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Abstract 

The goal of performing sensitivity analysis of a simulation model is to determine the effect of input variation and the effect of input 

uncertainty on the output data. Sensitivity analysis is an unavoidnbte step in model va'lidation, and it i al o generally U eful in performing 
simulations. The user must know the influence of the accuracy of the darn that is input to the program. Thi· paper presents a methodology 
for performing sensitivity analysis as well as the tools that implement thi methodology. MISA and Li A, that were developed within the 
IEA-ECBCS Annex 23 'Multizone air flow modeling'. The basic concepts of sensitivity analysis as well as the main characteristics of the 

developed tool are presented. More detailed information are available in the final report of the sub-task 3 'Evaluation of COMIS' of the 

Annex 23 [J.-M. FUrbringer, C.-A. Roulet, R. Borchiellini, Evaluation of COMIS, final report IEA.ECB &CS Annex 23 Multizone Air 

flow Modelling, LESO-PB, EPFL, 1015 Lausanne, Switzerland. 1996.). © 1999 Elsevier Science S.A. All rights reserved. 
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1. Introduction 

Validation is a word which is somewhat abused in 
discussions of simulation models since a model can never 
be validated, but rather not invalidated. The use of simula­
tion in practice requires a warranty that the results conform 
to reality, and this is only possible by a comprehensive 
evaluation and a generalized sensitivity analysis. In order 
to assess simulation results, several tools have been devel­
oped, tested and improved within the IEA-ECBCS Annex 
23 'Multizone Airflow Modeling'. The whole methodol­
ogy of 'validation' has been reviewed, re-analyzed and 
adapted to the field of multizone air flow simulation [1,5]. 

An up-to-date methodology with a robust background 
and efficient tools is taking form. The main conclusion of 
all the validation work within the IEA-ECBCS Annex 23 

is « Put a SAM in your model » , SAM being the 
acronym for Sensitivity Analysis Module. This study high­
lighted that a good model must feedback to the user the 
influence of the accuracy of the input parameters to the 
model. This can be done by calculating confidence inter-
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vals for the results. This paper shows how this can be done 
and what types of tools are needed. Another paper on this 
issue illustrates this with examples from the annex work 
[8]. 

The necessity of integrating a tool for sensitivity analy­
sis into the modeling environment has appeared since it 
became evident that sensitivity to input uncertainty de­
pends not only on the structure of the building (number of 
floors and zones as well as their geometrical distribution) 
but also on the input values themselves, for example, the 
wind direction or the temperature difference between two 
zones. Large sensitivity to input uncertainty appears often 
near equilibrium situations which occur for specific values 
of structural parameters or weather conditions. When large 
sensitivity is detected, it is critical to evaluate if it is due to 
an intrinsic instability of the numerical solution or if it 
depends on a particular ratio between some input parame­
ters, a ratio which may have only a small probability to be 
reproduced in reality. 

The performance of a sensitivity analysis allows trends 
to emerge. In the future, the use of interval arithmetic to 
model physical behavior of a building would make the 
formulation of output in terms of trends. This will have a 
more significant physical meaning than the one point 
simulations commonly being made today. which are rarely 
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secured by error analysis. The SAM is an intermediate step 
towards this improvement. 

Another important advantage of integrating a SAM in 
your model is that it gives the possibility of performing 
parametric study and optimization 'on line'. Those who 
did such work with a one-run model and a closed user 
interface, and who remember the boring work of creating 
successive input files for this back and forth process, will 
certainly appreciate the possibility of managing this in an 
easier way. 

A SAM will allow the user more time for conceptual 
and creative phases of a project. A SAM enables the 
comparison of different solutions to determine whether or 
not they correspond to significantly different results, and 
through the parameter effect determination, it makes it 
possible to understand why they differ. 

One of the original goals of the SAM development 
within the Annex 23 was to facilitate the use of factorial 
design for the sensitivity analysis of simulation models. 
The use of factorial design provides the possibility of a 
feedback on the input as well as satisfactory concepts to 
handle the multivariable aspect of the problem. The tech­
nique of factorial design comes from the experimental 
field. Fisher set it up as an improvement of the Latin 
square design in 1926 when he was working in the agricul­
tural research establishment of Rothamsted [3]. The tech­
nique was used in simulation by Naylor [15] in 1969. After 
one gains an understanding of the main concepts of this 
technique, it can be applied to any field to improve the 
way simulations or measurements are performed. New 
techniques arise today with quasi Monte-Carlo methods 
that are more efficient in the presence of strong non-linear­
ity but factorial designs are a reference because of their 
simplicity [7,10,12,19). 

2. Knowledge structure 

The verification of the output data of a model with 
corresponding experimental data is equivalent to the scien­
tific process of iteratively changing from model to reality 
and back. A maximal redundancy is required between 
information contained in the program results and the ex­
perimental data used for comparisons. But it is not correct 
to consider experimental data as the reality, the absolute 
reference. Because of their uncertainty, experiments give 
only an image of reality and the fidelity of this image is 
determined by the confidence intervals. 

These epistemological concepts are important to defin­
ing a correct validation procedure. Fig. 1 presents the 
knowledge model used in the project. This model is based 
on the epistemology of Kant [11]. This theory affirms that 
we never directly access the pure reality called noumen. 
Through the measurement, we access the phenomenon that 
is the sensible reality. 

Validation 

Process 

M•uur. 

l11lnpr.bllon 

Model invalidated 

for subset B 

no 

Model validated 

for subset B 
Fig. 1. Knowledge model used to elaborate the validation process. 
Squares represent operators acting on the reality or on the output of other 
operators. The reality is first questioned to obtain data used to model the 
phenomenon. Interpretation, modeling and translation (in computer algo­
rithm) are the main operations for obtaining a simulation model. When 
validating this model, new measurement on a distinct subset is necessary. 

The measurement of some observables on object A, 
which is a subset of reality, provides a set A<P of data that 
gives an image of the reality. The rough results depend on 
the type of probes. These results are interpreted to obtain a 
set of observables in the usual units of temperature, pres­
sure, flow rates, etc. This interpretation is based on a 
model of the measuring device. The interpretation of a 
temperature measurement, for example, implies the model­
ing of the thermometer. In building physics, the measuring 
device model is sometimes extremely complex. 

The modeling of object A consists in determining the 
link between some elements of A<P * to reproduce its 
behavior and predicting the values of some observables as 
a function of the values of some other ones, typically 
energy flows and comfort variables as a function of weather 
conditions and building characteristics. If M is the func­
tion linking interpreted observables, this can be repre­
sented by Eq. (I) 

M(
A
<P*)=O (I) 

The building of a program on the basis of this model M 

consists of translating it to M' following the constraints of 
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numerical and computer science. By definition the model 
is compatible with the data upon which it is based. 

But the interest of a model lies in the possibility of a 
generalization, which means the possibility of modeling 
with the function M, another object B similar for some 
points to A. Typically, for the case of building physics, 
researchers are elaborating models reproducing thermal 
and aeraulic behavior of the largest possible number of 
buildings in various weather conditions. The validation 
consists of verifying that whatever the object B satisfying 
the validity criteria of the model, Eq. (2) is verified: 

(2) 

When the relation is not verified it is necessary to 
understand the cause, to know whether it is a limit of the 
model or an error. Each operator constituting the measure­
ment, the interpretation, the modeling and the translation 
are susceptible to errors (Fig. I). The validation procedure 
must take that into account and allow the screening be­
tween modeling, measurement and programming errors. 
The numerical methods available for that task are the 
Monte-Carlo and the factorial techniques. 

3. Global sensitivity by Monte-Carlo design 

The Monte-Carlo technique (Fig. 2) allows the estima­
tion of the conjugate influence of the varying input param­
eters, which are chosen at random in accordance with their 
probability distribution. With a relatively small number of 
runs (Nrun < 100 independent of the number of variables), 
it is possible to determine the means and standard devia­
tions of the output parameters with 10% accuracy (See 
Refs. [6, 17] for technical details). The Monte-Carlo method 
is currently used in many research fields. Examples of its 
application in the field of building physics can be found in 
Ref. [13]. 

Random selection of values for input parameters limits 
the number of runs necessary to test the model, and makes 
the number of simulations independent of the number of 
input parameters. However, the resulting confidence inter-

Input Output 

Fig. 2. Scheme of Monte-Carlo technique for sensitivity. The output 
parameter uncertainty characterized by the probability distribution P(Y) 
is obtained by multirun simulation with input data chosen at random 
following the distributions P(x;). 

val is global, i.e., the effects of all the varied parameters as 
well as the conjugate effects merge. 

The range of the input probability distribution gives the 
opportunity to handle the validity domain of the resulting 
sensitivity: 

For a local sensitivity analysis focused on a precise 
point of the input parameter domain, small ranges of 
only a few percent or even less are used. 
For realistic analysis aimed at the determination of the 
confidence intervals, the actual input parameter confi­
dence intervals are used. 

4. Effect determination by factorial and similar designs 

For determining separately the effect of input parame­
ters, a more sophisticated technique must be used: the 
factorial method or a similar one. The factorial design 
consists of choosing the simulation points at the edge of 
the multi-dimensional domain defined by the input param­
eter ranges. For learning about this design of experiments 
and its theoretical background please refer to Refs. [2,9]. 

The use of factorial matrices in simulation is detailed in 
Refs. [4,6]. The method consists of fitting the simulation 
results to an appropriate polynomial function correspond­
ing to a Taylor series of the analyzed model. 

Full factorial design allows the determination of all the 
coefficients of a linear model with all possible interactions 
(cf. Eq. (3)) with 2 N, runs. This design has the disadvan­
tage of requiring a lot of runs and is practicable only for 
small numbers of input parameters. 

Y= a0 + E a;X; + E a;jX1Xj + E a1jkX,X1Xk 
i� l,N i*j i*j*k 

+ . . .  +aijk···NX1X;X;··· XN (3) 

The fractional factorial design takes advantage of the 
small probability that all the effects are significant. The 
effects are distributed in subsets by mean of linear rela­
tions. Those relationships are based on the group proper­
ties of the set of columns of a factorial matrix associated 
with the multiplication operation. One handles these groups 
through the concept of aliases. The latter are the relation­
ships between elements of a subgroup, and generators. 
Generators define at the same time the relation between 
the column of the fractional factorial matrix as well as the 
distribution of the coefficients into the subgroups. The 
number of runs to obtain the desired effects is now divided 
by 2 N,_ The literature provides a list of generators to build 
convenient matrices for a given situation [2,14]. Additional 
runs can be performed afterwards to complete the initial 
set and increase the 'resolution power' of the design. 

The Plackett and Burman [ 16] design can be efficiently 
used when the interactions between input parameters are 
assumed to be negligible. In NP + 1 runs, the main effects 
of input parameters are estimated with a higher accuracy 
than a star design treating each parameter separately in 
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2 NP runs. Placket and Burman designs exist for up to 200 

parameters. Efficient algorithms exist for NP equal to a 
power of 2. 

S. The steps of the sensitivity analysis 
It is practical to separate the different tasks to be done 

by this procedure: (1) Aim selection: The user must choose 
the tt;chnique to be used. The choice depends on the 
analyzed model. It can be a sensitivity analysis, a surface 
response or a parametric study. It could be also a sophisti­
cated optimization procedure. (2) Factor selection: The 
choice of the factors whose influence on the model have to 
be determined is a critical point of sensitivity analysis. In 
the Monte-Carlo method, as the number of varied parame­
ters is not related to the number of simulations, the best 
strategy consists of including the maximum number of 
input parameters in the study. In factorial design, the 
number of simulations is strongly related to the number of 
factors. The choice must be a balance between the resolu­
tion of the design and the magnitude of the investigated 
field. To compensate for these types of limitations, groups 
of factors can be constituted. For example, all the volumes 
of a building can be grouped and then varied at the same 
time and in the same proportion. A distinction can then be 
made between an actual input parameter that would be in 
this case the volume of a zone of the building and the 
volume as a generic parameter. The factor selection ends 
by the transmission of this information to the simulation 
process (see below). This is done, in a simulation environ­
ment based on input files, by the edition of a so-called 
REFERENCE file(s) which is (are) similar to the input 
file(s), but the parameters to be varied are preceded by 
numbered flags whose order corresponds to the column 
order in the experiment and range matrices. In models 
receiving their parameters directly from the keyboard, 
additional procedures must be written. (3) Design selec­
tion: Depending on the number of parameters and the 
initial knowledge, different strategies are available depend­
ing on the desired goal. For sensitivity study, the choice 
resides, among others, between Monte-Carlo, factorial, 
fractional factorial, or Plackett-Burman designs. These 
designs are provided through algorithms that produce nor­
malized nmtrice by care of generality and efficiency (cf. 
post-processing). The simulation environment must accept 
a matrix of simulation as input and provide output .in the 
form of a matrix. Such a matrix is arranged with parame­
ters by column and simulations by row. (4) Range selec­
tion: By only changing the variation range of the input it is 
possible to perform different types of analyses. One possi­
bility is a 'general' study, in which all the parameters are 
treated the same way. An ther po sibilicy is co srudy 
specifically the influence of a given pattern of inaccuracy . 
The usual shift of the range is from a proportional range of 
a few percent for all the parameters to a range pattern 
corresponding to the actual confidence interval of each 

input parameter. The unifonn increase of the input parame­
ter ranges is also used to observe the evolution of the 
interactions around a given point of the experimental 
domain. The effects will be closer to the local derivatives 
for smaller ranges, but the domain of validity of this 
information is also reduced in the same proportion. A 
special treatment is reserved for parameters which can 
have discreet values only. (5) Input file edition and mu/ti­
nm interface: The automation of the input file edition 
avoids the very boring task of entering repetitive answers 
by the keyboard. This multirun facility is the key to 
popularizing the use of sensitivity analysis and optimiza­
tion techniques. If the model requires an unformatted input 
file, a simple routine of text editing is used to replace 
flagged numbers by the correct values calculated from the 
design and range matrices. If the program requires a 
fonnatted input file, special care must be taken when 
editing it so that the format will be respected, and the 
process of scanning a flagged input file will remain use­
able. After the input file editing process, the model is run 
several times, and the results are sent to an output file. If 
the program does not read input from files, data coming 
directly from a user interface, the technique must be 
adapted, requiring the modification of the code. (6) Post­
processing: This step of the analysis varies from one 
strategy to another. With the Monte-Carlo technique, this 
step consists of calculating means and standard deviations 
of selected output data. Confidence intervals can then be 
calculated from statistical distributions as Student and 
Chi-square. For factorial design, the effects are detennined 
by resolving a linear system by least square fit. For 
optimization, the analysis process emerges on a new set of 
simulations. The most practical situation is to have the 
output in a matrix of the same structure as that of the input 
parameters, ordered horizontally by output parameters and 
vertically by runs. (7) Analyses and graphing: For the 
Monte-Carlo method the interesting results consist of the 
mean and the standard deviation of each output data. If the 
output data is a time series, a band can be drawn which 
shows clearly the zone of probable response (Fig. 3b). The 
limit of the band can be roughly estimated as a function of 
the standard deviation. More precisely, it is the integration 
limits of the output histogram corresponding to a given 
ratio of the total area of the histogram (Fig. 3c). To control 
the convergence of the simulation it is also informative to 
plot the evolution of the mean value and the standard 
deviation (Fig. 3a). For the factorial design, the analysis is 
based on the fitting of an empirical model by the least 
square method. From the model of Eq. (3), model matrix 
M is built and the coefficients a;, aij• aijk• ... , corre­
sponding to the main and conjugate effects of the input 
parameters, are calculated following Eq. (4) (The second 
part of the equation being valid only when the matrix of 
experiment is orthogonal) [3]: 

(4) 
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Fig. 3. Graphical analysis of a Monte-Carlo simulation. In (a) the convergence of the mean and standard deviation is checked by plotting the statistics 
obtain after each run. In (b) the confidence interval around the time series of an output Y(t) is estimated using the MC technique, to each time step 
corresponds a set of results which can be analyzed with a histogram (c). 

An informative way of presenting these results consists 
of plotting the relative effects in a bar chart as presented in 
Fig. 4. The relative effects are obtained by dividing main 

and conjugate effects by the mean effect a0• The effect of 
the factorial design can be used to estimate the standard 
deviation and then the confidence interval of an output. 

t 
input 

relative effects ai [%] 
ao 

X1 
X2 
X3 

parameters 

• X1X2 

s2 =,}; (a· .12 
/• •• } 1 .•• /11 
11,1), ••• 

Y(t;) = a0(t;) ± S(t;) 

time 

Fig. 4. Graphical output from factorial or similar design simulation. The input parameters are varied simultaneously in an orthogonal way which allow the 
estimation of the main and interaction effects (left). The effects are interesting for themselves. However, it is also possible to calculate from them a 
confidence interval (right). 
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difficulty difficulty 
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difficulty 

5 

Fig. 5. Main levels of accuracy constraint on the input factors. The levels are defined using a qualitative cost function. In (!) the first factors whose 
accuracy has to be improved are the ones corresponding to the highest sensitivity of the model and whose more accurate measurement or estimation is the 
cheapest in comparison of the other. In (2), the accuracy of the 'cheapest' resonant factors is again improved, the accuracy of the active factors whose 
improvement corresponds to an average cost are also improved, and finally the accuracy of the only active factors but whose accuracy improvement is 
cheaper than the other are improved. This progression continues in the same way until (5) where all the factors have to be measured to their maximum 
accuracy level. 

There might be some differences between the confidence 
obtained by this technique and the Monte-Carlo technique. 
These have been discussed in Ref. [6]. (8) Optimization 
and reliability: Simulation can be used to optimize a 
process. When using simulation during the design process, 
a given confidence interval might be required. These two 
different tasks can be simplified by using the results of a 
factorial sensitivity analysis. From the input variation ef­
fects only, the input accuracy requirement, for obtaining a 

Table l 

given accuracy on an output, can be determined as follows: 
(a) A list of the input parameters is created along with an 
indication of their respective accuracy, (b) this list of input 
parameters is sorted into nine subsets according to two 
criteria. One criteria is the difficulty for an accuracy 
improvement; the second criteria is the effect of the param­
eter on the given output. The first partition is done by 
estimating for each parameter a rough cost coefficient 
indicating whether the accuracy improvement is easy, nor-

Discrimination of parameters as a function of ttieir influences on the model and the relative difficulty of improving their accuracy 

Precision improvement 

Easy Normal Difficult Impossible 

2 3 4 

The inaccuracy of inert parameters is dumped by the system 11 12 13 
The inaccuracy of active parameters is transmitted by the system A Al A2 A3 
The inaccuracy of resonant determined parameters is amplified by the system R RI R2 R3 
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mal or difficult (cf. Fig. 5). A fourth subset is possible for 
parameters having an accuracy that cannot be improved 
and are therefore removed from the studied set. The sec­
ond criteria for sorting the parameters has also three levels 
which discriminate the parameters according to whether 
they are inert, (grouping parameters having only small 
effects on the output), active (the effect is proportionally of 
the same magnitude as the parameter variation) or resonant 
(a small cha.nge of the parameters ends in large change of 
the output) Table 1. (c) The error function of a given 
output parameter can be estimated by Eq. (5) by using the 
sensitivity coefficients: 

1 N ( iiX;(ref) i· 
£2(/;) = L a; iiX.(l) 1�/ I I 

N ( ii X;(ref) � X;( ref) ) 2 
+I: a.. 

( ) ;�j '1 iiX;(L;) �xj tj 
(5) 

The idea of the optimization is to first improve the 
accuracy of the most active parameters corresponding to 
the lowest cost for improvement and last, if really neces­
sary, to improve the most expensive ones with smallest 
effect. This idea is represented in Fig. 5 where intermedi­
ate levels have also been represented. Table 2 presents the 
different levels of this system. Each level corresponds to 
an increasing output accuracy and a monotone increasing 
of the cost function (as long as the hypothesis for dividing 
the parameter into the nine subsets is valid). 

Fig. 6. Scheme for usual simulation. An input file is processed by the 
model and the result are provided in an output file. 

The accuracy of each level can be quickly evaluated as 
it is necessary only to calculate the error function corre­
sponding to each level. Nevertheless a good strategy con­
sists of: (a) Estimate accuracy of level 'O' to verify if the 
required output accuracy is not yet obtained. (b) Estimate 
accuracy of level '5' to verify if the required output 
accuracy is effectively obtainable within the allocated 
range. If not, it is not necessary to continue. The maximum 
accuracy limits must be evaluated again. But there is 
perhaps no solution with the present technology. This 
gives us the opportunity to highlight that sensitivity analy­
sis is a key method for discovering where technical im­
provement are required. (c) Estimate successively, down 
the list, accuracy of the main levels until the required 
output accuracy is passed, (d) estimate successively up the 
list, to find the level corresponding to the cheapest opera­
tion which provides the required output accuracy. 

This strategy can be made more precise by sorting the 
parameters into a continuous series according to their 
increasing sensitivity coefficients instead of sorting them 
into three subsets, and the cost/ effort evaluation can also 
be made more precise. 

Fig. 7. Scheme for multirun procedure. According to the chosen design 
and range, the reference file is processed by a text processor and an input 
file is produced. This input file is then processed by the model and results 
are written into an output file which is collected for post-processing. 
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cal tools within the simulation environment to perform 
multi-run procedures. 

Whatever the design used to do sensitivity analysis, it 
will require several runs. It could be, as presented above, a 
sensitivity analysis aimed towards determining the conse­
quences of input inaccuracies. It could also be a parametric 
study. In this perspective it is important to provide practi-

6.1. MISA (Multirun Interface for Sensitivity Analysis) 

Developments made within Annex 23 address simula­
tion programs working in a batch sequence as shown in 

Table 3: 
The steps of a typical session of sensitivity analysis 

Action Example 

• The user chooses a COMIS input • The file LESO.CIF is chosen 
file (or an internal model at the 
user interface level) corresponding 
to the building to be analyzed. 

• SAM provides the list of the pa- • 
rameters that can be chosen as 
variables. 

The list contains air tightness coef­
ficients C;, related exponents n;, 
crack height h; and length l;, pres­
sure coefficients Cpl, zone tem­
perature Tk, volumes Vk, wind ve­
locity, direction etc .... 

• The user chooses the number of • The user chooses four parameters: 
groups and the parameters whose x 1 == front door leakage 
effects should be analyzed. 

• The user chooses the level of in- • 
teractions to consider and the met­
rics in which the selected parame­
ters have to be varied. 

• The user chooses the type of de- • 
sign: Plackett and Burman, frac­
tional factorial or Monte Carlo. 

• SAM can provide a preferred • 

number of groups and level of in­
teraction. 

• SAM provides the number of • 
simulations, the alias set and the 
list of estimable coefficients. 

• The user can adapt his require- • 
ments to the SAM advises. 

X2 == front door flow exponent 
X3 ==front door pressure coef. 
X4 ==Temperature of one zone. 

The user chooses to consider mean 
effect ao, main effects (a1, a1, a3, 
'4) and first order interactions (a12, 
a13, a14, a23, a14, aJ4). 
The user chooses a factorial frac­
tional design. 

SAM advises the user that with 
one more parameter, a better de­
sign for the same number of simu­
lations can be obtained. 

The design proposed has 8 simula­
tions and has the following alias 
list: a12 == a34, a13 = a14, a14 == a23. 
Then the estimable coefficients are 
ao, a1, a1, aJ, '4, a12, a13, a14. 
The user decides that this design is 
satisfactory. Sufficient information 
on wind effect has been obtained. 
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Table 3 (continued) 

• The user chooses the variation • 
ranges of the selected parameters 
either group by group or uni­
formly, either relatively or abso­
lutely 

The user chooses to fix the varia­
tion range to ± 10%. 

IDI 
• SAM provides a list of output pa- • 

rameters and offers the possibility 
of building combina-tions with 
them. 

The list of output parameters is : 
the pressures Pi in all the zone of 
the building and the volume and 
mass transfer between the zones, 
the global incoming air flow, the 
thermal loss, etc. 

E::5 

• The user chooses the output pa- • 
rameters to be analyzed and gives 
the definition of the possible syn­
thetic output parameters. 

The user chooses the global in­
coming air flow and the sum of the 
air entering zone 1 from outside 
and from zone 2. 

• SAM manages the runs, collects • 
the output data and provides se­
lected effects on tables and charts 
with some basic interactive possi­
bilities. 

SAM provides tables and bar 
charts with some interactive tools, 
of the effects ai and aij of the 
variation of the selected input pa­
rameters on the global incoming 
air flow. 

Fig. 6. The multirun facility developed consists of varying 
the input file(s) according to the simulation plan. Using an 
input file generator written in FORTRAN, a REFERENCE 
file is processed for producing a new input file according 
to information about the range of variation and the simula­
tion plan (see Chap. 6). The new input file(s) is (are) 
submitted to the program and the results are collected Fig. 
7. 

6.2. LiSA (Library for Sensitivity Analysis) 

LiSA means Library for Sensitivity Analysis. The idea 
is that resources for sensitivity must be available for the 
largest possible number of models within the building 
physics field and outside. The idea is to make available 
up-to-date simulation and statistical techniques. In that 
perspective, the concept of a simulation environment with 
an open architecture is preferable to a collection of models 
with a closed architecture. This is because a good simula­
tion tool should include up-to-date treatment of the physics 
and also up-to-date methods on the statistical and simula­
tion aspect. 

LiSA is also intended to be a library available for 
software developers who would like to insert a sensitivity 
analysis into their simulation program. The library is still 
under development and only a prototype is available today. 

This prototype is being developed using MATLAB which 
is a commercially available mathematical software pack­
age having a user-friendly open environment. 

LiSA has routines dedicated to: 
building matrices of experiments for Monte-Carlo, fac­
torial, fractional factorial and other types of designs, 
the analysis of the properties of matrices of experiments 
including alias extraction, variance matrix, inflation 
factors, 
the post processing of simulation data such as the 
calculation of averages, standard deviations, main and 
interaction effects, confidence intervals, histograms, ex­
change coefficients, least square fit and some typical 
graphics, 
the optimization of input accuracy, 
dimensionless number calculation. 

6.3. Steps in a sensitivity analysis session 

At the beginning of the project a month or more was 
necessary to make a sensitivity analysis. With MISA, a 
building can be investigated in one week, but with SAM, 
this work will take no more than one day. This progress is 
possible by integrating the sensitivity analysis in the envi­
ronment of simulation and taking advantage of the graphi­
cal interface provided with CoMIS 3 [18]. The steps of a 
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typical session of sensitivity analysis are presented in 
Table 3. 

7. Conclusion 

A sophisticated method for sensitivity analysis has been 
described. This method can be used for all types of 
simulation models which work in a batch mode with 
unformatted input and output files. For models starting 
simulation from a user interface, additional modules must 
be developed. 

The process of analysis presented here is applicable to 
any type of static simulation. In dynamic recursive simula­
tions, because the output of the previous time step is used 
as input for the next one, the Monte-Carlo and factorial 
techniques can be used, but the procedure must be adapted. 
Currently, the integration of suitable sensitivity analysis 
modules is a key point for improving the confidence of 
simulation. 

This work is the basis of an exacting treatment of 
uncertainty in simulation that is an absolute requirement 
for a confident use of simulation in practice. It is a 
challenge for modelers to distribute products that can not 
be easily misused: put a SAM in your model. 

Important progress has been made in sensitivity analysis 
within the Annex 23. At the beginning of the project, four 
years ago, performing a sensitivity analysis of a modeled 
building was a long job, depending on the complexity of 
the building; for a small administrative building it was 
about one month in addition to the modeling step! Now, 
within a week or probably less, it can be made, providing a 
real tool to answer questions about important parameters 
and testing different strategies. With an integrated SAM, 
this work will require only a few hours, making the 
mandatory requirement for sensitivity analysis a possible 
goal. 

However, the important difficulty of determining the 
input uncertainty still remains. This is the real handle 
governing the accuracy of the simulation. It is up to the 
user of the model to know the accuracy of the data to be 
used and to adapt it to the goal of simulation. It is also up 
to any data provider to assess the accuracy of their data 
and indicate it in the publications. A data without an 
uncertainty range has no scientific value. Nevertheless, a 
list of input data along with their typical uncertainty can be 
found in Ref. [ 4]. Those levels of uncertainty depend on 
the type of technology used to perform the measurement 
and diminish regularly when new technologies are made 
available. The exceptions are parameters, like wind profile 
exponent, which are not measured but selected from litera­
ture on a case by case basis. Their uncertainty then de­
pends on many factors, among them the ease of discrimi­
nation between the cases. Regrettably, those parameters 
are often presented in the form of typical values as op­
posed to a range of values which would clearly indicate 

the uncertainty associated with those factors due to the 
process of case selection. 

The future work will include the development of the 
MISA software as a user-friendly tool on a PC platform 
making available the powerful technique of the factorial 
and associated designs. 

8. Nomenclature 

A 

�un 

subset of reality 
sensitivity coefficients of factor i 
interaction coefficient of factors i and j 
air tightness coefficient between node i and j of 
the air flow network, [m3h-1Pa-n] 
pressure difference between node i and j of the 
network [Pa] 
estimated error of an output for the input accu­
racy pattern k 
level of accuracy of the input parameter set 
air tightness exponent between node i and j of 
the air flownetwork, [ - ] 
number of runs of the model when performing a 
SA 

NP number of input parameters 
Ng number of generators for a fractional factorial 

design 
M function (model) linking observables between 

themselves 
air flow rate from node j to i of the network, 
[m3h-1] 
element of the air flow matrix, [m3h-1] 
flow matrix, [m3 h - 1] 
observable set from subset A 
interpreted observable set from subset A 
input parameter 
output parameter 
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