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Infiltration Load in Cold Rooms

Moustafa M. Elsayed
Member ASHRAE

A two dimensional model was developed to predict the infiltration load to a cold room through its
doorway. The governing equations were derived and transformed into dimensionless form. The
model showed that the infiltration load to a cold room depends on three dimensionless parame-
ters: the Grashof number of the cold room, the aspect ratio of the room (height to width), and the
opening ratio (height of doorway to height of the room). A finite difference technique with a
control volume approach was used to solve the governing equations. Staggered grids were used,
extending them beyond the doorway to account for the air motion outside the cold room. A
SIMPLER algorithm, with finite difference formulation was used to solve the governing equations
together with their boundary conditions. The model was used to predict the flow patterm and the
temperature distribution in the cold room due to the infiltration through the doorway. The results
were also utilized to study the variation of the rate of infiltration and the doorway flow factor with
the time measured from the moment the door was opened. The results are presented for the
Grashof number from 10° to 107 and 10’°, and opening ratios of 0.5 to 0.25. Comparisons of
results with those in the literature are presented. The good agreement of the simulation with the
experiments suggests that the present model is valid for the type of flows compared.

INTRODUCTION

Infiltration load through doorways represents a major fraction of refrigeration load in cold
stores, especially when these stores are used for short term storage or for distribution operation.
This infiltration load is determined in terms of the rate of infiltration air through the doorway of
a cold room and the conditions of the air inside and outside the room, i.e.

Q = mjps(hy—hp) 6]

where h_, and h_ are the enthalpy of the infiltration air and cold air, respectively. The uncertainty
in the calculation of the infiltration load Q is only due to the uncertainty in the calculation of
rh,-,,f. The determination of rh,-,lf depends on several factors. These include the duration for
which the door is kept open, the frequency of opening the door and the effectiveness of doorway
protective device.

A well accepted relation to determine rit ;¢ is given in the following form (ASHRAE 1994)
minf = mssD;Df(l -E) )

where D, is the doorway open-time factor, Dy is the doorway flow factor, E is the effectiveness
of doorway protective device, and i is the steady-state flow rate of infiltration air for a per-
manently open doorway.
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Several correlations are available in the literature to estimate #1, . The most recognizable one
is that of Gosney and Olama (1975), recommended by ASHRAE (1994). This relation gives
nii g, by the following expression

P .5 . ‘ 2 1.5
= 0.221p (1——) 2 SH}S[————JE] 3)
Pe 1+(p,/ Pos)

where L is the length of the doorway, H| is its height, p is the density of air, and the subscripts ¢
and eo refer to cold air and infiltration air, respectively. The above correlation is derived using
non-viscous, one dimensional analysis and a small-scale experimental model using CO, and air
to represent the differing densities that would be encountered as a result of temperature differ-
ences.

In an independent study, Jones et al. (1983) studied the transfer of moisture to a conditioned
space due to infiltration air. Their results are expressed here in the following form

= 0. 173p[gH (; —TT—“)T'SHI @)

E

where T, and T, is in kelvin and p is the air density calculated at the arithmetic mean tempera-
ture of 7, and T,. The above correlation is deriVed using simple one-dimensional convection
analysis and exper1menta1 measurements for the moisture transfer.

Another crude correlatlon Is the correlatlon reported by Cole (1984) that yields

00603p(T -T ) H1 ¥ 5)

where p! is thie average density of air outéide and inside the cold room. T e

The above correlations have several drawbacks. First; the corrélations have been derived
assuming non-viscous one-dimensional flow (Equations 3 and 4) or 'zero''dimensional flow
(Equation 5). Sccond, the correlations do not account for the dimensions (w1dth and height of
the cold room) and the relative value of these dimensions to the height of the ‘door. Tlurd the
experimental works used to develop Equations 3 and 4 are restricted to the geometrical dimen-
sions of laboratory setup. These correlations may-be questionable if applied to actual geometry
due to differences in the value of the Grashof number of the experiment compared to the real
cold room.

The objective of the present work was to develop a two-dimensional viscous model to predict
the infiltration load in cold rooms. The model was designed to:

1. Check the accuracy of the currently used correlations from Equations (3), (4), and (5)
2. Study the effect of changing the Grashof number and the ratlo of the doorway height to the
room height on the infiltration load: ‘' = bl i O

3. Predict the value of the' doorway ﬂow factor to cold rooms.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Consider the cross section of the cold store shown in Figure 1. The store has a height H, a
width B, and a door height H;. When the door i is closed, the air temperature in the storc and the
temperatures of all walls were maintained at 7, with the thermostat in the store. The air outside
the door of the store was' at témperature T,, When the door i$: open warm- air ‘at T infiltrate$
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into the store. To derive the governing cquations that predlct the air motion through the door and
also to calculate the part of the cooling load due to this infiltrated air, the following assumptions
were made:

* The door opening is the full length of the store
* The length of the store is large enough to allow two-dimensional analysis
* All air properties are constant except its density. which changes with temperatuye, in aggor-

dance with the Boussinesq approximation .., ¢, i3y - v . NPT
* All walls,are isothermal at T, Beoedsaldhnl a5 pler opdios Vi

Bl L Map Y Fae o aqnin e i ollawing form
.. The governing equa_uon;_fi:en ‘ta'.k_eh e following form
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where x.and-y.are:the dlstance§ along the coordinates x and y, respecnvely (see Figure 1), u and
v are, respectively, the velocity components in the x and y directions; p is the pressure, t is the
time measured from the instance of opening the door; T is the temperature, and p, C, » k, 1, and B
are the properties of air, as described in the nomenclature.
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To generalize the solution of the governing equations, the following dimensionless variables
were introduced

X _X u \4
x=2yv=Luyu=L v=-"L
H H uref uref
e P P PP turef (10)
. ’ . 2 ’ - H

where the reference velocity u,,ris given by

Upor = /gBATrdH (11)

Using these dimensionless variables, the governing equations are reduced to the following

g_’; % 0 (12)

_ég aU V3U= —1/2(2;2/4_21;1] g;_; (13)
v, v%:ef‘”@x‘z’ gy‘z’] e—g—’; (14)
pEREE e

where the Prandtl number Pr and the Grashof number Gr'are given by the following expressions

RINEY (.,

c 20B(T. - T )H % o
p;:”-zﬂ, . gB( = i) (16)
1)

The dimensional governing equations, Equanon (1) to (4), are subject to the following initial
conditions .

i

]
N

t<0: ([TN,=T, , ((T]]. =T.
((wll,=0 , [[u]],
[v11,=0 , [,

]
o

a7

L
(=}

where [[ ]]. means “over the domain in the cold store,” and [[ ]]., means “over the domain
outside the store.” At ¢ = 0 the door of the store. was open, thus the boundary conditions became
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t20: x>oandlory e, T=T_, u=v=0

0<y<H |

x =B, H,<y<H T=T, » (18)

0<x<B u=v=0

y =H, 0<x<B ] )
In dimensionless form these initial and boundary conditions are reduced to the following

T<0: [[6]],=-1, [[6]]l. =0

(i, =[vll. =0 (19)
(vil,=1vll, =0
B
720: X >oeandlor Y e, 6=0, U=V =0}
X=0  0sy<1 | .
1
X=—, OR<Y<1
AR ‘ . 0 =-1 > (20)
= 0 SXS —— =] =)
Y ; 0 R U=V=0
Y=1 0sX< L
3 T raR g :
1 ;’ It.’
where AR and OR are, respectively, the aspect ratio of the store and its opening ratio, i.e.
5 - H"‘._A,, '1\' .3 h .Hl
AR 2By OR = I , (21)

CALCULATION OF COOLING,LOAD DUE TO. INFILTRATION -

The rate of infiltrated air to the store through the door opening is estimated at any instant of

time ¢ as follows Yoh o
. “H i
ng ! +
= ja [(pu dy), - p] (22)

where the superscript + indicates that only positive values of the integrand is considered when
th of the store. Using dimensionless parameters, the

-

maleng the integration, and L is the leng
above equation becomes W

: ‘o orR
- mg +
a = pure LH - JO (UdY) x=B

23)

where M ,-is the dimensionless rate of infiltrated air.
The sensible part'Q; of the infiltration cooling load is estimated by the following integration
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% = _.[:1 [puC,(T-T.)dy]__ 5- J‘jl{"(kg_xT) d‘ylc =B &9

Using dimensionless parameters, this becomes

OR

! Of a8,
PurE,Cp(T:,—Tc)LH N —‘[0 (vedy), _z +Grl/2P Jo ( ) - (25)

Conventionally, Q; is estimated using a modified rate m of infiltrated air in the following
equation

Q, = mC,(T.,~T,) | (26)

Using Equations (25) and (26), the dimensionless modified rate of infiltrated air will then be
given by :

— . 1 (R a0
M= =-| (Uedy) -+ ( dY) - 27
p“rejLH J'o e3EIC GII/ZPIIO dX

Comparing Equations (27) and (23) to one another shows that Equation (27) reduces to Equa-
tion (23) when the heat conduction at the doorway is neglected and if the inflow at the doorway
is assumed at T, (i.e. 8 = 0) and the outgoing flow is assumed at 7', (i.e. 6 = —1).

If Q; is the part of infiltration cooling load which is latent, then the sensible heat factor SHF
of the infiltration process is given by -

Q,
SHF = 28
" 0.+0, (28)
Rearranging, O; can be expressed as follows
_ (1 —-SHF)

The SHF in the above equation is determined in terms of the conditions inside and outside the
store via the following relation

(T, W,)~h(T,, W,)
SHE = T, W) —h(T W) @0

where W is the humidity ratio of air. From the above equations it is clear that once M is deter-
mined, both Q; and Q; can be calculated because the conditions inside and outside the store are
known.

NUMERICAL ANALYSIS AND COMPUTER CODE

Finite difference technique is used to discretize the governing equations and their boundary
conditions. The power law is employed to discretize the convection-diffusion terms (Patankar
1980). The SIMPLER algorithm is adopted to solve the finite difference equations with stag-
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gered grids to cover the integration domain (Patankar 1980). The integration domain is taken as
the cross-sectional area of the cold store, in addition to an area of width B, outside the store (see
Figure 2). This integration domain is bounded by nine surfaces as shown in the figure, and the
conditions for 8, U, and V on these boundaries are depicted in Table 1. The thickness AD of the
wall separating surfaces 3 and 9 is selected infinitesimally small (= 10~4). The boundary condi-
tions at surfaces 7 and 8 in Table 1 and Figure 2 need special attention since they differ from
those given by Equation (20). In practice, the integration domain is finite and thus the conditions
of U,V,and @ at X — o and ¥ — o can not be satisfied. In these cases the boundary conditions
are replaced by those in Table 1, where it is assumed that the variations of U, V and are negligi-
ble in direction perpendicular to the surface. ) .

Table 1. Boundary Conditions at Different Surfaces of Integration Domain (see Figure 2)

Surface 0 118 v
1 0=-1 U=0 V=0
2 0=-1 U=0 V=0
3 0=-1 U=0 V=0
4 0=-1 U=0 V=0
5 0=-1 U=0 V=0
00 _ _ _
6 a—X—O U=0 V=0
V<£0:0=0 Su v
7 200 — =0 — =0
= = aY aY
V>0: 37 ‘O‘
: 3_9‘_ ..;L_J‘. *. QY_
8 aX—O U=U aX—O
20
9 ﬁ,—O - U—O! V=0

U* is the value of U to satisfy the conservation of mass for the control volume with a face at the surface 9.
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A computer code “COLD.FOR” was prepared and validated against the results published in
the literature for several engineering applications. Among the problems that were used to vali-
date the computer code is the buoyancy driven flow in a square closed cavity with the vertical
opposing walls are isothermal at two different temperatures, while the upper and lower walls are
adiabatic (Krane and Jessee 1983, Barakos et al. 1994). Another case of validation is the buoy-
ancy driven flow in a vertical open cavity with the vertical wall opposing to the opening is iso-
thermal while the upper and lower walls are adiabatic (Chan and Tien 1985). In all cases fair
agreement was obtained by the present computer code in comparison with other work in the lit-
erature. This suggests that the present model is valid for the type of flows compared.

The width B; is introduced into the grid to account for the air motion of the infiltrated air out-
side the cold store. This motion definitely affects the flow pattern at the doorway and conse-
quently affects the calculation of the rate of infiltrated air through the doorway. As B is
increased, more accurate calculations are obtajned, but on the expense of computation time. The
testing of the results recommended to take By = 0.4 as a compromise between acéuracy of
results and computation time.

Also, three grids were used to test the dependence of the solution on the grid refinement. The
values of AX and AY for these grids are given in Table 2. The testing of the results recommended
the use of Grid B which is a compromise between accuracy of the results and computational time
(Elsayed 1996). The convergence of the solution was found to also depend on the time steps AT.
The accuracy of a converged solution was improved by reducing the time step, but this of course
on the experse of increasing the computation time. When operating at high Grashof number, the
time step A7t to give a dependable converged solution was found to be too small to the level that
it excessively increases the computation time. An example is a case with Gr= 109 OR = 0.5,
B; = 0.4 and with a grid having AX = 0.1 and AY = 0.005. Several computer runs were carried
out using different values of At. It was found that at At = 0.5 X 1075, the solution became prac-
tically independent of At. Computations were carried out on a supermini computer (scalar
mode). The CPU time required for the previous example to reach time level of At = 5 starting
from At = 0 was 5665 hours, which is équi\;alcnl to about 9 months of CPU time.

Table 2. Spacing of Various Grids with 1_31‘ = 0.4 as Used in
Testing Computation Accuracy :

Grid AX AY
A 0.2 0.1
B 0.1 0.05
c 0.1 0.033
D 0.05 0.033

PRACTICAL VALUES OF Gr‘ AND THE leIVI'E SCALE

In the introduction, three correlations from the literature were introduced. In the present work
the prediction of the infiltration rate is determined in terms of Gr and OR, whereas the correla-
tions given by Equations (3) to (5) use the values of T, T, and H, as.parameters, which are
related to Gr as follows :

or - CRI(ELY e

where AT = (T,, - T,). Also, the dimensionless time < is related to the physical time ¢ through the
following relation
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P H = sz
JBATH | plGr

In practice, the temperature difference can become as high as 100°C in special types of very
low temperature cold rooms. The height H of normal cold rooms varied between 2 and 4 m.
However, small heights of 10 or 20 mm can represent a gap in a closed door that is not well
sealed. The opening ratio OR can be as high as 1.0 for cases where the doorway extends to the
ceiling, and it may become a very low fraction in some cases where H, is considered as the
doorway ‘undercut’ or gap.

(32

RESULTS
In the present section a parametric study is carried out to test the effect of changing
a. Grashof number Gr
b. Periods for which the door is kept open ©
_c. Ratio of doorway height to room height, i.e. opemng ratio OR.

In carrying out the parametric study grid B in Table 2 is used with At = 0.5 X 1075, In cases
“a” and “b”” above, a room with OR = 0.5 is used. oo W Ny s e

et W

Flow Pattern

The flow pattern was studied in terms of the d1mens1onless stream functlon ‘P whlch is
related to the dimensional stream function as follows P :

V= ppu Y . (33)

Calculations are carried out for rooms with and OR 0.5 and Gr = 105, 107, and 10'°., Flgure‘
3 shows the variation of the flow pattern (lines of- constant) for the case with Gr = 10" at t= 0.25,
0.5, 1.0, and 5.0 from the instant to open the door. In this case, it was found that when steady state
conditions are achieved, i.e. fully developed flowis established. Generally it was found that
regardless of the value of Gr; the infiltration flow is initiated at the doorway due to the difference
in the density of the air outside and inside the room (Elsayed 1997). Due to this difference in den-
sity, a recirculating flow is established with the eenter of the recirculation at the doorway. As the
time T increases, the recirculation of the flow becoines stronger and its effect extends deeper in
the cold room till it reaches the cold wall facing the doorway (see Figure 3). The confinement of
the recirculation of the infiltrated air by this cold vertical wall causes the birth of a secondary
recirculating flow at right upward corner of the room (the zone behind the doorway wall, i.e.
behind wall 3 in Figure 2).. The behavior of the flow pattern was found to be independent of the
value of Gr. The effect of increasing Gr. x;nanifests itself in increasing the strength of the recircu-
latmg ﬂow Wthh causes to bnng mote outsxde air into the cold room (Elsayed 1997).

,,,,, e WM F D IO o ®

Veloc1ty Dlstnbutlon at the Doorway i e [ : .

The distributions of the U’ component of the velomty at the doorway are shown in Figure 4 at

= 10, for a cold room with OR = 0.5. Other plots for Gr = 10° and 107 are given by

Elsayed (1997). In the figure, the velocity distributions are given at four time levels; mainly at
T= 0.25, 0.5, 1.0, and 5.0. From the figure one may. conclude the following:

1. I’I"he local magnitude of U at the doorway increases as T increases up to T = 1.0. Then this
magnitude decreases as T increases. This means that the rate of air infiltration to the cold
room reaches its maximum value at the early stages of opening the door, then this rate
decreases to reach its steady state (fully developed flow) value.
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Gr = 1.0E10 with AT=0.5E-06 at OR = 0.5

T =0.25 T=05
1.00 i . . L n =_— 1.00 : ' A N
0.804 i 0.804
0.604 D It 0.604
0,401 . 0.404
0.2( ) I 0,204
&
0.00 T T T T —T— T < 0.00 T T T ————T 7
000 020 040 060 080 100 120 140 000 020 040 060 080 100 120 1.40
T7=1.0 T =50
1 Oc i i AL (9 i i I,Oc i i i 3 A
0,80+
0.60
0.40
0 2(7
0.00- T —T T - 0 T T T
000 020 040 060 080 1.00 120 140 000 020 D040 060 080 1.00 1.20 1.40

Figure 3. Flow pattern (lines of constant stream function) at Gr = 101° for OR = 0.5

2. The point of zero value of U, i.e. point of reflection of the direction of U exists at a point
slightly higher than the midpoint of the doorway. As Gr increases, the point of U = 0 becomes
closer to the doorway midpoint, but as T increases, approaching its steady state value, the
point of U = 0 moves upwards, away from the doorway midpoint [Elsayed 1997]. \

3. As the flow proceeds to reach steady state conditions (i.e. fully developed flow), the velocity
distribution at the doorway approaches a linear distribution. This behavior is encouraged by
increasing Gr [Elsayed 1997]. i '

4. As expected, warm air from outside enters the room in the upper part of the doorway and
cold air leaves the room at the lower part of the room. Due to conclusion 2 above, the inflow
to the room is slightly faster than the outflow, as also demonstrated by the figure. ey

Temperature Contours

The dimensionless temperature contours (curves of constant value of 8) are shown in Figure 5
for Gr = 10'°, Initially, the contours are vertical lines parallel to the doorway. At = 0, the vertical
doorway plane separates between the outside region at 0 = 0 and the cold room region at 6 = —1.
As T increases, the contours are deviated from being vertical. The outside region in front of the
doorway gets colder as T increases, while the upper outside region (region above the level of the
doorway) stayed for some time unaffected, i.e. at © = 0. As the flow is developed to reach its final
stage of fully developed flow (steady state conditions), the upper outside region is also cooled (i.e.
it becomes affected by the flow leaving the cold room). However, increasing Gr diminishes this
effect, i.e. makes the upper outside region is less affected by out going cold air (Elsayed 1997).



VOLUME 4, NUMBER 2, APRIL 1998 11

Gr=1.0E10 with AT =0.5E-06 at OR =0.5

0.50 =
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Figure 4. Velocity distribution at doorway with Gr = 101° for OR = 0.5

Temperature Dlstrlbutlon at the Doorway

The development of the dlstnbutlon of the dxmcnsmnlcss tcmperature O with the d1mcns10nless
hclght Y at the doorway are given in Figure 6 for Gr = 10'0. As < increases, the inflow to the room
becomes colder because part of the cold qutflow recirculates back to the room. This trend contin-
ues till fully developed flow is accomplzshed at steady state conditions, where the inflow temper-
atures reach their coldest values. Of course, the drop in the inflow air temperature lcads to
reducing the sénsible Toad due to infiltration. This subject is further discussed in the next section.

Infiltration Load Rt - R

zl3

determined in'terms of its sensible part Q by the following relation

0= Qs/SHF (34)
i G S [ T 0 &
The value of Q.\' is determined by Equation (26) after the modified mass rate riz of infiltration air
is determined from Equation (27). That is, Q is determined once M is determined.

Figure 7 depicts the' variation of M with the increase in T for Gr = 1010, The general trend of
this variation is that M increases with'the increase in T up to time t*, then decreases with the
increase ‘of T. When steady state conditions are approached the rate of decrease in M diminishes
until it reaches a constant ‘value. The explanation for this behavior is given as follows in terms of
the velocity and temperature distributions at the doorway (Figures 4 and 6) and w1th the help of
the discussion;given previously in-this section.
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Gr = 1.0E10 with AT =0.5E-06

T =025

1.00 . - 1.0 L "
0.804 0.804
0.604 0.604
0.404 C-//—] 0.404
0.204 0.2()J
0.00 T T—T 0.00

0.00 0.20 0,40 0.60 0.

1.00 k 1.004
0.804 : 0.804
0.604 0.604
0.404 0.404
0.204 0.20+
o
0.00- T 0.00 T T Y T f
0.00 0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 5. Isotherm at Gr = 10'° for OR = 0.5

- Initially as t increases, the magnitude of U at the doorway increases, and the difference in the
temperature between the inflow and the outflow remains at its largest value (there is a slight
decrease in this difference). The result of this trend is the increase of M with the increase in .
When 7 reaches T" the effect of flow confinement in the cold room; the rise in the temperature in
the cold room zone near the doorway; and the recirculation of a part of the outflow back to the
room cause the magnitude of U to decrease and the temperature difference between inflow and
outflow to decrease. This leads to the decrease of M with the increase of T until fully developed
flow is accomplished. Figure 8 depicts the variation of T° with Gr. Figure 7 also includes a plot
of the value M, calculated using the correlation prepared by Gosney and Olama (1975) [Equa-‘
tion (3)]. The value of M s from the correlation compares well with the maximum value of M
predicted by the present work. The decrease in the infiltration rate in the present work after
reaching its maximum value is because of the flow confinement caused by the vertical wall
opposite the doorway; as discussed in the section describing flow patterns. It is believed that as
the aspect ratio is reduced, the effect of this confinement is also reduced. For cold rooms with'
AR << 1, one would expect that the effect of the confinement becomes negligible, and this
causes M to continuously increase with time until steady-state conditions are reached. There-'
fore, the difference between the present work and the correlation of Gosney and Olama (1975) is
due to the effect of the flow confinement in the cold room that was not accounted for by Gosney
and Olama.

The agreement between (M)max and M, from the correlation is explained as follows. The'
correlation of Gosney and Olama was developed assuming non-viscous, one dimensional fully
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Gr=1.0E10, AT =0.5E-06

k
0.00 =71 * T * I 3 Ew' |
-1.00 -0.80 -0.60 -0.40 -0.20 6 0.00

. Figure 6. Temperature distribution at doorway with Gr = 10" for OR = 0.5
developed flow, and constant temperatures _for the mﬂow and outflow. These assumptions are
found to be satisfied at early values of ¢ where the effect ‘of flow confinement in the room is not
appreciable yet, i.e. at.T < T"_as demonstrated in the discussion in the previous sections. Once T
increases. beyond t*, the above assumptions become. incorrect and M decreases with-the
increase of 1 for the reasons given previously, and thus M. dev1ates from the value of M, pre—
dicted by the correlation: Cogem AT o0 L e O

Effect of Opemng Ratlo

Computer runs were camed out for a room with Gr = 1010 .and OR = 0.25. The results are
shown in Flgpres 9'to 13 The flow pattern (lines of constant) are plotted in Figure 9 for and t =
0. 25‘, 0.5, 1.0, and 5.0. By companson with the fiow pattern at OR = 0.5 shown in Figure 3, one
finds that although the. flow pattcrn at carly times arg, the same, these pattems become completely
dtfferent from one another when stcady state condmons are achleved (t=5). At OR = 0.5 there
is two cells in the cold store as shown in Figure 3. When OR is reduced to 0. 25, the two cells are
combmed together into one cell, with its center at the mid vertical plane as shown in Figure 9. As
also shown, much less ‘outside ﬂow is infiltrated to the cold room through the doorway, at steady
state condmons as OR is reduced (compare Figures 3 and 9 at T = 5.0). This is better explained
b__y comparing the velocity distribution at the doorway at OR = 0.5 given by Figure 4 to that at
OR = 0.25 given by Figure.10. It is clear from the comparison that at steady-state conditions (T =
5.0) the infiltrated air flow rate is reduced as OR is reduced for two reasons. First, because the
area of the doorway is reduced, and second because the magnitude of the maximum velocity of
the infiltrated air is also reduced.

& 'l il
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Gr=1.0E10 at OR=0.5
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Figure 7. Variation of infiltration rate with time at Gr = 101° for OR = 0.5
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Gr=1.0E10with Ar =0.25at OR =0.5
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Figure 9. Flow pattern (lines of constant stream function) with Gr = 10!° for OR = 0.25

The comparison of the dimensionless temperature contours in Figures 5 and 11 at OR = 0.5
and 0.25, respectively, reveals that reducing OR brings the variation in the temperature caused
by the infiltration to near the front part of the cold room, i.e. near the doorway. The temperature
distribution at the doorway is slightly affected by the reduction in the value of OR as shown by
Figures 6 and 12. The effect of reducing OR on the time variation of the infiltration rate through
the doorway is shown in Figure 13. The peak value of M at OR = 0.25 is found to be about one
third that of M at OR =0.5. The trend of deviation of M from the steady-state value provided by
the correlation of Gosney and Olama (1975) is almost the same for both OR = 0.5 and OR =
0.25. The time t* for M to reach its peak value is not dependent on the value of OR as shown in
the figure.

Flow Factor

Many engineers currently calculate the infiltration rates through the doorway of a cold room
using Equation (2) as recommended by ASHRAE (1994). In this equation, ASHRAE recom-
mends that the doorway flow factor Dy range between 0.8 and 1.1, depending on the temperature
difference between the cold store and the infiltrated air. This is a very crude determination of Dy.
In the following discussion, the present results are used to predict the value of the doorway flow
factor in a more-detailed way. Referring to Equation (2), Dyis defined as follows

t T D D
, Dy = | /g, = [ dran/its &
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Gr=1.0E10, OR =0.25
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4 Figure 10. Velocity distribution at doorway with Gr = 10° for OR = 0.25

where i is the steady-state infiltratiot rate to the room through the doorway, m is the instan-
taneous value of the infiltration rate, and ¢ is the duration for which the door is kept open. The
integration in the numerator of Equation (35) was calculated numerically using a trapezoidal
rule. The results of the computation were plotted in Figure 14, with the value of i calculated
from the present work. As shown, Df depends on Gr, OR, and 7, and this dependence diminishes
as T increases. - ‘ .

At T2 1.5, the value of Dydecreases with the increase of 1, as given by Figure 15. As shown
by the figure, a single correlation (broken line) was suggested to predxct Df at dlfferent values of
7. This correlation was given as follows - 3 Sh L

A

-0.526

D; = 61 " (36)

The difference in the calculated value of Dy and the predicted one from thé above correlation
diminish as steady state conditions are approached. Figure 15 also includes the:recommended
range of Dby ASHRAE (1994). Again the calculated and the correlation predicted values of Dy
get closer to this range as steady state conditions are approached. We should note here that the
recommend range of Dy by ASHRAE is based on experimental measurements which did not
account for the effect of changing Gr or OR. At practical ranges of T (high values of 1), the rec-
ommended range by ASHRAE underpredicts the value of Dy. :

The steady state infiltration rate M, is plotted against the Grashof number Gr in Figure 16
As shown by the figure, a power relation is found between M, and Gr for a cold room with
OR =0.5. The correlation is given in the following form ... ; s
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Gr = 1.0E10 with AT = 0.25 for OR = 0.25
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Figure 11. Isotherms at Gr,= 10" for OR = 0.25
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The figure also shows a plot for the variation of pz w1th Gr when p7 is calculated using the
correlation of Gosney and Olama (1975), and the eorrelation of Jones et al. (1983). As shown in
the figure,.the correlation-of Gosney and Olama (1975) and that of Jones et al. (1983) overpredict
the value of pf;,. As an example, using a room with AR-= 1, OR = 0.5 and Gr = 1010, the value
of pfss predicted by Equations (3) and (4) are about 7.3 and 8.3 times the predicted value of the

present work, respectively.

COMPARISON WITH HEAT TRANSF