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A two-dimensional CFO based model named "EVITA" was developed to simulate the transient 

thermal performance of rectangular building sections. lt is based on the finite volume approach, 

collocated arrangement of variables and a bounded high order treatment of the convective terms. 

Equations and assumptions required to evaluate usual solar passive cooling techniques have been 

induded. Numerical results are compared with experimental values showing good agreement. 
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INTRODUCTION 

Several Venezuelan cities have a hot and humid climate. Specifically, Maracaibo, a city located at the 

Nonhwest pan ofVenezuela (10.65° latirude) is one where these clim3Lic conditions are extremes. It consumes 

the high�st amount of residential electrical energy in South America, due to mechanical air conditioning 

systems (AC) usage. By the other hwd, 64% of its population can not use AC systems. Therefore, the thermal 

performance evaluation of buildings is very important when thermal comfort and energy efficient designing 

are the fundamental premises. Ari alternative approach for this evaluation is the computational fluid dynamics 

(CFO). It has proved to be very efficient for the prediction of flow and temperature fields in environment 

applications. It allows studying the dynamic thennal performance of a system to supply detailed information for 

faster and cheaper assessment of passive solar building applications. Previous computational (Almao and 

Rincon, 1993) and non-full scale experimental studies have demonstrated thar it is possible to reduce the indoor 

temperature of a building incorporating solar passive cooling systems (SPCS) for these local climat ic 

conditions, however none full-scale experimental data was available to verify it In this paper, a two­

dimensional computationnl model named EVITA (Spanish acronym for Evaluaci6n de Viviendas 

Termicamente Adaptadas) is presented. It has been developed to simulate. evaluate and compare the thennal 

perfom1ance of a building section. The CFO technique (Rincan and Elder, 1997) along with all those required 

equations and assumptions to evaluate and characterise the more usual SPCS to be implemented in a location 

with uopical climate (hot and humid) have been incorporated. Numerical results are compared with 

experimental data registered in full-scale cells specially built for the evaluation and characterisation of SP S 

0960-1481/98/$-see fron t matter © 1998 Elsevier Science Ltd. All rights reserved. 
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(Gonzalez, I 997), with very good dynamic perfonnance agreement Thi fi · · 
lower-level evaluations (Venna et al, 1986, Bansal and Bhandari, t 996) 

s act makes 11 different from other 
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Boundary Condition� 

SPCS thermal evaluation involves as bound d . . . . 
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where hw, denotes the film heat transfer coefficient due to wind. T . 
boundary temperature· al is the absorbed ·trrad·1 ( ab '. . amb(t) I� the outdoor temperature, T a(t) is the ' ance a sort1VJty)· Es 1s th rfi · · · . 
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Two exp�rimental cells were specially designed and built for evaluatin mass cooling by long wavelength nocturnal rad· f d . g three SPCS based on roof thermal 
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Table I. Comparison of experimental and numerical results of daily average indoor temperature (°C). 

CREF CEXP U�r TI.R% 
T.m T. T.m T. T ...... W-hm''K"1 TIR, TLR. 

ESULJB.AC 31 30 31.36 28.93 28 58 29.52 16 84 -I l.27 �3� 
Augusl 96; l.J ""' 

ESULIB.AC 29.57 29.03 2663 26 28 27.49 20,22 65.6-1 70.72 

January97; 19 ""' 
ESULIB.SV 30 05 29 35 27 36 27.17 27.88 2490 5-1.78 50 20 

February 97; I 8 nvs 
ESUSEAC J0.50 305-1 28 60 27.90 28A7 9.60 Jb.6$ 47 70 

Man:h 97; 2 3 m1s 
llicnnal load reduction perceniage of CEXP "ilh respect 10 CREF. using 25°C as comfort temperature 

Tab le 2. Absolute errors of simulated indoor temDCratures with resoect to exoerimental values, in K (% 
ESULIB.AC ESUL!B.AC ESULIB SY ESUSE.AC 

,\MU'<<.!� Janua1v97 f<bnwv97 �larch 97 
CEXP CREF CEXP CREF CEXP CREF CEXP CREF 

!lltaximum !%) I 28(4.2) 0,70 (2,2) 1.37 (-1.9) 1.65 (5-1) 1.05 (3.7) 1.80(5.7) 1.85(5.8) 1.20 (3.7) 

Minimwn -0.)5 -060 -0.-12 -0 15 -0.-IO +0.05 -0 20 -0.80 

Average +-0 3 5  -009 +-0 37 +-0.52 +-0 19 +-0 70 +-0,65 -0 02 

other cell named Experimental cell (CEA.'P) has an open roof pond. This roof pond is protected by a movable 
insulating panel of polystyrene with a glass fibre cover It is located over the water surface allowing to expose 
the wacer to the sky and atmospheric air only during the night, or to shade and ventilate the water during all day. 
Temperarure and relative humidity probes were placed into the cells. and instant analogical signals were 
recorded by a da1a acquisition system. All relevant climatic conditions were registered in a meteorological 
station. The CREF roof is made of25 cm of polystyrene. followed by 5 cm of light concrete and 3 mm asphalt 
layer The CEXP roof is a metallic reservoir full of water until IO cm of height. The climatic variable values 
and indoor temperarure of the cells are the average results or 21 days continuous period of measurements. The 
calculation domain is a 30xJO nodal point's grid Comparison of numerical and experimental values of 
temperarurc are shown in Figures I to 4: Figures I and 2 correspond to the solar-comrollcd SPC thermal 
performance, based on cooling by nocturnal radiation and by evaporation, for August 1996 and January 1997. 
respectively. They a1-e named SULIB AC. Figure 3 shows the thermal performance of a SPC which cooling 
is based only on evaporation (allowing 24 hours of ventilation but under shading), it is denoted as ESULIB. 
Figure 4 shows the thermal performance of a SPC where the cooling is achieved only with nocturnal 
radiation, denoted as ESUSE.AC All these SPCS were evaluated without considering air infiltration to the 
interior volume and to the roof pond in the sunshine time (except in the ESUUB. V) This was fulfilled in the 
experimental cells for the interior volume but not for the roof. This fact along with the clear sky assumption for 
nocturnal radiative cooling calculation is responsible for the deviations in the value of water temperature in 
ESULIB.AC and ESUSE.AC. It is worth to note that the corresponding simulation curves show practically the 
same experimental perfom1ance and the same average daily indoor temperature. CEXP indoor tempcra1ure 
values are almost C-Oincident during the first I 4 hours. Measured aod numerical daily average 1empcratures are 

shown in Table I. along with the values of a roof daily average global heat transfer coefficient (U}, based on 
CEXP simulated indoor temperarure. This is a cooling potential measure of each considered SPCS. Table 2 
presents the absolute errors related to the experimemal alues with 1he relative maximum deviation shown in 
brackets. 11 can be observed a very good agreement even though it is a two-dimensional model. Regarding to 
indoor temperatures, a maximum devia1io11of6% I.SS K) and a maximum a erage error of 2%. was obtained 
for all the considered cases. 

CONCLUSION 

The computational code EVlT A .has been validated, comparing the numerical results with those obtained 
experimentally. A maximum deviation in indoor ternpera1ure of6% (1.85 K) and a maximum average error of 
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Figure I. 

Fi�). 
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Figure 2. 

·--- ,oi:;.r_,_,. _......... -� !--""'•'-·• --..+--Th.mCD.I' rr.•"OW-� 
Comparison of simulated temperatures and measured temperatures in CREF and CEXP for: I and 2 
ESULIB.AC (August and January, respectively); 3. ESULIB.SV (February); and 4. ESUSE AC (March). 

2% was obtained for all the considered cases, showing very good agreement. With the inheret�t limitations of a 
two-dimensional mode� it allows to evaluate the thermal transient performance of a rectangular building 
section, for any walls, roof and floor material composition, under the local climatic conditions. Parametric 
studies and comparative evaluation of different SPCS can be carried out. These evaluations include thermal 
response, characterisation and optimisation, thermal load reduction percentage through the ex:emal enclosure, 
cooling potential and any other quantity related to the fluid and heat transfer process. Since it is based on CFO 
simulations, it is possible to obtain temperatures and velocity fields at a given time. 
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ABSTRACT 

. . ata the author hnvc been eneaged in a project. the aim of which 
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more readily and transparently than at present. , 
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