Theme: Insulation and Energy Conservation

There are two factors that are set to dramatically transform the way in which we design and fabricate our buildings in the early twenty-first century – insulation and energy. We need to maximise the insulation levels of our buildings while at the same time rethinking the ways in which we consume and even produce the energy needed to run them. In this article we take a brief look at both subjects and examine projects and ideas which reveal how these aims can be realised.

BY KEITH HALL

External wall insulation is being used increasingly in the UK for new-build work, and the External Wall Insulation Association (EWIA) offers an annual award to recognise and encourage the development of this building style. In continental Europe, solid wall construction, using this process, has been the predominant form for many years.

The winner of the 1998 award was Edward Cullinan and Partners, for its design of student residences and amenity buildings for the Cheltenham and Gloucester College of Higher Education. This involved the use of a StoTherm Classic external wall insulation system, incorporating 100mm of EPS insulation to give a U-value of 0.34W/m²K, mechanically fixed on to 190mm concrete blockwork and finished with a low-maintenance Stolit self-coloured silicone-based decorative render.

A special design feature of the project was to wrap the insulation around the windows, with the insulation and render system forming the sill of the window. The simplicity and flexibility of the jointless system reduces air leakage, while providing an aesthetically pleasing appearance. The system used met all the specifier’s requirements with regard to thermal performance, exceeding the demands of current Building Regulations.

The architect was looking for a low-cost yet highly energy-efficient building that would be elegant enough to blend in with the Regency environment, for which the Cheltenham landscape is famous. The college’s energy manager, John Willoughby, estimates that, since opening, gas consumption for space and water heating is in the region of 1000kWh/m²/year, half that of the Higher Education Funding Council benchmark of 200-290kWh/m²/year.

The runner-up for the same award was Phase Two of Premier Place in London. This is a new residential development of 127 flats and houses, designed by Chassay and Last...
Theme: Insulation and Energy Conservation

Premiere Place in London's Docklands, EWIA Awards '98 second place winner

Celcon 200mm Solar aircrete blocks were used with Tektalan-E21 wall insulation boards from Heraklith to achieve a U-value of 0.32W/m²K for this recently-built terraced house in Stroud. Architects - a winner the previous year - on behalf of the client, Regalian Properties. The architect specified the SetTherm Classic external wall insulation system. This was achieved by using 140mm blockwork and 80mm polystyrene insulation and the 30mm acrylic through-colour renders and with the polymer-based silicone Sto paint finish to give increased water-shedding properties and low dirt pick-up.

Foamglas Perinsul from Pittsburgh Corning

On a smaller scale project, Tektalan E21 wall insulation boards from Heraklith have been used in conjunction with Celcon 200mm Solar aircrete blocks to create a solid wall construction that achieves a total wall U-value of 0.32W/m²K for a terraced house recently built in Stroud, Gloucestershire. Insulation boards (woodwool/mineral fibre composite) 50mm thick were applied directly to the blocks using a simple dowel fastening method and finished using the Heraklith rendering system. Limestone spar chippings were applied as the render finish to complement the Cotswold stone of the adjacent house.

James Muir, Heraklith's UK agent, commented, 'The ease with which our boards can be fixed to Celcon's blocks makes them an ideal partner for our system. The builder involved in the Stroud project found the combination very simple and quick to construct and, as a result, intends to build again in the same way.'

Thermal bridging questions

Any building system that relies on blockwork or concrete as its structure will need careful consideration of heat losses at the junction of wall and floor insulations. The better the insulation levels that are aimed for in the structure, the more attention to detail is needed at these thermal bridging points.

One product that answers this problem, without over-complicated detailing, is Foamglas Perinsul from Pittsburgh Corning. Perinsul, like all of the Foamglas range, is a rigid insulation board (though in coursing sizes) consisting of glass cells with a closed structure, the result of a chemical reaction between oxidised glass and carbon at high temperature. This chemical reaction forms carbon dioxide (CO2) at temperatures where glass is viscous, so that the CO2 is imprisoned indefinitely in the glass by forming millions of bubbles. Foamed glass insulation has two unique properties, its strength and its durability, which put it in a category all of its own.

March 1999

Focus Enquiry No 10

Springvale promised to give you insulation options you never had before.

Microfoam Eps delivers the promise, twice over.

By using the bonded layers technology of microfoam Eps with established processing expertise of Pittsburgh Corning's Eps range, a performance product has been developed that offers many unique attributes to the building industry. Not only do these unique qualities mean that microfoam Eps can be used in the substitution of traditional wall building materials, but it can also be used in applications that require extremely high thermal performance. The Eps range from microfoam Eps is available in a range of thicknesses and densities, ensuring that there is a solution to meet every need in the new-build or refurbishment industries. The range of microfoam Eps products includes:

- **Microfoam Eps 734** - a lightweight structural panel that is used for ventilated cavity walls and can also be used as an internal or external finish. It is lightweight and easy to handle, making it ideal for both new-build and refurbishment projects.

- **Microfoam Eps 735** - a more robust and versatile product that can be used as a structural panel in non-ventilated cavity walls. It is ideal for applications where additional strength or fire resistance is required.

Focus Enquiry No 11

BSW

Central Sales, 125A King Street, Knutsford, Cheshire WA16 6EH

(01565) 633044

One call is all you need.
A report for Building for a Future magazine last year, energy consultant Peter Warm outlined the optimum thickness of insulation on a cost payback scenario over 60 years, using the cheapest air-based insulant available and based on current prices. The report concluded that if fully insulated (floors, walls and roof) at a thickness of below 200mm in a typical semi-detached home, the heating fuel has a far more dominant cost when compared to the insulation. When installing around or above these levels, the cost of the insulation becomes more significant.

A second comparison the report makes is to compare the energy consumed in the manufacture of the insulation to the energy it saves over the same 60-year period (see Fig. 2). This shows just how insignificant the embodied energy of the mineral fibre insulation is compared to the consumption of fuel used in heating the building. From this comparison you can see the thinness in energy terms is more than 650mm. Heating system efficiency or different insulation types might have a small effect on this chart but is unlikely to change the conclusion. It would seem, then, that the only constraints are practical – just how can we incorporate such high levels of insulation into our buildings? This demands that much of what the insulation manufacturers tell us is common sense and providing we follow this common-sense approach through to its logical environmental conclusion, we can be confident of having made the best environmental choice.

An innovative walling system, Ibeco Wallform from Wyncot Resit, offers buildability beyond traditional cavity construction. The CFC-free, HFC-free and Zero ODP Ibeco Wallform EPS wall system has been used in the construction of a unique three-storey, four-bedroom ‘round house’ at Roserrow Golf Course, Cornwall. Built on sloping ground beside a lake in Roserrow Golf Course, it is of a rendered construction to contrast with the natural stone of adjacent properties. The system is of hollow, lightweight blocks that simply lock together, providing a formwork into which concrete is poured in situ to form a structural wall with high levels of thermal insulation. This method of construction offers a U value of just 0.28w/m2K combined with sound insulation of 45dB, and is claimed to eliminate many of the problems associated with the weatherproofing of cavity wall construction on exposed sites.

Telling markets a product called Unilit 20, Unilit 20 is a lightweight hydraulic lime/perlite insulating render system that was actually developed for use on historic buildings, where its lightweight and natural properties are sympathetic to the structure. This system, however, is used commonly as a complete insulant/render solution in thicknesses up to and beyond 200mm. Spray-applied in two, three or four coats it can achieve U values far in excess of the current building regulations standards.

The system was recently used at a thickness of 200mm on a project in London. The beauty of the Unilit system is that it is totally hygroscopic and needs no mechanical fixings or other components.

Springvale Insulation has launched a new range of modified expanded polystyrene insulation systems. The Microfoam EPS building solutions system has improved EPS performance, and therefore a reduced thickness is needed to achieve the required (current) building regulations standards.

The Roofshield T-Board from Combat Polystyrene is a ‘between and over the rafter’ polystyrene insulation block which can provide good thermal values due to the thickness achievable. Standard board thickness up to 175mm is available, offering U values of 0.20w/m2K.

Thicker still

When the debate regarding insulation gets to a point where thicknesses of 300mm or more become a serious consideration, then a rethink of common building practices pertaining to walls and, to some extent, roofs is probably needed. The best performing buildings will be those that have fast shedding of water with little more moisture absorption into the fabric beyond a level that is soon dissipated by drying winds between showers. To satisfy this criterion for heavy-weight structures, external insulation with a render or similar rainscreen could well be the best answer. Lightweight buildings, however, have the added advantage of being able to maximise the thickness of insulation, although there are presently limitations on the scale of such structures.
Insulation for use in protected applications such as within a timber frame, loft space or suspended flooring, can be sheep's wool, flax, cellulose fibre and corkboard. These products are becoming increasingly popular due to their naturalness and user-friendliness. For the specifier they offer an opportunity to reinforce the 'healthy' aspects of the indoor environment when integrated with such measures as natural ventilation, untreated wood, natural paints etc. Because of the increasing awareness of the public regarding health issues we are likely to see far more use made of these products in the future.

Theme: Insulation and Energy Conservation

iona Broome of Architype explained the background to the project: ‘Our overall aim was to minimise the impact on the environment, not only in the energy consumed in running the houses, but also in terms of the embodied energy in the materials we used i.e. the amount of energy that goes into producing the products themselves.’

The houses at Harlow Park have less than half the embodied energy of similarly sized, conventional houses. It is estimated that these houses will cost 30 per cent less than conventional houses to heat. The Fillcrete Breathing Wall will play a fundamental part in this, delivering a U value of only 0.19W/m²K while delivering a high level of breathability and enhanced vapour transfer, which means that moisture inside a building can safely migrate through the structure to the outside. The air-tightness of the breathing wall system assists in producing the enviably low U values, as does the use of massimite beams, which are able to provide the required structural-performance for the walls, while minimising cold bridging. The closed panel Breathing Wall comprises masonite beams, Warmcel 500 cellulose fibre insulation and Panelvent® sheathing on the cavity side of the frame.

Theme: Insulation and Energy Conservation

Jon Broome of Architype explained the background to the project: ‘Our overall aim was to minimise the impact on the environment, not only in the energy consumed in running the houses, but also in terms of the embodied energy in the materials we used – i.e. the amount of energy that goes into producing the products themselves.’

The houses at Harlow Park have less than half the embodied energy of similarly sized, conventional houses. It is estimated that these houses will cost 30 per cent less than conventional houses to heat. The Filcrete Breathing Wall will play a fundamental part in this, delivering a U value of only 0.19W/m²K while delivering a high level of breathability and enhanced vapour transfer, which means that moisture inside a building can safely migrate through the structure to the outside. The air-tightness of the breathing wall system assists in producing the enviably low U values, as does the use of massimite beams, which are able to provide the required structural-performance for the walls, while minimising cold bridging. The closed panel Breathing Wall comprises masonite beams, Warmcel 500 cellulose fibre insulation and Panelvent® sheathing on the cavity side of the frame.
markets a similar product, also in batt form but with a 30 per cent sheep’s wool content. Felt insulation has a thermal conductivity value of 0.042 W/mK.

Hemp

The Hemp Union has begun distributing a new hemp insulation batt called Thermo Hemp. Grown in Germany, this eco-insulation has (like all natural insulations) superb breathing properties and is totally nontoxic. It is available in thicknesses from 40mm to 160mm. The Hemp Union was established a few years ago to promote the growing of hemp as an industrial agricultural crop in the UK. Unfortunately UK legislation severely restricts it as a commercial crop, which is in turn hampering the development of hemp products.

Energy

Photovoltaic cell arrays mounted on buildings are likely to be behind the greatest architectural changes to buildings in the early twenty-first century. According to a recent report from the Worldwatch Institute, sales of solar cells expanded by more than 40 per cent in 1997, making it the world’s second-fastest-growing energy source (next to wind).

The sun bathes the earth with 1900 times the energy that mankind presently consumes, and this is only one of the free renewable resources available to us. TESFU (Technology Energy Support Unit) spent much of the 1980s researching the passive solar potential for the heating and cooling of buildings. The results were not conclusive enough to encourage the widespread uptake of the concept, but projects that are able to have taken advantage of solar positioning and passive solar design have, in the main, proved successful.

Domestic autonomy

At a domestic level, power generation and energy autonomy is set to boom, providing that the heat energy requirements of the house (space and water heating) are reduced far beyond the current building regulations expectations. Off-the-grid houses even where a grid exists will soon become an everyday sight. Although Redland’s launch of a roof-integrated PV roof tile in the UK has met with a slow start, as prices fall and other products enter the market this is certainly to become more popular.

The much publicised David’s House near Monmouth, designed by Eco-Architects of York, contains many of the ideas I have discussed in this article. In the garden is a self-contained power generation set-up: 38 60 Solarvue photovoltaic panels provides a 2.1kW peak rating. These are mounted on a simple garden timber trellis. This arrangement permits optimum solar orientation without compromising the building. The array’s performance is improved by avoiding excess heat build-up on the panels. The trellis allows the panels to be easily cleaned and maintained without roof ladders, and the system can be extended if, after the first year’s monitoring, this appears necessary.

Due to the seasonal and day-to-day fluctuations in any solar array output, the system is complemented with a matching 2.38kW Scottish-made Proven wind turbine. The combined wind and solar provision will give a more consistent and steady supply of renewable energy with the ability to adapt to seasonal variations.

To ensure a continuous electrical supply when there is no sun or wind, a 48 volt DC battery bank stores up to 17kWh hours of energy. An inverter converts this power to normal AC voltage electricity for running conventional domestic appliances. The system is capable of providing up to 4.5 kW of load at any one time. In the event that the battery runs low or load exceeds inverter capacity, then the supply is automatically transferred to the grid and at the same time the batteries are recharged. When more power is being generated than is being used and the batteries are full, surplus power is diverted to a multi-stage immersion heater element in the domestic hot water cylinder.

A conservatory pre-heat (passive solar) buffer zone, coupled with super-insulation levels of Warmcel 500, combined with limited thermal mass, creates considerable thermal inertia, thus eliminating the need for a central heating system.

Keith Hall has spent all his working life (over 25 years) in the construction industry. In 1989 he founded the Association for Environment Conscious Building (AECB) and is currently editor of its magazine, Building for a Future. The AECB is an independent organisation which promotes sustainable building. An information pack about this organisation can be obtained by sending a £10 (3DR) to AECB, Nant-y-Garreg, Saran, Llandysul SA44 5EJ, or visit its web site on http://www.aecb.net

A typical response to typical office lighting especially from those in the know, Brightness Management conversely harmonises lighting for a more fertile and fruitful working environment. For more information please call 0181 589 1852 and watch office productivity bounce back.