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Abstract 

A new method for compensating the space discretization error introduced when the fixed flow field is considered for the dynamic 

models of temperature distribution is presented. It is proved that the method generally used in literature is a particular solution of 

the proposed one. Moreover, it results in a continuous-time model, for which the integrating method becomes a free choice and a 

state-space representation is possible. The numerical model was experimentally validated, the comparison, both in the time and in 

the frequency domains, between simulation and measured results showing good agreement. The presented dynamic model increases 

the calculation speed and it can be analysed with the tools developed in control theory . . r; 1999 Elsevier Science Ltd. All rights 

reserved. 

Ke.nnmls: Dynamic models: Computational fluid dynamic; Air conditioning: Control theory 

Nomenclature 
S,1, source term in general transport equation 
Sy source term in thermal energy equation 
V velocity vector 

11, r, 1r velocity components in x-, y- and :-directions, 
respectively 

x, y, : space co-ordinates 

Grl'ek symbols 
r effective thermal diffusivity coefficient 

r.� effective diffusivity coetncient 

{) temperature 

p density 

<I> potential in the general transport equation 

Suhscript.1· 
e, w, n, s. h, I east, west. north, south. high, and low 

frontier, respectively. for an elementary cell 

E, W. N, S, H, L east. west, north, south. high and low 

elementary cell, respectively 

i. j. k the current indexes for .Y-. y-. and :-directions. 

respectively 
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Fluid Mcdianics L1boralnry. GR-265 00. Palr•1s. Greece. Tel.: 0030-
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l. Introduction 

In order to evaluate the indoor thermal comfort, it 
is desirable to know the air flow field and the room 

temperature distribution[!]. As an alternative to experi
ment. the computational fluid dynamic (CFO) theory 
supplies numerical techniques for studying indoor tem
perature distribution and air flow field (and consequently 
the thermal comfort) in a computational grid [2-4]. How
ever, since the mass, energy and especially momentum 
balance equations need thousands of grid cells to be 
solved by iteration procedure. and since the iterative pro
cess should be continued until all dependent variables 

converge to some satisfactory extent, the CFO cal
culation takes so much time that it is practically suitable 

only for some steady state evaluations. Although the 
future development of computer technology will eventu
ally make fast dynamic CFO calculation possible. at pre
sent we have to find some trade-off methods concerning 
the calculation of the dynamic temperature distributions 
which is essential for the simulation of indoor climate 
control systems. 

For the problem of indoor air flow, Peng et al. [5] 
proposed a method to calculate the dynamic temperature 
distribution in a fixed flow field, provided that it is cor
rectly calculated for the steady state. By assuming that 
the air flow field is not changing in time and can be 
correctly calculated by the CFO code, only the dynamic 
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energy balance equation needs to be solved. But Peng et 
al. [5] used the implicit (backward difference) method to 
solve the energy balance equation, thereby the iteration 
method for all grid cells has to be used. However, the 
given flow field may not satisfy the continuity equation, 
a problem which appears in the discretized continuity 
equation, also mentioned by Patankar [2], who stated 
that the rule of sum of neighbour coefficients should be 
satisfied. To correct the discretization error, Patankar [2] 
considers that the new values (at time t +fit) prevail dur
ing the time step. The old value (i.e. the one at time f) 
appears only through its time derivative. The new values 
are initially guessed. Then, an iterative procedure is 
applied in order to obtain the values at the instant (t +fit). 
But the iterative procedure is very time consuming. This 
paper discusses a new method to correct the discretization 
error, i.e. the mass compensation idea. A mass flow is 
considered in a supplementary (fictitious) direction so 
that the continuity equation for each control volume (or 
cell) and the ones for the overall system are satisfied. This 
idea will be used in solving the dynamic energy equation 
when the explicit (forward finite difference) method is 
used. 

2. Mathematical modelling 

2.1. Correct of mass balance equation 

The prediction of air flow in ventilated rooms is based 
on the solution of the general transport equation: 

0 
� (p<I>) +div (pV<I>) = div [r <1> grad (<D)] + S<1> ct ( l )  

where <I>, r <1> and S<l> (for the k-e model) are given in Table 
I [4]. 

Table I 

According to Peng et al. [5], the dynamic model of 
temperature distribution is mathematically expressed by 
the thermal energy balance: 

� (p8)+div (pV8) = div (rgrad (8))+S0 
ut 

with the following assumptions: 
constant density: 

a a a . a � p = O; -;:;-- p = O; � p = O; -::;- p = O; d ex oy cz 

static velocity field: 

a 
-V=O 
ct 

(2) 

(3) 

(4) 

2.2. Continuity equation in steady-state for continuous
and discrete-space systems 

Computational fluid dynamics (CFD) computer pro
grams solve numerically the set of transport eqns ( l  ), 
evaluating the flow field. The problem is that the com
puted velocity field does not satisfy the continuity equa
tion. 

A steady-state solution in a discrete space is usually 
given by CFD programs. The dependent variables <D (see 
Table I) are evaluated at the grid nodes (a typical grid .is 
shown in Fig. I). This discretization method is known 
as 'finite volume' method. The grid node convention, 
presented in Fig. 2, is used to derive the equivalent dis
cretization of eqn (2). The grey area represents the 'con
trol volume' which, for a three-dimensional space, has 
the faces denoted by e, w, h, 1, n and s for east, west, 
high, low, north and south faces, respectively. For a two-

Dependent variables, effective diffusion coefficients and source terms in the general transport equation [4] 

Equation 

Continuity 

u Momentum ti 

r• Momentum 

11· Momentum 11· 

Temperature 0 

Kinetic energy k 

Dissipation rate 

r,. 

0 

/l, 

r,, 

s .• 

0 
i'p a ( cu) c ( i'r) i' ( au·) --+-µ- +-11- +-11-Cx Cx t: Ox Cy t: Cx C: t: Cx 

- �� + 22�(11, �) + �(µ, �) + �(µ, ��) 
q/Cp 
G,-pe+Ge 

e e! C1 k(Gs+G0)-C2Pk 
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Fig. I. Grid generation for the two-dimensional numerical simulation. 
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Fig. 2. The control volume for a two-dimensional celL 

dimensional space, the faces are denoted bye, w, h. and 
I. Integrating eqn (2) over the control volume. it becomes: 

o B) _ 

(puO)e -(puO)" 

ot (p -
-

l!x 

(pi:0)11 -(pvO), (pw0)11 -(pi1'0)1 

l!y !!::: 

(r ��) -(r ae) (r ��) -(r ae) ex c ex " cy 11 cy , 
+ + ------

l!x !!y 

(r 20) -(r NJ) 
c: h f::. I 

+ !!::: +So (5) 

Let us call 'discrete divergence' the form derived by 
integrating the differential equation over the control vol
ume shown in Fig. 2. Then, the discrete divergence of the 
velocity field, as calculated by CFO codes for steady
state conditions. may be not identically null when the 
continuous divergence of the velocity field is null. This 
may be due to: 

• Insufficient convergence achieved by the applied iter-

ative procedure. More iterations will decrease the value 
of discrete divergence. 

• Error introduced by discretization. Since the velocity is 
a non-linear function with respect to space co-ordinate, 
the difference between the divergence and its numerical 
approximation is present in the most of the cases. 

We will prove that the discrete divergence may be not 
identically null, when the continuous divergence is null, 
i.e. 3(i.j, k) so that: 

d" d(V ) = Uc-Uw + Dn-Ds + IV11-ll"1 
# Q IV yk -

l!x l!y f',z 
when div(V) = 0. 

(6) 

If the velocity function is not linear, then it is possible 
(or the derivative in point P' and the finite difference in 
point P to be different (see Fig. 3): 

a u,,-u ... 
-;-tt #-A- ; uX Ll .\' 

a v -v 
�v i=- -"--'; 
oy l!y (7) 

and consequently the divergence may differ its discrete 
form. 

But, when continuous-time discrete-space steady flow 
models are considered, the conservation of mass must be 
satisfied for each elementary cell volume, that is: 

\f(i,j, k) div d(V iik) = 0 (8) 

2.3. Correction of discrete continuity equation 

The space discretization introduces an error in the mass 
balance equation. This error should be corrected so that 
the continuity equation is also satisfied in discrete space 
[6]. 

u 

: '2 : . . . 
· · · · · · � · · · · · · · -� - -� · ·; ' · · · · 

. . / . / . / 
P:/ 

/, 
. ,,/ : '\.__I . ,,. 

· ·
:P - · · · · · : · · ·  

:Xe x 

� 
:� 

x 

Fig. 3. The derivative ( I )  and the finite difference (2) for a non-linear 

velocity function. 
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The continuity equation in discrete form, for a three
dimensional space, without internal mass sources: 

(9) 

will be considered as the continuity equation (or ma • 

bulance equation) for the di crele-space. T implify the 
pre cntation. let us as ume a two-dimen ional space 
(x.=). which i · che venical plane. In thi. pace. the unbal
anced mass of a cell is compensated in order to have 
the continuity equation satisfied for a continuous-time 
discrete-space steady flow model. This compensation is 
achie ed by considering for each cell a flow in a third 
fictitiou direction .. r. resulting a thrce-dimen:;ionul space 
(x,y . .:) that will corn.� ·pond to the t\ o-dimen. ional ·pace 
(x. =). For the mathematical calculation con enience. the 
dimension or the cell in the fictitious direction is taken 
equal with I: 

fly= I 

By noting: 

eqn (9) becomes: 

pd.:(110-uw)+pdx(1r11-H'1) = pd.\d::.du 

(I 0) 

( 11) 

( 12) 

For the cell denoted by indices (i, k), the above equa
tion may be written as: 

(13) 

where: pflx;/J.=kfll'u represents the mass algebraically 
added to cell (i, k) in order to correct the mass balance 
equation. Let us demonstrate that the algebraic sum of 
the mas added to each cell is null for overall system. 
That is: 

t II I JI 

L L Llx;fl::.kfll'u = L L [fl.:k(uu- 1 - uu) 
i=lk=I i=lk=I 

By convention. for the overall system, the flow which 
enters in through the boundaries is denoted by indices ·o· 
and the flow which goes out through the boundaries is 
denoted by indices '/' and '11' for x- and .:-directions, 
respectively (Fig. 4). 

In steady state, the conservation of mass for the whole 
system states that the flow of mass which enters in and 
goes out through the whole system boundaries is 
balanced, that is: 

I II 

L Llx;(1r0;-11'11;)+ L fl:k(llrn-ukl) = 0 
i= I k= I 

(15) 

z Wr!J Wn1 
n,I) 

Unr 

1 1 1 ' 1,1) 

F 
U11 

V\b1 Wn1 x 
Fig. 4. Conventional notation of the velocity components in a two-

dimemional grid. 

The mass flow from one cell to another is added when 
the velocity is towards the cell and subtracted when the 
velocity is away from the cell. For internal boundaries of 
the cells, the total sum of the flow will be null, since the 
flow is added to a cell and subtracted from a neighbouring 
cell (Fig. 4). With eqn (15), eqn (14) becomes: 

( 16) 

The mass correction affects the other transport eq ua
tions in which mass is involved. 

2.4. Correction of energy balance equation 

The correction introduced in the continuity equation 
will be reflected by a term in the energy equation. This 
correcti n ccrm is rela ted lO th� energy transported by the 
corrected ma . In the three-dimen iona! di ·crcte space 
(.\·. y, =) . th• conservation of ma for a cell state that: 

. lie-II" t"11-l' 11·h-11·1 
div d(V) = -- + -- + -- = 0 

/!ix fly fl= 
( 17) 

Since the correction may be seen as a flow on only one 
surface in rhe fictiti us direction, then: 

( 18) 

and considering the temperature in the fictitious direction 
LO have the ame value as the one in the control volume, 
then the temperature on this urface is the temperature 
of the cell centre (point Pin Fig. 2), and 

(prO),, -(prfJ), (pi-V)., r0 ...c------ = -- = p0-6.r /!i._r fly 
( 19) 
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From eqn (17) results: 

110-Uw \1'11-11'1 t·11-t', L"n 
-- + --= --- = --/:J..\' /:J.:: L\y . l:J.y 

therefore the equation of energy balance becomes: 

(180) -(1 �) (1 ce) -(1 ro) 
c1x < 

�x " c::: h r·::: 1 
+ + ------L\x L\z 

(20) 

(21) 

Equation (21) describes the dynamic behaviour of tem
perature in a two-dimensional discrete-space (x, :::) in 
which the (continuous) divergence of velocities is null. 

Equation (21) may be considered a general represen
tation. The numerical integration method for this differ
ential equation with respect to time and differencing 
scheme for discretization in space becomes a free choice. 
The finite difference equations presented by Patankar [2] 
and considered by Awbi [4] are obtained as a particular 
solution of eqn (21) by applying the upwind difference 
scheme for space and Euler implicit method for time 
numerical integration. 

3. Numerical simulation 

The discretization of eqn (21) requires the application 
of a finite difference scheme. From the set of differencing 
schemes that may be used only the upwind scheme will 
be given as an example. Applying a finite differential 
scheme, eqn (21) becomes an ordinary differential equa
tion with respect to time. Numerical integration of this 
equation by using Euler implicit method yields the same 
equation as the one presented by Patankar [2]. Awbi [4] 
and used by commercial CFO programs. 

In the upwind difference scheme (or donor cell 
method). the values of 0 at the control surface (i.e. w. e, 
I and h surfaces) arc taken as the value of upstream node 
point: 

(22) 

and similarly for O"', 01 and 011• Using notation l[AJI to 
denote the greater of A and 0. the first and the second 
term of eqn (21) may be written as: 

-

= [ �x (1[11,..]IO" -I[ - uJIO-l[uJIO + ][ -uJIOE J 
+ p[�::: (l[1r,JIOL -1( -u1] I O - l[u1,J I O + I [ -u1JIVH J (23) 

The third and the fourth right-hand terms of eqn (21) 
may be written as: 

( c..,O) ( iO) 1- - 1-�x < ex " ;;;; _l (1e OE_-0 -1" ()-:(}." ) 
L\x L\x i>x. ch·" 

With the notations: 

I[ -11,..]I l[11JI II - 11·1]1 l[ll'h)I 11,-11" 
a=- --- - -- ----- -- +--

L\x 6.x /:J.:: L\::: \' 

l[u")I I r"" 
aw = -- + -- -.-.\. p .\' (<h)\\ 

!(-1111)1 I r11 
£711= -- + - -.-

/:J.; pL\:::. (<):::)11 

eqn (21) may be written: 

or, if there are internal sources, S, eqn (21) becomes: 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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It is easy to observe that: 

(32) 

or the rule of coefficients mentioned by Patankar [2] is 
respected. 

If the Euler implicit method is used to integrate numeri
cally eqn (31 ), then: 

8-8° d s � � -
d 

8 = a8+aw0w+ aE8E+aL8L +aH8H+ -u / l p 

(33) 

where e = O(t) and 8° = 8(t- 6t). Then eqn (33) may be 
written as: 

(34) 

Writing the source term as S = Sc+ Sre and mul
tiplying eqn (34) by p.1x.1y it becomes exactly the same 
as the final finite difference equation pre ented by Pat
ankar [2] and widely used in FD programs: 

a'O = a'w8w+a�OE+ a�eL + a�eH+b' 

with: 

a'w = p .1x .1z aw; a� = p .1x .1z aE; 

a� = p dx .1z aL; a� = p .1x .1z aH; 

E 0 & 

E 
.E 2 Cl 
·a; .s::. 
E 
8 c:r: 

Time= 0 sec 

2 4 
Room length, m 

Time= 120 sec 

2 4 
Room length, m 

(35) 

(36) 

6 

6 

(37) 

a' = a'w +a�+ a�+ a�+ a'0 - Sr.1x.1z (38) 

The energy eqn (31) is implemented in MATLAB, hav
ing the flow field given as computed by CFD software 
PHOENICS. As the numerical integration method is a 
free choice, any method available in MATLAB can be 
used. The details regarding the implementation are given 
by Ghiaus et al. [7]. Figure 5 presents a sequence of 
temperature distribution as obtained by the model. The 
number of nodes for the numerical grid generation is 24 
(in x-axis) by 24 (in y-axis). The velocity field is fixed 
during the simulation of temperature distribution. The 
implementation is achieved in MATLAB and can be run 
on the same platforms as MATLAB (Windows or Unix). 
On a Windows platform (Pentium 133 MHz) the numeri
cal simulation time is approximately 5 s for a process that 
lasts in reality 60 s. 

4. Experimental facility and results 

In order to validate the mathematical model, experi
ments were performed in a test-cell, located at Delft Uni
versity of Technology, 52'°N and 4°6'E. The cell room 
has internal dimensions of 3.2 x 3.9 x 2.68 (m) and exter-

E 
.E 2 Cl 
'Q) .s::. 
E 
0 0 c:r: 

Time= 60 sec 

2 4 
Room length, m 

Time = 180 sec 

2 4 
Room length, m 

6 

6 

Fig. 5. Room temperature distribution numerically simulated with a sample time-step of 60 s. 
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Table 2 

Specifications of the materials used for the roof, walls and floor 

Layer type Thickness 
[mm] 

Roof and walls: 
Steel 0.6 
Polystyrene 148 

Floor: 

Carpet 5 
Aluminium 2.5 
Plywood 18 
Polystyrene 150 

nal ones of 3.4 x 4.2 x 3.0 (m). The room window 
(3.1 x 1.9 m2), with the glazing global heat transfer 
coefficient of 2.7 W m-2 K-1, has the azimuth 30:E. 
The roof and the walls are con tructed from light-weight 
and\ ich plate· (poly. tyrene with steel plate layers on 

both ides) having lhe heal transfer coeflicient equal to 
2. 7 W 111-1 K -1 and the floor i made of polystyrene, 
plywood. aluminium and carpet on lop. The global heat 
transfer coefficient of the floor is 1.9 W m -2 K - 1

• The 
specifications of the above materials are given in Table 
2. The temperature was measured at points on a nine
node grid, symmetrically di ·tributed in a perpendicular 
plane on the window surface. A fan-coil. installed under 
the window introduces, by means of two separate coils, 
cool or warm air for cooling or heating, respectively. The 
operation characteristic of the fan-coil are given in Table 
3. The simulation results were compared with the exper
iment·�! ones, both in time and in frequency domain. A 
comparison of a step response at the start-up (in the 
morning) is shown in Fig. 6. The model gives a good 
response at the beginning, but, because the simulated 
wall temperature was assumed to be constant, in the last 
part of the response the influence of the actual variable 
wall temperature can be observed. However, from the 
point of view of controlling the temperature it is more 
important to con ider a frequency re ponse comparison . 
Using the tool· of control theory. the frequency response 
(Bode diagrams) can be easily achieved. To obtain the 
frequency response, the inlet air temperature was varied 

Table 3 

Operation characteristics of the fan-coil 

Fan-coil characteristics 

Air volume flow rate [1111 h-11 
Heating power at 90170 C [kW] 
Cooling power at 6/l 2 C [kW] 

Low 
speed 

225 
2 

Medium High 

speed speed 

330 600 
3 4 

1.2 2 

Conductivity 
"
Density Heat capacity 

(Wm-' K-'] [kgm-'] [J kg-I K-'1 

52 7800 500 

0.034 20 1300 

0.06 160 2500 

200 2800 880 

0.17 700 1880 

0.034 20 1300 

Inlet air 
25 . . . . . . . . . . . . . . .  · · · · · · · · · · · · · · · · · · · ·  . . . . . . . . . . .  . 

(.) 
0 20 
� ::J � 15 
Q) a. 
E 10 
� 

5 

0 
0 2 

Time, h 
3 4 

Fig. 6. Mean temperature step response simulated and measured in 
several horizontal planes. 

according to a function obtained as a sum of sine waves 
of different frequency, which are typical for normal oper
ation of' a fan-coil. The comparison for a point in the 
occupied zone is given in Fig. 7. The response was 
achieved by varying the inlet temperature of the air so 
that the frequencies contained in the signal covered the 
domain of interest for control purposes. 

5. Conclusions 

The discretization of the continuity equation intro
duces an error due to non-linear velocity field. The 
method presented corrects the continuity and energy 
equations for discrete space models. The correction term 
may be seen either as a flow in a fictitious direction or as 
a source of mass, so that: 

•If the correction term is positive, it means that there 
was a removal of mass from the elementary cell and 
some mass should be added to compensate. 
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Fig. 7. Comparison between simulation and experimental results in frequency domain for a point in the occL1pied zone. 

•If the correction term is negative, it means that there 
was an addition of mass to the elementary cell and some 
mass should be removed to compensate. 

A remark should be made: accepting that the station
ary velocity field is correct, that is the divergence of vel
ocities is null, it is possible that the conservation of mass 
will not be respected for some elementary cells of the 
discrete space system. However, since the model is in 
discrete space from, the conservation of mass should be 
respected for each elementary cell. The mass conservation 
law in steady state for constant density, continuous space 
systems is: 

c c c 
- u+ - r+ - 11 · = 0 ex cy 8::: 
and for constant density, discrete space systems is: 

11,- u" r11 -r, u·1i - 11·1 -- + -- +--= 0 t.x L\1' 6.::: 

(39) 

(40) 

Accepting eqn (39) to be true means that eqn (40) does 
not necessarily stand for each cell. In fact, eqn (39) should 
be satisfied for continuous systems. Reciprocally, accept
ing eqn (40) to be true means that eqn (39) does not 
necessarily stand for each point in the continuous system. 
However, eqn (40) should be satisfied in a discrete space 
system. However, the mass conservation law should be 
respected in the system, whether it is described in con
tinuous or discrete form. In fact, accepting that the vel
ocity field is correct, then eqn (39) stands and a correction 

is introduced to have the mass conservation respected 
also in each elementary cell. Since the conservation of 
mass should be respected also in the system as a whole, 
if the velocity field is correct, the total algebraic sum of 
mass exchanged in the fictitious direction should equal 
zero. 

The corrected dynamic model of temperature may be 
integrated using any numerical integration method (e.g. 
Euler implicit or explicit, Runge-Kutta, Adams or Gear). 
As these integration methods use variable time steps, the 
time efficiency of these methods is very good. In literature, 
the energy differential equation is discretized using 
implicit method. When the flow field is changed, a set of 
algebraic equations is to be solved in one step (by invert
ing the matrix of coefficients) or by .iteration (an initial 
guess followed by an iterative calculation). The inverse 
of the matrix and the iterative procedure are far more 
time consuming than integrating with an explicit method 
with variable time step (for a standard size room about 
101-1 O' times faster). 
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