## AIC:RCAII



BLWT-SS2-1983

BOUNDARY LAYER WIND TUNNEL LABORATORY THE UNIVERSITY OF WESTERN ONTARIO FACULTY OF ENGINEERING SCIENCE
LONDON, ONTARIO, CANADA
N6A 5B9

## TABLE OF CONTENTS

Page
TABLE OF CONTENTS ..... i
1.0 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Description of Program of Study ..... 2
2.0 A STUDY OF THE EXTERNAL PRESSURES AND INTERNAL FLOWS FOR A MODEL DOMESTIC DWELLING ..... 3
2.1 The Models ..... 3
2.2 Model Calibration ..... 18
2.3 Test Procedure ..... 19
2.4 External Pressures ..... 20
2.5 Internal Flow Rates ..... 20
3.0 COMPARISON OF MEASURED AND COMPUTED FLOWS ..... 23
3.1 Theoretical Estimates of Flow Rates ..... 23
3.2 Comparison of Measured and Predicted Internal Flow Rates ..... 30
3.3 Discussion ..... 30
4.0 EXTERNAL PRESSURE DISTRIBUTIM WN LON LOW-RISE INDUSTRIAL BUILDINGS ..... 69
4.1 Data Base ..... 69
4.2 Reformulation of Data for Computation of Flow Rates ..... 69
4.2.1 Sample computations ..... 73
4.3 Potential Use of Pressure Data ..... 75
5.0 A SIMPLIFIED APPROACH TO FLOW RATE PREDICTION ..... 75
6.0 CONCLUSIONS ..... 81
6.1 Prediction of Internal Flows From External Pressures Measured on a Sealed Model ..... 81
6.2 External Pressure Distributions on Low-Rise Buildings ..... 82
6.3 The Development of Design Aids for Naturally Ventilated Structures ..... 82
APPENDIX 1 TABULATED INTERNAL FLOW MEASUREMENTS ..... A1

## TABLE OF CONTENTS (Cont'd)

APPENDIX 2 EXTRACTS FROM BLWT-SS8-1977 ENTTTLED WIND LOADS ON LOW RISE BULLDINGS: FINAL REPORT OF PHASES I AND IIA2
APPENDIX 3 EXTERNAL PRESSURE DATA ..... A3

### 1.0 INTRODUCTION

### 1.1 Background

A prime force producing internal flows in a naturally ventilated structure is the external wind pressure field. Even in comparatively light winds these pressures will exceed those generated by thermal or "stack" effects. For a building height of 30 feet the pressure difference created by a $10^{\circ} \mathrm{F}$ temperature difference between the interior and exterior is of the same order as those created by wind at a speed of about 4 mph .

If the external pressure distribution is known together with the size, shape and disposition of both the external openings and the internal flow paths, then the internal flows can be computed by established procedures. The procedures involved have been described by Vickery (1) and have been applied in a feasilility study related to the provision of a natural ventilation system in a 600 ft . office building. A difficulty which arises in the computation of these flows is the possible interaction between the pressure field and the flow through the building. If the openings are comparatively small the flow through the building from high to low pressure regions will not influence the external pressure field but as the openings increase in size the flow will eventually modify the pressure field and computations based upon the pressures measured on a sealed structure will be in error. It has been suggested (2) that if the openings do not exceed $10 \%$ to $20 \%$ of the wall area then the errors will not be significant but the data available on this point are extremely limited. An evaluation of the accuracy of internal flow estimates deduced from the external pressure distribution measured on sealed models is one of the aims of the proposed study.

Central to the computation of internal flow rates is a knowledge of the external pressure distribution. Although the pressure distributions on low-rise buildings have been studied extensively, the object, in the main, has been the determination of wind loads for use in the structural design of the building. With this end in mind, the attention has been concentrated on maximum (or minimum) values and the data gathered have been presented in forms which greatly exaggerates the pressure differences which exist at some arbitrary wind direction. Because of the emphasis on maximum values, much of the published data is quite unsuitable to the computation of ventilation rates.

The most comprehensive study of wind pressures on low-rise buildings is that conducted at the Boundary Layer Wind Tunnel Laboratory, The University of Western Ontario and sponsored by the Metal Building Manufacturers Association, the American Iron and Steel Institute and the Canadian Steel Industries Construction Council. The results of this study have been published $(3,4)$ and have provided the basis for recent revisions in American (ANSI) and Canadian (NBC) building codes. Although the published data are directed towards structural design applications, all the measured data have been archived in a computer compatible form. The second aim of this study is to develop computer programs to analyse these data and present the results in a form in which they will be readily usable in the computation of internal flow rates and in the evaluation of proposed systems of natural ventilation.

### 1.2 Description of Program of Study

The study can be considered in three major phases as follows:

$$
\begin{array}{ll}
\text { Phase I: } & \begin{array}{l}
\text { Comparison of computed and measured internal flows. } \\
\text { Phase II: }
\end{array} \\
\begin{array}{l}
\text { Preparation of a data base for external pressures on low-rise } \\
\text { buildings. }
\end{array} \\
\text { Phase III: } & \text { The development of design aids. }
\end{array}
$$

The aim of Phase I was to establish the conditions under which the external distribution of pressure can be used to obtain reliable estimates of internal flows. It can be anticipated that, for small openings, the flow field and hence the external pressure field will be unchanged by flow through the structure. In such cases the induced flows can be computed from the pressures measured on a sealed model provided that the size and the pressure loss characteristics of the external openings and internal flow paths are known. As the opening size is increased the "through flows" will distort the pressure field and lead to eroneous predictions. The magnitude of these errors and the dependency on the size and position of the openings is presently poorly defined. To evaluate these errors the pressure distribution on two 1:100 models of simple domestic structures was measured in turbulent shear flow. These distributions were employed to compute internal flows. An additional two models with the same external dimensions were constructed with a variety of external openings varying from almost $100 \%$ of the face to only a few percent of the face. The latter models were fitted with a flow meter to measure internal flows to be compared with those computed from the pressures. The test procedures for Phase I are described in detail in Section 2 and the measured and computed flows are compared and the results discussed in Section 3.

The aim of Phase II was to collect the pressure data obtained in a comprehensive study of wind loads on low-rise buildings and re-arrange it in a form more suited to the computation of internal flows. The method adopted was to divide each wall surface into equal rectangular areas and, using the available data, to compute the average (spatial) mean (time average) pressure coefficient for each. A similar approach was adopted for a series of rectangular regions located along the ridge line. The coefficients so determined were then presented in a semi-pictorial format for a range of wind directions, roof slopes and terrain roughness. The origins of the data base, the methods employed in the reformulation and the results obtained are presented and discussed in Section 4.

While the data presented in Section 4 can be used to compute internal flows this procedure does entail computations best completed with the aid of a computer code. In order to eliminate or at least minimize the need for this procedure, Phase III was planned with the aim of developing design aids from which flow estimates could be made by simple hand calculations. Because of time limitations on the study it was clear that Phase III would not be completed in its entirety but that sample design charts would be produced. The development of the design aids is
discussed in Section 5 and some sample charts are presented. Work on this Phase is continuing with support from other funding sources and a separate report will be prepared at a later date.

The overall conclusions derived from the study are summarized in Section 6.

### 2.0 A STUDY OF THE EXTERNAL PRESSURES AND INTERNAL FLOWS FOR A MODEL DOMESTIC DWELLING

### 2.1 The Models

The model employed in the external pressure studies is shown in Fig. 2.1, which gives the detailed measurements, and in the photograph in Fig. 2.2. The basic shell was fitted with a total of 80 pressure taps located as shown in Fig. 2.3. The model was tested with and without the end wall extensions or "wing" walls.

The models employed in the flow studies are shown in Fig. 2.4 which gives the detailed dimensions. The models were designed with removeable wall panels and a removeable leeward roof panel. A set of walls with openings of:

| i) | No walls | ; | \% of front wall |  | 89 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ii) | $4^{\prime \prime} \times 1$ " rectangle | ; | \% of front wall |  | 71 |
| iii) | 3.2 " x $0.8^{\prime \prime}$ rectangle | ; | \% of front wall | $=$ | 46 |
| iv) | 24, $3 / 8{ }^{\prime \prime}$ holes | ; | \% of front wall | = | 47 |
| v) | 24, $1 / 4$ " holes | ; | \% of front wall | = | 21 |
| vi) | 24, 3/16" holes | ; | \% of front wall | $=$ | 12 |
| vii) | 24, $1 / 8^{\prime \prime}$ holes | ; | \% of front wall | $=$ | 5 |
| viii) | 24, 3/32" holes | ; | \% of front wall | $=$ | 3 |

The roof panels were prepared to produce a slit just downstream of the ridge of the roof. The slit length was $4.0^{\prime \prime}$ or $89 \%$ of the full width and the widths were $1 / 8$ ", $1 / 4^{\text {" }}$ and $1 / 2^{\text {" }}$ which produced open areas equal to $9 \% ; 18 \%$ and $36 \%$ of the frontal wall area.

The flow through the model was measured by calibrating the bend in the ducting (see Fig. 2.4) as a flow meter. The average pressure difference between the group of five taps on the inside of the bend and the five taps on the outside was measured with a precision electronic manometer. This pressure difference was related to the flow through the building by the calibration procedure described in Section 2.2. The pressure loss through the flow meter can be expressed in the form;

$$
\begin{equation*}
\frac{\Delta p_{\text {loss }}}{\frac{1}{2} \rho v^{2}}=C_{L} \tag{2.1}
\end{equation*}
$$



FIG. 2.1 1:100 MODEL EMPLOYED IN THE MEASUREMENT OF SURFACE PRESSURES


FIG. 2.2 1:100 MODEL EMPLOYED IN THE MEASUREMENT OF SURFACE PRESSURES


FIG. 2.3 LOCATION OF PRESSURE TAPPINGS ON 1:100 MODEL


FIG. 2.4 1:100 MODEL WITH FLOWMETER FOR THE MEASUREMENT OF INTERNAL FLOWS


FIG. 2.5 1:100 MODEL VENTED BY 24, 3/8" DIAMETER HOLES IN EACH OF THE FRONT AND REAR WALLS


FIG. 2.6 1:100 MODEL VENTED BY 24, 3/8" DIAMETER HOLES IN EACH OF THE FRONT AND REAR WALLS


FIG. 2.7 1:100 MODEL WITH REMOVEABLE ROOF PANELS AND WING WALLS


FIG. 2.8 VENTED WALL SEGMENTS WITH $3 / 8^{\prime \prime}, 1 / 4^{\prime \prime}, 3 / 16^{\prime \prime}, 1 / 8^{\prime \prime}$ and $3 / 32^{\prime \prime}$ DIAMETER HOLES



FIG. 2.10 DISCHARGE COEFFICIENT OF FLOWMETER AS A FUNCTION OF REYNOLDS NUMBER


FIG. 2.11 INTERNAL LOSS COEFFICIENT AS A FUNCTION OF REYNOLDS NUMBER


FIG. 2.12 1:100 PRESSURE MODEL IN BOUNDARY LAYER WIND TUNNEL


FIG. 2.13 1:100 FLOW MODEL IN BOUNDARY LAYER WIND TUNNEL


FIG. 2.14 VELOCITY PROFILE AND TURBULENCE LEVELS AT THE TEST POSITION
where,

| $\Delta p_{\text {loss }}$ | $=\Delta P_{1}$ |
| ---: | :--- |
| $V$ | $=Q / A$ |
| $Q$ | $=$ total flow |
| $A$ | $=$ frontal wall area $\left(1.25^{\prime \prime} \times 4.5^{\prime \prime}\right)$ |

Measurements of the pressure loss indicated a value of $C_{L}$ of approximately 4. This loss coefficient would essentially be the same if the flow through the building is forced to pass through a sharp edged internal opening or openings of a total area equal to $50 \%$ of the total frontal wall area. Even if a dwelling contains no internal walls parallel to the windward wall the internal flow area (allowing for floor to ceiling height of about $80 \%$ of the external ground to eaves height and some loss in area due to the internal and external walls parallel to the sides) is unlikely to exceed $70 \%$ of the frontal wall area. The resistance offerred by the flow meter is thus comparable with the resistance that would be present in a home with a very open interior floor plan. The internal losses contribute less than one third of the total losses for wall porosities less than $47 \%$.

The model employed in the flow measurements is shown in Figs. 2.5 and 2.6 (the model is fitted with walls containing $243 / 8^{\prime \prime}$ holes). The complete model with the flow meter, the removeable wing walls and the removeable roof elements is shown in Fig. 2.7. The perforated wall panels are shown in Fig. 2.8.

### 2.2 Model Calibration

The experimental arrangement employed for the calibration of the flow meter and the determination of the internal losses is shown in Fig. 2.9. The flow ducted into and out of the model was measured with two calibrated "Rotameters". The pressure drop through the model $\left(\Delta p_{1}\right)$ and the pressure difference ( $\Delta p_{2}$ ) across the bend of the flow meter were measured with an electronic micromanometer. The variation of the discharge coefficient of the flow meter (Equation 2.2) and the loss coefficient (Equation 2.3) were computed and plotted as a function of Reynolds Number (Equation 2.4).

$$
\begin{align*}
Q & =C_{d} A_{O} \sqrt{2 \Delta p_{2} \not p}  \tag{2.2}\\
\Delta p_{1} & =C_{L}^{\prime} \rho V^{2} / 2=C_{L} \rho V^{2} / 2  \tag{2.3}\\
R_{e} & =V_{O} B \hbar \tag{2.4}
\end{align*}
$$

where;

| $Q$ | $=$ flow |
| :--- | :--- | :--- |
| $C_{d}$ | $=$ discharge coefficient |
| $\Delta p_{2}$ | $=$ pressure difference across bend |
| $\rho$ | $=$ air density |


| $A_{o}$ | $=$ | throat area of meter ( $4^{\prime \prime} \times 1^{\prime \prime}$ ) |
| ---: | :--- | :--- |
| $C_{L^{\prime}}$ | $=$ | loss coefficient |
| $V_{o}$ | $=Q / A_{O}$ |  |
| $\Delta_{p_{1}}$ | $=$ | pressure drop through model building |
| $R_{e}$ | $=$ | Reynolds Number |
| $B$ | $=$ throat depth (1") |  |
| $\nu$ | $=$ kinematic viscosity of air. |  |
| $V$ | $=Q / A$ |  |
| $A$ | $=$ | frontal wall area |

The variation of $C_{d}$ and $C_{L}$ with $R_{e}$ is shown in Fig. 2.10 and Fig. 2.11 respectively. The discharge coefficient is essentially constant and equal to $0.73 \pm 0.01$ for $R_{e}>700$ while the loss coefficient is essentially constant and equal to $4 \pm .2$ for $R_{e}>1200$. The average velocity through the meter can be expected to be of the order $C_{c} \cdot \gamma \cdot V$

where; $\quad$| $\gamma$ | $=$ wall porosity |  |
| :--- | :--- | :--- |
|  | $V=$ external speed |  |
|  | $C_{\boldsymbol{C}}$ | $=$ contraction coefficient |

All wind tunnel tests were conducted with $V$ of the order of 30 fps and hence a Reynolds Number of 700 would be exceeded with a wall porosity in excess of about $7 \%$. The discharge coefficient varies rapidly with $R_{e}$ below about 400 and, as a result, it might be anticipated that accurate flow measurement at porosities less than $4 \%$ would be difficult. As is discussed in Section 2.5 this proved to be the case and it was not possible to achieve reliable measurements at a porosity of $3 \%$ and the results at $5 \%$ porosity exhibited considerable scatter.

### 2.3 Test Procedure

Both the external pressures and the internal flows were measured in turbulent shear flow generated in the 8 ft . wide $\times 100 \mathrm{ft}$. long Boundary Layer Wind Tunnel at the University of Western Ontario. The pressure model is shown in Fig. 2.12 and the flow metering model in Fig. 2.13. The models were mounted on the turntable (see Figs. 2.12 and 2.13) and the external pressures (or flows) were measured for wind approach angles of 00 to $90^{\circ}$ in $10^{\circ}$ increments. The properties of the flow at the test section are shown in Fig. 2.14. The wind speed profile and turbulence is typical of that off water and was chosen to maximize the speeds near the surface and hence maintain as high a Reynolds Number as possible. Since the prime aim of the study was to compare measured and predicted flows the actual profile employed is of little consequence. Again to maximize the Reynolds Number, all tests were conducted at the maximum speed of the tunnel which, at the eaves height of the model, was about 30 fps .

The reference velocity in the Wind Tunnel was monitored by the use of a pitot tube located in the smooth flow above the boundary layer. The pressures and the flow rates were initially expressed in a dimensionless form as follows;

$$
\begin{aligned}
C_{p} & =\frac{\mathrm{p}-\mathrm{p}_{\mathrm{s}}}{\frac{1}{2} \rho V^{2}} \\
C_{Q} & =\frac{Q}{A \cdot V}
\end{aligned}
$$

where; $V=$ reference velocity measured by pitot tube
$A \quad=\quad$ frontal wall area of model
Q $=$ measured internal flow
$p=$ measured surface pressure on model
$p_{S} \quad=\quad$ pressure from static taps of pitot.

The coefficients were later adjusted using a reference speed in the vicinity of the model as defined in Section 2.4.

### 2.4 External Pressures

The measured external pressure coefficients for wind angles 00 to 900 are presented in Tables 2.1 for the basic model and 2.2 for the model with wing walls added, the coefficients in these tables have been defined with respect to the mean speed at a height of 2.5 inches,
ie; $\quad C_{p}=\frac{p-p_{s}}{\frac{1}{2} \rho V_{z}^{2}}$
$V_{z}=$ mean speed @ $z=2.5$ inches
which, accepting a model scale of $1: 100$, corresponds to a full-scale height above ground of 20 ft .

### 2.5 Internal Flow Rates

The measured internal flows, are presented in Appendix 1. The flows have been expressed in the form of flow coefficients, $C_{Q}$ defined as;

$$
C_{Q}=\frac{Q}{A V_{z}}
$$

$A=$ frontal area (1.25" $\left.\times 4.50^{\prime \prime}\right)$
Q $=$ internal flow
$V_{z}=$ reference speed @ $z=2.5$ ins.


TABLE 2.1: PRESSURE COEFFICIENTS FOR BASIC MODEL (FILE TAK2)


TABLE 2.2:

The results presented in Appendix 1 include the measured pressure difference across the bend of the flow meter, the discharge coefficient for the meter, the pitot reference speed and the reference speed, $V_{z}$. The flows measured with $C_{d}<$ 0.6 or $C_{Q}<.02$ must be regarded as suspect since below 0.6 the variation of $C_{d}$ with Reynolds Number is very strong and the coefficient is poorly defined. Values of $C_{Q}<0.02$ were limited primarily to the models with $1 / 8^{\prime \prime}$ or $3 / 32^{\prime \prime}$ diameter holes of porosities less than $5 \%$.

### 3.0 COMPARISON OF MEASURED AND COMPUTED FLOWS

### 3.1 Theoretical Estimates of Flow Rates

The basic assumptions in computing the flow rate from the external pressure distribution are as follows;
i) the internal flows do not disturb the external pressure field,
and ii) the flow rates through a given opening can be calculated from the relationship
$Q \quad=\quad C_{d} A_{O} \sqrt{2 \Delta p / \rho}$
where; $A_{0}=$ area of opening
$C_{d}=$ discharge coefficient
$\Delta p=$ pressure difference across the opening

The method of computation involves further assumptions which are discussed after a description of the method. An idealisation of the flow path through the building is shown in Fig. 3.1. The equations defining the total flow $Q$ follow the following definitions;

$\Delta Q F_{i}=\quad$| that part of the flow through the front wall which passes |
| :--- |
| through the ith opening which has an area $A F_{i}$ - ( + ve in) |


$\Delta Q R_{i}=\quad$| that part of the flow through the rear wall which passes |
| :--- |
| through the ith opening which has an area $A R_{i}$ (+ ve out) |


$Q \quad=\quad$| total flow |
| :--- |


$P I_{1}=\quad$| pressure to the front of a grid representing the internal |
| :--- |
| restrictions |


$P I_{2}=\quad$| pressure behind the grid representing the internal restrictions |
| :--- |

$P I_{1}=\quad$ pressure just inside the front wall.

The equations defining the flow may then be written as;


FIG. 3.1 IDEALIZED FLOW PATH THROUGH BUILDING

$$
\begin{align*}
Q & =Q_{i n}=\sqrt{\frac{2}{\rho}} \sum_{i=1}^{N} C_{d_{i}} A F_{i} \frac{\left(P F_{i}-P I_{1}\right.}{\sqrt{\left|P F_{i}-P I_{1}\right|}}  \tag{3.1}\\
& =Q_{\text {out }}=\sqrt{\frac{2}{\rho}} \sum_{i=1}^{M} C_{d_{i}} A R_{i} \frac{P I_{2}-P R_{i}}{\sqrt{\left|P I_{2}-P R_{i}\right|}} \tag{3.2}
\end{align*}
$$

where; $\quad \begin{array}{ll}N & =\quad \text { number of openings on front face } \\ M & =\quad \text { number of opening on rear face }\end{array}$
and

$$
\begin{equation*}
P I_{1}-P I_{2}=C_{L} \frac{\rho V^{2}}{2} \tag{3.3}
\end{equation*}
$$

$\begin{array}{ll}\text { where; } & V=Q / A \\ \text { and } & A=\text { frontal area }\end{array}$

It is further assumed that the discharge coefficients for the inflow openings are those for the flow situation shown in Fig. 3.2 and that the discharge coefficients for the outflow openings are those for the flow situation shown in Fig. 3.3. Thus, it is assumed that the discharge coefficient for the front is that for a duct with an opening leading from a large volume and the ratio of the area of the opening to the duct area is equal to the ratio of the total open area to the total area of the frontal wall. Similarly, $C_{d}$ for the rear openings is assumed to be that for a duct discharging into a large volume. Implicit in these idealisations is the assumption that flow across the face of a building does not influence the discharge through an opening in that face. This is not unreasonable for the rear face which will generally lie in a separated flow region with low mean speeds but is doubtful for the front face when this is inclined to the flow. The comparison of the measured and computed flows is as much a test of this approach as it is of the basic assumptions defined earlier.

Accepting the Equations 3.1 to 3.3 the flow ${ }^{Q}$ can be computed from the external distribution. For the most part the number and position of the openings matched the number and position of the pressure taps and the values of $P F_{i}$ and $P R_{i}$ were readily defined. In the cases where large single openings were employed the procedure was modified slightly; in this case the flow was computed as if the total open area was equally distributed among " $N$ " openings positioned at the pressure tap locations. In the case of wall openings $M=N=24$ while for roof openings $M=8$.

The unknowns in Equations 3.1 to 3.3 are $Q_{i}, P_{1}$ and $P I{ }_{2}$. The method of computation was as follows;


FIG. 3.2 ASSUMED FLOW PATTERN FOR INFLOW


FIG. 3.3 ASSUMED FLOW PATTERN FOR OUTFLOW
(1) Put

$$
\begin{aligned}
& P I_{1}=P I+\Delta P / 2 \\
& P I_{2}=P I-\Delta P / 2
\end{aligned}
$$

where $\quad \Delta P=C_{L} \rho V^{2} / 2$
(2) Compute Initial PI, $\Delta \mathrm{P}$

(3) Compute (i) $Q_{\text {in }}$ and $\partial Q_{\text {in }} \partial P_{I}$
and (ii) $Q_{\text {out }}$ and a Qout/ a $P_{I}$
(4) Compute $\Delta P_{I}=\frac{Q_{\text {out }}-Q_{\text {in }}}{\left(\partial Q_{\text {in }} / \partial P_{I}-\partial Q_{\text {out }} / \partial P_{I}\right)}$
(5) Compute $\left.\Delta P=C_{L} \rho\left\{\left(Q_{\text {out }}+Q_{\text {in }}\right) / 2 A\right)\right\}^{2 / 2}$
(6) Modify $\mathrm{P}_{\mathrm{I}}, \Delta P, C_{L}$ (and recompute $Q_{i n}, Q_{o u t}$ )
(7) Test for convergence

If $Q_{\text {in }}-Q_{\text {out }} / Q_{\text {out }}<0.1 \%$; Stop
If $Q_{\text {in }}-Q_{\text {out }} / Q_{\text {out }}>0.1 \%$; Return to 3 .

The procedure outlined above was designed for systems where the internal loss ( $\Delta P$ ) was small compared to the losses through the external walls. In such cases the computations converged rapidly but for large wall porosities ( $>40 \%$ ) it was necessary to modify the program.

The loss coefficient, $C_{L}$, for the interior flow path was taken as measured (see Section 2.2). The discharge coefficients were computed from existing data which are shown in Figs. 3.4 and 3.5. The range of practical interest is $0<A_{0} / A<0.5$ or thereabouts and within this range $0.6<C_{d}<0.8$. The results shown in Figs. 3.4 and 3.5 are for large values of $R_{e}(V D / v)$ and there is some dependency on $R_{e}$. below values of about 10 . The speeds through the openings of the model were fypically, 15 to 20 fps and the Reynolds Number about $10^{5} \times$ hole diameter or $10^{\circ}<R_{e}<3 \times 10^{3}$. Data for plate orifices in pipes indicate an increase ${ }_{3}$ in $C_{d}$ from $R_{e}=10^{4}$ ( $C_{d}$ is approximately constant for $R_{e}>10^{4}$ ) to $R_{e}=10^{3}$ of between $5 \%$ and $10 \%$ for $A_{O} / A<15 \%$ and up to a $50 \%$ increase for $A_{0} / A>50 \%$.


FIG 3.4 DISCHARGE COEFFICIENT FOR HIGH REYNOLDS NUMBER FLOWS AS SHOWN IN FIG. 3.2


FIG. 3.5 DISCHARGE COEFFICIENTS FOR HIGH REYNOLDS NUMBER FLOWS AS SHOWN IN FIG. 3.3

In order to check the results shown in Fig. 3.4 and 3.5 and in particular, the sensitivity to $R e$, direct measurements were made of the discharge coefficient for the inflow situation shown in Fig. 3.4. The experimental arrangement is shown in Fig. 3.6 and the discharge coefficient for $3 / 8^{\prime \prime}, 1 / 4^{\prime \prime}$ and $3 / 16^{\prime \prime}$ diameter perforations are shown in Figs. 3.7, 3.8 and 3.9. In the significant range of $R e$ (that corresponding to the higher flow rates) the measured coefficients tend to be greater than those predicted (Fig. 3.4) although the Reynolds Number effects are not as strong as those reported by Johansen for plate orifice meters. All computed flows were based upon Figs. 3.4 and 3.5 with no corrections for Reynolds Number. The measured values of $C_{d}$ suggest that the use of Fig. 3.4 and 3.5 might lead to slight underestimates (by perhaps $10 \%$ ) of the theoretical flow rates.

### 3.2 Comparison of Measured and Predicted Internal Flow Rates

The measured internal flows and those computed using the methods and data detailed in Section 3.1 are presented graphically in Figs. 3.10 to 3.37. The conditions under which the flows were measured are as listed in Table 3. In all figures the measured flows are denoted by circles ( 0 ) and the computed flows by triangles ( $\Delta$ ).

For the tests with flow through walls only the trend of the results is similar for both models (with and without wing walls). At the larger openings the flows are consistently overestimated by the theoretical methods. The trend is shown in Fig. 3.38 in which $Q_{T} / Q_{E}$ (the ratio of the theoretical to the measured flows) is plotted against $C_{Q}$, the theoretical flow coefficient. The results shown in Fig. 3.38 were derived from Figs. 3.10 to 3.37 with the values of $C_{Q}, Q_{T}$ and $Q_{E}$ evaluated as average values for azimuth angles from 00 to $60^{\circ}$.

The ratio $Q_{T} / Q_{E}$ for flow out through ridge vents are shown in Fig. 3.39. These results indicate a highly significant overestimate of about $40 \%$ with a tendency for the error to increase with the flow coefficient although the scatter is considerable.

### 3.3 Discussion

Before considering the comparison of the measured and predicted flow rates some attention will be given to the expected form of the comparison. The external pressure distribution will be influenced by the "through-flow" which will itself reduce the pressure gradient across the model and hence lead to an overprediction of the flows calculated on the basis of "solid model" pressure distributions. If we consider the case of flow through a planar grid with a total area $A$ and a porosity (Aopen/ $\left.A_{\text {total }}\right){ }^{\alpha}$, then data are available which enable the drag coefficient ( $C_{D}=F_{D} / \frac{1}{2} \rho V^{2} A_{T}$ ) to be expressed as a function of $\alpha$. The data of Flachsbart, Georgiou and Vickery and others shows that;



FIG. 3.7 MEASURED DISCHARGE COEFFICIENTS FOR FLOW INTO 3/8" PERFORATIONS


FIG. 3.8 MEASURED DISCHARGE COEFFICIENTS FOR FLOW INTO $1 / 4$ " DIAMETER PERFORATIONS


FIG. 3.9 MEASURED DISCHARGE COEFFICIENTS FOR FLOW INTO 3/16" DIAMETER PERFORATIONS

TABLE 3: TEST CONDITIONS FOR FIGS. 3.10 TO 3.37

| $\begin{aligned} & \text { FILE NAME } \\ & \text { AND } \\ & \text { FIG. NO. } \end{aligned}$ | DESCRIPTION |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FRONT <br> WALL OPENING | OF FRONTAL WALL AREA | REAR <br> WALL OPENING | $\%$ OF FRONTAL WALL AREA | RIDGE VENT. | \% OF FRONTAL WALL AREA |  |
| CAK22-3.10 | Removed | 100 | Removed | 100 | NIL |  |  |
| CAK24-3.11 | $4^{\prime \prime} \times 1^{\prime \prime}$ | 71 | $4^{\prime \prime} \times 1^{\prime \prime}$ | 71 |  |  |  |
| CAK25-3.12 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | 46 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | 46 | " |  |  |
| CAK26-3.13 | 24 @ $3 / 8^{\prime \prime} \phi$ | 47 | 24 @ 3/8" $\phi$ | 47 | " |  |  |
| CAK27-3.14 | 24 @ $1 / 4^{\prime \prime} \phi$ | 21 | 24 @ 1/4" ${ }^{\prime \prime}$ | 21 | " |  |  |
| CAK28-3.15 | 24 @ 3/16" $\phi$ | 12 | 24 @ 3/16" $\phi$ | 12 | " |  |  |
| CAK29-3.16 | 24 @ 1/8" ${ }^{\prime \prime}$ | 5 | 24 @ $1 / 8^{\prime \prime} \phi$ | 5 | " |  |  |
| CAK30-3.17 | 24 @ 3/32' ¢ | 3 | 24 @ 3/32' $\phi$ | 3 |  |  | O |
| CAK31-3.18 | 24 @ 1/8" $\phi$ | 5 | NIL | 0 | $1 / 8^{\prime \prime}$ SLOT | 9 | $\Sigma$ |
| CAK32-3.19 | 24 @ 3/16" $\phi$ | 12 |  |  | $1 / 8^{\prime \prime}$ SLOT | 9 | $\bigcirc$ |
| CAK33-3.20 | 24 @ 3/16" $\phi$ | 12 | " |  | $1 / 4^{\prime \prime}$ SLOT | 18 | ¢ |
| CAK34-3.21 | 24 @ 1/4" $\phi$ | 21 | " |  | $1 / 4^{\prime \prime}$ SLOT | 18 |  |
| CAK35-3.22 | 24 @ 1/4" $\phi$ | 21 | " |  | $1 / 2^{\prime \prime}$ SLOT | 36 |  |
| CAK36-3.23 | 24 @ 3/8" ${ }^{\prime \prime}$ | 47 | " |  | 1/2" SLOT | 36 |  |
| CAK37-3.24 | Removed | 100 | Removed | 100 | NIL |  |  |
| CAK38-3.25 | $4^{\prime \prime} \times 1^{\prime \prime}$ | 71 | $4^{\prime \prime} \times 1^{\prime \prime}$ | 71 |  |  |  |
| CAK39-3.26 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | 46 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | 46 | " |  |  |
| CAK40-3.27 | 24 @ $3 / 8^{\prime \prime} \phi$ | 47 | 24 @ $3 / 8^{\prime \prime} \phi$ | 47 |  |  |  |
| CAK41-3.28 | 24 @ 1/4" $\phi$ | 21 | 24 @ 1/4" ${ }^{\prime \prime}$ | 21 | " |  |  |
| CAK42-3.29 | 24 @ 3/16" $\phi$ | 12 | 24 @ 3/16" $\phi$ | 12 | " |  |  |
| CAK43-3.30 | 24 @ $1 / 8^{\prime \prime} \phi$ | 5 | 24 @ $1 / 8^{\prime \prime} \phi$ | 5 |  |  |  |
| CAK44-3.31 | 24 @ 3/32' $\phi$ | 3 | $24 @ 3 / 32^{\prime \prime} \phi$ | 3 |  |  | $\stackrel{1}{8}$ |
| CAK45-3.32 | 24 @ 1/8" $\phi$ | 5 | NIL | 0 | $1 / 8^{\prime \prime}$ SLOT |  | < |
| CAK46-3.33 | 24 @ 3/16" $\phi$ | 12 | " |  | $1 / 8^{\prime \prime}$ SLOT |  | $\mathfrak{O}$ |
| CAK47-3.34 | 24 @ $3 / 16^{\prime \prime} \phi$ | 12 | " |  | $1 / 4^{\prime \prime}$ SLOT |  | $\underset{3}{z}$ |
| CAK48-3.35 | 24 @ 1/4" $\phi$ | 21 | " |  | $1 / 4^{\prime \prime}$ SLOT |  |  |
| CAK49-3.36 | 24 @ 1/4" $\phi$ | 21 | " |  | 1/2" SLOT |  |  |
| CAK50-3.37 | 24 @ 3/8" ${ }^{\prime \prime}$ | 47 | " |  | 1/2" SLOT |  |  |

FIG. 3.10


FIG. 3.11




> sृyもう
> ロヨL甘ากコケもコ SA aヨyกStシN


## 





## MEASURED VS CAL.CULATED CAK28

FIG. 3.15


## MEASURED VS CAL-CULATED

FIG. 3.16

measured vs cal.culated cak


## measured vs cal.culated cak31

FIG. 3.18


FIG. 3.19


> MEASURED VS CALGULATED CAK33

FIG. 3.20


## measured vs calgulated cak34

FIG. 3.21


## mEASURED vS CALEULATED CAK35

FIG. 3.22

measured vs caleulated cak3g

FIG. 3.23


## MEASURED VS CAL.CULATED CAK37

FIG. 3.24


## MEASURED VS CAL-CULATED CAK38

FIG. 3.25


MEASURED VS CALECULATED CAK39

FIG. 3.26


## MEASURED VS CALLCULATED CAK4C



## measured vs calculated cak 41

FIG. 3.28


## MEASURED VS CALCULATED CAK42




```
MEASURED VS CAt.CULATED CAK4&
```



## measured vs calculated cak 45



MEASURED VS CALCULATED CAK4G

0
0
0
0
0
FIG. 3.33


## measured vs calculated cak 47



## MEASURED VS CALCULATED CAK48

FIG. 3.35


## MEASURED VS CALCULATED CAK4S




$$
\frac{C_{D}(\alpha)}{C_{D}(0)} \simeq(1-\alpha)(1+0.3 \alpha)
$$

It can be argued that this ratio should depend on the resistance to flow through the grid rather than $\alpha$ itself. If the resistance is expressed in coefficient form as;

$$
\Delta p=C_{r}^{\frac{1}{2}} \rho V^{2}
$$

where; $\Delta p=$ pressure drop through the grid
when the average velocity through it is $V\left(V=Q / A_{0}\right)$, then in the case of the grid;

$$
C_{r}=\left(\frac{1}{C_{d \alpha}}\right)^{2} \simeq\left(\frac{1.5}{\alpha}\right)^{2}
$$

and hence;

$$
\frac{C_{D}(\alpha)}{C_{D}(0)} \simeq\left(1-\frac{1.5}{\sqrt{C_{r}}}\right)\left(1+\frac{0.45}{\sqrt{C_{r}}}\right)
$$

If it is assumed that this relationship is also applicable to porous buildings then, since the through-flow is proportional to $C_{D}{ }^{-\frac{1}{2}}$, the ratio of the flow computed using the pressure distribution on a solid model to that computed with the distribution modified by the through-flow will be;

$$
\begin{aligned}
& \begin{aligned}
& \frac{C_{Q_{T}}}{C_{Q_{E}}}=\frac{1}{\left(\left(1-1.5 / \sqrt{C_{r}}\right)\left(1+0.45 / \sqrt{C_{r}}\right)\right)^{\frac{1}{2}}} \\
& \text { However; } C_{r}=\frac{\Delta p}{\frac{1}{2} \rho V^{2}} \\
&=\frac{C_{D} \cdot \frac{1}{2} \rho V^{2}{ }_{r e f}}{\frac{1}{2} \rho C^{2} Q_{T} V^{2} r e f} \\
&=\frac{C_{D}}{C^{2} Q_{T}}
\end{aligned}
\end{aligned}
$$

and hence;

$$
\frac{\left(C_{Q}\right)_{T}}{\left(C_{Q}\right)_{E}} \simeq \frac{1}{\left(( 1 - 1 . 5 C _ { Q } / \sqrt { C _ { D } } ) \left(1+0.45 C_{Q} / \sqrt{\left.C_{D}\right)^{\frac{1}{2}}}\right.\right.}
$$

which, for small $C_{Q}$, and for a wind angle less than $60^{\circ}$ is approximately given by;

$$
\begin{equation*}
\frac{\left(C_{Q}\right)_{T}}{\left(C_{Q}\right)_{E}} \simeq 1+0.65 C_{Q}+1.2 C_{Q}^{2} \tag{3.4}
\end{equation*}
$$

Equation 3.4 is plotted together with the experimental observations for flow through the rear wall in Fig. 3.38. The general trend of $C_{Q}$ (predicted)/ $C_{Q}$ (observed) with $C_{Q}$ given by Equation 3.4 is apparent but the experimental values are consistently low. This is probably due to an underestimate of the discharge coefficient as discussed earlier (Section 3.2). The results of Fig. 3.38 are replotted in Fig. 3.40 with the theoretical estimates increased by $8 \%$ to allow for the probable underestimate of the discharge coefficient. The relationship of Equation 3.4 then follows the observations with a root-mean-square deviation of 0.08 or about $6 \%$ on average.

It can be concluded that given the external pressure distribution and the discharge characteristics of building openings the internal flows can be predicted for openings in the walls. If the pressure distribution is determined from an unvented structure then the internal flows will be overestimated with $C_{Q}$ (predicted)/ $C_{Q}$ (true) being roughly equal to $1+C_{Q}$ (predicted). The results obtained suggest that internal flow predicted from the empirical relationship;

$$
C_{Q}=\frac{C_{Q_{O}}}{1+C_{Q_{O}}}
$$

where $C_{Q_{O}}$ is the flow coefficient predicted using the pressure distribution on an unvented or solid model will have an accuracy of better than $10 \%$ (coefficient of variation).

In the case of flows vented through the ridge (Fig. 3.39) the predictions are substantially in error even at very small flow rates. There are significant differences between the basic model and that with wings but in both cases a very significant over prediction is apparent. At values of $C_{Q}$ above 0.05 the measured internal flow was roughly $65 \%$ of that predicted for the basic model and $75 \%$ for the winged model. It would appear that injecting flow into the wake at the ridge line has a substantial influence on the pressure field. The mechanism by which the pressure field is modified was not studied but it may well be associated with the close proximity of the vent to the point of flow separation. This suggestion is supported by the observation that for large wind azimuth angles (above $50^{\circ}$ ) the predicted and observed flows are in fair agreement. At these angles the flow would separate from the gable end and the ridge would lie in the separated flow region (as was the case for the rear wall).


FIG. 3.38 COMPARISON OF PREDICTED AND OBSERVED FLOW RATES GENERATED BY OPENINGS IN THE FRONT AND REAR WALLS


FIG. $3.39 \quad C_{Q}$ (Predicted)/ $\mathrm{C}_{\mathrm{Q}}$ (Observed) VS C $\mathrm{C}_{\mathrm{Q}}$ FOR FLOW OUT THROUGH RIDGE


FIG. 3.40
COMPARISON OF MEASURED AND MODIFIED PREDICTED FLOWS DUE TO WALL OPENINGS

While there is insufficient evidence to draw general conclusions the results strongly suggest that vents placed near points of separation may have a marked influence on the pressure field and lead to erroneous predictions of the internal flows. This is a problem which deserves further investigation but is beyond the scope of the present study.

### 4.0 EXTERNAL PRESSURE DISTRIBUTIONS ON LOW-RISE INDUSTRIAL BUILDINGS

### 4.1 Data Base

The data base used to derive the mean pressure distribution on low-rise industrial buildings was obtained in a study of wind loads by Davenport, Surry and Stathopoulos. A report of this study "Wind Loads on Low-Rise Buildings: Final Report of Phases I and II" is attached as Appendix 2. Sections of the report dealing with member loads have been omitted.

Tests were conducted at three model scales ( $1: 100,1: 250,1: 500$ ) but the extensive test program was conducted at a scale of $1: 250$ and this scale only was extracted for the present study. Tests included three building heights, two terrain roughnesses and three roof slopes as specified in Section 4.0 (p 17-18) of Appendix 2.

### 4.2 Reformulation of Data for Computation of Flow Rates

The major task in dealing with the body of data gathered was to extract the mean pressure coefficients, adjust these coefficients to a reference stagnation pressure at eaves height and to compute the average pressures in a regular array of zones over the building surface.

The zoning pattern adopted is as shown in Fig. 4.1. The front and rear faces were divided into eighteen equal zones (six across by three high), the side or end faces into nine equal zones (three wide by three high) and a further six zones were defined along each side of the ridge line on the roof.

The mean pressure coefficient for each zone was computed and, for each set conditions, printed in a "picture" format as shown in Fig. 4.2. The complete set of results arranged as shown in Table 4.1 are presented in Appendix 3. The data in the Appendix may be used directly to evaluate flows given a distribution of openings and corresponding discharge coefficients. A method of computing the flows for a building in which the internal losses are negligble is outlined below.
$C_{p_{i}}=\quad$ the pressure coefficient for the $i^{\text {th }}$ region as defined in the data
base of Appendix 3.


FIG. 4.1 ZONING PATTERN

ZIMUTH: $\quad$ O


FIG. 4.2 LAYOUT OF "PICTURE" FILES

TABLE 4.1: PRESSURE DATA CONTAINED IN APPENDIX 3

| FILE | SPAN | LENGTH | EAVES HEIGHT | $\begin{aligned} & \text { ROOF } \\ & \text { SLOPE } \end{aligned}$ | TERRAIN | WIND DIRECTIONS | $\begin{gathered} \text { TABLE } \\ \text { NO. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MBTZN | 80 ft . | 100 ft . | 16 ft . | 1:12 | OPEN | $0-90^{\circ} \times 10^{\circ}$ | 3.1.1-10 |
| LLTZN | , | 125 ft . | " | 1:12 | " | $0^{\circ}, 45^{\circ}$ 90 | 3.21-3 |
|  | " |  |  |  |  |  |  |
| LMTZN |  |  |  | 4:12 |  | ' | 3.3.1-3 |
| LHTZN | " | " | " | 12:12 | " | " | 3.4.1-3 |
| LLRZN | " | " | " | 1:12 | SUBURBAN | " | 3.5.1-3 |
| LMRZN | " | " | " | 4:12 | " | " | 3.6.1-3 |
| LHRZN | " | " | " | 12:12 | " | " | 3.7.1-3 |
| MLTZN | " | " | 24 ft . | 1:12 | OPEN | " | 3.8.1-3 |
| MMTZN | " | " | " | 4:12 | " | " | 3.9.1-3 |
| MHTZN | " | " | " | 12:12 | " | " | 3.10.1-3 |
| MLRZN | " | " | " | 1:12 | SUBURBAN | " | 3.11.1-3 |
| MMRZN | " | " | " | 4:12 | " | " | 3.12.1-3 |
| MHRZN | " | " | " | 12:12 | " | " | 3.13.1-3 |
| HLTZN | " | " | 32 ft . | 1:12 | OPEN | " | 3.14.1-3 |
| HMTZN | " | " | " | 4:12 | " | " | 3.15.1-3 |
| HHTZN | " | " | " | 12:12 | " | " | 3.16.1-3 |
| HLRZN | " | " | " | 1:12 | SUBURBAN | " | 3.17.1-3 |
| HMRZN | " | " | " | 4:12 | " | " | 3.18.1-3 |
| HHRZN | " | " | " | 12:12 | " | " | 3.19.1-3 |

$$
\begin{aligned}
A_{i} & =\text { the size of the opening in the } \mathrm{i}^{\text {th }} \text { region. } \\
C_{d_{i}} & =\text { the discharge coefficient for the } \mathrm{i}^{\text {th }} \text { opening. } \\
V & =\text { the mean speed at eaves height } \\
\Delta Q_{i} & =\text { the INFLOW through the } \mathrm{i}^{\text {th }} \text { region } \\
\Delta C_{Q_{i}} & =\text { the INFLOW coefficient for the } \mathrm{i}^{\text {th }} \text { region } \\
& =\Delta Q_{i} / A \cdot V \\
A & =\begin{array}{l}
\text { a reference area which may be the area of the windward face of } \\
\text { the building }
\end{array} \\
P_{I} & =\text { the internal pressure } \\
C_{P_{I}} & =\text { the internal pressure coefficient } \\
& =P_{I} / \frac{1}{2} \rho V^{2}
\end{aligned}
$$

The inflow coefficient, $\Delta C_{Q_{i}}$, is given by;

$$
\Delta C_{Q_{i}}=C_{d_{i}} \cdot \frac{A_{i}}{A} \cdot \frac{C_{p_{i}}-C_{P_{I}}}{\left|C_{p_{i}}-C_{P_{I}}\right|^{\frac{1}{2}}}
$$

and $C_{P_{I}}$ is given by the solution of;

$$
\begin{aligned}
\Sigma=\Sigma \Delta C_{Q_{i}} & =0 \\
& =\Sigma C_{d_{i}} \cdot \frac{A_{i}}{A} \cdot \frac{C_{p_{i}}-C_{P_{I}}}{\left|C_{p_{i}}-C_{P_{I}}\right|^{\frac{1}{2}}}
\end{aligned}
$$

An iterative solution can be obtained as follows;
(i) Define two starting values of $C_{P_{I}}$ as;

$$
\begin{array}{ll}
\left(C_{P_{I}}\right)_{1} & =1 / N_{\Sigma} C_{p_{i}} \\
\left(C_{P_{I_{2}}}\right) & =\left(C_{P_{I}}\right)+0.01
\end{array}
$$

and compute the corresponding values of the net inflow, $\Sigma_{1}$ and $\Sigma_{2}$
(ii) Compute a new estimate $\left({ }^{( } P_{I}\right)$ from the relationship;

$$
\left(C_{P_{I}}\right)_{N}=\left(C_{P_{P}}\right)_{N-1}+\frac{\Sigma_{N-1}}{\Sigma_{N-2}-\Sigma_{N-1}}\left(\left(C_{P_{I}}\right)_{N-1}-\left(C_{P_{I}}\right)_{N-2}\right)
$$

(iii) Compute the corresponding value of the net inflow, $\Sigma_{N}$, and test

YES; put $C_{P_{I}}=\left(C_{P_{I}}\right)_{N}$ and compute the elemental flow coefficients $\Delta C_{Q_{i}}$
NO; return to (ii).

The flow into the building can then be evaluated by summing $\Delta C_{Q_{i}}$ over all positive values while the flow through a given surface can be obtained by an algebraic sum over the regions comprising that surface. The computations are of course best accomplished with a simple computer code but for the purposes of illustration a simple case is presented below.

### 4.2.1 Sample computations

. The building shown in Fig. 4.2 has four openings each of $20 \mathrm{ft}^{2}$ located at the centre of each face. The overall dimensions of the building is 100 ft long by 80 ft wide and 16 ft to eaves. Compute the internal flows when the wind speed is 10 mph at an azimuth of $10^{\circ}$.

From Table 3.1.2 of Appendix 3 the presure coefficients at the central regions of faces $1,2,3$ and 4 are;

$$
\begin{aligned}
C_{p} & =+0.576 \\
C_{p} & =-0.000 \\
C_{p} & =-0.101 \\
C_{p_{3}} & =-0.267
\end{aligned}
$$

From (i) above;

$$
\begin{array}{ll}
\left(C_{P I}\right)_{1} & = \\
& +(+0.576-0.000-0.101-0.267) \\
\left(C_{P I}\right)_{2} & =+0.052 \\
& +0.062
\end{array}
$$

for an assumed discharge coefficient of 0.60 ,

$$
\begin{aligned}
\Sigma_{1} & =0.60 \times \frac{20}{16 \times 100}\left\{\frac{.576-.052}{\sqrt{.524}}\right. \\
& +\frac{0-0.052}{\sqrt{.052}}+\frac{-0.101-.052}{\sqrt{.153}} \\
& \left.+\frac{-0.267-0.052}{\sqrt{.319}}\right\} \\
& =0.60 \times \frac{20}{16 \times 100}\{.724-0.228-0.391-0.565\} \\
& =-3.45 \times 10^{-3}
\end{aligned}
$$

and,

$$
\Sigma_{2}=-3.82 \times 10^{-3}
$$

From (ii) above the next estimate of the internal pressure coefficient is;

$$
\left(C_{P_{I}}\right)_{3}=0.062+\frac{-3.82}{-3.45+3.82}\{.062-.052\}
$$

$\begin{array}{lll} & =-0.041 \\ \text { and } \Sigma_{3} & = & +2.0 \times 10^{-3}\end{array}$

Successive applications of step (ii) yield;

| $\left(C_{P I}\right)_{4}$ | $=-0.006$ |
| :--- | :--- |
| $\Sigma_{4}$ | $=+0.16 \times 10^{-3}$ |
| $\left(C_{P I}\right)_{5}$ | $=-0.003$ |
| $\Sigma_{5}$ | $=-0.08 \times 10^{-3}$ |
|  | $=<10^{-4}$ |
| Accept | $C_{P I}=-0.003$ |

and hence;

| $\Delta C_{Q_{1}}$ | $=+0.0057$ |
| :--- | :--- |
| $\Delta C_{Q^{2}}$ | $=+0.004$ |
| $\Delta C_{Q_{3}}$ | $=-0.0023$ |
| $\Delta C_{Q_{4}}$ | $=-0.0038$ |

The flow into the building is thus defined by;

$$
C_{Q_{\text {INFLOW }}}=0.0061
$$

and the actual flow is given by;

$$
\begin{aligned}
Q_{I N} & =0.0061 \times A \times V \\
& =0.0061 \times 100 \times 16 \times(10 \times 44 / 30) \\
& =143 \mathrm{ft}^{3} / \mathrm{sec} .
\end{aligned}
$$

### 4.3 Potential Use of Pressure Data

The potential for the pressure data lies more in their use to develop simplified design aids, for evaluating the accuracy of simplified methods and for examining the sensitivity of the flow rates to variations in geometry and terrain roughness. This work represents the final phase of the study and it was not expected that this would be fully completed. The application of the data to this end has been attempted and the following section outlines the development of a simplified approach to flow rate prediction for the case when openings are restricted to the front and rear walls.

### 5.0 A SIMPLIFIED APPROACH TO FLOW RATE PREDICTION

The pressure data for the 16 ft . building in open country were employed to compute the flow rates with equal openings in front and rear walls. The flow coefficients were computed for a total fictitious opening in both front and back walls ( $\left(A_{\partial}\right)$ such that;

$$
\frac{\sum C_{d} A_{o}}{A}=1.0
$$

where;
A $=$ frontal wall area
$C_{d}=$ discharge coefficient

The flow coefficient, $C_{Q}$, for this situation is defined by,

$$
\begin{aligned}
Q & =C_{Q} \cdot A \cdot V \\
V & =\text { wind speed at eaves level }
\end{aligned}
$$

Two values of $Q$ were computed as follows;

$$
\begin{aligned}
Q_{\text {in }} & =C_{Q I} \cdot A \cdot V \\
& =\text { total INFLOW into the building } \\
& =\sum \Delta Q, \text { where the summation is over all openings for } \\
& \text { which the flow in inward. }
\end{aligned}
$$

$Q_{c}=C_{Q c} \cdot A \cdot V$
$=\quad$ the cross-flow in the building
$=\quad \sum \Delta Q$, where the summation is the algebraic sum of the flows on the front face;
ie. $Q_{c}=$ net flow into the building from the front face $=$ net flow out of the building from the rear face.

The computed values of $C_{Q I}$ and $C_{Q A}$ are shown in Figs. 5.1 and 5.2. $C_{Q I}$ and $C_{Q A}$ were computed for seven different distributions of the open area as shown in Table 5.1.

TABLE 5.1

## Pattern of Openings for Flow Calculations

| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| Face Viewed |  |  |  |  |  |
| From | Up-Wind |  |  |  |  |

Case 1:
$C_{d} A_{o}=1 / 18$
Case 2: $\quad C_{d} A_{O}=1 / 6$
Case 3: $\quad C_{d} A_{O}=1 / 6$

Case 4: $\quad C_{d} A_{O}=1 / 6$
for all 18 regions
for regions $1,2,3,4,5 \& 6$ and zero elsewhere
for regions $7,8,9,10,11 \& 12$ and zero elsewhere
for regions $13,14,15,16,17 \& 18$ and zero elsewhere


FIG. 5.1 COMPUTED CROSS-FLOW COEFFICIENTS


FIG. 5.2 COMPUTED IN-FLOW COEFFICIENTS

Case 5: $\quad C_{d} A_{o}=1 / 6$
for regions $1,2,7,8,13 \& 14$ and zero elsewhere
Case 6: $\quad C_{d} A_{O}=1 / 6$
for regions $3,4,9,10,15 \& 16$ and zero elsewhere

Case 7: $\quad C_{d} A_{O}=1 / 6$
for regions $5,6,11,12,17 \& 18$ and zero elsewhere

From Figs. 5.1 and 5.2 it can be observed that for wind directions from $0-60^{\circ}$;
(i) the value of $C_{O}$ varies only slightly with the positioning of the openings; the typical variation is roughly $\pm 5 \%$.
and
(ii) the values of $C_{Q I}$ and $C_{Q c}$ are virtually identical which indicates very little if any outflow on the front wall.

For wind angles from $60^{\circ}$ to $90^{\circ}$ the cross-flow ( $C_{Q c}$ ) drops rapidly to zero and there are very substantial variations with the positioning of the openings. While $C_{O I}$ also reduces markedly it reaches a minimum value at $90^{\circ}$ which is roughly half the maximum value near $0^{\circ}$. This indicates that a large proportion of the inflow exits via the same wall, ie, the internal flows are generated by pressure gradients on a given face as well as by pressure differences between faces.

The average variation of $C_{Q I}$ and $C_{Q c}$ with the wind angle is well represented by the simple algebraic expressions;

$$
\begin{array}{ll}
C_{Q c}=0.56\left(1-(\theta / 90)^{4}\right) \\
C_{Q I}= & 0.23+0.33\left(1-(\theta / 90)^{3}\right) \tag{5.2}
\end{array}
$$

The actual flow through a building with equal areas on the front and rear walls can be estimated as follows;

$$
\begin{aligned}
& Q_{c}=A \cdot V \cdot \frac{\left(\sum C_{d} A_{0}\right) / A \cdot C_{Q c}}{1+\left(\sum C_{d} A_{0} / A\right) \cdot C_{Q c}} \\
& C_{Q c}=0.56\left(1-(\theta / 90)^{4}\right)
\end{aligned}
$$

## Example 1:

A building with a frontal area of $16^{\prime} \times 80^{\prime}$ has openings in the front and rear faces which total $500 \mathrm{ft}^{2}$ and have a discharge coefficient of 0.65 . If the mean speed at eaves level is 15 mph the cross-flow with the wind at 450 to the front face is as follows;

$$
\begin{aligned}
C_{Q c} & =0.56\left(1-(45 / 90)^{4}\right)=0.525 \\
\sum C_{d} A_{O} / A & =325 / 16 \times 80 \\
& =0.254 \\
V & =15 \mathrm{mph}=22 \mathrm{fps} \\
Q & =16 \times 80 \times 22 \frac{0.525 \times 0.254}{1+0.525 \times 0.254} \\
& =3314 \mathrm{ft}^{3} / \mathrm{sec}
\end{aligned}
$$

and the average speed within the building

$$
\begin{aligned}
V_{\text {interior }} & =\frac{3314}{16 \times 80} \\
& =2.6 \mathrm{fps}
\end{aligned}
$$

If the openings in the two faces are not equal the cross-flow can be approximated by computing an effective area per wall $\left(\sum C_{d} A_{o}\right)_{e}$ given by;

$$
\left(\sum C_{d} A_{o}\right)_{e}=\frac{\sqrt{2\left(\sum C_{d} A_{o}\right)_{F}}}{\sqrt{1+\beta}^{2}}
$$

where; $\beta=\frac{\left(\sum C_{d} A_{o}\right)_{F}}{\left(\sum C_{d} A_{o}\right)_{R}}$
and the subscripts $F$ and $R$ refer to the front and rear faces respectively.

## Example 2:

If the building in Example 1 has a front face with $500 \mathrm{ft}^{2}$ open and a rear face with $250 \mathrm{ft}^{2}$ open

$$
\begin{aligned}
\frac{\left(\sum C_{d A_{O}}\right)_{e}}{A} & =\frac{\sqrt{2 \times 500 \times 0.65}}{\sqrt{1+2}^{2}} \times \frac{1}{80 \times 16} \\
& =0.161
\end{aligned}
$$

and

$$
\begin{aligned}
Q & =16 \times 80 \times 22 \times \frac{0.525 \times .161}{1+.525 \times .161} \\
& =2194 \mathrm{ft}^{3} / \mathrm{sec} .
\end{aligned}
$$

In the computation of the flow $Q_{I}$ at wind directions near $90^{\circ}$ the simple adjustment for the lack of equal open areas on the front and rear faces is not possible. Further, the corrections term $\left(1 /\left(1+\sum C_{d} A_{o} / A \cdot C_{Q c}\right)\right)$ introduced to allow for the influence of the internal flows on the pressure field is not necessarily valid since this correction was developed from the studies of cross-flow. Notwithstanding the latter statement, it is suggested that this correction term should be maintained since, at present, no better adjustment is available.

### 6.0 CONCLUSIONS

### 6.1 Prediction of Internal Flows From External Pressures Measured on a Sealed ("Solid") Model

The study of the internal flows in model buildings led to the following conclusions:
i) At low values of the internal flow coefficient ( $C_{Q}<0.1$ or a wall porosity less than about $25 \%$ on two opposite faces) the internal flows can be predicted from the external pressure distribution measured on a solid or sealed building provided the openings are on walls. The level of accuracy that can be achieved (given reliable pressure data and reliable estimates of the discharge coefficients) is, typically, $10 \%$.
ii) If a simple correction term is added to account for the influence of the "through-flow" on the pressure field then the internal flows can be predicted with acceptable accuracy (about $10 \%$ ) for values of $C_{Q}$ up to about 0.3 which, for openings on two walls, corresponds to a wall porosity of about 70\%.
iii) If openings are provided near the ridge line the venting of flow into the wake appears to have a marked influence on the pressure field with the result that internal flows are severely overestimated. This is undoubtedly an area for further study but the results obtained on the two models examined suggest that the actual internal flows generated by ridge vents may only attain $60 \%$ to $70 \%$ of those predicted from the external pressures measured on a sealed building. It was noted that flow rates corresponding to values of $C_{Q}$ as low as 0.03 were poorly predicted but that the errors did not increase strongly with increasing $C_{Q}$ as was observed for wall openings.

### 6.2 External Pressure Distributions on Low-Rise Buildings

The pressure data gathered in previous studies of wind loads on low-rise buildings was re-organized and presented in a form suited to the computation of internal flows in such structures. The data presented covers typical industrial building geometries with eaves heights from $16^{\prime}$ to 32 ', roof slopes from 1:12 to 12:12 and two levels of terrain roughness.

### 6.3 The Development of Design Aids for Naturally Ventilated Structures

This final phase of the investigation is still in progress. In the proposal describing the planned study it was noted that progress in this final phase would be limited by the time available for the investigation. A simple approach has been developed for the prediction of the cross-flow in a building with openings in the front and rear walls and the application of this approach has been illustrated with examples. Work in this area will continue with support from other funding sources but the complete results are unlikely to be available before late 1983.

TABULATED INTERNAL FLOW MEASUREMENTS

| FILE NAME | DESCRIPTION |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FRONT WALL OPENING | REAR <br> WALL OPENING | $\begin{aligned} & \text { RIDGE } \\ & \text { VENT. } \end{aligned}$ |  |
| CAK22 | Removed | Removed | NIL |  |
| CAK24 | $4^{\prime \prime} \times 1^{\prime \prime}$ | $4^{\prime \prime} \times 1^{\prime \prime}$ | ＂ |  |
| CAK25 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | ＂ |  |
| CAK26 | 24 ＠3／8＂$\phi$ | 24 ＠3／8＂${ }^{\prime \prime}$ | ＂ |  |
| CAK27 | 24 ＠1／4＂${ }^{\text {d }}$ | 24 ＠ $1 / 4^{\prime \prime} \phi$ | ＂ | 島 |
| CAK28 | 24 ＠ $3 / 16^{\prime \prime} \phi$ | 24 ＠3／16＂$\phi$ | ＂ | O |
| CAK29 | 24 ＠ $1 / 8^{\prime \prime} \phi$ | 24 ＠ $1 / 8^{\prime \prime} \phi$ | ＂ | $\sum$ |
| CAK30 | 24 ＠3／32＇$\phi$ | 24 ＠3／32＇$\phi$ | ＂ | 年 |
| CAK31 | 24 ＠1／8＇${ }^{\prime \prime}$ ¢ | NIL | 1／8＂SLOT | 命 |
| CAK32 | 24 ＠ $3 / 16^{\prime \prime} \phi$ | ＂ | 1／8＂SLOT |  |
| CAK33 | 24 ＠3／16＂$\phi$ | ＂ | 1／4＂SLOT |  |
| CAK34 | 24 ＠ $1 / 4^{\prime \prime} \phi$ | ＂ | 1／4＂SLOT |  |
| CAK35 | 24 ＠ $1 / 4^{\prime \prime} \phi$ | ＂ | 1／2＂SLOT |  |
| CAK36 | 24 ＠3／8＂${ }^{\prime \prime}$ | ＂ | 1／2＂SLOT |  |
| CAK37 | Removed | Removed | NIL |  |
| CAK38 | $4^{\prime \prime} \times 1$＂ | $4^{\prime \prime} \times 1$＂ |  |  |
| CAK39 | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | $3.2^{\prime \prime} \times 0.8^{\prime \prime}$ | ＂ |  |
| CAK40 | 24 ＠3／8＂${ }^{\prime \prime}$ | 24 ＠3／8＂${ }^{\prime \prime}$ | ＂ |  |
| CAK41 | 24 ＠1／4＂${ }^{\text {d }}$ | 24 ＠ $1 / 4^{\prime \prime} \phi$ | ＂ |  |
| CAK42 | 24 ＠ $3 / 16^{\prime \prime} \phi$ | 24 ＠3／16＂$\phi$ |  |  |
| CAK43 | 24 ＠ $1 / 8^{\prime \prime} \phi$ | 24 ＠ $1 / 8{ }^{\prime \prime} \phi$ | ＂ | 峇 |
| CAK44 | 24 ＠3／32＇${ }^{\text {d }}$ ¢ | 24 ＠3／32＇$\phi$ | ＂ | $\stackrel{1}{4}$ |
| CAK45 | 24 ＠ $1 / 8^{\prime \prime} \phi$ | NIL | 1／8＂SLOT | પ |
| CAK46 | 24 ＠3／16＂$\phi$ | ＂ | 1／8＂SLOT | \％ |
| CAK47 | 24 ＠3／16＂$\phi$ | ＂ | 1／4＂SLOT | 5 |
| CAK48 | 24 ＠ $1 / 4^{\prime \prime} \phi$ | ＂ | 1／4＂SLOT |  |
| CAK49 | 24 ＠ $1 / 4^{\prime \prime}{ }^{\prime}$ | ＂ | 1／2＂SLOT |  |
| CAK50 | 24 ＠ $3 / 8^{\prime \prime} \phi$ | ＂ | 1／2＂SLOT |  |

## FILL CAK2：

| A 2 i，acth | $=0$ |
| :---: | :---: |
| A 21 mLTh | 10 |
| Azımith | 20 |
| Az2，هuth | 30 |
| dzimuth | 40 |
| Aこımuth | 50 |
| AzımLth | 60 |
| AEAmLtr． | 70 |
| ALImLtn | $=\varepsilon 0$ |
| Azimut | $=90$ |

neltap
$\rho s f(10: 2-3)$
-383.7600
-351.9360
-307.3200
-231.5250
-234.1060
-177.3200
-92.6640
-22.9840
-2.0200
-0.3320
$C d$
0.7325
0.7325
0.7320
0.7313
0.7275
0.7225
0.7400
0.7875
0.7150
0.6000
0
cu．ft／5
0.3679
0.3495
0.3258
0.3124
0.2834
0.2450
0.1814
0.0961
0.0263
0.0139
$C Q e$
0.33292
0.31751
0.23585
0.28345
0.25640
0.22220
0.10459
0.08729
0.02383
0.01264

| Vg <br> $\mathrm{ft} / \mathrm{s}$ | Ve <br> $\mathrm{ft} / \mathrm{s}$ |
| ---: | ---: |
| 45.33 | 28.29 |
| 45.21 | 28.21 |
| 45.31 | 28.27 |
| 45.22 | 28.22 |
| 45.35 | 28.30 |
| 45.23 | 28.23 |
| 45.21 | 28.21 |
| 45.18 | 28.19 |
| 45.21 | 28.21 |
| 45.22 | 28.22 |

FILE Cik24

| 2 zimuth | 0 |
| :---: | :---: |
| Azısuth | $=10$ |
| $4=1 \mathrm{mLth}$ | $=23$ |
| asimuth | $=30$ |
| azionth | 40 |
| das．nLth | $=50$ |
| Azameth | 60 |
| mこimLth | $=70$ |
| Azimbth | $=80$ |
| 4＜1muth | $=90$ |


| Delta $p$ psf（10さを－3） |
| :---: |
| － 33 c .5250 |
| － 300.450 C |
| $-263.3600$ |
| －233．4720 |
| －180．9R3C |
| $-145.912 \mathrm{C}$ |
| －71．8640 |
| －22．7760 |
| －3．2240 |
| －0．5200 |

FILE CAK 25

| Azixuth | $=$ |
| :---: | :---: |
| 入こうruth | 10 |
| hzamith | $=20$ |
| A＜imuth | 30 |
| ¢21mLth | 40 |
| 4＜1muth | 5 J |
| Azsmuth | CO |
| 小＜1mLth | $=70$ |
| A21autn | $=[0$ |
| Aく2mしth | $-90$ |



| $C d$ | 0 |
| :---: | :---: |
| 0.7300 | $0 . f 1 / 5$ |
| 0.7313 | 0.1924 |
| 0.7325 | 0.1984 |
| 0.7313 | 0.1990 |
| 0.7350 | 0.1889 |
| 0.7450 | 0.1702 |
| 0.7613 | 0.1455 |
| 0.7875 | 0.1103 |
| 0.7250 | 0.0451 |
| 0.6575 | 0.0132 |

çe
0.19394
0.18093
0.17999
0.18112
0.17179
0.15498
0.13209
0.10012
0.04195
0.01201

| $V g$ | Ve |
| ---: | ---: |
| $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| 45.14 | 28.17 |
| 45.20 | 28.21 |
| 45.22 | 28.22 |
| 45.07 | 28.13 |
| 45.12 | 28.16 |
| 45.05 | 28.11 |
| 45.20 | 28.21 |
| 45.20 | 28.21 |
| 45.10 | 28.15 |
| 45.16 | 28.18 |

FILE CAN20

|  | $\begin{gathered} \text { Jelta p } \\ \text { psf(10 } 0 \%-3) \end{gathered}$ | Cd | $c \frac{d}{c u-f i / s}$ | CQe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Azimuth $=0$ | －114．2900 | 0.7313 | 0.1991 | 0.18088 | 45.15 | 28.18 |
| $A z 1 m L t h=10$ | －103．4720 | 0.733 R | $0.194{ }^{\circ}$ | 0.17701 | 45.10 | 28.15 |
| $\lambda 21 \mathrm{mLth}=20$ | $-112.003 \mathrm{c}$ | 0.7325 | 0.1974 | 0.17940 | 45.14 | 28.17 |
| $A \geq 2 \mathrm{mLth}=30$ | $-103.3750$ | 0.7357 | 0.1903 | 0.27308 | 45.10 | 28.15 |
| $A \geq 1 \mathrm{mLth}=40$ | －87．152C | 0.7425 | 0.1765 | 0.16076 | 45.04 | 28.11 |
| Az1muth－50 | －6．3．3350 | c． 7313 | 0.1482 | 0.13459 | 45.17 | 28.19 |
| Aztalth $=60$ | $-33.51 \div 0$ | C．7825 | 0.1238 | 0.11243 | 45.16 | 28.18 |
| Azamuth $=70$ | －14．0． 640 | C． 7375 | 0.0719 | 0.05554 | 45.01 | 29.09 |
| A $\angle 100 \mathrm{th}=80$ | －2．7960 | 0.6075 | 0.0244 | 0.02227 | 45.02 | 28.10 |
| Az2muth $=90$ | －0．3120 | 0.6175 | 0.0038 | 0.008 .00 | 45.06 | 28.12 |

FILE CAN27


FILE CAK2E

| 421muth | 0 |
| :---: | :---: |
| Azsmuth | $=10$ |
| Azi．nuth | $=20$ |
| Azimuth | 30 |
| A 21 mLth | $=40$ |
| hく1nuth | 50 |
| Azsmuth | to |
| A L1mutn | $=70$ |
| Azimuth | $=80$ |
| AzımLth | $=90$ |

FILE CAK29

| A 22 muth | $=0$ |
| :---: | :---: |
| Azınuth | 10 |
|  | $=20$ |
| $A \geq \mathrm{i}$ intth | $=30$ |
| A21acth | 40 |
| $\lambda 三 1 \mathrm{mLth}$ | 50 |
| Az1muth | 60 |
| Azimuth | $=70$ |
| 2ご昛しth | 50 |
| A 21 muth | $=90$ |

FILE CAK 30

| a 21 muth | $=0$ |
| :---: | :---: |
| 4zimuth | $=10$ |
| Azimuth | 20 |
| hzimuth | $=30$ |
| A 21 mLLh | $=40$ |
| Azimutr | 50 |
| Aza，nuth | $=60$ |
| Az2muth | $=70$ |
| $A=1 \mathrm{~mL}$ th | $=00$ |
| Azimuth | 90 |


| Jelta P | Cd |
| :---: | :---: |
| pSf（10．4－3） |  |
| -0.1352 | 0.4050 |
| -0.1604 | 0.4980 |
| -0.2010 | 0.6025 |
| -0.1976 | 0.5340 |
| $-0.145 t$ | 0.4380 |
| -0.0936 | 0.2820 |
| -0.0312 | 0.0930 |
| 0.1064 | 0.4780 |
| 0.1758 | 0.5310 |
| 0.22 .98 | 0.6150 |


| 2 | coe |
| :---: | :---: |
| cu．ft／s |  |
| 0.0038 | 0.00343 |
| 0.0052 | 0.00467 |
| 0.0070 | 0.00632 |
| 0.0067 | 0.00608 |
| 0.0043 | 0.00385 |
| 0.0022 | 0.00199 |
| 0.0004 | 0.00038 |
| 0.0052 | 0.00468 |
| 0.0057 | 0.00515 |
| 0.0075 | 0.00677 |


| V g | Ve |
| :---: | :---: |
| $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| 45.36 | 28.31 |
| 45.40 | 28.33 |
| 45.39 | 28.32 |
| 45.33 | 28.29 |
| 45.39 | 28.32 |
| 45.34 | 28.29 |
| 45.40 | 28.33 |
| 45.34 | 28.29 |
| 45.33 | 28.29 |
| 45.36 | 28.31 |

FILE CAK31

|  |  | Jelta $p$ HS f（10ヶきー3） | Cd | $\stackrel{Q}{c u . f t / s}$ | COE | $\begin{aligned} & 19 \\ & f+1 / s \end{aligned}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Az2muth | $=0$ | －1．3624 | 0.7025 | 0.0209 | 0.01875 | 45.69 | 28.51 |
| Aくimuth | $=10$ | －1．3104 | 0.7013 | 0.0204 | 0.01833 | 45.74 | 28.54 |
| azamuth | $=20$ | $-1.3520$ | 0.7025 | 0.0208 | 0.01866 | 45.73 | 2B． 54 |
| A 21 biuth | $=30$ | －1．5912 | 0.7100 | 0.0229 | 0.02046 | 45.73 | 28.53 |
| Azimuth | $=40$ | －1．4768 | 0.7075 | 0.0219 | 0.01967 | 45.67 | 28.50 |
| Lこ2．ncth | $=50$ | －1．2316 | 0.7000 | 0.0178 | 0.01783 | 45.62 | 23.47 |
| A z2muth | $=60$ | －0．9632 | 0.6750 | 0.0160 | 0.01436 | 45.63 | 28.47 |
| A－iコuth | $=70$ | －0．4264 | 0.6150 | 0.0106 | 0.00948 | 45.70 | 29.51 |
| Azambih | $=80$ | 0.0134 | c．0310 | 0.0001 | 0.00007 | 45.64 | 28.48 |
| \＆こ1muてn | $=90$ | 0.0832 | 0.2490 | 0.0018 | 0.00165 | 45.59 | 23.45 |

F1Li CAK32

| Azimuth | $=0$ |
| :---: | :---: |
| Lzisuth | $=10$ |
| Azimuth | $=20$ |
| $4 \geq 1 \mathrm{muth}$ | $=20$ |
| Azımuth | 40 |
| Azimuth | 50 |
| Azsinuth | $=60$ |
| Ayimuth | $=70$ |
| Azimuth | $=80$ |
| Azimuth | $=90$ |

FILE CaK33

| Azimuth | 0 |
| :---: | :---: |
| Azimuth | $=10$ |
| Azımuth | $2 J$ |
| Azimuth | － 30 |
| Azimuth | 40 |
| Azlintit | 50 |
| $A \geq 1 \mathrm{mLtn}$ | $=60$ |
| A22murh | 70 |
| A＜L．nuth | $=80$ |
| tzamuth | 20 |



| Cd | 0 |
| :---: | :---: |
| 0.7275 | $0 . f t / 5$ |
| 0.72476 |  |
| 0.7263 | 0.0470 |
| 0.7258 | 0.0463 |
| $C .7263$ | 0.0457 |
| $0.728 R$ | 0.0495 |
| 0.7263 | 0.0470 |
| 0.7213 | 0.0400 |
| 0.7125 | 0.0305 |
| 0.6500 | 0.0126 |
| 0.2503 | 0.0022 |


| Cue | Vg <br> $\mathrm{ft} / \mathrm{s}$ | Ve <br> $\mathrm{ft} / \mathrm{s}$ |
| :---: | ---: | ---: |
| 0.04293 | 45.49 | 28.39 |
| 0.04251 | 45.39 | 28.32 |
| 0.04178 | 45.45 | 28.36 |
| 0.04215 | 45.49 | 28.39 |
| 0.04481 | 45.35 | 29.30 |
| 0.04249 | 45.34 | 28.29 |
| 0.03683 | 45.43 | 28.35 |
| 0.02759 | 45.37 | 28.31 |
| 0.01141 | 45.42 | 28.34 |
| 0.00198 | 45.28 | 28.26 |

FIL：CANS4

| A2mmuth | $=0$ |
| :---: | :---: |
| Azimuth | $=10$ |
| Azimuth | － 20 |
| A 2 i，nuth | $=30$ |
| 4 －1intth | $=40$ |
| 621 mLth | 50 |
| A＜2muth | － 00 |
| Azlactin | 70 |
| 4zainuth | $=30$ |
| AzımLth | $=90$ |


| $\begin{gathered} \text { Delta } \\ \text { psf(10\%i-3) } \end{gathered}$ | Cd | $c \frac{0}{c u . f t / s}$ | CO | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\underset{t i / s}{V_{e}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －12．6048 | 0.7375 | 0.0667 | 0.06021 | 45.43 | 28.35 |
| －12．5632 | 0.7375 | 3.0656 | 0.06024 | 45.33 | 28.29 |
| －11．512E | 0.7375 | 0.0637 | 0.05768 | 45.32 | 28.28 |
| －11．3476 | C． 7375 | 0.9649 | 0.05818 | 45.31 | 28.27 |
| －13．1032 | C． 7375 | 0.0675 | 0.06335 | 45.28 | 28.26 |
| －13．249E | 0.7375 | 0.0088 | 0.06175 | 45.27 | 28.25 |
| $-10.7640$ | 0.736 .3 | 0.0615 | 0.05571 | 45.30 | 28.27 |
| －5．9592 | 0.7250 | 0.0451 | 0.04084 | 45.27 | 28.25 |
| －1．1856 | 0.6950 | 0.0193 | 0.01747 | 45.26 | 23.24 |
| －0．1758 | 0.5304 | 0.0057 | 0.00514 | 45.30 | 28.27 |

FILE CAK 35

|  | $\begin{gathered} \text { Delty } \\ \text { psf(10* } 0-3) \end{gathered}$ | Cd | $\stackrel{0}{c u . f t / s}$ | Coe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft/s} \end{gathered}$ | $\begin{aligned} & \mathrm{Ve} \\ & \mathrm{ft} / \mathrm{s} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Azimuth $=0$ | －26．3536 | 0.7338 | 0.0959 | 0.09677 | 45.35 | 28.30 |
| Azimuth $=10$ | －25．0048 | 0.7338 | 0.0946 | 0.08572 | 45.25 | 28.24 |
| Azzinuch $=20$ | －23．7432 | 0.7350 | 0.0912 | 0.03253 | 45.33 | 28.29 |
| Azimuth $=30$ | －21．9024 | 0.7375 | 0.0879 | 0.07973 | 45.22 | 28.22 |
| Azimuth $=40$ | －22．5358 | 0.7375 | 0.0892 | 0.03089 | 45.21 | 23.21 |
| AzLALETh $=50$ | －21．964？ | 0.7375 | 0.0830 | 0.07976 | 45.27 | 28.25 |
| Azimutn $=i 0$ | －17．6800 | 0.7363 | 0.0788 | 0.07144 | 45.27 | 28.25 |
| azamuth $=70$ | －10．2．440 | 0.7363 | 0.0600 | 0.05445 | 45.21 | 23.21 |
| Azinath＝80 | －2．3332 | 0.7125 | 0.0306 | 0.02778 | 45.14 | 29.17 |
| Azimuth $=90$ | －0．9048 | 0.6800 | 0.0165 | 0.01498 | 45.09 | 28.14 |

file CLK36

| Azimuzh $=$ | $=0$ |
| :---: | :---: |
| Azamuth | $=10$ |
| Aエ」ルしてh | $=20$ |
| Lこ2muth | $=30$ |
| A＝1．xith | 40 |
| 2ことmutn | 50 |
| Azımuth | 60 |
| Aこ1هしth | $=70$ |
| Aごれしth | $=\mathrm{SJ}$ |
| czincth | $=90$ |

F1L：$=14 \times 37$


| Ju1taf | Cd |
| :---: | :---: |
| psf（10．55－3） |  |
| -62.4000 | 0.7595 |
| -61.7750 | 0.7589 |
| -52.7540 | 0.7613 |
| $-50.44 \div C$ | 0.7675 |
| -35.3550 | 0.7575 |
| -47.4240 | 0.7700 |
| -35.4640 | 0.7850 |
| -19.0960 | 0.7363 |
| -4.5760 | 0.7200 |
| $-0.332 C$ | 0.6739 |


| 0 | $C Q e$ |
| :---: | :---: |
| cu．ft／s |  |
| 0.1526 | 0.13877 |
| 0.1519 | 0.13795 |
| 0.1461 | 0.13278 |
| 0.1391 | 0.12670 |
| 0.1394 | 0.12699 |
| 0.1350 | 0.12290 |
| 0.1190 | 0.10856 |
| 0.0798 | 0.07271 |
| 0.0392 | 0.03567 |
| 0.0157 | 0.01429 |


| $V g$ | $v 2$ |
| :---: | ---: |
| $f t / s$ | $f t / s$ |
| 45.12 | 28.16 |
| 45.16 | 28.18 |
| 45.13 | 23.16 |
| 45.03 | 28.10 |
| 45.02 | 28.10 |
| 45.07 | 28.13 |
| 44.99 | 28.07 |
| 45.00 | 28.08 |
| 45.10 | 28.15 |
| 44.95 | 28.05 |


| Dalta P | Cad | 4 | $C$ Je | Vg | $V \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| psf（10\％＊－3） |  | cu．ft／s |  | $f t / s$ | ft／s |
| －31．0．0ヶ0 | 0.7325 | 0.330 ó | 0.30080 | 45.08 | 28.13 |
| $-283.31 \mathrm{C}^{\circ} \mathrm{C}$ | 0.7313 | 0.3137 | 0.28535 | 45.10 | 28.15 |
| $-24.1680$ | 0.7300 | 0.2917 | 0.26545 | 45.07 | 28.13 |
| －222．4500 | 0.7263 | 0.2758 | 0.25123 | 45.04 | 28.11 |
| －135．1550 | 0.7231 | 0.2512 | 0.22845 | 45.10 | 28.15 |
| －113．3700 | 0.7300 | 0.2028 | 0.18442 | 45.10 | 28.15 |
| －48．36：0 | C． 7700 | 0.1364 | 0.12388 | 45.15 | 28.18 |
| $-13.3320$ | 0.7375 | 0.0698 | 0.06354 | 45.09 | 28.14 |
| －2．6000 | 0.7113 | 0.0292 | 0.02661 | 45.03 | 28.10 |
| －0．7230 | 0.6563 | 0.0145 | 0.01318 | 45.05 | 28.11 |

FILE CAK3B
Azimuth $=0$
Az1mLth $=10$
Az1muth $=20$
Az1mLth $=20$
Az1mLth $=40$
AzimLth $=5 C$
Azimuth $=60$
A LImLth $=30$
Azimuth $=90$
Jelta $p$
psf（10．4
-262.3920
-240.4490
-203.8720
-180.2640
-149.0950
-102.3560
$-44.61 ; 0$
-2.5000
-0.4100

| $C d$ | 0 |
| :---: | :---: |
| 0.7313 | $0.71 / s$ |
| 0.7285 | 0.2878 |
| 0.7250 | 0.2674 |
| 0.7233 | 0.2514 |
| 0.7248 | 0.2246 |
| 0.7351 | 0.1890 |
| 0.7750 | 0.1318 |
| 0.7113 | 0.0292 |
| 0.6300 | 0.0103 |


| COE | Vg <br> $\mathrm{ft} / \mathrm{s}$ | Ve <br> $\mathrm{ft} / \mathrm{s}$ |
| :---: | :---: | :---: |
| 0.27455 | 45.07 | 28.13 |
| 0.26203 | 45.05 | 28.11 |
| 0.24391 | 44.99 | 28.07 |
| 0.22859 | 45.11 | 28.15 |
| 0.20452 | 45.05 | 28.11 |
| 0.17330 | 44.94 | 28.04 |
| 0.12006 | 45.04 | 28.11 |
|  |  |  |
| 0.02658 | 45.08 | 28.13 |
| 0.00943 | 45.02 | 28.10 |


|  |  |
| :---: | :---: |
| Azimuth | $=0$ |
| tzimuth | $=10$ |
| Azimuth | $=20$ |
| Azimlth | 30 |
| Azimuth | 40 |
| Az2muth | $=50$ |
| Lzimuth | $=40$ |
| Azimuth | $=70$ |
| tzimuth | $=80$ |
| Az2mLth | $=90$ |

FILE CAK40
AzImuth $=0$
Azimuth $=10$
Azimuth $=20$
AzimLth $=30$
AzImuth $=40$
Az1mLth $=50$
AZ2muth $=60$
A IIAUth $=70$
Azimuth $=80$
AzImuth $=90$

FILE CAK41

| Azimutn | $=0$ |
| :---: | :---: |
| Azamuth | $=10$ |
| Azzinuth | $=20$ |
| Azimuth | 30 |
| Azımith | 40 |
| Aziuluth | 50 |
| A $\leq 1 \mathrm{muth}$ | 00 |
| Aziauth | 70 |
| Azlmuth | $=30$ |
| $A \geq 1 \mathrm{muth}$ | 90 |


| $\begin{gathered} \text { Deltap } \\ \text { psf(1C:\%-3) } \end{gathered}$ |
| :---: |
| －19．1568 |
| －13．6759 |
| －21．0298 |
| －21．3236 |
| －23．004E |
| －17．70， 0 |
| －13．5032 |
| $-5.7720$ |
| －1．237t |
| －0．1769 |

$C d$
0.7353
0.7369
0.7375
0.7363
0.7353
0.7363
0.7375
0.7250
$0.697 \%$
0.5304
$\theta$
cu．ft／s
0.0821
0.0832
0.0861
0.0876
0.0899
0.0832
0.0673
0.0444
0.0198
0.0057
$C Q e$
0.07423
0.07536
0.07789
0.07935
0.08147
0.07554
0.06263
0.04023
0.01792
0.05514

| $V g$ | Ve |
| ---: | ---: |
| $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| 45.35 | 28.30 |
| 45.31 | 28.27 |
| 45.76 | 29.31 |
| 45.29 | 28.26 |
| 45.28 | 23.26 |
| 45.20 | 28.21 |
| 45.37 | 28.31 |
| 45.23 | 28.23 |
| 45.23 | 28.23 |
| 45.31 | 28.27 |

FILE CAKi2

|  |  | $\begin{gathered} \text { Jeltap } \\ \text { psf(10\% } 0-3) \end{gathered}$ | Cd | $\stackrel{Q}{c u . f t / s}$ | CQe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{aligned} & \mathrm{Ve} \\ & \mathrm{ft/s} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Azimuth | 0 | －5．4912 | 0.7231 | 0.0431 | 0.03904 | 45.34 | 28.29 |
| Azamuth | 10 | －5．7408 | 0.7240 | 0.0442 | 0.03998 | 45.32 | 28.28 |
|  | $=20$ | －0．1934 | C． 7253 | 0.0460 | 0.04166 | 45.31 | 28.27 |
| Azımuth | $=30$ | －3． 3744 | 0.7275 | 0.0486 | 0.04400 | 45.29 | 28.26 |
| Azimuth | $=40$ | －7．425t | $0.729 \mu$ | 0.0506 | 0.04598 | 45.18 | 28． 19 |
| $\mu$ こimuth | $=50$ | －6．6430 | 0.7263 | 0.0470 | 0.04262 | 45.23 | 29.23 |
| $4 \angle 1 a l t h$ | $=60$ | －4．721t | 0.7205 | 0.0379 | 0.03614 | 45.25 | 28.24 |
| A 21 a．cith | $-70$ | －1．370 | 0.7150 | 0.0256 | 0.62317 | 45.31 | 28.27 |
| Aこ2muth | $=80$ | －0．2．704 | 0.6125 | 0.0081 | C． 000735 | 45.27 | 28.25 |
| Aこımuth | $=90$ | －0．1550 | 0.3432 | 0.0035 | 0.00323 | 45.24 | 28.23 |

FILE C：K43

| Azimuth | $=0$ |
| :---: | :---: |
| Azımuth | $=10$ |
| Azimuth | $=20$ |
| Azlmuth | $=30$ |
| Az2mLth | $=40$ |
| なzamith | 50 |
| hzamuth | 00 |
| A 22 mLich | 70 |
| Azimuth | $=80$ |
| azımith | $=90$ |

FILL（AKヶッ

Delta $P$
DSf（1025－3）
-0.9736
-0.3008
-0.7360
-1.0920
-1.1752
-1.0296
-0.6448
-0.1450
$C .2392$
0.2912

| $c d$ | 2 |
| :---: | :---: |
|  | $c$ |
| 0.6775 | 0.0161 |
| 0.6725 | 0.0153 |
| 0.6325 | 0.0168 |
| 0.6913 | 0.0184 |
| 0.6963 | 0.0192 |
| 0.6381 | 0.0178 |
| 0.6575 | 0.0134 |
| 0.4368 | 0.0042 |
| 0.6075 | 0.0076 |
| 0.6150 | 0.0085 |

CQe
0.01456
0.01384
$0 . C 1521$
0.01661
0.01737
0.01608
0.01215
0.00394
0.00684
0.00765

| Vg | Ve |
| :---: | ---: |
| $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| 45.43 | 28.35 |
| 45.42 | 28.34 |
| 45.34 | 28.29 |
| 45.44 | 23.35 |
| 45.40 | 29.33 |
| 45.36 | 28.31 |
| 45.40 | 28.33 |
| 45.30 | 28.27 |
| 45.36 | 28.31 |
| 45.34 | 28.29 |

Delta P
psf（10 $1+3)$
-0.1768
-0.1664
-0.1664
-0.2912
-0.3120
-0.3224
-0.1352
0.0208
0.1708
0.2298

| Cd | 0 |  |
| :---: | :---: | :---: |
|  | cu．ft／s |  |
| 0.5304 | 0.0057 | 0. |


| CQe | Vg <br> $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| :---: | :---: | :---: |
| 0.00512 | 45.47 | 28.37 |
| 0.00467 | 45.51 | 28.40 |
| 0.00467 | 45.58 | 28.44 |
| 0.00761 | 45.55 | 28.42 |
| 0.00791 | 45.57 | 28.43 |
| 0.00810 | 45.57 | 28.43 |
| 0.00342 | 45.54 | 28.42 |
| 0.00021 | 45.57 | 28.43 |
| 0.00512 | 45.49 | 28.39 |
| 0.00661 | 45.57 | 28.43 |


| $\begin{gathered} \text { Delta } p \\ p \subseteq f(10 \approx+-3) \end{gathered}$ | c．d | cu.ft/s | CQe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $-1.5 .600$ | 0.7083 | 0.0225 | 0.02032 | 45.52 | 28.40 |
| －1．6432 | 0.7104 | 0.0232 | 0.02080 | 45.75 | 28.55 |
| －1．9240 | 0.7150 | 0.0253 | 0.02257 | 45.71 | 28.52 |
| －2．1840 | 0.7148 | 0.0259 | $0.0 ? 416$ | 45.68 | 28.50 |
| － 2.5163 | 0.7100 | 0.0287 | 0.02579 | 45.63 | 28.47 |
| －2．1944 | 0.7150 | 0.0270 | 0.02429 | 45.55 | 28.42 |
| －1． 3136 | 0.7150 | 0.0252 | 0.02265 | 45.63 | 28.47 |
| －0．36．4C | 0.6950 | 0.0154 | 0.01477 | 45.56 | 28.43 |
| －0．17－3 | 0.5304 | 0.0057 | 0.00512 | 45.49 | 28.39 |
| 0.0624 | 0.1972 | 0.0012 | 0.00108 | 45.44 | 28.35 |


| $\begin{gathered} \text { Uelta } \\ \text { ps } f(10=-3) \end{gathered}$ | $C d$ | $\stackrel{0}{c u . f t / s}$ | CDe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{aligned} & \mathrm{Ve} \\ & \mathrm{ft} / \mathrm{s} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| －4．22？4 | 0.7183 | 0.0376 | 0.03390 | 45.48 | 28.38 |
| －4．4824 | 0.7200 | 0.0388 | 0.03500 | 45.50 | 28.39 |
| －4．7632 | 0.7213 | 0.0401 | 0.03624 | 45.38 | 28.32 |
| －5．241t | 0.7225 | 0.0421 | 0.63809 | 45.36 | 28.31 |
| －5．1206 | 0.7240 | 0.10441 | 0.03989 | 45.34 | 28.29 |
| －5．2416 | C． 7225 | 0.0421 | 0.03814 | 45.30 | 28.27 |
| －4．4408 | 0.7194 | 0.0386 | 0.03494 | 45.33 | 28.29 |
| －2．0636 | 0.7145 | －）． 2262 | 0.02368 | 45.34 | 28.29 |
| －0．3120 | 0.6175 | 0.0098 | 0.00795 | 45.32 | 28.28 |
| 0.0000 | 0.0000 | 0.0000 | 0.00000 | 45.23 | 28.23 |

FILE CAKAT

|  | $\begin{gathered} \text { Qelta p } \\ \text { psf(10:*7-3) } \end{gathered}$ | Cd | $\stackrel{0}{c u . f t / s}$ | COE | $\mathrm{Vg}_{\mathrm{ft} / \mathrm{s}}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Azsmuth $=0$ | -7.3112 | 0.7288 | 0.0502 | 0.04545 | 45.29 | 28.26 |
| Azinuth $=10$ | -7.7534 | 0.7300 | 0.0518 | 0.04696 | 45.23 | 28.23 |
| Azimith $=20$ | -8.4448 | 0.7325 | 0.0542 | 0.04905 | 45.33 | 28.29 |
| Azimuth $=30$ | -8.684C | 0.7325 | 0.0550 | 0.04982 | 45.26 | 28.24 |
| Azsmuth $=40$ | -9.4432 | 0.7345 | 0.0575 | 0.05211 | 45.25 | 28.24 |
| Azinuth $=50$ | -9.9336 | 0.7328 | 0.0558 | 0.05069 | 45.20 | 28.21 |
| Azimuth $=60$ | -7.2072 | 0.7288 | 0.0498 | 0. 04530 | 45.12 | 28.16 |
| AzimLth $=70$ | -3.7416 | 0.7175 | 0.0363 | 0.03293 | 45.19 | 29.20 |
| Azimuth $=80$ | -0.7360 | 0.6800 | 0.0168 | 0.01521 | 45.17 | 28.19 |
| Azimlth $=90$ | -0.1654 | 0.4992 | 0.0052 | 0.00471 | 45.19 | 28.20 |
| FILE CAK48 |  |  |  |  |  |  |
|  | $\begin{gathered} \text { Deltap } \\ \text { psf(10ヶ*-3) } \end{gathered}$ | Cd | $\text { cu. }{ }^{2} \mathrm{ft/s}$ | CQe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| Azimuth $=0$ | -13.4056 | 0.7375 | 0.0688 | 0.06234 | 45.25 | 28.24 |
| A zamuth $=10$ | -13.9672 | 0.7375 | 0.0702 | 0.05373 | 45.18 | 28.19 |
| Azimbth $=20$ | -14.4654 | C. 7375 | 0.0714 | 0.06501 | 45.07 | 28.13 |
| Azimuth $=30$. | -14.5010 | 0.7375 | 0.0718 | 0.06520 | 45.15 | 28.18 |
| $A \geq 2 \mathrm{mLth}=40$ | -15.1112 | 0.7375 | 0.0730 | 0.05656 | 45.00 | 28.08 |
| A $\angle 1$ muth $=50$ | -15.4128 | 0.7375 | 0.0737 | 0.05700 | 45.14 | 28.17 |
| Azimutn $=60$ | -11.7206 | 0.7375 | 0.0643 | 0.05852 | 45.07 | 28.13 |
| Azsmuth $=70$ | -5.1152 | 0.7256 | 0.0457 | 0.04162 | 45.03 | 28.10 |
| AzımLth $=40$ | -1.6744 | 0.7113 | 0.0235 | 0.02138 | 45.00 | 28.08 |
| $A E 1 \mathrm{mLCh}=90$ | -0.4254 | 0.6375 | 0.0106 | 0.00964 | 45.12 | 28.16 |

FILE (AN4)

$D(14 a P$
DS $f(10 \div 8 .-3)$
-25.8736
-26.7487
-27.2272
-20.3744
-25.6454
-26.3016
-21.9336
-12.76 .59
-3.7416
-1.3624

| $c d$ | 0 | $c Q e$ |
| :---: | :---: | :---: |
| 0.7325 | $0 . f t / 5$ |  |
| 0.0467 | 0.08772 |  |
| 0.7325 | 0.0965 | 0.08753 |
| 0.7331 | 0.0974 | 0.08838 |
| 0.7325 | 0.0958 | 0.08688 |
| 0.7343 | 0.0947 | 0.08607 |
| 0.7345 | 0.0959 | 0.08702 |
| 0.7375 | 0.0880 | 0.07931 |
| 0.7375 | 0.0076 | 0.06141 |
| 0.7175 | 0.0363 | 0.03297 |
| 0.7025 | 0.0209 | 0.01898 |


| $V g$ | $V \mathrm{Ve}$ |
| :---: | ---: |
| $\mathrm{ft} / \mathrm{s}$ | $\mathrm{ft} / \mathrm{s}$ |
| 45.22 | 28.22 |
| 45.21 | 28.21 |
| 45.21 | 28.21 |
| 45.23 | 28.23 |
| 45.13 | 28.16 |
| 45.22 | 28.22 |
| 45.15 | 28.18 |
| 45.18 | 28.19 |
| 45.13 | 28.16 |
| 45.12 | 28.16 |

FILE CAKjo
Azlmuth $=0$
Azimuth $=10$
Azlmuth $=20$
Azimuth $=30$
Azimuth $=40$
Azimuth $=50$
Azlmuth $=60$
Azlmuth $=70$
Az1muth $=80$
Azimuth $=90$

| $\begin{gathered} \text { Deltap } \\ \text { ps } f(10 \div s-3) \end{gathered}$ | cd | $\stackrel{9}{c u . f t / s}$ | COe | $\begin{gathered} \mathrm{Vg} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} \mathrm{Ve} \\ \mathrm{ft} / \mathrm{s} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -63.1200 | 0.7533 | 0.1594 | 0.14372 | 45.22 | 28.22 |
| - 68.0150 | 0.7538 | 0.1533 | 0.14399 | 45.10 | 28.15 |
| -67.0800 | 0.7538 | 0.1572 | 0.14284 | 45.15 | $2 \mathrm{B}$. |
| $-60.42 \div 0$ | $0.758^{\circ}$ | 0.1502 | 0.13695 | 45.00 | 28.08 |
| $-54.71 \geq 0$ | 0.7625 | 0.1439 | 0.13087 | 45.10 | 28.15 |
| $-4 y .3200$ | 0.7688 | 0.1393 | 0.12578 | 45.11 | 28.15 |
| -37.356C | 0.7838 | 0.1228 | 0.11189 | 45.02 | 28.10 |
| -20.17i0 | 0.7363 | 0.0842 | 0.07679 | 45.00 | 28.08 |
| -5. 3230 | 0.7250 | 0.0449 | 0.04095 | 45.03. | 28.10 |
| -2.2890 | 0.7125 | 0.0274 | 0.02497 | 45.08 | 28.13 |

