Engineering Center Using Seven Different Models 

MBE CV 

NS GRNN GlobaI
° 

0.71 4.75 

NS BP Globalt 1 .34 6.98 

CBR GRNN Local -0.30 4.09 

CBR BPLM Localt - 1 .05 4.43 

CBR Linear Local -0.52 4.68 

CBR Average Local -0.20 5.96 

Combi Net BPLM Globalt 0.01 3 .79 

' 
It is susP<cled that long tmining time for this method is caused by the genetic algorithm. 

t The training time for 1hc�c n'cthods is defined as the total training time over five trinls. 

study is used as a comparison in this study. Since the training 
set of the previous study differs slightly from the training set 

for this study, a new training phase was performed with the 
new training set. The whole data set covers six months of data. 
The last two months are, however, discarded since it was 
known that the building had some major changes over Christ­
mas. Several full weeks were selected as the test set. Test data 
is never located at the end or beginning of a time series to avoid 
extrapolation. The rest of the data forms the training set. For 
the NS models, the training set is divided into two subsets, one 
smaller training set and a validation set. 

Table 1 1  shows the results from the test with the Zachry 
Engineering Center. The results from these tests are much 
better than those on the previous data sets. The underlying 
function is captured well. Only the NS BP and the CBR with 
the average phase seem to perform significantly worse. The 
best result is obtained with the Combi Net. This model clearly 
captures the underlying function better than the other models. 

900 r--.-

RCV Training Time Testing Time Total Time 

5.63 I h, 17 m, 44. 1 s I m, I O. I  s I h, 1 8 m, 54.2 s 

7.77 I h, 40 m, 52.8 s I m, 23.0 s I h, 42 m, 1 5 .8 s 

4.68 x x 1 8  m, 1 4.3 s 

4.35 x x I h, 40 m, 32.8 s 

5.84 x x 5 m, I . I  s 

7.42 x x 4 m, 54.9 s 

3 .76 37 m, 12.3 s 16 . 1 s 37 m, 28.4 s 

This is not very surprising since this model was specially opti­
mized for this data set. The other models have to perform well 
without optimization on the given data set. 

Also for this data set, the contribution factors found with 
NS models are used for weighting the inputs. Table 12 shows 
the results. 

For this data set, the use of weights results in a better 
performance. The results of the CBR GRNN with prior 
weighting is even slightly better than the performance of 
Combi Net. 

TABLE 1 2  
Results of the Benchmark for the Zachry Engineering 
Center With and Without Prior Weighting the Inputs 

MBE CV RCV Total Time 

CBR GRNN Local w; = wi -0.30 4.09 4.68 18 m, 1 4.3 s 

CBR GRNN Local w1 7' W; -0.25 3.40 3 .59 1 7  m, 48.7 s 
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Oct. 28 Oct. 29 Oct. 30 Oct. 31 1989 1989 1989 1 989 

Combi Net CBR GRNN 

Nov. 1 1 989 Nov. 2 1 989 Nov. 3 1989 

CBR GRNN (weightect) 

Figure 9 Graphical representation of a ::ection of the test set of the Zachry Engineering Center data set. The actual data 
and the corresponding estimations of three of the models are shown. 
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Compared to the other data sets, this data set has a very 
low noise level and is fairly easy to model. The CBR BPLM 
model and especially the NS BP model suffered from outliers . 
The NS BP model probably ended up in a local minimum. The 
CBR BPLM model got stuck in local minima as well. Since, 
this model trains for every test vector, the influence of a local 
minimum is only noticeable for this test vector. 

Test Building 5 
This building is a medium-sized bank building located in 

Switzerland. The building total floor area is about 31,000 ft2 

and it has only 6000 ft2 of cooling space. The building had a 
total consumption of 468 MWh for natural gas and 478 MWh 
of electricity at the time of this study. The main difference 
between this data set and the previous data sets is that it 
consists of daily time-series rather than hourly time-series. 
The training set consists of a little over one year of data. This 
training set is, however, split up into a smaller training and 
validation set. The test set consists of data collected during the 
following year. The results for this data set are shown in Table 
14. 

Here the best results are obtained with the CBR BPLM 
model. But one cannot speak of a significantly better result. 

The result of the test with weighted inputs is shown in Table 
15 .  

For this data set the results with weighted inputs are 
slightly better and comparable with the performance of the 
CBR BPLM model. 

Figure 10 illustrates that the Swiss national hol iday on 
August 1 is followed by all four models. The difference in 
performance occurs al the end of August and the beginning of 
September. All the models, specially the NS GRNN models, 

estimate the load too high. 

TABLE 1 3  
Information on Test Building 5 Data 

Sample frequency Daily 

Size training set 345 data points 

Size validation set 40 data points 

Size test set 3 7 1  data points 

Mean ofload in rrainiDg set 1 76 1 . 84 (tons) 

Standard deviation of load in training set 41 1 .94 (tons) 

Ratio std./mean 0.23 

TABLE 1 4  
Results of the Load Estimation for Test Building 5 Using Six Different Models 

MBE CV RCV Training Time Testing Time Total Time 

NS GRNN Global
° 

1 .88 8.02 8.95 l m, 5 1 . l s 7. 1 s 1 m, 58.2 s 

NS BP GlobaJt 1 .79 7.06 7.91 1 1 m, 0.5 s 7.4 s I I  m, 7.9 s 

CBR GRNN Local 1 .53 7. 1 9  7.25 x x 2 m, 6.6 s 

CBR BPLM Localt 1 .67 6.89 7.06 x x 1 5  m, 1 2.7 s 

CBR Linear Local 2 . 1 9  7.77 8.45 x x 1 8.0 s 

CBR Average Local 1 .70 7 . 15  7.62 x x 1 6.6 s 

The long training time of this method is coustd by the genetic algorilhm. 
t The training time of these methods is thi: iotnl training time over five trials. 

1 800 

1 600 

� � 
1400 

1200 

1 000 ' 
800 

1�/rs August 1995 Septarmer 1995 

Actual load NS GRNN CBR GRNN CBR BPLM NS BP 

Figure 10 Graphical representation of a section of the test set of the test building 5 data set. The actual data and the 
corresponding estimations of four of the models are shown. 
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TABLE 1 5  
Results of the Benchmark for Test Building 5 With and 

Without Prior Weighting the Inputs 

MBE CV RCV Total Time 

CBR GRNN Local w; = w; 1 .53 7 . 1 9  7.25 2 m, 6.6 s 

CBR GRNN Local w; '* w; 1 .6 1  6 .9 1  7.07 2 m, 3.5 s 

After analyzing the training set in the same time pe1iod (in 
1 994), it can be concluded that the underlying function of the 
training set and the test set are different given similar i r)puts. 
The load was approximately I 00-200 kWh/h higher in lhe 
previous year under similar conditions. Although during the 
rest of the year (except for April/May) estimations are better, 
it might also be caused by a lacking input variable. 

CONCLUSIONS AND RECOMMENDATIONS 

The goal was to design a model for the energy usage of 
commercial buildings as a function of weather conditions and 
building occupancy. Furthermore, it must be possible to 
implement the model on any given data set of a building with­
out going through an expensive redesigning phase. 

Conclusions 

Al the beginning of this study expectations of the possi­
ble performance of such a benchmark model were based on the 
previous study results obtained with the Zachry Engineering 

enter data set In the absence of a qualitative measure of how 
accurate a model has to be, a performance goal was set based 
on the Zachry data. Since this data set was the first data set that 
was available, there were high expectations for modeling 
buildings in general. The accuracy of the benchmark in the 
previous study was very promising. The accuracy was well 
under a 5 .0% CV margin. Therefore, a maximum CV value of 
5 .0% was set as a target. 

Table 16 gives an overview of the accuracy of the bench­
mark test using the CV. From these data, it is clear that this 

target is not reached for any of the data sets other than the data 
from the Zachry Engineering Center. 

TABLE 1 6  
The CV Results of the Five Benchmark Tests 

Sim. 

Data 

CV TB l TB 2 TB J TB 4 TB S 

NS GRNN Global 1 6.45 20.65 35.05 4.75 8.02 

NS BP Global 22.96 1 8 .53 43.34 6.98 7.06 

CBR BPLM Local 1 5 .48 27.04 2 1 .45 4.43 6.89 

CBR GRNN Local w; = w; 1 1 .03 23.3 1 24.07 4.09 7. 1 9  

CBR GRNN Local w1 '* IV; 10 . 10  24.27 22. 1 1  3 .40 6.91 

Combi Net BPLM Global 35 .07 3 .79 

1 8  

Apparently, the Zachry Engineering Center data set is 
very consistent and has a tmderlying energy usage function 
that is estimated well with this model and the inputs (and the 
model of the previous study). The otber data sets especially 
for test bui ldings 2 and 3, are much harder to model. Unfor­
tunately, buildings differ greatly and data sets are often not as 
easy to model as the data set from Zachry Engineering Center. 

From these tests, several conclusions can be made. 

1 .  Data sets. 

• The differences between building data are already 
relatively large with only four data sets at hand. This 
is not enough to state if it is possible to design one 
general applicable model. More data sets must be 
collected. 

• Not only is there a lack of data sets but most of the 
data sets used are also too small in size. To build a 
reliable data-driven model, enough data must be 
available. Therefore, new data sets must have 
enough data to make a good model, especially if 
there seems to be a lot of noise. For example, with 
the test building 3 data, many data are needed to 
compensate for this noise. This data set was also a 
bad data set in the sense that many data points had to 
be omitted since they were corrupted. One-third of 
the data set was omitted because these values were 
far from what was to be expected or did not include 
enough input dimensions. 

• Three of the four buildings operate mainly during 
office hours since they are office buildings. The 
other building, the Zachry Engineering Center, oper­
ates with a similar schedule. Other building types, 
such as hospitals, factories, hotels, or swimming 
pools, are not tested at all. Besides the purpose of 
the buildings, one can also select on the basis of 
location. . 
One could say that the lack of building data is the 
most significant shortcoming of this study. 

2. Human influences. Test building 2 is operated mainly 
manually, causing human behavior to be incorporated in 
the energy usage function. It can be expected that manu­
ally operated buildings will be hard to model since the 
human factor is hard to in.corporate. However, it is possi­
ble to use the tests on such data sets to convi nce the build­
'ing owner thal lhe building is operated far from optimal ly, 
and money could be saved by using automated control .  

3. Different models. 

• The BP methods are not robust enough to come up 
with the same perfonnance every time. This is due to 
local minima. The performance depends too much 
on the initial values of the neural network. This is 
also the reason why BP methods were trained five 
times. The CBR GRNN model does come up with 
the same result at every trial. The results of the NS 
GRNN method are influenced by the breeding pool 
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of smoothing parameters chosen for the genetic 
algorithm. 

• None of the models is clearly better than the others 
in performance. For some tests, the best performance 
is obtained with the NS models and for others, with 
the CBR methods. When computation speed is taken 
into consideration as well, the CBR GRNN model 
performs well compared to the others. The question 
is, however, are the results of this model satisfac­
tory? They certainly do not meet the goal of this 
study. 

• The CBR module clearly makes the model faster if 
GRNN, linear interpolation, or an unconditional 
average is used. A clear benefit of local training over 
global training with respect to a better capability to 
adapt to local features cannot be proven. 

Recommendations 

I .  The CBR part of the proposed models is based on a deter­
ministic radius setting. This is far from ideal. It is proba­
bly worthwhile to build a model with the SCONN 
clustering algorithm since this algorithm seems to 
comply to the constraints set in Part I. With such a model, 
the Parzen density estimation and the relationship of the 
radius to that estimation are no longer needed. The design 
of such a model was not carried out since the SCONN 
clustering algorithm was not found until the end of this 
study. 

2. To overcome the problem of dimensionality, dimension 
reduction could give some solutions. In Part I, the prob­
lem of dimensionality was discussed. Reduction of the 
input dimension through an algorithm should be a study 
by itself. One of the methods that could be useful is a 
(non)linear principal component analysis (PCA) using 
analytic methods and neural networks. In other studies, 
PCA has proved to be useful in dimension reduction. 
Using PCA or another technique to reduce the dimen­
sions might have the following two advantages to the 
model proposed: 
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• The number of dimensions is reduced and there­
fore the system becomes more reliable. State­
ments made are based on a smaller input space. 
This is, of course, only true if enough relevant 
information is kept in the reduced input space. 
The ideal situation would be if only redundant 
information is reduced. 

• The mapping from Rm to R" could be done so 
that n (the number of dimensions after the 
dimension reduction) is a constant. This way the 
phases after dimension reduction are indepen­
dent of the number of inputs before the dimen­
sion reduction. The second part of the system 
would become a lot more stable because it is not 
depending on the dimension anymore. In the 

case of a failing sensor, the number of measured 
input variables is reduced but the neural network 
still uses the same number of inputs. 

3 .  The hourly benchmark signal is  often less accurate at 
hours when the occupancy level changes (early in the 
morning and late in the afternoon during weekdays). The 
benchmark reacts too fast or too slow to the change in 
occupancy. For the simulated building 1 and test building 
3, discontinuities caused such errors. These errors show 
up as peaks (positive or negative) in the error signal. 
Using filtering or calculating a daily average could 
reduce these kinds of errors, thereby improving the over­
all accuracy. 

Since there are not enough data available at the moment 
to design and test a general applicable model, it is not 
recommended to proceed with this project at the current 
time. 
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