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ABSTRACT 

When buoyancy forces, wind forces and envelope heat losses interact in a naturally 
ventilated building, the behaviour of the flow rate as a function of these parameters can be 
quite complex. This paper derives the equations for the flow rate in a two-zone building 
where one zone is above the other, and where each zone has a high and a low opening. 
When the wind force opposes the buoyancy force, several solutions for the flow rate can be 
found for a given set of parameters, and a wide variety of behaviours for the flow rate is 
possible, sorrie of which are not possible for a one-zone building. 

1 INTRODUCTION 

When natural ventilation is induced fully or partly by thermal buoyancy forces, ventilation 
rates and indoor air temperatures are interdependent. Wind forces can either assist or 
oppose thermal buoyancy forces. It is well known that ventilation analysis becomes much 
simpler when one of the driving forces is dominant. The situation where two driving forces 
oppose each other and are of similar magnitude is difficult to analyse and quantify. 

Li and Delsante (1999) recently derived an analytical solution for the ventilation flow rate and 
indoor air temperature in a single-zone building. The ventilation dynamics when both wind 
and thermal forces act together was studied in detail. Analytical solutions only exist when 
there are two effective ventilation openings, because of the non-linearity of the flow rate 
balance equation. It was found that the natural ventilation system is characterised by three 
air change rate parameters, a, f3 and r. which represent respectively the effects of the 
thermal buoyancy force, the envelope heat loss and the wind force: 

( • lt ( ).l ""U .A· 1 ( • \ � a= CdA / Bh 3, /3= ""; 1 1 ,  and r= � CdA N2Mw , 
pep v3 

where 

and 

Non-dimensional graphs were presented for calculating ventilation flow rates and air 
temperatures, and for sizing ventilation openings. An important finding in Li and Delsante [1] 
was that the simple natural ventilation system considered can exhibit hysteresis. That is, 

181 



when the wind opposes the buoyancy flow and the indoor heat gain lies between a certain 
range of values, there are three possible flow rates - two downward flows and one upward 

\ flow. One of the downward flow· states was shown to be unstable; which of the other two 
states the system is in depends on whether the heat gain value was reached by increasing it 
from a low value or decreasing it from a high value. 

The purpose of this paper is to extend the single-zone analytical solutions to a two-zone 
building, with two effective openings in each zone. The approach used here is similar to that 
used in Li and Delsante (1999). The purpose of this paper is to provide preliminary answers 
to the following questions: 

• Are there still three simple air change parameters that can be used to characterise the 
flow? 

• Will the hysteresis behaviour found in the single-zone building also exist in the two-zone 
building? 

• How do the wind and thermal buoyancy forces interact with the envelope losses to drive 
the natural ventilation flow rate? 

Even though the building analysed here is very simple, it is useful to study the air flow in 
such a building using analytical solutions. These can be used to give insight into the main 
features of the air flow behaviour, and they can also be used to verify multi-zone airflow 
programs, as they do not have any experimental uncertainties. 

In this paper, we assume that there is no thermal mass in the building. If thermal mass is 
included, no analytical solution exists. However, the model can still be applied to some 
practical buildings such as agricultural and industrial buildings which have relatively low 
thermal mass. When ventilation airflow rates are very large, the thermal mass may also be 
neglected. The effect of thermal mass is currently being studied and the results will be 
published elsewhere. 

2 A TWO-ZONE BUILDING WITH WIND, THERMAL BUOYANCY AND HEAT 
CONDUCTION LOSS 

Consider a simple two-zone building with two openings at different vertical levels in each 
zone, as shown in Figure 1. We assume that the height of the vertical openings is relatively 
small. There is an indoor source of heat, Ei, in each zone i. The wind force can assist or 
oppose the thermal buoyancy force; Fig. 1 shows the assisting wind case. 
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Figure 1. Geometry and notation for the two-zone building. 

We assume that the indoor air is fully mixed, i.e. the air temperature is uniform. This 
assumption is generally not valid for flows dominated by thermal buoyancy forces. A non
uniform temperature model has also been developed and the results will be presented 
elsewhere. Wind turbulence effects are not included. Additionally, we assume that the 
partitions between the zones are perfectly insulated, i.e. heat loss only take place through 
the external walls, roof and floor. 

We consider two cases: assisting wind (i.e. the wind assists the buoyancy flow); and 
opposing wind (i.e. the wind opposes the buoyancy flow). With an opposing wind, the flow 
can be either downward (the wind force is stronger than the buoyancy force) or upward (the 
buoyancy force is stronger). 

2.1 Assisting winds 

The flow rate can be calculated as (see Li and Delsante 1999 for details): 

C A• 2 i. T; -To 2 h T2 - To 2 A n q = d g,'1 + g 2 
+ ur w • To To 

where 

1 1 1 
- + - + -

�! A1� AJo 

A heat balance on each zone gives: 
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N 
pc Pq(T. -To)+ fiu1jAij(T. -To)= E1 

j=I 
N2 

pcPq(T2 -T.)+ LU2iAiiT2 -T0)=E2 
j=I 

Substituting (1) into (2) gives, after some manipulation, 

where 

ruij�j 

A· = -i�·--
, 3pcP 

(2) 

(3) 

(4) 

Although the roots of the quartic equation (3) for the flow can be obtained explicitly, their form 
is too long and complex to give any insight into the key features of the flow behaviour. 
However, it is possible to deduce from (3) the following: 

• q�-'13r 
• q increases monotonically as the heat source strengths are increased. 

Thus the dependence of q on the heat source strengths is straightforward and the assisting 
winds case will not be discussed further here. 

2.2 Opposing winds 

The flow direction for assisting winds is always upward. When the wind force opposes the 
thermal buoyancy force, the flow can be either upward or downward, depending on the 
relative strength� of the forces. The flow rate is given by 

CA• 2 i. 7;-To+2 i. T2-To_ 2 An q = d g,'1 T, g.'2 T, urw 
0 0 

(5) 

For opposing winds, care must be taken with the heat balance equation. If we have upward 
flow, then (2) still applies, but if we have downward flow, the heat balance equations become 
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N 
pc Pq(T; -T2 )+ f U1jAij(T; -To)= E1 j=I 

N2 
pcPq(T2 -To)+ LU2j�j(T2 -Ta)= E2 (6) 

j=l 

For upward flows, substituting (2) into (5) gives, after some manipulation, 

(7) 

For downward flows, substituting (6) into (5) gives 

(8) 

where 

As a check, we can recover the equations for a one-zone building as follows. For upward 
flows, we must set E1 = O (so that 71 = T0) to obtain the single-zone limit. Equation (7) 
becomes 

Since q + 3/31 is non-zero, the other bracketed term must be zero, and this is indeed the 
equation tor the single-zone case obtained by Li and Delsante (1999). For downward flows 
we must set E2 = O. Equation (8) then factorises in a similar way. 

Again, while (7) and (8) can be solved analytically or numerically, it is preferable to first 
obtain some general insight into the behaviour of the flow rate as a function of the governing 
parameters. For the single-zone case, this was conveniently done by solving the flow 
equation tor a and analysing the behaviour of a as a function of q. For the two-zone case this 
approach can still be applied, but with some additional complexity because there is no longer 
a single a parameter. However, we can proceed as follows. Let us write 

Then ab = fua�, where fu = fi (1+8£ + e). We also have 91 + 92 = 1. Then (7) and (8) can 

both be written in terms of ao as follows: 

Upward flow. 

(9) 
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Downward flow. 
\ 

' ' 

q4 + 3/Jq3 + (9g1g2/J2 -3r2 )q2 -(2a03 -9,Br2 k 

From (9) and (10) we can easily see that the flow is zero when 

(10) 

(11) 

We are interested in the slope of q at q = 0, i.e. where the buoyancy force is exactly balanced 
by the wind force. From (9) and (10) and using (11) we obtain: 

Upward flow. 

�lq=O = 2 
2a�(J;g2 + f2gJ2 . 

d{XD r (Jlg2 + f2g1 - fugtg2) 
Downward flow. 

�lq=O 
= 22a�(fig2 + f2g1)2 . 

aaD r (Jlg2 + f2g1 - glgJ 

Note that the corresponding expression for the single-zone case is simply 

(12) 

(13) 

for either upward or downward flow. Thus whereas in the single-zone case the slope of q at q 
= O is always positive, and is the same for upward and downward flow, for the two-zone case 
(12) and (13) indicate a more complex behaviour at this point. Firstly, unless fu = 1, the 
slopes are different at q = O, and can differ in sign as well as magnitude; secondly, the slopes 
can be positive, zero or negative, depending on the relative sizes of the parameters f;, g;, 8 
and c. 

Figures 2a-2d show schematically some possible solution behaviours for the upward and 
downward flows as a function of the buoyancy force parameter ao (for clarity, the flow rate for 
downward flow is shown as being negative). Fig. 2a shows the simplest case: the slope at q 
= o is positive for upward flow and negative for downward flow and the flows are monotonic. 
Thus for any value of a0 there is a unique solution for the flow. Note that there is no analogue 
for this behaviour in the single-zone case, since there slope is always positive at q = 0. Fig. 
2b shows similar hysteresis behaviour to that found for the single-zone case: for certain 
values of a0 there are three possible solutions - one upward flow (S1 ) , and two downward 
flows (82 and S3). Fig. 2c also shows three possible solutions for certain values of a0, but 
with two upward flows and one downward flow. Finally, Fig. 2d shows five possible solutions 
- two upward and three downward. This set of behaviours is clearly not exhaustive. 
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Figure 2. Some possible behaviours of the flow rate qfor opposing winds as a function of the heat gain 
parameter ao. Positive q indicates upward flow; negative q indicates downward flow. 

It is not difficult to find values of the parameters f;, g;, o and E to illustrate the various 
behaviours. For example, if we take f1 = f2 = 0.4, g1 = g2 = 0.5, o = 0.4 and E= 1.5, then from 
(12) and (13) we see that both the downward and upward slopes are positive at q = o. Fig. 3 
shows numerical solutions of the flow rate for these parameters for both assisting and 
opposing winds as a function of aofy for ,Blyranging from 0.1 to 0.9 (note that the flow rate 
and the buoyancy force parameter have both been scaled by the wind parameter y). For this 
range of ,Blythe solution is of the form shown in Fig. 2b. Alternatively, if f1 = f2 = 0.1, g1 = g2 = 

0.5, o = 20.0 and E= 0.2, then both downward and upward slopes are negative at q = 0. Fig. 
4 shows numerical solutions of the flow rate for these parameters. It is interesting to note that 
for small values of ,Blythe solution is of the form shown in Fig. 2d, but as ,Blyincreases the 
form becomes that of Fig. 2c. 
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Figure 3. Scaled flow rate as a function of the scaled heat gain parameter ao and heat loss parameter p 
for both assisting and opposing winds. For opposing winds the parameters for the two zones have been 

chosen to give a solution behaviour corresponding to Fig. 2b. 
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Figure 4. Scaled flow rate as a function of the scaled heat gain parameter ao and heat loss parameter f3 
for both assisting and opposing winds. For opposing winds the parameters for the two zones have been 

chosen to give a solution behaviour corresponding to Fig. 2d (for small f3/Y, or Fig. 2c (for larger {3/Y,. 

3 CONCLUSION 

The initial study of the simple two-zone building presented in this paper has answered some 
of the questions posed in the introduction: 

• Three air change parameters a, f3 and rcan still be defined to characterise the flow, but 
additional subsidiary parameters �. gj, 8 and E must be introduced to account for the 
additional complexity. 

• The hysteresis behaviour found in the single-zone building also exists in the two-zone 
building, and is indeed considerably more complex. Again we find that for opposing winds 
and a given set of heat gains, wind speeds and U-values, there appear to be several 
solutions for the flow. 

The full spectrum of solution behaviours has not yet been fully analysed. Furthermore, the 
stability of the multiple solutions has also not yet been resolved. For the single-zone case Li 
and Delsante analysed the system dynamics and showed that solution S2 in Fig. 2b is 
unstable, leaving one stable upward flow solution and one stable downward flow solution. In 
the two-zone building there may be two or more stable solutions for a particular flow direction 
(e.g. 82 and 85 in Fig. 2d) However, unlike a single-zone building where the system 
dynamics can be easily analysed, a two-zone building presents a two-dimensional non-linear 
system. Further analysis of the system dynamics and identification of stable solutions will be 
carried out in the near future. 
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In summary, the derived flow equations allow us to understand the effect of the three air 
change parameters on ventilation flow rates in a two-zone building. The conclusion that 
multiple solutions can exist in a two-zone building has interesting implications for numerical 
modellers. For multi-zone airflow modelling where the basic governing equations are similar 
to the ones used in this paper, in particular when the airflow and thermal models are 
integrated, care should be taken in interpreting the results obtained when the buoyancy force 
and wind force are of similar magnitude. 
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5 NOMENCLATURE 

Ab area of bottom ventilation opening in single-zone building 
A1 area of top ventilation opening in single-zone building 
Aii area of opening between zone i and zone j (zone O = outdoors); or 

area of j-th wall in zone i 
8 buoyancy flux 
Cp heat capacity of air 
Cd discharge coefficient 
E; total heat power in zone I 
f; a; ta; 
g acceleration of gravity 
g; PIP 
h; height between two openings in zone i 
N; number of external walls in zone i 
.1P w wind pressure 
q volumetric flow rate 
1i air temperature in zone i (zone O =outdoors) 
Uii U-value of j-th external wall in zone i 

Greek symbols 

au 
ao 
a;,aii 
/J; 
fl 
r 
8 
E 

buoyancy parameter for upward flow 
buoyancy parameter for downward flow 
buoyancy parameters defined in ( 4) 
heat loss parameter for zone i, defined in (4) 
/31 + /32 
wind force parameter 
EMB1 
h2!h, 
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