
4372 

AIVC 
#12,984 

Development of a Generalized Neural 
Network Model to Detect Faults in 
Building Energy Performance-Part I 

Marcus R.B. Breekweg Peter Gruber, Ph.D. Osman Ahmed, Ph.D., P.E. 
Member ASHRAE 

ABSTRACT 

A building energy management system (BEMS) generally 
monitors and manages energy usage in commercial buildings. 
With the ability to monitor a plant and to recall the collected 
data at a later time, actual building energy performance can 
be measured and compared with the expected performance. 
The comparison will help in detecting possible abnormalities 
with the building energy usage and in identifYing opportunities 
to optimize the building energy performance. 

In order to predict expected building energy performance, 
a reasonably accurate building energy model is needed. The 
building energy model is complex, multi-dimensional, and 
nonlinear. The relationship between building occupation and 
environmental conditions and the whole building energy usage 
can be established by using nonlinear models, e.g., artificial 
neural networks. There are many publications on using neural 
networks to estimate the energy usage. Most of these studies on 
load estimation are, however, based on one single data set. For 
such a neural network model to be commercially attractive, the 
model must be directly applicable to any building without any 
major design adjustments. The objective of this study is to 
design a neural network model that is generally applicable 
without major design adjustments and, at the same time, 
provides an estimation that is accurate enough for commercial 
purposes. 

This paper consists of two parts. Part I discusses various 
neural network methods, their design issues, benefits, and limi­
tations. The discussions create a framework for selection of 
neural network models and their application to real building 
data, which is covered in Part II, along with results and anal­
ysis. 

INTRODUCTION 

Over past decades, energy costs have increased through­
out the world (IEA 1982). During this period, considerable 
savings have been demonstrated through better control of 
building energy usage (Levermore 1992). A key factor to 
obtain better control is supervision of the energy usage. With 
information on the current and past energy usage on all levels 
of the building, from components to whole buildings, building 
management can be improved. 

In general, energy usage in commercial buildings is 
supervised by means of a building energy management system 
(BEMS). Two of the benefits of a BEMS are (1) its ability to 
collect and communicate relevant data from a remote site to a 
central station and (2) its capability of automatically monitor­
ing and controlling a plant. The building energy performance 
is usually improved by implementing control strategies based 
on information obtained by the BEMS. Typical energy savings 
between 10% and 20% are reported for commercial buildings 
by implementing a BEMS (Levermore 1992). 

For a BEMS to reach its full potential, information on the 
performance has to be available. Collection of (or a part of) the 
relevant data is always incorporated in a BEMS and the build­
ing operator is generally responsible for data analysis. 
However, developing a building energy prediction model as a 
BEMS add-on tool to provide automated energy performance 
evaluation is possible. This evaluation will assist the building 
operator detect irregularities in the building performance early 
on and thereby optimize the building's energy cost-effectively. 

In recent years, a nonlinear modeling technique known as 
neural network has been widely used for building thermal load 
prediction. Conventional prediction of the building thermal 
load occurs through developing complex mathematical 

Marcus R.B. Breekweg is a client partner at Cambridge Technology Partners, Amsterdam, the Netherlands. Peter Gruber is a senior scientist 

at Siemens L&S Division, Zug, Switzerland. Osman Ahmed is a senior principal engineer at Siemens Building Technologies, Buffalo Grove, 
Illinois. 

THIS PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 2000, V. 106, Pt. 2. Not to be reprinted in whole or in 
part without written permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, GA 30329. 
Opinions, findings, conclusions, or recommendations expressed in this paper are those of the author(s) and do not necessarily reflect the views of ASHRAE. Written 
questions and comments regarding this paper should be received at ASHRAE no later than July 7, 2000. 



models on the building's thermal behavior and components or 
through various statistical methods. Both of these methods are 
complex, labor intensive, and require special knowledge that 
is difficult to obtain within the building owner/operator 
community. In contrast, neural networks have proven 
extremely effective at capturing the building thermal charac­
teristics by learning from past patterns of actual thermal load 
and observed inputs, such as weather variables and occupancy 
schedule. The computational algorithm for a neural network is 
simple and does not require any special knowledge from the 
end user. 

In an ASHRAE-sponsored competition to predict hourly 
energy usage, neural networks outperformed statistical meth­
ods, including both linear and nonlinear methods (Kreider and 
H aber! 1994). The top two methods were Baysian nonlinear 
modeling and a feed-forward multi-layer perceptron. Ferrano 
and Wong (1990) used a back-propagation neural network to 
predict hourly cooling load in order to develop a control strat­
egy for ice thermal storage. Gibson and Kraft (1993) used a 
recurrent neural network in order to predict a building's 
steady-state and peak electric demands. In a second energy 
predictor shootout, again sponsored by ASHRAE (Haber! and 
Thamilseran 1996), a neural network proved to be most accu­
rate in predicting hourly thermal load. Kawashima et al. 
(1995) compared an artificial neural network with conven­
tional statistical means of linear modeling, autoregressive 
moving average and exponential weighted moving average, to 
predict building thermal load for the next 24 hours. The simple 
back-propagation neural network that predicted the thermal 
load was the most accurate compared to the statistical meth­
ods. Based on published research and observations, only 
neural networks were considered as the nonlinear modeling 
method in this study. 

The building energy prediction add-on tool using a neural 
network is usually implemented in the following two phases 
(see F igure 1): 

In the first phase, the historical data of measured energy 
and dependent variables are used to train the model. The 

Figure 1 Overall method of detecting building energy 
performance using a neural network. 

2 

purpose of the training is to ensure that the model is 
capable of capturing the building energy characteristics. 
The first phase is often referred to as the training phase 
and the historical data as the training data. The quality 
of training data is an important issue, as training with 
poor quality data will hide faulty system behavior. Data 
prefiltering and processing to ensure that the systems do 
not have any faults in the beginning is suggested by 
establishing a benchmark training database. The study 
presented here did not apply any specific methodology 
for identifying faults in the training data. The training 
data limitations and faults were only discovered as a 
result of investigating poor prediction. 
In the second phase, the model is used to predict the 
building energy consumption by applying the most 
recent past data of selected independent variables, such 
as weather input and building occupancy. The predicted 
energy is then compared with the measured energy con­
sumption for the detection of possible abnormalities or 
faults. Continuous execution and integration of both 
training and prediction phases is preferable. However, 
the success of continuous adaptation to the building 
energy performance characteristics is highly dependent 
on the quality of the training data as discussed above. 

SCOPE 

While there are many papers concerning load modeling 
and forecasting, most of them propose models that are opti­
mized for a specific data set· or building. It is very time­
consuming and, therefore, commercially unacceptable to 
design a new model for every new building. The costs of such 
a modeling tool would be far too high. The goal of this study 
is to develop a general applicable neural network model that 
will predict the thermal load within the same accuracy range 
for any given building data. The model is used for function 
approximation, not classification. The function is to give the 
energy usage at a given point in time with certain weather and 
building occupancy conditions. 

The neural network accuracy must be high enough to be 
commercially attractive. It is expected that the prediction 
accuracy, expressed in terms of coefficient of variation (CV), 
should not be more than 5.0%. For the neural network model 
to be generally applicable and cost-effective, it should have a 
predefined structure and other model parameters should be 
optimized automatically. It should be possible to use the neural 
network on a new building without going through a detailed 
neural network design phase. The calculation must be fast 
enough to evaluate the past 24 hours of data overnight. This 
paper consists of two sections. 

Part I defines the need and scope of this study and dis­
cusses neural networks as nonlinear modeling tech­
niques as the basis for predicting building thermal load 
and the neural network training issues. 
Part II discusses selecting models, results, conclusions, 
and recommendations. 

4372 



DATA CHARACTERISTICS 

As previously mentioned, the scope of this study focuses 
on how to find a general applicable model for the energy usage 
of buildings based on historical data. Since it will not be a 
physical model, the characteristics of the data are very impor­
tant . 

MEASURED DATA 

The data used in this study are obtained from several 
buildings with different BEMS. The data sets are stored in 
different ways in a database. This makes the data specific to 
the buildings as well as to the BEMS. Some data sets might 
include hourly time-series, whereas other data sets contain 
only daily values. Furthermore, one data set may include 
almost all weather variables (e .g., ambient temperature, solar 
radiation, wind speed, and ambient humidity), while another 
set contains only information about the maximum and mini­
mum daily temperature. This diversity requires preprocessing 
to obtain a similarly relevant input set for the model. The 
model itself must be designed so that it can perform with any 
given input set without altering the model structure. 

Another problem related to neural networks based on 
historical data is that not all relevant and necessary factors are 
included in the data set. For example, some buildings are oper­
ated mainly by human intervention, and the data set from such 
buildings might look inconsistent due to the variability of 
human operators. If there are several building operators, build­
ing operation is influenced by different people at different 
times. These factors cause extra noise on the building's energy 
consumption signal that is hard to compensate for or incorpo­
rate in the model. 

A third problem is missing data points. Most likely, data 
points will be missing in every data set. This can be caused by 
a failing sensor or by failing data transmission. In any case, the 
system should be able to report this failure or make a good esti­
mate with the remaining data. 

In general, the following information can be relevant for 
the modeling: 

1 .  Ambient temperature 

2.  Building occupancy (related to 5) 

3. Date-stamp 

4. Day (e .g., Monday), can be derived from the date-stamp 

5 .  Day type (working or nonworking day), can be derived 
from 3 and4 

6. Energy usage (of any form) 

7. Holiday season 

8. Humidity 

9. Indoor temperature 

10. On or off status of equipment 

11. Solar radiation 

12. Time-stamp 

13. Wind direction 

14. Wind speed 

4372 

Some data sets include many of these variables, while 
others are limited only to the date-stamp, daily ambient 
temperature, and the daily whole building energy consump­
tion. The indoor temperature is very valuable for energy 
modeling since the energy usage depends largely on the differ­
ence of the indoor temperature and the set point of the HVAC 
system. Unfortunately, none of the data sets used in this study 
included indoor temperature. 

To summarize, the system has to work with data sets that 
are far from ideal. As a result, the system should not be totally 
data driven. A pure black box model, totally dependent on the 
data, is not likely to be robust enough. Physical considerations 
must be included to make the system more robust . 

PHYSICAL CONSIDERATIONS 

Even if nonlinear model structures are to be applied, there 
is no reason to estimate the known relationship between inde­
pendent variables and the expected output . On the contrary, 
prior physical knowledge should be used to gain insight into 
the system. Therefore, a combinat ion of black box modeling 
and physical considerations was chosen as a preferred method 
of modeling. This can be called "grey box modeling." Grey 
box modeling provides some physical insight, but the exact 
relationships remain unknown. For the models used in this 
project, physical insight is used where available. 

NEURAL NETWORK AS NONLINEAR 

MODELING TECHNIQUES 

In this study, nonlinear modeling techniques are used for 
function approximation-the dependency of building energy 
usage on building occupancy and weather conditions. This 
section provides an overview of nonlinear modeling tech­
niques considered for function approximation. All of these 
nonlinear models are either true neural network models or 
closely related to neural network models. The terms used in 
the following sections are commonly used in the neural 
network literature (Sjoberg et al. 1995). 

In this study, designing neural network models can be 
separated with the following tasks: 

1. Selecting input. 

2. Selecting the activation function.1 

3. Determining the number of hidden layers, the number of 
activation functions (or neurons) per layer,2 and the inter­
connection of the function units. 

4. Selecting the "learning" algorithm. 

The input selection is discussed in detail in Part II of this 
paper while the other tasks are discussed below. 

I. In the neural network literature, this is also referred to as transfer 
function. 

2· The number of activation functions per layer is the same as the 
number of nodes, neurons, or units per layer in neural network 
literature. 

3 



Selecting the Activation Function 

The activation function is used to perform a mapping 
from the Rn� R with n as the dimension. This mapping can 
be linear or nonlinear. All nonlinear model techniques used in 
this study are based on using multiple activation functions in 
a structured model. The structuring of the activation functions 
is discussed below. 

The Single-Variable Activation Function 
The activation function K determines the (non) linear 

mapping of the argument x to an output y. There are various 
activation functions that can be used. The four most 
commonly used activation functions for x E R are as follows : 

Linear Activation Function 

y= K(x) = a·x 

where a E R. 

Unit Step Activation Function 

y = K(x) = {� x<O 

x�O 

Sigmoid Activation Function (logarithmic) 

1 y = K(X) = --
1 +e-X 

Radial Activation Function 

x' 
y = K(x) = e2 

(1) 

(2) 

(3) 

(4) 

Figure 2 shows these five activation functions. The 
sigmoid activation function is similar to the unit-step activa­
tion function, although the latter is a discrete function. The 
radial activation function can be seen as a smooth, continuous 
version of the unit interval function, 

./ ,, 

, 
, 

0 

y=K(x)= {� O�x<l 

else 
(5) 

Equation 5 is a variant of Equation 2 since this function 
can be obtained as the difference of two unit-step activation 
functions. 

Construction of Multi-Variable Activation Functions 
The activation functions, illustrated in Figure 2, are 

single-variable activation functions. For multi-dimensional 
problems, multi-variable functions must be created. Often 
these functions are constructed from the single-variable acti­
vation functions. The following two methods can be used to 
construct multi-variable functions from single-variable acti­
vation functions. 

Ridge Construction 
For all w E Rn, b E R,  x E Rn, and any single-variable 

activation function k, a ridge function has the form 

(6) 

where w is a dilation or scaling parameter (weight) and bis a 
position or transition parameter (bias). 

Ridge constructions are normally used together with 
sigmoid, unit step, or linear activation functions. 

Radial Construction 
For any single-variable activation function k, a radial 

function with b E R" and x E R" is given by 

y = K · ( llx - bll W) (7) 

where IHI w is any chosen norm, typically a quadratic norm: 

llxll rv = xr . w. x (8) 

where Wis a possible scaling matrix. In simple cases, this is 
a diagonal matrix. 

,,. 
/ 

0 

- JIM.tr aalv.tlon func:tlon - unte 8t<lp ·� funotlon - unte lntmv•l functlorl 
- elgmoltJ a1i;tl\lat1on func:tlon - radial •alv•tk>n fune1:1on 

Figure 2 Five activation functions. The last two graphs show the similarity between the continuous activation functions and 
the discrete activation functions (the unit interval function is shifted by -0.5 for comparison with the radial 
activation function). 

4 4372 



Figure 3 gives a graphical representation ofa multi-vari­
able activation function or neuron. The right-hand side of 
Figure 3 illustrates two different combinations of activation 
function and construction. 

Radial constructions are mainly used with radial activa­
tion functions.  The sigmoid activation function, used with 
radial construction, forms a bell-shaped function similar to the 
radial activation function. Figure 4 shows the output space of 
a radial activation function with radial construction and a loga­
rithmic sigmoid activation function with ridge construction 
with a two-dimensional input space. The choice of the name 
ridge and radial construction is clear from the figure. 

Optimal Choice of Multiple-Variable 
Activation Functions 

The choice of multiple-variable activation functions 
depends on the underlying distribution function of the data set. 
All of the described activation functions with the right model 
or network structures are capable of approximating any 

construcflon acttvaflon 
tunctton 

reasonable function with enough data (Hassoun 1 995; Sjoberg 
et al. 1995; Veelenturf 1995). There are no general rules for 
choosing multiple-variable activation functions, but some 
observations can be made. 

Problem of Dimensionality. An important consideration 
for the choice between activation functions obtained by 
radial and ridge constructions is the dimensionality of the 
data set. Since a data set is a finite set in practical cases, the 
dimension of the data set plays an important role. In a domain 
R" with a moderately sized n, the data distribution is very 
sparse in any bounded region of the vector space. For exam­
ple, if a minimum of N data points is necessary to estimate a 
function g: R -t R, N" data points or vectors are necessary to 
obtain a similar vector density in the input space for an esti­
mation with n input variables (g: R" -t R). In the case of 
(hourly) benchmarking, a data set generally consists of 1 03 to 
104 vectors . For a density of0.1 in an unit space, only three or 
four input dimensions are possible. 

1 

y 
x.---<:rw• 
rldge cons1rueflon with sigmoid acttvotton function 

y 

x.. 
radial construcflon with radial activation tuncflon 

Figure 3 Graphical representation of a logarithmic sigmoid activation function with ridge construction and a radial 
activation function with radial construction. 

"4,00 

A B 

Figure 4 A radial activation function with radial construction (A) and a logarithmic sigmoid activation function with ridge 
construction (BJ with a two-dimensional input space. 

4372 5 



For radial constructions, the computational costs are 
mainly in the calculation of the norm llx - iill ; for the ridge 
constructions, these costs depend on the inner-product ;,r · x. 
Therefore, we may expect these functions to perform well for 
higher dimensions. Unfortunately, models based on the radial 
constructions will not support any model statements outside 
the areas where observations are made. This reduces not only 
extrapolation possibilities but also interpolation possibilities 
in sparse areas of the vector-space. Since the data distribution 
for higher dimensions becomes very sparse, many areas of the 
input space are not covered. Ridge construction can handle 
higher dimensions better because they extrapolate into unsup­
ported data regions, yet with unknown reliability. Ridge 
constructions offer a few directional selective features that can 
be extrapolated into these unsupported data regions. Whether 
this support is reasonable or not depends mainly on the appli­
cation. The extrapolation (as well as the interpolation) scheme 
deteriorates with higher dimensions . Figure 4 shows the local 
support of the radial construction and the directional support 
of the ridge construction. 

Summary 

For small dimensions (n � 6), radial constructions (with 
radial activation functions) and ridge constructions (with 
sigmoid functions) should be examined. For larger dimen­
sions, radial constructions might not support model statements 
outside the data regions; the r idge constructions will produce 
certain statements, but whether or not they are reasonable 
depends entirely on the application. 

Furthermore, having as much information in a minimum 
number of input dimensions is preferable. As previously 
mentioned, both constructions are capable of approximating 
reasonable functions. However, sufficient data with respect to 
the number of input dimensions must be available. 

Determining the Number of Hidden Layers 
and Multi-Variable Activation Functions 

The structure of many (non)linear models is multi­
layered. Figure 5 shows two multi-layer structures. These 

Input 
(layer) 

hlMen output 
lay11r 111,Yer 

0- y 

A 

Figure 5 Multi-layer structures of activation functions. 

6 

structures are usually referred to as neural networks. Consider 
the two-layer structure of A, of which the first layer consists 
ofa set of inputs . These inputs are connected with a layer built 
up from several multi-variable activation functions. The 
outputs of these activation functions are then (non)linearly 
combined to form the model's output. In this case, a single 
hidden-layer structure is created. The layer receiving the input 
signals is called the hidden layer because the outputs of this 
layer do not appear explicitly in the output. It is also possible 
to consider the outputs of the hidden layer again as inputs to 
a second hidden layer, as shown in B.  This allows for obtaining 
a structure with several hidden layers . The number of layers 
and number ofactivation functions per layer to be used are not 
well defined. 

Number of Hidden Layers 

The question of how many hidden layers should be used 
cannot be answered by existing theory. Previous publications 
(Cybenko 1989; Hornik 1989; Funahasi 1989; Veelenturf 
1995) have proved that a one-hidden-layer feed-forward 
neural network is capable ofuniform approximation of contin­
uous multi-variant function to any desired degree of accuracy. 
An overview on theorems related to this subject is available in 
a previous research publication (Hassoun 1995). However, 
Veelenturf (1995) has shown that in some cases, it might be 
profitable to use more than one hidden layer. This is especially 
true when the function to be estimated is expected to contain 
discontinuities. Sontag (1993) also provides insights to the 
importance of a second hidden layer in a nonlinear structure. 
Since there are no straightforward answers to this design vari­
able, it is best to begin by usingthe simplest, i.e., to use a single 
hidden-layer structure. 

Number of Multi-Variable Activation Functions 

There are no general rules for determining how many acti­
vation functions or number of function units in the hidden 
layer or the number of hidden layers are needed. It is often 
recommended to use trial and error to get the best result. 
However, there are two things that can be noted concerning the 
number of function units in the hidden layer. 

Input 
(lay11r) 

hidden 
lay11ra 

output 
layer 

y 

4372 



A B 

Figure 6 Illustration A shows underfitting. Clearly, the 
estimations fail to go through the data points. 
Illustration B shows overfitting, where the data 
used to train the model are estimated well, but the 
generalization is poor. 

If the number of function units is too small, the model 
does not have enough free parameters to approximate the 
underlying function well. This is often referred to as underfit­
ting. On the other hand, if the number of function units is too 
large, the model has too many free parameters and may lose its 
generalizing (interpolation) capabilities. The data used to train 
the model will be well "estimated," but statements about new 
data points will be useless. This is called overtraining or over­
fitting. The underfitting and overfitting functions are illus­
trated in F igure 6. 

Thus, if long-term training still results in large errors (in 
the training set), the problem most likely lies in a lack of 
hidden function units . It may happen, however, that one fails 
to incorporate an important input variable in the data set, 
resulting in a high noise level. In the case of overfitting, there 
are probably too many hidden function units . It is possible to 
reduce overfitting errors without changing the model's struc­
ture by stopping training before the minimum error on the 
training set is reached. The optimum training time can be 
obtained by using cross-validation (Hassoun 1995). With 
cross-validation, an extra set (other than the training set) is 
used to test the estimation result. The error of this set decreases 
monotonically to a minimum, after which the error starts to 
increase even as the training set error decreases. 

Interconnection of the Function Units 

The interconnection of the function units determines if 
the model's structure is dynamic or static. Every function unit 
(or neuron) is connected to all function units of the previous 
and following level. This type of network is called a feed­
forward network, since the input signals are fed forward. If 
static structures are used to model a physical syst.em that is 
dynamic, extra pre-processing must be performed to incorpo­
rate the dynamics of the physical system into the model. 

The recurrent network forms another group of neural 
network p aradigms . Here, certain function unit outputs are 
connected to the inputs of other function units in the previous 
or the same layer. Recurrent networks obviously are dynamic 
models . There are many examples ofrecurrent networks in the 

4372 

area of function approximation. Recurrent networks are 
however, understood poorly and can have instabilities due t� 
their structure. This report only covers static model structures . 

Common Nonlinear Models and 
Neural Network Structures 

This section gives a brief overview of the neural network 
that is considered for function approximation. For basic infor­
mation on neural network structures, the publications by 
Hassoun (1995), Hertz et al. (1991), Lippmann (1987), and 
Veelenturf (1995) are excellent source ofreferences.  

1 .  Multi-layer perceptron (MLP). An MLP has one or more 
hidden layers with ridge constructions . The activation func­
tion is usually a logarithmic or tanh sigmoid function. 
Figure 5 shows two different kinds of multi-layer struc­
tures. In the neural network literature, this is often referred 
to as an MLP or feed-forward network. The MLP architec­
ture is most popular in practical applications and has been 
used for function approximation in many cases (Coda 
1994). Publications by Hassoun (1995), Hertz et al. (1991), 
Lippmann (1987), and Veelenturf (1995) can be consulted 
for detailed information on MLP. 

2. Radial basis function (RBF) networks, conditional mean, 
and general regression neural network (GRNN) 

RBF networks. It is clear from the name that radial acti­
vation functions (Equation 4) are used with radial 
construction (Equation 7). There are two types of RBF 
structures. The first type uses the radial activation func­
tion directly without normalization of the outputs of the 
units . The output of such an RBF network is a number of 
superimposed activation functions. Consequently, this 
output can be quite uneven. For such a network to be capa­
ble of fitting even the simplest functions, many neurons 
(or units) are required. 

Since radial activation functions can have these prob­
lems with interpolation and extrapolation, caused by the 
local activation of the radial activation functions, the 
second type of RBF structure is mainly used. In the case 
ofnormalized RBF networks, the outputs ofall the hidden 
units are normalized and summed to result in one. The 
normalized RBF networks were introduced in Moody and 
Darken (1989) and can be written as (with the Gaussian 
kernel, the radial activation functions with radial 
construction are often referred to as kernels): 

L Y . .  rn . . exp ' ' " ( (x -iJ·Cx-x·)) 
• I I 2h7 
Y(x) = j = ' 

' 
(9) n ( (x-x·)T· (x-x-)) 1 

where 

L rn;. exp ' 
2 

' 

i= 1 2h; 

x test input vector, 

x; centroid of the ith unit, 

7 



s�--�--�x-Y--�---. 
6 
4 
2 
0 

-2 
-4 
-6 

x 
x 

-8 '----�-'*-'-x:...-__ � __ _, 
-10 -5 0 5 10 

Appro><lmatlon 

Br-������:--���-, 
6 

-2 
-4 
-6 
·8'--����:=--�����-' -10 -5 0 5 10 

lntt.:rpolatlon 

Figure 7 Output of the conditional mean with the Gaussian kemel fw1ctio11 as an approximator (h = 1) and as an 
i11terpolator (h = 0.25) is shown above on the LHS and RHS, respectively. 

smoothing parameter (width) of the ith kernel, 

weight (height) of the ith kernel, 

!; output corresponding to x;, 

Y(x) estimation output of x. 
There are several subtypes of norroalized RBF 

networks. These networks differ by their optimized 

parameters. One can choose to have the width or tl1e 
height of each kernel opti.mized separately or both. The 
simplest version is to have all heights (weights cu1) set to 

one and to have one global wid th (smoothing parameter) 
for all kernels instead of an individual smoothing param­
eter per kernel. 

Conditional mean. If each training input vector is taken as 
an RBF centroid for the simplest network, the outputs are 

simply weighted averages of the target values and form a 
conditional mean. The conditional mean is, in fact, the 

kemel interpolation function introduced by Nadaraya 
(1964). 

x 

X; 

h 

K 

Y· ..' 
Y(x) 

n e·\·- x;)) 
L, Y·K --� I Ji 

Y(x) = i =I 

� K((x-x;)1 h ) 
i= I 

test input vector 

training vector i 

smoothing parameter 

keme!3 

output corresponding to x; 

estimation output of x 

(10) 

3• In the literature, a kernel transfer function is often designated with 
the symbol K instead of K. 

8 

Using the Gaussian kernel, the following conditional 
mean (also called regression) for discrete data is formed: 

n - - r - ·  ( (x-x;) · (x-.t";)) L, Y; ·exp 2 . 2h 
Y(x) = ,__..___ _____ __ _ n - · r - -( (x-x;) · (x-x;)) 

L exp 
2h2 

i= 1 

(11) 

The condi.tional mean is a weighted average with the 
weig l1ting depending on the kernel shape and Euclidean 
distance. 

The smoothi11g parameter (or kernel widLh) h deter­
mines if the conditiona.I mean is an interpolator. When h 
is large the conditional mean is an approximator (for Ii� 
oo � conditional l)'lean � [unconditional] mean); 
whereas if h is small, Y(x) tends to go exaclly through the 
observed Y; and interpolate in between.4 Figure 7 shows 
the conditional mean with Gau sian kernel as an approx­
imator and as an interpolator. 

Note the resemblance to Figure 6 in the case of under­
and overfitting. For the conditional mean, the smoothing 
parameter h influences the accuracy of the function esti­
mation, instead of the number of activation functions or 
neurons for MLPs. 

General regression neural network (GRNN). GRNN 
was introduced in 1991 by Specht (1991) and is equiva­
lent to the Nadaraya kernel regression estimator or condi­
tional mean. The GRNN includes a training method to 
detennine an optima'! value for smoothing parameter h. ln 
his paper Specht presents a method for ·finding botb the 
optimum smoothing parameter and an adaptive algorithm 

4· As the smoothing parameter approuches zero, the weights 
approach one for the nearest neighbor and zero for all other 
vectors. Thus, making the conditional mean a nearest neighbor 
classifier of the test vectors with respect to the training vectors. 

4372 



for the conditional mean. The adaptive algorithm creates 
an h that depends on the data distribution in the area. With 
the conditional mean, the smoothing parameter is 
constant over the entire data set. (For more information 
see Specht 1991.) For more information on RBF 
networks, consult the works of Chen et al. (1 991), 
H assoun (1995), and Moody and Darken (1989). 

The Learning Algorithm 

The selection of a learning algorithm depends on the type 
of model and the selected performance criterion. This section 
lists the preferred algorithm for the MLP model and the RBF 
networks. 

1 .  For the MLP model, back-propagation (BP) algorithms are 
commonly used. The basic BP algorithm is the gradient 
descent rule. Gradient descent simply stands for a technique 
in which parameters, such as weights and biases, are moved 
in the opposite direction of the error gradient in order to 
minimize the estimation error (e.g., the root mean square 
error). There are several enhanced BP algorithms and vari­
ations of BP. In this study, BP with Levenberg-Marquardt 
(LM) optimization (Beale and Demuth 1994) is used for 
MLP networks. The LM optimization is a hybrid method 
based on the Gauss-Newton method (Atkinson 1989) and 
the gradient decent rule. Whereas the Gauss-Newton 
method improves the speed of convergence of the parame­
ters to the "nearest" (local) minimum, the gradient descent 
rule with a fixed learning rate allows the LM optimization 
to escape from a shallow local minimum. A scalar deter­
mines the influence of the Gauss-Newton and the gradient 
descent rule. If the estimation error is decreasing, the scalar 
is updated to give the Gauss-Newton method more influ­
ence. If the estimation error is increasing, the scalar is 
updated in the opposite direction to give more weight to the 
gradient descent term of the hybrid function. For further 
information on BP-based algorithms, consult the work of 
Hassoun (1995) and Veelenturf (1995). 

2 .  An algorithm for normalized RBF networks needs to 
update one or multiple variables and, therefore, depends on 
which network architecture is used. In this study, only the 
simple normalized RBF architecture, namely, conditional 
mean or GRNN, is used. For more on different types of 
RBF algorithms, consult literature published by Chen et al. 
(199), Hassoun (1995), Moody and Darken (1989), Preu� 
and Tresp (1994), and Preu� (1994). For this model, the 
smoothing parameter h is often calculated with the holdout 
method. For a particular value of h, the holdout method 
stands for removal of one training vector at a time and 
output estimation for that vector with the use of remaining 
training vectors. This process is repeated for every sample, 
and an error measure (e.g., the mean square error [MSE]) 
between the actual outputs and the estimations is calculated. 
The smoothing parameter h that minimizes this error is 
used. If the training set is large, the computation of the 
smoothing parameter can be very time consuming. For 

4372 

general information on learning algorithms, Hassoun 
(1995), Hertz et al. (1991), Sjoberg et al. (1995), and 
Veelenturf (1995) are excellent sources . 

Global vs. Local Training 

In the previous section on the GRNN learning algorithm, 
it is mentioned that the smoothing parameter computation for 
this model is time consuming. Training effort can be reduced 
by using only a subset of all the training data to calculate this 
parameter. If this subset only covers a certain area of the total 
vector space, the smoothing parameter is trained locally. This 
is referred to as local training. On the other hand, ifthe whole 
training data set is used or the subset also covers the whole 
vector space (e .g., with vector quantization), the smoothing 
parameter is trained globally. 

This section discusses these two methods of training, 
global and local training.5 

Global Training 

With global training, the whole training set is used or a 
representative subset is selected from the entire set. This train­
ing subset might be chosen randomly (e.g., vector quantiza­
tion). The subset should incorporate the data points that bound 
the data set (e .g., maximum and minimum temperatures over 
a year). This way extrapolation is not performed on areas that 
could actually be supported by data. 

When a network is trained with such a training set, a 
globally (or generally) fitted model is created. This model is 
valid for the whole data set. It can be used directly on any data 
set with the same distribution (e.g., in the case of benchmark­
ing, on the same building). A disadvantage of this method is 
that in order to generalize over the whole data set, some 
specific variances or local patterns in a certain region of the 
data set are lost. Adaptation of the network to fit a local pattern 
may reduce accuracy in other regions of the input space. This 
can be solved by using activation functions with only local 
receptive fields (radial construction) instead of directional 
activation functions (ridge constr uction). 

Local Training 

In contrast to global training, function approximation can 
also be optimized locally. The function estimation in a small 
bounded area of the input space is then based solely on training 
vectors found in the local area of the input space. 

Figure 8 shows a local estimation of a function with one 
dimension (time) only. The signal repeats itself every 24 
hours . For the estimation, only one sigmoid activation func­
tion is used. Figure 8 illustrates that the function estimate is 
valid only for the three-hour range indicated by the two verti­
cal lines and for the same time frame on all other days. Outside 
of this range, the model does not make a correct estimation. 

5· Note that global or local training is independent of the learning 
algorithm but has to do with the location of the training vectors 
used with respect to the whole vector space. All learning algo­
rithms can be used for both global training and local training. 

9 



24h 3h 

nl\ I-+--/ 4--1--l-l--1-----1----

Oct. 31 
1969 

Nov.1 
1969 

Nov.2 
1989 

Nov. 3 1969 

Figure 8 Local estimation of a one-dimensional function. 

Local fitting can be compared to linearization. The func­
tion estimation is valid locally within a certain region. Outside 
of that region, the estimation loses its validity. 

There are three advantages of local training. 

The model can be less complex, since the limited region 
of the input space can be mapped using less free param­
eters. 
Computation time for training is reduced, since fewer 
training vectors are used and also because the model can 
have fewer free parameters. 

Another advantage is that the model might better adapt 
to region-specific patterns. 

Using a limited number of training vectors, however, can 
be a disadvantage. If the training set has noise and also 
includes a small percentage of outliers (e.g., faulty data), these 
outliers could influence the performance since the percentage 
of outliers might be high for a selected subset. 

Local training can be performed by defining classes (e.g., 
working day and nonworking day or daytime and nighttime). 
Depending on the class to which a test vector belongs, a 
specific training set is used to train a network. Defining of 
classes can be performed by a clustering algorithm. Four clus­
tering methods are discussed in the "Clustering" section of this 
paper. 

Another possibility oflocal training is to separately select 
the training vectors for each case and test vector based on a 
distance criterion relative to the test vector. This method is 
referred to as case-based reasoning (CBR) and is discussed 
later. 

Clustering. Cluster methods that can be considered are 

• knowledge-based clustering 

• K-mean clustering 

10 

• Kohonen's self-organizing feature map (SOFM) 
algorithm 

• self-creating and organizing neural networks 
(SCONNs) 

Knowledge-based clustering. Knowledge-based cluster­
ing is possible in advance due to prior system knowledge. 
Thus, different clusters based on time of the year and building 
occupancy can be made. For example, it may be well known 
that the building systems respond differently when the build­
ing is unoccupied, as many systems are shut down during these 
hours. This kind of preselection is valuable where a neural 
network can be constructed with working day and nonworking 
day classes. The model can be a hybrid form between local and 
global training. A global model was created but built with two 
locally trained neural networks, the outputs of which were 
combined in a globally trained combination network (Breek­
weg 1995). The outputs oflocally trained neural networks can 
be combined to create a global network and subsequently 
trained globally. 

K-mean clustering. This clustering algorithm assumes a 
fixed number of clusters k and operates by associating a data 
point x; to the cluster with the centroid w1 closest (e.g., 
Euclidean distance) to x; and then updates the centroids forthe 
revised clusters. The K-mean algorithm converges to a locally 
optimal cluster configuration, which is influenced through 
initial assignment of the k centroids. It is a popular clustering 
method due to its simplicity. 

Kohonen s self-organizing feature map (SOFM). The 
self-organizing feature map (SOFM) was first introduced by 
Teuvo Kohonen in 1982 (Kohonen 1989; Hassoun 1995; 
Veelenturf 1995). The SOFM is a neural network that orga­
nizes itself only as a function of its inputs. This neural network 
is often used for clustering or vector quantization (VQ). 

The SOFM can group data into a number of categories or 
clusters. The algorithm, similar to the K-mean algorithm, 
assumes a predefined fixed number of clusters. The centroids 
of the clusters are the weights of the network's neurons. The 
neurons are ordered (in a lattice) in one or multiple dimen­
sions. After training, neighboring neurons correspond to 
neighboring clusters in the input space. The mapping of the 
input space is such that the clusters have a similar topology as 
the original input space. This way, the centroids of the clusters 
form a VQ of the original input space. 

This clustering method has received much attention over 
the last decade, particularly because of its topology or feature 
mapping. The SOFM cluster configuration is not influenced 
by the initial assignment of the centroids, as is true for the K­
mean algorithm. Instead, the SOFM cluster configuration is 
influenced by the order in which the data are presented to the 
algorithm. 

Self-creating and organizing neural networks (SCONNs). 
Self-creating and organizing neural networks (SCONNs) 
create an adaptive vector quantization (VQ). There are two 

4372 



different SCONNs : the first one creates an adaptive uniform 
VQ, and the second one creates an adaptive nonuniform VQ. 
A SCONN begins with only one neuron and sufficiently broad 
activation level. The activation level decreases depending on 
the time or the activation history. With every new input vector, 
a decision is made whether to adapt the weights of the existing 
neurons or to create a new neuron. The SCONN differs from 
K-mean clustering and SOFMs mainly by finding the opti­
mum number of clusters. No fixed number of clusters is 
assumed. Furthermore, the neurons of the SCONN are not 
arranged in a lattice but in a tree structure. Additionally, topol­
ogy or feature mapping capabilities can be incorporated in 
SCONNs. Choi and Park (1994) have published a comparison 
between SOFM and SCONNs. 

Case-based reasoning (CBR) . The difference between 
clustering and case-based reasoning (CBR) is that with CBR, 
a new training subset is selected from the input space for each 
new test case. With clustering, however, a lot of computational 
time is invested in clustering the entire input space. After clus­
tering is completed, two different test vectors that both fall in 
the domain ofattraction of the same cluster are trained with the 
same subset. All other training vectors that do not belong to the 
same subsets are not considered for training. Selecting a given 
number of training vectors with best resemblance to each new 
test vector, e.g., Euclidean distance, is much faster, as is the 
case with CBR. 

There are four different ways to select training vectors 
from the total training set with CBR. 

• knowledge-based decision 

• fixed radius 

• fixed number of vectors 

• adaptive radius with a preset minimum :i.umber 
of training vectors 

Knowledge-based decisions. Knowledge-based preselec­
tion is possible regarding the test vector. For example, select 
all data points that have less than a given number of hour or 
day differences to the test vector. In other words, choose the 

A 

data points that have approximately the same time of day or the 
same time of year. 

Fixed radius. All training vectors that are closer to the 
given test vector within a fixed distance a are selected for 
training. The distance can be an Euclidean distance. With a 
fixed radius, however, the number of the training vectors will 
vary for different test vectors . If a is chosen too small, the 
number of training vectors selected in a sparse area of the input 
space may not be sufficient for an estimation. 

Fixed number of vectors. The closest N training vectors 
are selected. The number of vectors to be selected remains an 
open issue. The other problem that arises is that vectors vN- m 
to vN might have a very large distance to the test vector 
compared to v1 to vN _ 111 _ 1 , thereby compromising the possi­
ble adaptation to local patterns of the function. 

Adaptive radius with a preset minimum number of train­
ing vectors. The number of training vectors that are relevant 
for a good prediction of the output for a given test vector 
should depend on the density of training vectors in the area 
around the test vector. A minimum number of training vectors 
should be selected for proper training of a nonlinear model. 
Extra training vectors are selected based on the underlying 
probability density. If a test vector is located in a dense area of 
the vector space, many resembling training vectors are avail­
able. The radius should then be small in order to keep the train­
ing set small. However, for a sparse area of the vector space, 
the radius should be chosen larger to obtain the minimum 
number of training vectors. 

This last method presumes prior knowledge of the under­
lying distribution function of the vector space. Since this 
knowledge is not available, it is necessary to get an indication 
of the probability density function of this space. An indication 
of the probability density function can be made by means of a 
histogram. However, this method has the disadvantage that it 
can only compute discrete density estimation. Furthermore, 
the influence of the dimensionality of the vector space is 
considerable. 

0 
0 

0 0 0 
0 0

0 
0 0 

0 0 0 
0 0 

0 0 0 0 D 
0 0 0 

B 

0 0 0 0 0 0 0 
0 0 Q 0 

0 00 0 0 0 0 
o o oi 0 

,p 0 0 0 0 0 0 °o 0 
0 0 0 
it 0o 

D 

0 

x, 

Figure 9 Illustration A shows the selection of the training vectors using clustering. Illustration B gives an impression of case 
based selection of training input vectors resembling a test input vector. In B, information on how the other vectors 
are clustered is not of interest. 

4372 1 1  



A method for a continuous estimation of the density func­
tion, which is less influenced by the dimensionality, can be 
implemented with kernel estimators (radial activation func­
tions with radial construction). The kernel estimator was intro­
duced by Parzen (1962) and is known as the Parzen density 
estimation. In the case of the Parzen density estimation, a 
radius can be calculated to obtain an indication of the under­
lying distribution function. The radius p for the selection of the 
training set should be related to the probability estimate fl.x) 
according to the following formula: 

(12) 

A high probability estimate indicates that there are 
several resembling training vectors. The radius chosen should 
be small since one wants a limited set of training vectors that 
closely resembles the test vector. On the other hand, a low 
probability estimate indicates that the number of resembling 
training vectors is small. Consequently, a larger radius is 
necessary t o  find sufficient training vectors. It may be wise to 
set a fixed minimum number of training vectors that are neces­
sary to train the neural network. A combination between 
knowledge-based selection and one of the other three options 
is also possible. 

CONCLUSION 

Part I of this paper essentially develops a framework for 
neural network-based methods for detecting faults in building 
energy performance. Several neural network design factors 
that are key to success are discussed, including data charac­
teristics, physical considerations, activation function, number 
of hidden layers, interconnection between activation func­
tions, and the learning algorithms. The learning algorithm is 
investigated in more detail, including local vs. global training, 
case-based reasoning, and clustering. Additionally, several 
common neural network structures are also presented. The 
discussions in Part I set the stage for selecting a good predic­
tion model and then applying it to real data. Both the model 
selection and results are covered in Part II of this paper. 

REFERENCES 

Atkinson, K.E . 1989. An introduction to numerical analysis. 
2d ed. Singapore: John Wiley & Sons. 

Beale, M., and H .  Demuth. 1994. Neural network toolbox for 
use with Matlab. Version 2.0a. Natwick, Mass . :  The 
Math Works, Inc., January. 

Breekweg, M.R.B. 1995. E nergy management in commer­
cial buildings using neural networks . Internship report. 
University ofTwente, E nschede, the Netherlands. 

Chen, S., C.F.N. Cowan, and P.M. Grant . 199 1 .  Orthogonal 
least squares learning algorithm for radial basis function 
networks. IEEE Transactions on Neural Networks, 
March 2 (2): 302-309. 

12 

Choi, D.-I., and S.-H. Park. 1994 .  Self-creating and organiz­
ing neural networks. IEEE Transactions on Neural Net­
works 5 (4): 561-575. 

Coda, F.M. 1994.  Predicting hourly building energy use: The 
· great energy predictor shootout. A collection of papers 

from the ASHRAE meeting at Orlando, Florida, June 
1994. ASHRAE Technical Data Bulletin, vol. 10,  no. 5 .  

Cybenko, G. 1989. Approximation by superpositions of a 
sigmoidal function. Mathematical Control Signals Sys­
tems, vol. 2, pp. 303-314. 

Ferrano, F.J., and K.V. Wong. 1990. Prediction of thermal 
storage loads using a neural network. ASHRAE Transac­
tions 96 (2): 723-726. 

Funahasi, K.-I. 1989. On the approximate realization of con­
tinuous mappings by neural networks. Neural Networks, 
March 2 (3): 1 83- 1 92. 

Gibson, G.L., and T.T. Kraft. 1993 . E lectric demand predic­
tion using artificial neural network technology. 
ASHRAE Journal 35 (3): 60-68. 

Hassoun, M.H. 1995 . Fundamentals of artificial neural net­
works. Cambridge, Mass. :  The MIT Press. 

Hertz, J.A .,  A. Krogh, and R.G. Palmer. 1991. Introduction 
to the theory of neural computation. Reading, Mass .: 
Addison-Wesley. 

Hornik, K., M. Stinchcombe, and H .  White. 1 989. Multilayer 
feedforward networks are universal approximators. 
Neural Networks, May 2 (5): 359-366. 

Haber!, J.S., and S. Thamilseran. 1996. The great energy pre­
dictor shootout II: Measuring Retrofit Savings-Over­
view and discussion of results . ASHRAE Transactions 
102 (2): 419-435. 

IEA. 1 982. World Energy Outlook. Paris: International 
Energy Agency and Organisation for Economic Co­
operation and Development . 

Kawashima, M., C.E. Dorgan, and J.W. Mitchell. 1995. 
Hourly thermal load prediction for the next 24 hours by 
ARIMA, EWMA, LR and an artificial neural network. 
ASHRAE Transactions 1 01 (1): 1 86-200. 

Kreider, J.F., and J.S. Haber!. 1994 .  Predicting hourly build­
ing energy usage. ASHRAE Journal 36 (6): 72-81. 

Kohonen, T. 1989. Self-organization and associative mem­
ory. 3d ed. Berlin: Springer Verlag. 

Levermore, G.J. 1992. Building energy management sys- · 
terns: An application to heating control. London: E & 
FN Spon. 

Lippmann, R.P. 1987. An introduction to computing with 
neural nets. IEEE ASSP Magazine, April, pp. 4-22. 

Moody, J., and C. Darken. 1989. Fast learning in networks of 
locally-tuned processing units . NeuralComputation 
1 (2): 281-294 . 

Nadaraya, E. 1964 . On estimating regression. In: Theory of 
probability and applications, chapter 9, pp. 141-142. 

4372 



Parzen, E. 1 962. On estimation of a probability density func­
tion and mode. Annal of Mathematical Statistics. 

Preul3, H.P., and V. Tresp. 1994. Neuro-Fuzzy (in German). /  
Automatisierungstechnische Praxis, May 36 (5):  10-24. 

Preul3, H.P. 1 994. Methoden der nichtlinearen Modellierung 
-vom Interpolationspolynom zum Neuronalen Netz (in 
German). Automatisierungstechnik, October 42 ( 10) :  
449-457. 

Sjoberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, 
P.-Y. Glorennec, H. Hjalmarsson, and A. Juditsky. 1995. 

4372 

Nonlinear black-box modeling in system identification: 
A unified overview. Automatica, June. 

Sontag, E. 1 993 . Neural networks for control. In: Essays on 
Control: Perspectives in the Theory and its Applica­
tions. H. Trentelman and J. Willems, Progress in Sys­
tems and Control Theory, vol. 14: 339-380. 

Specht, D .F. 199 1 .  A general regression neural network. 
IEEE Transactions on Neural Networks, November, 2 
(6): 568-576. 

Veelenturf, L.P.J. 1995. Analysis and applications of artifi­
cial neural networks. United Kingdom: Prentice Hall. 

1 3  


