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Num11rical predictions 'Ntrr carried out for rurbultnt lllllUral conurcrion in two tall air 

cavities. Tht stando.rd and R. VG k·t turbultnct models wrn used for the predictions. The 

predicted resuhs wtre compared with v:prrimeTUQ/ data from the lituarure, and good 

agreement btt'Nten prtdiction and mrasurement wa.s obcained. lmpro4•ed prediction wa.s 

achieved using the RNG k· t model in comparison with IM rraruiard k-e modd. The 

principal param<1tn-s for 1he impro11emm1 were inursrigaud. 

INTRODUCTION 

Buoyant flows occur in various engineering practices such as heating, ventila
tion, and air-conditioning of buildings. This phenomenon is particularly important 
in rooms with displacement ventilation, where supply air velocities are generally 
very low ( < 0.2 m/s) so that the predominant indoor airflow is largely due to 
thermal buoyancy created by internal heat sources such as occupants and equip
ment. This type of ventilation system has been shown to be an effective means to 
remove excess heat and achieve good indoor air quality. It has been widely used in 
Scandinavia and Germany for ventilation of industrial and commercial buildings. 
The system is also gaining popularity in the UK and elsewhere for office ventila
tion. 

Numerical srudies on buoyant cavity flows were reported over a decade ago 
[1]. In recent years, numerical methods have been applied to computation of air 
movement in buildings. Most computations are based on the standard k-e turbu
lence model developed by Launder and Spalding [2]. This turbulence model is, 
strictly speaking, limited to fully turbulent flows. As air movement in buildings 
involves both turbulent and laminar flows, a low-Reynolds-number (low-Re) k-e 
turbulence model may provide better results of room airt1ow and heat transfer. 
Betts and Dafa'Alla [3] compared a number of low-Re k-e models for predicting 
buoyant flow in a tall cavity but found that even the best models could not produce 
a completely satisfactory result. Ince and Launder [4] demonstrated that a satisfac-
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NOMENCLATURE 

cp specific be::ic of air ac a conscanc u- dimensionless velocicy 
pressure u· dimensionless velocicy based on waU 

E logarithmic law constant heac flu."t 
g acceieracion due co gravicy u I 

mean velocity component in 
k rurbulenc lci.netic energy i direccion 
L width of ca vi cy u • 

velocicy parallel to wall boundary 
n normal distance of boundary grid u � velocity scale based on wall heac flux 

poi.nc from wall u, friccion velocity 
Nu Nusse!t number .t, coordinace in tensor nocation 

p Stacie pressure y local Reynolds number 

q volumecric heac production/ y• dimensionless distance normal co wall 
dissipacion race a chermal diffusivity of air 

q,. heac flu"t chrough wall f3 chermal expansion coefficienc 
R race of strain O;; Kronecker delta 
RaH Rayleigh number based on che height e curbulenc dissipacion race 

of place or enciosure I( Karman's conscant 
RaL Rayleigh number based on Che width A thermal conductivicy of air 

of cavity µ. laminar viscosity of air 
T mean air cemperature µ., effeccive viscosity 
r- dimensionless cemperarure µ., turbulent viscosity 
T" dimensionless cemperarure based on p density of air 

wail heat flux Pr densicy of air at reference point 
T< surface temperarure of cold wall u laminar Prandtl number of air 
r. surface cemperarure of hoc wall O"k; I (jp {j'f turbulent Prandtl numbers 
Tq heac flu.'t temperarure .... wall shear stress 
T,. wall surface cemperarure 

tory agreement with experimenc daca could be achieved by incroducing an addi
tional source cerm to che energy dissipacion equation. Henkes and Hoogendoorn 
(5] compared numerical results by 10 different groups for turbulent natural 
convection in a differentially heated square cavicy using the standard k-e model. It 
was found cbat the wall heat transfer was overpredicted but the predicted ve locity 
in the vertical boundary layers agreed with experiments. The prediction of wall 
heat transfer could be improved by inclusion of low-Re terms in the k·e model. In 
a recent workshop on refined flow modeling (61 a comprehensive comparison of 
various turbulence models including low-Re models for predicting nacural convec
tion in tall cavities was presented. The results suggest that the accuracy of a 
numerical prediction is highly dependent on the turbulence model employed. 

i There are, however, limitations in applying low-Re turbulence models. For 
• example to achieve an accurate solution with a low-Re k-e model requires a very 

fine grid distribution in the near-wall region and hence a significantly high 
computing cost. According to Laurence [7], the mesh refinement required for 
low-Re modeling is equivalent to what is required for direct numerical simulacions. 
For buildings with obstructions such as occupants and furnirure, if such an 
excessively [me mesh is also required for obstruction boundaries, it will require an 
excremely large number of compucacional cells, and so for the time being, it may 
not be practical to use a low-Re k-e model for predicting three-dimensional flows. 
Also, steady solutions with low-Re k-e models are limited to buoyant flows for 
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Rayleigh numbers (Ra 8) up to 101;, in contrast with the standard k-E model, 
which could produce steady solutions for air up to Ra8 = 1o:o [8]. Because of such 
limitations, Betts and Dafa'A.lla [3] considered it appropriate to use a computacion
ally efficient means such as a wall law for calculation of recirculating flows. 

Recently, Yuan et al. [9] derived wall functions for turbulent natural convec
tion by means of dimensional analysis and experimental data. The derived wall 
functions were claimed to be able to produce nearly grid-independent results for 
airflow predictions. However, these wall functions are not uni\"\!rsal and so have 
limited applications. They were derived from experimental data for fully turbulent 
airflow along a vertical plate. The heat transfer coefficient for natural convection, 
on the other hand, varies not only with the direction of fluid flow (along a 
horizontal or venical or inclined surface) but also with the direction of heat 
transfer (to or from a nonvertical solid surface). The natural convective heat 
transfer to/from a horizontal surface is more important than that for a vertical 
surface in rooms with floor heating and, recently popular, chilled-ceiling systems. 
In addition, for very narrow cavities there may be interference between the 
boundary layers of opposing wails, where these wall functions are not applicable, as 
will be shown below. Furthermore, the application of such waU functions in 
calculations of narural convection can save only a few computational grid poincs in 
comparison with forced convection but will complicate the matching between the 
wall funct:ion and numerical solution (10]. As a result, the standard k-E model with 
conventional wall functions is still most commonly used in practical engineering 
applications including natural convection. 

In 1986, Yakhot and Orszag (11] derived a k-E turbulence model using the 
renormalization group (RNG) theory. Since then, the model has been studied for 
different types of flows. For example, Nakamura and Sakya (12] used the R.i'\fG

based algebraic turbulence model to predict the transicion from laminar to turbu
lent flow at the boundary layer. Lien and Leschziner (13] assessed various turbulent 
models, including the standard and RNG forms, for flow over a backward facing 
step. The performance of the RNG k-E turbulence model for predicting buoyancy
induced turbulent flows has not been fully evaluated. Although Chen (141 showed 
that the RNG k-E model performed slightly better than the standard k-e model for 
indoor airflow computations, he did not show why and how che former model was 
superior to the latter. The purpose of the: present study is to evaluate the RNG k-E 

turbulence model in simulating buoyant cavity flows with the intention to use the 
model for the prediction of three-dimensional flows in occupied buildings. Compar
ison will be made between the standard and RNG k-E models for flows in two tall 
cavities of different aspect ratios. 

GOVERNING EQUATIONS 
The governing equations for buoyant airflow are the equations representing 

continuity, momentum, turbulence, and temperature. In this study, the RNG k-E 

turbulence model based on Yakhot and Orszag [11] and Yakhot et al. (15] is used. 
For an incompressible steady state flow the time-averaged equations in tensor 
notation are described as follows. 



TURBULENT BL'OYk'i"T FLOW liSlNG A."' RNG k-� MODEL 173 , ... 
Here, 0"1c, O",, and O"t are computed via 

I a - l .3929 1°·6n1 I a + 2 .3929 1°·3679 

a0 - 1.3929 a0 + 2.3929 
µ. 

(6) 

Here, 0"1c = er. = 1/ a with a0 = 1.0 and O"t = 1/ a with a0 being the laminar 
inverse Prandtl number ( a0 = 1/ er). 

R is given by 

where 

Sk 
T/o = 4.38 {3 = 0.012 1/ = -E 

Temperature 

a a ( µ.. aT ) 
-( p{l;T) = - --- + q/Cp ax; axi (jt axi 

(7) 

(8) 

(9) 

where T is the mean air temperature (°C), q is the volumetric heat 
production/dissipation rate (W /rn;), and CP is the specific heat of air at a 
constant pressure [J /(kg K)]. 

The density of dry air for the calculation of thermal buoyancy effect is given 
by 

353.06 
p= ( T + 273.15) 

(10) 

The standard k-E model differs from the RNG k·e model in the following values 
for the empirical turbulence constants and turbulent Prandtl numbers: 

cµ. = o.o9 

er, = 1.3 R = 0 

In addition, for the standard k-€ model, the effective diffusion coefficients, µ.0/ erk, 
µ.0/cr,, and µ.0/0"t> in Eqs. (4), (5), and (9) are replaced byµ.+ µ.t/crk, µ.+µ./er,, 
and µ./er + µ.t/ o-P respectively. 

Boundary Conditions 

The boundary conditions for solving the above equations for cavity flow 
include relations for momentum, heat, and turbulence at wall surfaces. For reasons 
mentioned above relating to the practicality of low-Re models, the following 
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conventional wall-function equations [2] are used for the calculation of the velociry 
parallel to the boundary and temperacure at the boundary layer. 

For y- � 11.63, 

For y'-> 11.63, 

Tr- -r .. ; = Y. ( 11) 

(12) 

where E is the logarithmic law constant ( = 9.793), K is Karman's constant 
( = 0.4187), u-= Un/ UT is the dimensionless velocity, Un is velocity parallel to a 
boundary (m/s), UT= ../C1w/p) is the friction velocity (m/s), ;w is wall shear 
stress (Pa), y�= pl/_n/µ. is the local Reynolds number, n is the normal distance of 
a boundary grid point from a wall (m), T" = pU�C/T.,, - T)/qw is the dimension
less heat flux temperature, qw is heat flux through a wall (W /m1), Tw is wall 
surface temperature (°C), and /( o/ r7[) is given by Jayatil!aka (16]: 

For an adiabatic wall, the temperature gradient at the boundary is taken to be 
zero. 

The near-wall turbulence energy is obtained by solving the complete trans
port equation for k in the near-wall control volume with modifications for the wall 
shear stress included in the production and dissipation terms and with the assump
tion of a zero normal gradient for k at the wall. The near-wall value for e is 
prescribed with the following expression derived by assuming the production and 
dissipation of turbulence to be equal: 

u3 T e=Kn (14) 

In order to assess the effect of wall functions on the accuracy of simulation, the 
following wall functions for turbulent natural convection proposed by Yuan et al. 
[9] are also used. 

For heat transfer, 

T* = y• 
T* = 1 + 1.36 ln (y*) - 0.135 ln� (y*) 

T* = 4.4 

y* � l 

1 < y* � 100 

y• > 100 

(15a) 

(15b) 

(15c) 

For momentum transfer the boundary layer is divided into inner and outer regions. 
The inner region is the layer berween the wall and the position where the velocity 
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reaches the ma"Ci.mum value. Beyond this position and up to the edge of the 
boundary layer is the outer region. Tne wall function for velocity distribution is 

U;* = 1.41yi ,,.__ 3.ll(yi )� + 2.38(yi )J Yt <>; 0.53 (16a) 

l�* = -0.458 - 0.258ln (y: )  - 0.02425!n2 (y:) 0.005 ..;y:..; 0.1 (16b) 

l�" = 0.0 y: > 0.1 (16c) 

where r· = (Tw - T)/Tq is dimensionless temperature, Tc. = {[q.,./ 
( pCP)J3 /(g /30:)}11� is heat .flux temperarure, f3 is the thermal expansion coeffi
cient {l/K), a is the thermal diffusiviry of air (m�/s), u· = UUq3 /lJ,4 is dimen
sionless velocity ""ith subscripts i and o for the [nner and outer regions, respec
tively, Uq = [g f3aq,J( pCP)]114 is the velociry scale based on heat flux, y• = Clq_n/ a 
is dimensionless distance normal co the wall , Yi = y•Uq2/U,2, is dimensionless 
distance for the inner region and y; = y"Uq6 / U,6 is dimensionless distance for the 
outer region. 

Solution 

The governing equations are solved for the three-dimensional Cartesian 
system using the SIMPLE algorithm (17). The overall structure of the computer 
program follows a two-dimensional TEAi\1 computer code [18). The original 
two-dimensional code is modified for simulations of buoyant airflow in enclosures. 

VALIDATION 
Validation of the computer code was first performed by comparing numerical 

predictions with the experimental results for turbulent natural convection in a 
narrow tall caviry by Betts and Bok.hari [19J. Figure l shows the elevation of the 
cavity. The internal dimensions of the cavity were 2.18 m high, 0.0762 m wide, and 
0.52 m deep. Temperatures of cold and hot walls were concrolled at 15° and 35°C, 
respectively, for RaL = 0.86 x 106 and a t 15° and 55°C, respectively, for RaL = 

1.43 x 106• Top. bottom, front, and back walls were insulated. The Rayleigh 
number, Ra L, is defined as 

(17) 

where Tn and Tc are the temperatures of hot and cold walls (°C), respectively, and 
L is the width of the cavity (m). 

Air velocities in the cavity were measured using a He-Ne single-channel 
laser-Doppler anemometry system. Thermocouples (type K) were used for temper
ature measurements. Details of the measurement are given in Ref. (20]. 

The experimental results indicated that flow in the central region was close to 
two-dimensional. Therefore conditions on the elevation (Figure 1) were used as a 
two-dimensional flow. The grid distribution near the wall surface is generally 
important for numerical accuracy. ¥/hen the air temperature gradient is evaluated 
at the wall for calculating wall heat transfer, at least the first inner grid point 
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should lie in the viscous region. However, if the grid points ocher than the first are 
too close to the wall, the equacions for rurbulenc flow, unless incorporating a 
low-Re model, may inappropriately be applied co the viscous region. On the ocher 
hand, if the first inner grid poinc is placed outside the buoyancy-induced boundary 
layer, using wall functions will result in unreliable flow predictions. The optimum 
position of rhe inner grid point for predicting buoyant flow using k-e models is 
thus near the curer edge of the viscous region (y- = 3-5) so that the next 
compucaciona1 grid point is just beyond che region. A nonuniform Cartesian grid of 
39 X 35 was therefore generated for the simulations. The effect of grid depen
dence was rested by doubling the number of grid points. which produced the same 
ve!ociry and temperature distributions as the original grid. 

A comparison between the predicted and measured results ac cavity mid
height for the two cases is given in Table 1. Air temperature at 0.1 cavity width 
rather than a value at the caviry center is used for comparison because the 
temperature difference becween predictions is most obvious in the region berween 
the wall surface and the distance of 0.2 cavity width, whereas the predicted value at 
the cavity center is equal to the average of hoc and cold wall temperatures. Nusselt 
numbers along the cold and hoc walls (Nuc and Nuh, respectively) are used to 
assess wall heat transfer. The Nusse!c number is determined from 

where A is the thermal conductivity of air [W /(m K)]. 

� 

' 

Adiobanc 

i 1 ..,, 2 -a 
'...; 

VAdiabat1c 
,I L •00i6� m 

I Figure l. Dime:isioas of che elevation of 
a narrow cavity. 

(18) 
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Table 1. Vertical velocicy ( V..,0, Vm., ). Nusselt number (Nu:. Nuh). and temperature at 0.1 cavicy 
width (Tl) at midheight oi narrow cavicy 

Method RaL x 10-6 vm1n• m/s V111., m/s Nuc Nuh Tl, •c 

Measuremenc 0.86 - 0. 135 0.139 6.24 5.91 Zt.7 

RNG k-< 0.86 -0.135 0.136 6.99 6.83 21.7 
RNG k-e' 0.86 -0.12':? 0.123 6.77 6.56 2t.7 

Standard k-e 0.86 -0. 1 18 0. 1 19 7.12 6.95 21.6 

Standard k-l 0.86 -0.105 0.106 6.93 6.73 21.6 

Measurement lA3 -0.189 0.190 7.85 7.45 29A 

RNG k-e U3 -0.184 0.186 8.49 8.08 29.2 

R!'IG k-o" U3 -0.163 0.166 8.04 7.71 29.l 

Scandard k-e l.43 -0.161 0.163 8.68 8.21 29.0 

Standard k-e• l.43 -0.141 0. [.14 8.18 7.82 29.0 

•Based on the wall functions for natural convection. 

Figures 2 and 3 show the comparison between the predicted and measured 
velociry and temperature profiles ac che midheight of the caviry using the cwo k-c 

models with the conventional wall functions at rwo Rayleigh numbers. In Figures 
2b and 3b the dimensionless cemperarure is defined as (T - �)/(Th - Tc). 

The predicted velocities (both peak values and profiles) using the R.i'fG k-c 

model are very close co the measured values and are much better than the 
predictions using the standard k-c model. The standard k-e model underpredicts 
che magnitude of maximum and minimum vertical velocities. Consequently, the 
predicted velociry gradients outside the boundary layers are smaller than the 
measurements. le is observed chat che magnitude of ma'<lmum vertical velociry 
differs slightly from char of minimum vertical velocicy. The difference is due co the 
variable thermal properties of air (as a function of temperature) such as thc::rmal 
conductiviry and laminar viscosiry. This is also true for the difference in wall heat 
transfer (Nusselt number) along the cold and hot walls as discussed below. 

Despite the marked difference in predicted velocities, the temperature pro
files predicted by che cwo models are in excellent agreement with the measure
ments. Quanticacively, however, there is a slight difference between temperature 
results from the cwo models. For example at RaL = 0.86 X 106, the R.'iG k-e 

model predicts the temperature ac 0.1 caviry width (at caviry midheight) of 2l.7°C, 
same as the measured value, whereas the standard k-c model produces a slightly 
lower value of 21.6�C. The prediction of temperature using the R NG k-e model is 
therefore marginally better than thac using the s�andard k-e model. Beers and 
Dafa'.-\.lla [3J also showed a similar phenomenon, i.e., significant difference in 
predicted velociry (over 100%) but much less so in temperature profile using 
different low-Re k-e models. In addition, they observed that models predicting low 
values of velociry predicted high Nusselt numbers. 

Table 1 indicates chat the wall heat transfer is overpredicced by the two 
models. However, similar to the predictions of velociry and temperature, the Nu 
predicted by the FJ ·a k-e model is closer co the measured result than is the 
predicted value from the standard k-e model. The predicted Nu here is based on 
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the temperature difference between the wall surface and the first inner grid point, 
which is in the viscous region. The measured Nu in Table l is, however, obtained 
from the temperature gradient at the wall for data up to about 2 mm from the wail 
surface where the temperarure profile is linear. [f the same number of data poincs 
were used for the determinacion of Nu, i.e. the wall surface temperature and the 
air temperature at a position nearest the wall, the measured i ·u at Rat of 
0.86 X 106, for instance, would be greater than 8.0 for both walls. as a consequence 
of experimental uncertainty of the temperature m easurement 

0.2-.-------�------�---c 

a.1 -1----1---------; 
'1 ! 1 

!: 0.0 ----,,,,c-----

i 
-+<--�-....... J_ ..... _-_�"l . L �-� .-L-.'G""-� .. -l--:----1 · -0.1 

I 
i 

-0.2�,..----.------.----,---....----. 
a.a a.2 o.4 o.6 a.8 1.0 

x/L 

(a) 
1 .a �------------,--�--

; 0 .8-!-----i-------- -+----,_ 
Oi 
� 
EQ. 
� 
.. .. <II c: 0 Oi c: <II 
.e a 

a.6-+-----'--------- ----� 

. .  ,,,,� -Jl}l(j l·• 
02-h,__ _ __. ___ -;-__.�--· �S��·-"-t�·•'------'-

o.a -+-------.-- --------.,.., ---.. 
a.o 0.2 a.4 a.6 0.8 1.a 

x/L 

(b) 

Figure 2. Predicted (a) velocicy and (b) temperarure ac midheighr 
in the narrow cavity using convencional waU functions (Rat = 

0.86 x lOb). 
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Figure 3. Predicted (a) velocicy and ( b) temperature at midheight 
in the narrow cavicy using conventional wall functions (RaL = 

1.43 x 10°). 
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By comparing Figure 4 with Figure 2 and Figure 5 with Figure 3, it is seen 
that the pred icted velocities using the wall functions for turbulent natural convec
tion are lower than those using the conventional wall functions for shear flow. 
Again, the predicted temperature profiles using the rwo types of wall functions are 
almost the same. The difference in wall heat transfer berwe�n them is also small 
(see Table 1). Since the wall functions for turbulent natural convection could not 
predict the velocity magnitude in such narrow cavities as well as the conventional 
wall functions, their applications may be very limited. One of the possible reasons 

!' 
---·· c· 
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for the poor performance of such wall functions is interacting boundary layers. 
Because the opposing wall is such a short distance away, it could interfere with rhe 
boundary layer of a vertical wall. Thus the near-wall boundary layer is noc exactly a 
free convection layer as assumed for a ven:icaJ plate. 

To examine this possibiliry, numerical predictions were also carried our for 
turbulent natural convection in a large rectangular caviry of 5:1 aspect r:irio by 
Cheesewright et al. (21}. The computations were made for the case with a 
temperature d ilierence becween the hot left and cold righr walls of 45.8 K Figure 6 
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0.1 ....L. 
.., ...... 
.s 
>. 0.0 u 0 'ii I > 

-0.1 -

-0.2 I 
0.0 0.2 0.4 0.6 0.8 1.0 
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1.0 

4) 0.8 .2 
., 
� 
c. . .J E 0.6 .! ! 
.. I .. 4) I "2 0.4 -�--- __, 

.S! l • ,!.(:a:ru_,.,_., . I 
.. I <:: 4) -il.'fvt-< � 0.2 1-·· SUJNi.ord k·t 
0 

0.0 I 
0.0 0.2 0.4 0.6 0.8 1.0 

x/l 

(b) 
Figure .i. Predicted (a) velocicy and (b) temperature ac midheighc 
in che narrow cavity u.sing wall functions for narural convection 
(RaL = 0.86 x 106 ). 
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Figure 5. Predicted (a) velocir:y and (b) cemperacure at midheighc 
in the narrow caviry using wall functions for natural conveccioo 
(RaL � 1.43 X 106). 
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shows the comparison between the predicted and measured velocity profiles at the 
midheight and vertical temperature distribution in the core of the caviry. It is seen 
that the predicted peak velocities using the wall funcrions for rurbulent natural 
convection are again lower, though to a lesser extenc, than those using the 
conventional wall functions but in this case agree slig.hcly better with the experi
mental measurement. With regard to the effect of rurbulence models, Figure 6a 
indicates that the predicted velocity profiles, other than the peak values using the 
Ri."l'G k-E model, are in closer agreement with the measurement than the predic-

-·- ··- . .. -
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Figure 6. Predicted (a) velocity ac midheighc and (b) core 
cemperarure in the 5:1 cavicy. 

i 
• 

· tions by the standard k-e model . However, similar to the flow in the narrow cavicy, 
the predicted maximum velocities using the R...'\iG k-e. model are higher than those 
using the standard k-e model. 

The predicced core cemperarure for the cavicy is compared with the measure
ment in Figure 6b. The lower measured temperarure shown in the figure may be 
attributed to the imperfect insulation during the experiment. The venicaJ gradient 
of the temperature profiles predicted by the RNG k-e model is slightly larger than 
that by the standard k-e model. In terms of wall heat transfer, the estimated 
Nusselt number at the midheighc is 191. This value is obtained using the following 
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correlation based on the measured data for the heated wall [21]: 

Nu = 0.042Ra�.Jss RaH > 5.6 X 108 (19) 

The R.:.'iG k-e model (with the conventional wall functions) predicts a correspond
ing Nu of 221, whereas the standard k-e model gives 230. Although both models 
overpredict the wall hear transfer, the RNG k-e model performs relatively better 
than the standard k-e model. The influence of wall functions on the predicted 
temperarure profile and wall heat transfer is negligible. For example. the predicted 
Nu using the R. 'iG k-e model with the wall functions for natural convection is 219, 
compared with 221 using the conventional wall functions. 

Henkes and Hoogendoorn (22] showed that experimental daca for a cavity of 
such a low aspect ratio (5:1) could be used for validating numerical results in a 
square cavity at the same Rayleigh number RaH. Hence the RNG k-e model can 
also be applied to prediction of buoyant flow in a square cavity or similar 
enclosures such as buildings. In such applications, the wall functions for natural 
convection will perform slightly better than the conventional wall functions for 
shear flow. 

PARAMETRIC ANALYSIS 

In this section we analyze the main parameters that result in better predic
tions of flow in the tall cavities using the RL"fG k-e model than the standard k-e 
model. The analysis is performed fo� the narrow tall cavity at RaL = 0.86 x 106 
using the RNG k-e model with the conventional wall functions. Table 2 presents a 
summary of the predicted results. 

Table 2. Effect of variable rurbulence parameters in the RN'G k·! model on the results at midheight 
of narrow caviry (RaL = 0.86 x 10°) 

Parameter vman• m/s V.,.,, m/s i"./uo Nuh T1, •c 
Measurement -0.135 0.139 6.24 5.91 2 1.7 
Original R.NG k-e -0.135 0.136 6.99 6.83 21.7 
R-0 -0.166 0.168 6.23 6.11 21A 
C: = L.92 -0.122 0.123 7.40 7.25 21.8 
C! = 1.92and R = 0 -0.137 0.138 6.96 6.81 21.6 
CTk = 1.0, <T, = l.J, CT1 = 0.9 -0.117 0.118 6.92 6.75 21.7 
CT; = 1.0, CT, = 1.3, CT1 = 0.9, -0.146 0.148 6.09 5.97 21.4 

R=O 
CTk = 1.0, CT, = 1.3, CT1 = 0.9, -0.106 0.106 7.35 7.16 21.9 

C: = 1.92 
CT'< = 1.0, <T, = 1.J, CT1 = 0.9. -0.119 0.120 6.88 6.71 21.7 

C:=l.92. R=O 
CTk = CT, = <71 = 0.72 -0.136 0.137 6.92 6.76 21.7 
uf --= LJ -0.125 0.126 7.65 7..19 21.7 
<7< - 1.0 -0.124 0.125 6.97 6.78 21.9 
CT: • 0.9 -0.139 0.141 6.20 6.08 21.5 

CTk = 1.0 and <T, = 1.3 -0.112 0.113 7.73 7.54 21.9 

µ., = � -0.125 0.126 7.44 7.28 21.8 

. • .. ..-:% 
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Figure 7. Predicted (a)  velocity and (b) temperarure at midheig.bt 
of the narrow cavicy for varying C� and R in the RNG k- f model. 

First, the turbulence constant C.1 and the rate-of-strain term R in the e 
equation are varied. Figure 7 shows the predicted velocity and temperature with 
the variatio ns. 

When R is set to zero, the predicted maximum velocity at the m idheight is 
increased considerably, much higher than the measure ment. This is the conse 
quence o f  decreased dissipation and increased turbulent  viscosity when R is 
neglected. Thus the inclusion of the rate-of-strain term decreases the gradient of 
velocity p rofile. Yakhot et al. ( 15 ]  poi n ted out that the contribution of R i n  the c 
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equacion was small for weakly strained rurbulent flows, and vice versa. S ince R has 
a marked effecc on the predicted velociry distribution, ic can be postulated that 
flow near the caviry rnidheig.ht is strongly strained turbulent.  

When the value for C2 is  increased from 1 .68 for the RNG k-e model to 1 .92, 
the value for the standard k-E model ,  the opposite eff<!ct on the p redicted velociry 
is produced as compared with seccing R co zero. That is, increasing C2 leads co the 
reduced maximum ve lociry and decreased gradient of velocity profile outside th<! 
boundary layer. The resulting veloci ry profile is quice close co the p rediction using 
the standard k-E model. 

Wnen R is set to zero and C2 is taken to be 1 .9�. the predicted velocity is 
almost t he same as thac using the origina l R. 'lG k-e  model, indicating that thi:: 
effect of varying R o ffsets that of C� . Although this combined variation results in 
the same values of C2 and R fo r the standard k- c model, the p redicted velocity 
differs from the prediction using the standard k-E model as seen by comparing 
relevanc cuTVes in Figures 2 and 7. Th is difference results from different values for 
turbulen t  Prandtl numbers o-k . 04 .  and 0-1 in the two turbulence models. In other 
words. the scaadard k-E model can produce similar resul ts for the caviry flow to 
chose from the RNG k-E model if the turbulen t  Prandtl numbers are calculated 
from Eq. (6). 

The difference ia the predicted tempe ra ture p rofile for the varying values of 
R and C� is small (Figure 7b ). Quantitacively, however. the maximum difference in 
che predic[ed wal l  heat  transfer is almost 20% , and the difference in the tempe ra
ture ac 0. 1 cavity width is about 0.4°C (Table 2). Similar effeccs of varying o-� , o-, . 
and o-1 on che wall heat transfer and temperature dis tribution are observed. 

Next , the t urbulent Prandtl numbers o- . u, , and o-1 in che R2 G k-e model 
are changed alone or in conjunction wi th turbulence conscancs. Figure 8 shows the 
predicted velocity at  the cavity midheighc with chese variations. When o-°', 04 .  and 
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ut are taken to be the same constants as those for the standard k-c model, the 
e ffect on the predicted velocity is similar to the case where the constan t  C2 is 
changed to the value for the standard k-e model. The maximum ve loci ty is slightly 
lower than the result from the standard k·e model .  \Vhen this variation is 
combined with se tting R to zero, the predicted veloci ty  profile resembles but the 
magnirude of velocity is higher than that fo r the combined change of C2 and R to 
values for the standard k-e model. Hence the effecc of differe n t  values for uk , u, ,  
and ut is larger than that o f  C2• \llhe n  9'°k • u, , and ut toge ther with C2 are set to 
the values for the standard k-c model, the pred ict io n is wo rsened , with the 
predicted velocity b e in g  the lowest of all the p red ictio ns. When all these variations 
are combined, i.e., uk , u, , o-P R, and C� are changed to the values fo r the standard 
k-c model, the p redicted velocity is almost the same as the pred ict ion using the 
standard k-e model.  This can be seen from Table 2 b ut is not shown in Figure 8, as 
the profile would have ove rlapped the curve for the s tandard k-e model. The result 
implies that the e ffect of cµ. and cl fo r the difference in predictions using the two 
models is negligible mainly because the diffe rence in cµ. and cl be tween the 
models is small. This is confirmed by p redictions w1th rwo values for Cµ. and C1 in 
the rwo models, which give little diffe re nce between the p redicted flow patterns. 

When all the turbulent Prandtl numbers are taken to be a constant 0.72 for 
high-Re flow, the pre d icted velocity is  slightly higher than that using the values 
given by Eq. (6). The d iffe rence berween them is, however, insignificant ( "'' 1 %). 

Funher predictions show that among these turbu le nt Prand tl numbe rs , u, 
affects the predicted ve locity at and near the peaks, whereas O";. and o-, affect the 
whole velocicy profile (FiguTe 9). Whe n  er, is set to 1 .0, the predicted veloc ity 
profile  except fo r the region near the peaks is ve ry similar to that using the 
srandard k-e model and hence lowe r than that using the R.'i'G k-E  mode l .  Setting 
uc to 0.9 leads to slightly higher velocity than the prediction using the original 
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Figure 9. Predicted velocity at cavity midheighc for varying 
rurbulent Prandtl numbers in the R.."fG k-< model. 
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R....'fG k-€ model.  When boch o-, and a� are set to the values fo r  the standard k-€ 
model, the velociry ac midheight is m uch underp redicted. Although the differenc� 
in o-k be cwee n the two models is smaller than that in er, , it has large r influence on 
overall velociry p redictions. 

Finally, we investigate the e ffect of employi ng the e ffective or turbulent 
viscosiry fo r the diffus ion term in the k and € equacions on the accuracy of 
prediction. When the e ffective viscosiry is replaced by the turbule n t  viscosiry, which 
is valid for high-Re flow, the predicted ve lociry lies between the predictions using 
the o riginal RNG and standard k-€ models (Figure 10). This suggests that the re 
are regions in the caviry where flow is not fuUy rurbule n t  and that the e ffective 
viscosiry is more appropriate than t.urbulenc viscosity for the diffusion te rm in the k 
and € equatio ns. It also implies the effect  of low-Re flow and thus requires the 
consideration of a low-Re k-e model. However, use of such a model ,  though 
without the need of wall functions, does not necessarily improve flow predictions. 
This is evide nced by the wo rk of Be tts and Dafa'Alla [3]. It was shown that none of 
the available low-Re turbu lence models could p roduce a completely satisfactory 
result for the same cavity geometry. The most rece n t  wo rk [6] in this area also 
suggests that low-Re turbule nce models still  ne e d  improving for the accurate 
p rediction of buoyant flows. 

The above analysis demonstrates that the principal parame ters that result in 
the improve menc of buoyant flow prediction are the coe fficients/terms in the e 
equation. namely, C, and R as well as turbulent Prandtl numbe rs o-� , u, .  and 0-1 • 
The expressions fo r these coe fficients form a de licate balance. 

CON C LUS IONS 

This study shows that fo r predicti n g  buoyancy-induced turb ulent flows the 
R.i."l"G k-e model performs be tter than the standard k-€ model. The improved 
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prediction results mainly from the inclusion of the race-of-strain term in the i: 
equation. Modifications of the turbulence constancs c� . CT� ' er, I and to a lesser 
excenc, er, also co ntribu te to the improvement. Tne R. '10 k-€ mod e l  turbulence 
mode l is therefore prefe rable co the standard k-e mode l fo r simulating buoyant 
flows in e nclosures. I n  the simulation rhe e ffective viscosity should be used for the 
diffusion term in the k a nd e equations. 

le is also shown char wall functions derived from data o f  turbulent  natural 
convection along a vertical place may nor be applicable co the simulation of 
buoyancy-induced flows in narrow cavi ties where the re could be inte rference 
berween the boundary layers of opposing walls. When such in terfe rence is absent,  
the wall functions for turbulen t  n a tu ral convection c3.n be used fo r  the simulation 
of buoyant flows in e nc losures. Howeve r, application o f  wall functions for natural 
convection requires considering rhe orientation of a wall surface and also direction 
o f  heat t ransfer, and so similar  correlations are needed for natural convection 
along horizoncal and inclined wall surfaces. 
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