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.. 

Modelling and measurement of soil gas flow 

Summary 

There are two main soil gases of current concern to human health. These are radon, 

which is a carcinogen, and landfill gas, which is explosive and toxic. Both can be found 

at significant levels in the soil below buildings in certain locations in the country. It is a 

responsibility of the Building Research Establishment to find cost effective ways to 

protect new and existing buildings from the entry of these gases into buildings.  These 

findings are applied in real housing through advice given to builders and householders 

and through changes to the Building Regulations. 

As part of the process of designing effective remedial measures it is necessary to 

understand how these gases move within the soil, how they enter buildings, and how 

these processes can be controlled. Modelling and experiments play an important part in 

this process alongside direct field trials of remedial measures. 

This report extends and develops various theoretical modelling studies to evaluate 

experiments carried out at BRE and on other sites. They cover a range of different 

aspects of soil gas flow, and can have potential applications in related fields, particularly 

heat transfer. 

The work is divided into three main parts. These are: 

1) Flow under natural driving forces in steady state 

2) The effect of high pressure extraction on soil gas flow 

3) Time dependent effects on soil gas flow. 

In each case a mixture of analytical and numerical methods is used to study the behaviour 

of the flow, and the results from these are compared with experimental data from 

laboratory or field tests. 

The conclusions give a summary of the understanding gained from the modelling and 
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experimental process, and indicate areas of uncertainty remaining. 

Scope and background information 

Scope 

This work looks at the flow of gases in soil and how they move into buildings, and 

houses in particular. The aim is to understand the way in which the processes occur, in 

order to be able to prevent or minimise the risks to health in a cost effective way. As 

such it plays a supporting role to the work of the Building Research Establishment in its 

advice on how hazardous gases can be kept out of buildings. 

In order to understand soil gas flow, three types of work have been used. These are 

analytical modelling, numerical modelling and experimental measurements. Generally the 

analytical modelling only applies to a simplified problem, but one which often gives 

insight into the real flow processes. A numerical model will generally solve most 

mathematical problems, provided (an important limitation) enough information is 

available. Experimental work consists of laboratory type tests to look at details of how 

flow occurs, and measurements on real buildings to give information on the whole 

system. 

The modelling work has all been carried out by the author, some of it developing from 

work elsewhere. The experimental work has involved a wider group of people, including 

some outside of BRE. In some cases the tests were designed to support the modelling 

studies directly, in others the data were collected during some other work. 

Aspects relating to the creation of soil gases, their health effects, how the gases are 

measured and the details of how they are excluded from dwellings are beyond the scope 

of this work. They are discussed briefly in the following background information, which 

is only meant to give an outline of the subjects. 

In general the work has been carried out in support of the work of colleagues at BRE 

with frontline responsibility for carrying out remedial measures and giving advice. It is 
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therefore concerned more with the underlying processes involved in soil gas flows than 

the detail of remedial action. Our overall need is to increase our understanding of soil gas 

flows, so that we can provide cost effective solutions. It is therefore harder to see the 

direct link to applications from this work than in some other projects. Nevertheless there 

is a significant role for modelling in improving remedial measures, and this is recognised 

by those involved. The link between the modelling and real situations is discussed 

throughout the text. 

Background information on radon and landfill gas 

Radon 

Radon is a heavy and chemically un-reactive gas, formed by the radioactive decay of 

uranium. Because it is only present in very small concentrations it would be of only 

academic interest if it were not radioactive. This section gives a brief introduction to how 

and where it is found, why it is a health issue and what can be done about removing it 

from homes. 

Sources of radon 

Radon is created in the radioactive decay chain of uranium, as discussed at length 

elsewhere [Loureiro 87]. Because of this whenever uranium is present in the rock then 

there will also be radon produced, with thorium and radium as intermediate stages. 

Because radon is a gas it is possible for it to move within the soil, and thereby reach the 

surface and come into contact with people. 

The level of uranium in rock is of interest to those who wish to mine it for energy or 

weapons usage so maps of uranium concentrations in rock exist for many parts of the 

world. Generally the areas with the highest uranium concentrations have the highest 

radon levels too. However the radon concentrations near the surface are affected by a 

number of other features of the rock types and soil. These include the permeability, the 

level of the water table and the degree of fissuring of the rock. These effects mean that 

just measuring uranium levels give only an indication of where radon is likely to be a 

problem. 
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Within the UK the areas most affected by radon have been investigated in detail by the 

National Radiation Protection Board, hereafter abbreviated to NRPB. They have 

published maps of where radon is most likely to be found in houses. The techniques used 

for this mapping are discussed by Miles and others, for example [Miles 94], while the 

results of the mapping are used in defining the affected areas [BRE 91]. 

The areas most affected are Cornwall and Devon, parts of Northamptonshire, Derbyshire 

and Somerset. In addition there are small pockets of high radon levels in various other 

parts of the country. In Devon and Cornwall the radon levels are due to high uranium 

levels in the dominant granite rock. However in Derbyshire the rocks tend to be more 

fractured, and although the uranium levels are not as high, the radon is able to travel 

further before decaying. The position is more complicated in Northamptonshire with a 

very wide variety of rock types present. Work is ongoing by NRPB and the British 

Geological Survey on whether it is possible and practical to use geology to help predict 

likely radon levels in houses. Other areas of the country are also being investigated. 

Measuring and typical levels 

Radon can be measured most easily by using the fact that it is radioactive. There are a 

number of different techniques, the details of which are beyond the scope of this work. 

They involve counting the alpha particles produced by the decay of either the radon or its 

decay products (radon daughters). 

In the UK the most widely used technique is 'Etch-track', a special film left in the house 

for a long period (typically three months), which is developed and the marks on it 

counted. With a largely automated process NRPB are able to process some tens of 

thousands of these per year. 

In addition to the above passive detector there are a number of active detection 

techniques which involve taking a sample of air and counting the decays as they oc�ur, 

using scintillation, ion capture or other effects. These machines cost more money, but 

allow the dynamic effects to be considered because they allow a measurement to be 

taken in an hour or less. 
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In the UK we use the SI unit for radon concentrations, the becquerel (Bq), usually 

expressed as (Bqm-3). One becquerel produces 1 radioactive decay per second, so a level 

of 1 (Bqm-3) would produce 1 radioactive decay per second in each cubic metre of air. 

A level of 200 Bqm-3 has been chosen in the UK as the 'action level' for homes [DoE 95]. 

At this level there is a best estimate of the lifetime risk of lung cancer of 3%. At levels 

above this householders are strongly encouraged to take action to reduce radon levels. 

Statistics show [Miles 94] that around 100,000 homes in the UK should have levels 

above the action level. 

Effects of radon 

It is not appropriate to discuss health effects in this work. There has been a vast amount 

of research into the health effects of radon. Although the debate about the level of the 

risk continues, there is a clear link between elevated radon levels and the risk of 

contracting lung cancer. No other effects have been proven. For more information at a 

basic level see [DoE 95], or search the considerable Health Physics literature. 

Remedial measures for radon 

The principal involvement of the Building Research Establishment (BRE) has been in the 

field of measures to protect new and existing buildings against the entry of radon. Our 

experience has been published in a series of guides describing how to carry out measures 

in existing dwellings [BRE 92, Scivyer 93-1, Scivyer 93-2, Welsh 94, Pye 93, BRE 94, 

Scivyer 95, Stephen 95], how to choose which measure is appropriate for any particular 

construction type [Scivyer 93-1], and how to protect new buildings against radon [BRE 

91]. This last report is an approved document within the Building Regulations in England 

and Wales, and therefore represents the legal requirements for building houses in affected 

areas. Most of our work on radon has been supported by the Department of the 

Environment (DoE). Work on non-domestic buildings is on going, under the control of 

the Health and Safety Executive. 

Given that remedial techniques have been discussed at such length elsewhere, and the 
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relative effectiveness of them compared [Cliff 86, Cliff 91], there is no need to describe 

them in detail. However the key components of the main techniques are important in 

understanding the purpose behind modelling and experimental work, so they are 

discussed briefly here. 

There are five classes of remedial measure, although sometimes more than one may be 

used on the same building. 

i) Sealing 

The dominant source of radon is usually the soil below the house. Hence if the paths for 

this entry can be sealed up, the radon levels should be reduced. This can be attempted by 

using a filler in any cracks found in the floor, by covering the floor with an airtight 

barrier, or, in extreme circumstances, by replacing the whole floor. This process is 

generally found to be fairly ineffective, and the explanation of this is one of the first 

successes _of the modelling process. More information on sealing is given in [Pye 93]. 

ii) Sumps or sub-slab ventilation 

In the UK we refer to sumps, but in the USA a sump is a water drainage item, and they 

use the term sub-slab ventilation or depressurisation system (SSV). Radon entry is 

generally caused by the pressure difference between inside the house and outside 

[Nazaroff 85, 87]. This pressure difference is generally about 1 or 2 Pascals, and is 

caused by temperature differences and the wind blowing on the house. Although this 

pressure is small it causes flow from below the floor to above it, carrying radon with it. 

The sump is a void created below the floor slab, and air is removed from the void using a 

fan, or a passive stack ventilation system. The aim is to reverse the direction of flow of 

air across the floor, so that there is no bulk flow of air from below to above the floor. If 
this is achieved across all of the floor then little radon will enter the house, [BRE 92]. 

This measure is generally the most effective in houses with solid floors, and has achieved 

very large reductions in radon levels. The main problem is the cost. This comes from the 
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installation costs, from disturbing the floor, fitting a fan and pipe work, and the running 
costs of the fan. Nevertheless for houses with very high radon levels it is thought to be 
worthwhile. 

In some cases the flow through the fan is reversed, so that air is pushed into the ground 
from the sump. This has the effect of pushing the radon away from the building, and can 
work in some conditions where the suction sump does not. 

Figure 1: Schematic diagram of a radon 'sump ' 

iii) Underfloor ventilation 

In houses with a suspended floor it can be effective to increase the ventilation rate of the 
void below the floor. This works for one of two reasons. Either the air in the subfloor 
space is diluted, so that less radon enters the house from underneath the floor, or the 
pressures in the underfloor space are changed so that there is less flow from the ground 
into the underfloor space, or less flow from the underfloor space into the house. The 
change can be achieved with passive measures, just increasing the number of airbricks, or 
with a fan. These methods are discussed elsewhere [Welsh 94], and can be very effective 
under some circumstances. 

iv) Positive pressurisation 

In some houses it is possible to use a small fan to blow air into the house and slightly 

13 



increase the pressure within it. This can have the same effect as a sump in reversing the 

normal pressure difference across the floor, and thereby prevent radon from entering the 

house. It also increases the ventilation rate, giving a dilution effect. However it is not as 

effective as a sump, and causes unwelcome drafts in many homes, so is not widely used. 

More information is given in [Stephen 95] . 

v) Ventilation 

If the radon level in a house is not particularly high it may be possible to reduce it to an 

acceptable level by increasing or controlling the ventilation within the house. This may be 

appropriate where a house has inadequate ventilation, or a chimney which is no longer 

used. However it is rarely possible to achieve much by this method, although it has the 

benefit of being cheap. 

Neither of the house ventilation options iv) or v) will be discussed further in this work. 

Landfill gas 

Sources of landfill gas 

As the name implies landfill gas is gas produced in a landfill site, loosely defined as any 

hole which has been (re-)filled with waste of some type. If the waste contains significant 

organic matter of any type, then the breakdown of that material will produce the mixture 

of gases known as landfill gas. 

The principal components of landfill gas are air, methane and carbon dioxide, in 

proportions which vary from 100% to 0% air and 0% to 50% or more of methane and 

carbon dioxide. 

There are a many landfill sites in the UK, and many of the older ones were poorly set up. 

This means they may have little or no provision for protecting against the presence of 

gas; indeed the content of the waste and even the location of the site may not be known. 

Modem sites are better controlled, and generally protected against gas migration. Some 
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sites collect gas deliberately and bum the methane off, sometimes to generate electricity. 

The bio-chemistry of the production of landfill gas is beyond the scope of this work, but 
has been discussed widely elsewhere. 

Measuring and typical levels 

There are several techniques for measuring landfill gases, including infra-red detectors, 
flame ionisation (combustible gases only) and gas chromatography. The techniques are 
not relevant to this work. 

Concentrations are best expressed as concentrations by volume, for example 3 ppm 
means that of every million molecules, three will be of the chosen gas. In this way the 
weight of the gas is not important. Sometimes methane levels are given as %LEL, 
meaning percentage of the Lower Explosive Limit. Methane can explode above 5% by 
volume, so 50% LEL means 2.5% by volume. Whenever used in this work the 
percentage by volume will be used. 

Levels of carbon dioxide are more complex because it is produced by people and by 
combustion. Levels up to 1000 ppm indoors are not unusual, and 'clean' outdoor air 
generally has around 300 ppm. 

Effects of landfill gas 

The two main constituents of landfill gas which affect people are methane and carbon 
dioxide. There may be other gases in the mixture due to contamination of the waste on 
the site but they are harder to quantify and less commonly observed. 

Because of the explosive limit given above, a concentration anywhere in the building of 
1 % by volume of methane is often used as a trigger level to evacuate a building. There 
have been a few occasions when explosions have been linked to landfill sites, of which 
the best known was at Loscoe [Derbyshire CC]. 
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Carbon dioxide is held to be an indication of poor air quality above 1000 ppm. In the UK 
the Health and Safety Executive (HSE) exposure limit for 8 hours is 5000 ppm, whilst 

the limit for a 10 minute exposure is 15,000 ppm. Levels above this cause nausea and can 

cause death [Edwards 89]. 

The presence of these gases has become more common as a result of ever increasing 

pressure on building land. Buildings have been constructed near to and even on top of 

old landfill sites, and this trend is likely to continue in the future. 

Remedial action for landfill gas 

The measures discussed for radon all apply in principle to landfill gas. However the main 

measure used has been to prevent the building of houses on landfill sites, thereby 

removing the need for protective measures. If a non domestic building is necessary on a 

landfill site there are guidelines for protecting it [Hartless 91], which as with the radon 

case form a part of the Building Regulations. 

Because of the danger of explosion with landfill gas a feature of protective measures is 

an alarm system to alert the building operators to the presence of gas. The presence of a 

skilled building manager is one of the reasons why larger buildings are allowed on a site, 

when housing would not be. 

The focus of modelling studies specific to landfill gas has been more fundamental than 

for radon. I have looked more at the processes driving the flow than the details of gas 

entry to buildings or how remedial measures work. This reflects the less advanced state 

of the subject area. 

Outline of the work in this thesis 

The requirement on the Building Research Establishment has been to produce practical, 

successful and cost effective solutions to the problems of soil gases. This thesis reports 

on much of the modelling work carried out to provide understanding of the processes 

going on in soil gas flows. Where possible this is related to experiments carried out either 
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in the laboratory or on site. Although all of the themes are linked, the work is divided up 

into three parts, covering natural driven flows, fan driven flows and ti.me variation. 

Part 1: Flow under natural driving forces in steady state 

In the part covering natural driven flows the processes causing the entry of soil gases 

into houses are discussed. Then in order to understand these better the equation 

governing the pressure field in the soil - Laplace's Equation - has been studied. A series 

of solutions to problems which become closer to the 'real' situation of a house are 

considered. In order to see how well these relate to real flows they are compared to an 

experiment carried out on a BRE test hut, which shows that the theory gives a good 

estimate of the real flow. 

The solutions were analytical solutions which provide a result for a useful but restricted 

geometry. To give a general solution a numerical method is needed, and in the later part 

of the natural flow part this is discussed. The numerical model was developed from one 

used at LBL in the USA. It has the benefit of allowing the radon concentration equation 

to be solved as well as the pressure equation, which is useful in some circumstances. The 

radon equation can only be solved exactly in very restricted circumstances. 

Part 2: The effect of high pressure extraction on soil gas flow 

As described earlier, the most effective remedial measure for radon involves the use of a 

fan to extract air from below a floor slab. This results in higher pressures than can occur 

naturally. My early work at BRE used the numerical model developed in Part 1 to study 

this process, and this starts Part 2. It gave insight into how these 'sumps' work, so was 

useful at the time. 

Subsequent work elsewhere [Bonnefous 92-1] has shown that it is necessary to consider 

the effect of the higher speed flow on the pressure field. This complicates the solution 

process because the equation relating pressure change to velocity is then non-linear. This 

was considered by using data collected from a series of tests of 'pressure extension'. 

These consist of measuring the pressure field generated by sucking from below a floor 
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slab. The suction can be provided by a normal sump fan, or a vacuum cleaner attached as 

a temporary measure. 

Part 3: Time dependent effects on soil gas flow 

Although in some circumstances it is possible to neglect the changes in a system which 

occur with time, it is necessary to check whether this is the case. There are a number of 

time dependent effects, and these need to be considered when investigating soil gas 

movement. Some examples are given in the table below, along with their approximate 

timescale: 

Cause Timescale 

Atmospheric pressure changes hours 

Wind fluctuations seconds 

Atmospheric tides 1 2 hours 

Moisture level in landfill site days 

Biological change in landfill site months to years 

Change in water table days to months 

Plant cover months 

Indoor temperature 24 hours and seasonal 

Human behaviour minutes to days to years 

Table 1: Influences on soil gas which can vary with time 

These can all effect soil gas to some extent, and it is not practical to address all of them. 

In this work the atmospheric pressure is the main subject considered, since it has a direct 

effect on the amount of gas which emerges from a landfill site. The levels of radon found 

in houses also vary with time, but the interactions are much more complicated than those 

needed to understand the main effects on a landfill site. The processes involved are 

investigated with a mixture of analytical and numerical models, and these are compared 

with data from BRE experiments. 
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Chapter 1: Introduction to natural forces 

In order to understand how soil gases enter buildings, the driving forces for this flow 

have to be understood. There are two processes for soil gas movement, namely diffusion 

and pressure driven flow. It is necessary to consider both, although in many cases one 

will dominate and the other can be neglected. 

The flow due to diffusion occurs because of the difference in concentration between the 

gas in the air inside the house and the gas in the soil. Fluids always diffuse down a 

concentration gradient, and so there is a gradual movement of gas from soil to air. In 

early radon modelling work it was thought that this process would explain indoor radon 

levels [Dim by low 85]. However other work [Nazaroff 87] has shown that under most 

conditions diffusion alone is not enough to achieve the levels found in houses. 

The second flow process is pressure driven or advective flow. If there is a pressure 

difference then soil gas will be transported by it, with the flow directed from high to low 

pressure. There are a number of possible causes of this pressure difference, all of which 

can be significant. 

In a normal UK house the pressure inside is slightly less than that outside, because of the 

combined effect of the wind and temperature differences between outside and in. The 

wind causes positive pressures on the windward side of the house, and negative 

pressures on the leeward side. Usually the negative part covers a larger area than the 

positive, and this results in a negative pressure indoors. 

Wind 

+ve -ve 

Figure 1 .1 :  The effect of the wind 
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The temperature effect is generally called the stack effect, and gives a pressure difference 

due to the different weights of two columns of air at different temperatures. When the 

indoor air is warmer than the outdoor air this results in the indoor floor level pressure 

being lower than the outdoor, floor level pressure. Air enters through the bottom half of 

the house (including the floor) and leaves through the top (including the roof) . 

Tout Tin Tout 

Air flow 

Figure 1.2: The stack effect 

The effect of these two mechanisms is to give an indoor pressure at floor level which is 

nearly always slightly less than that outside. Using a ventilation model, for example 

BREVENT [Cripps 92] , or by direct measurement it is found that this pressure 

difference is usually less than 5 Pa, and typically only 1 Pa. However it is still able to 

generate a significant flow rate. This natural driven flow is the subject of this chapter. 

There are three other mechanisms for driving the flow. One is the presence of a 

mechanical ventilation system in the house, which can enhance or reduce the natural 

pressure driven flow. The second is a permanent driving force due to the production of 

soil gas in the soil. This applies to landfill gas when a building is built on top of a landfill 

site, or near to an unprotected site. This is beyond the scope of the present work. The 

third process is caused by changes in atmospheric pressure. This is discussed in the 

chapter on time dependent effects. 
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Timber Floors 

Timber is the dominant flooring material in the UK, with over 90% of homes having 

some part of the floor as suspended timber. This type of flooring consists of a timber 

floor suspended on joists above a small air gap, of 10 to 50 cm depth. This space should 

be ventilated using 'airbricks' (bricks with holes in them, or preformed plastic 

equivalents), but isn't in all cases. This space is known as the (subfloor) void. In some 

houses there is an oversite layer of concrete on top of the soil below the air of the void, 

but this is often of poor quality, and so does not greatly affect the flow of gas. In other 

cases, particularly in older houses there is no covering over the soil at all, and air can 

pass freely from the soil into the void. Figure 1 .3 below shows the main elements of the 

construction. 

Living space 

Air bricks Soil 
Figure 1.3: Diagram of suspended timber floor 

As a result of the use of timber there is an easy entry path for radon through the soil, into 

the void and through the many cracks in the timber floor. The methods used in the UK to 

remediate these houses are discussed in detail elsewhere [Welsh 94], [Welsh 93] , but 

mainly involve improving the ventilation of the void. 
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Outline of this part 

In this part the equations which describe the flow of gas into the void below a floor are 

discussed, and analytical solutions found for them under a number of different 

conditions. These conditions produce problems which are gradually more difficult to 

solve, but are also closer to reality. 

The analytical result is then compared with the results from an experiment on flow into a 

void, and also with results derived by other workers. 
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Chapter 2: Theory and Literature review 

Pressure field equation 

The key equation used is Darcy's Law given by 

Q 
= _!5.__ 

A 
. dP 

µ dx or -!5... A ."VP in 3 dimensions 
µ 

where 

Q is the flow rate (m3s·1 ) ,  
k is the permeability of the soil (m2 ) ,  
µis the viscosity of the fluid flowing (Pa.s), 
A is the area of flow (m2 ) ,  
P is the excess pressure of  the fluid compared to ambient (Pa) , 
x is the length over which flow occurs (m) . 

(2.1) 

Darcy developed this result from experiments in the 1850's. It has been widely used and 

investigated, and there are theoretical derivations available, eg [Bear 72]. It can be 

combined. with the continuity equation, where v is the velocity of flow, defined as 

'1.v = 0 (2.2) 

to give Laplace's Equation [Mowris 86] 

'12P = 0 = (fp + a2p 
ax2 ay2 

in two dimensions. (2.3) 

This equation describes the pressure field within a region of soil. If it can be solved, then 

the flow rate can be found from Darcy's Law. It is worth noting that there is some 

variation in the way that the terms permeability and Darcy's Law are used in different 

sciences. In particular in studies of liquid flows in porous media a different definition of 

permeability is often used, with units of mis. Hence it is important to check which form 

of the equation is being used; most work on soil gas has used the form given here. 

Hence Laplace's Equation is used to model the pressure in soil wherever the Darcy Law 

for gas flow is valid. This is a fortunate result, since there has been much work done on 

solving Laplace's equation in a wide range of geometries, as it appears in many different 

fields of science. 
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Work at Lawrence Berkeley Laboratory has shown that soil gas flow is not always 

described by a linear equation, [Bonnefous 92-1 ] .  However this generally happens when 

there is a sub-slab ventilation system being used (or radon sump in the UK), and gas flow 

velocities become high, of order 0. 1 ms·1 or more. The problems considered here have 

velocities of order 10-4 ms·1, so the Darcy Law remains valid. The cases when non-Darcy 

flow occurs are considered in Part 2 of this thesis on high pressure flows. 

Radon concentration equation 

It is sometimes sufficient just to calculate the flow rate of soil gas into a building. This is 

because from the flow rate a prediction of a likely radon entry rate can be made, by 

assuming the soil radon concentration. The worst case assumption is that the deep soil 

radon concentration applies at all levels. 

However for more detailed work, or if the effect of diffusion is important, then a full 

equation for the radon concentration is needed. This needs to be solved after the 

pressure field equation, since it depends on the flow of soil gas. 

There are 4 components to the radon concentration equation: a diffusion term, an 

advection (or pressure driven flow) term, a creation term and a radioactive decay term. 

The Diffusion Equation is written in one dimension as 

ac D a1c 
- ----

at E az2 
where 

C is the concentration of gas (Bqm·3 for radon), 
t is the time (s), 
D is the diffusion coefficient of radon in air (m2/s), 

E is the porosity of the soil () and 
z is distance in the soil (m). 

(2.4) 

Combining this with the advection, creation (cf>, mol m·3 s·1) and decay (A., s·1) terms 

gives an equation for radon transport, stated by [Clements 74], [Loureiro 87] and many 

others as 
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ac D a2C _ .!_ a(vC) _ 'AC + <f> . 
at = �- az2 E . az 

(2.5) 

Solving this, and then using the result to calculate the flux of radon allows the calculation 

of radon entry rate into a building, and hence an estimate can be made of the likely 

indoor radon levels. 

Brief review of modelling work into radon flows 

Gadgil [Gadgil 91- 1 ]  has written a review of radon entry models, covering modelling 

work of all types up to 199 1 .  

Pre-dating the work on modelling how buildings are affected by radon there was work 

on radon movement in soil. This dates back to the discovery of radon. Schroeder et al 

[Schroeder 65] measured the radon diffusion coefficients of different soils. 

In looking at the effect of atmospheric pressure on the flow of radon out of the ground 

Clements [Clements 74] had already used the full radon concentration equation (2.5). His 

work was mostly in one dimension, and considered the time dependent effects of changes 

in atmospheric pressure. This is considered again in Part 3. 

Schery et al at New Mexico Inst of Mining [Schery 88] studied the way in which radon 

moved through soils, and how cracks affect this in particular. This is a major subject in 

its own right and not covered in this thesis. 

In early work it was thought that diffusion would dominate the entry of radon into 

buildings, so the pressure driven component was ignored. Work in the USA [Landman 

82], and at the NRPB [Dimbylow 85] produced the likely entry rates due to diffusion. 

However the conclusion coming from this work was that under most condition diffusion 

alone could not provide enough radon entry to produce the radon levels observed in 

buildings. 

This result was supported by important experimental work at LBL by Nazaroff et al 

[Nazaroff 87], who investigated the rate of entry into the basements of houses. They 
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measured the pressure differences across the basement floor, the pressure field in the 

surrounding soil, and the ventilation rate (using tracer gases). They concluded that the 

pressure driven flows are the main component of radon entry, and that increasing 

depressurisation of a basement will increase radon levels, in spite of increasing the 

ventilation rate. 

Landman and Cohen [Landman 83] looked at the flow through a crack with diffusion 

enhanced by pressure driven flow. They used an analytical method using line sources. 

Landman and Delsante [Landman 86] also worked on heat flow, but as the equations are 

the same as those used for Darcy driven flow, the results can be transferred to gas flow. 

This is discussed further in Chapter 8, as they worked on a similar problem to those 

tackled in this work. 

Dimbylow [Dimbylow 87] extended his previous work by looking at pressure driven 

flow, solving this first with a finite difference scheme, and then solving the radon 

equation afterwards. He predicted a considerable increase in radon entry compared to 

that due to diffusion alone, with an increase of up to a factor of 15 .  

Scott [Scott 93] has done work on the entry of radon, and the effectiveness of different 

remedial measures. He used a range of different techniques to compare these, but 

favoured simpler approximate models to the more involved computational techniques. 

The largest amount of modelling work in this area has been done at Lawrence Berkeley 

Laboratory (LBL) in the USA. The first step was by Mowris [Mowris 86] or [Mowris 

87], who used both simplified analytical solution and a finite difference model of the 

pressure flow of soil gas into a building. He investigated the importance of pressure 

difference, soil permeability and crack width on the entry of soil gas, but did not model 

the radon concentrations. It is his model of soil gas that the BRE work developed from. 

The next work at LBL was by Loureiro [Loureiro 87] , who took the next step of 

modelling both pressure driven flow and the full radon concentration equation. He did 

this in 3D, an improvement on the 2D models used previously, but with greater 

computing needs. His is a very thorough study of the impact of soil and crack 
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characteristics on radon entry rate. One particular prediction was that the entry rate of 

soil-gas increases linearly with permeability, until the width of the crack in the floor slab 

is restricting the entry rate . However the radon entry rate was predicted to be less 

dependent on soil permeability for permeabilities less than about 10·12 (m2), because 

diffusion then dominates. 

Developing from the work by Loureiro the next step was to consider the effect of non

linear effects on the pressure field. When radon sumps, or sub-slab depressurisation 

systems, are used then the pressures present are much larger than those caused by natural 

effects. Bonnefous studied this extensively, and developed a model to include this non

Darcy flow. Papers covering this include [Bonnefous 92- 1 ]  and [Bonnefous 92-2] which 

consider the effectiveness of radon sumps, and [Bonnefous 93] and [Gadgil 91-2] which 

consider the impact of a subslab layer of permeable aggregate on radon entry and the 

effectiveness of radon sumps. It is a significant finding of this work that in the absence of 

a radon sump, adding a high permeability layer will probably increase radon entry. This 

material is considered further in the High Pressure Flow part. 

Gee, Holford and Owczarski and others at Pacific Northwest Laboratory developed a 

three dimensional finite element computer code, Rn3D, to look at transport of radon in 

soil and into structures. There are a number of reports on this work, including [Holford 

88] and [Owczarski 89] , but I have not studied them in detail. 

Blue et al [Blue 90) used a simplified analytical model to try to explain the weakness in 

the correlation between soil gas radon and indoor radon levels. They chose to consider 

diffusion in the soil, but pressure driven flow into the building, giving some insight into 

the levels observed in homes. 

Mosley at the US Environmental Protection Agency (BP A) has carried out a number of 

modelling studies, and experiments in support of them, [Mosley 95). 

Another large amount of work on radon modelling has been carried by Nic-lson and 

Rogers, and others from Rogers and Associates Engineering Corporation. A summary 

paper [Nielson 94] gives a good overview of their work, and the outputs it has produced 
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including the RAETRAD computer model. They used a two dimensional finite difference 

technique to model the movement of gas in soil and into dwellings. In order to account 

for the three dimensional aspects of flow they used an elliptical-cylindrical geometry to 

represent rectangular buildings.
_ 
This is an improvement on two dimensional modelling, 

but doesn' t  model the comers correctly. They compared the predictions of their model 

with a large number of measurements of radon levels in dwellings where the soil 

characteristics were also measured. The correlation is generally good. 

As a development from the RAETRAD model they used sensitivity analyses to generate 

a lumped parameter model [Nielson 93] which included the results from the full model 

into a simplified form. It allows the likely indoor radon level to be estimated quickly 

from soil and building data. This work was used to support the development of the 

Building Code for Florida where, because of high water tables, they tend not to have 

basements as in other parts of the USA 

In Canada Yuill and Wray, [Yuill 9 1] ,  [Wray 9 1] used a computer model, CONAIR, to 

look at the effectiveness of sump systems. The model accounted for time changes in the 

weather, particularly through the wind speed. They found that whilst sub-slab 

depressurisation of the soil below a building produced considerable reductions in radon, 

in the Canadian climate it could well result in problems of freezing soil or back

draughting of boilers. They used their model together with experiments on the 

airtightness of the floor slabs to advise builders how to remediate more effectively. 

Another type of modelling involves looking at statistical data for radon levels indoors 

and investigating the soil and building factors which cause them. This is beyond the 

scope of this thesis, but is covered by Gunby et al [Gunby 93] from the UK, and others. 

Moving to Europe, the earliest work on radon was carried out in Finland and Sweden. 

Arvela and Winqvist at the Finnish Centre for Radiation and Nuclear Safety considered 

the effect of changing ventilation rates on radon levels [Arvela 86], but without 

modelling the soil. Much progress was made in Sweden on remedial measures and 

measurements, [Clavensjo 84] and others, but I am not aware of much modelling of the 

entry of gas into buildings until recent work by Hubbard at the Swedish Radiation 
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Protection Institute (SSI) ,  discussed in the Time dependent part. 

The main areas of modelling work carried out in Europe were supported by an EC 

contract, and involved work in Denmark, Sweden, the Netherlands and Belgium. The 

contract was co-ordinated by Miles at the UK National Radiological Protection Board 

(NRPB), whose work on radon mapping is beyond the scope of this thesis. 

Anderson at Riso National Laboratory, Denmark spent a year at LBL, and so was able to 

develop from the work which they did there. His work, [Anderson 92] , [Anderson 93] 

and [Anderson 94] reports on comparisons of a two dimensional model with the 

experimental results from a test basement structure at Riso. The model displays the 

correct qualitative results , but as with most other modelling work there remain problems 

in getting quantitative agreement between a model and 'real' results. 

Some of this work was carried out with Hubbard and others at SSI at Sweden. She has 

been looking at time variations in indoor and soil gas radon concentrations, with a view 

to improving the use of short term measurements. [Hubbard 95]. 

In Belgium, Cohilis and others at the Belgian Building Research Institute (CSTC) used 

an existing finite element thermal model to look at the movement of gas into a dwelling, 

[Cohilis 91] .  It is a promising approach, provided the Darcy Law is valid. They put more 

effort into modelling the movement of radon once it has entered the building [Cohilis 

92], [Ducarme 94] . This is an interesting area, but not within the scope of this thesis. 

Last in this review a significant amount of modelling work has been carried out at a 

Dutch Research laboratory called KVL De Meijer, van der Graaf and others have made 

comparisons between modelling results and data from a test cell [van der Graaf 9 1 ,  93-1 ,  

93-2] . The idea is similar to that used by Mosley at EPA, in trying to understand fully a 

simplified situation before moving on to a more complex solution. They used a mixture 

of approximate analytical solutions and computational solutions [van der Spoel 93, 94], 

[van der Graaf 93- 3, 93-4] , and generally found good agreements with their 

experimental results. The modelling techniques used included Laplace Transforms, as 

used in this work. 
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Chapter 3: Sloping step problem 

The problem solved in this chapter is a fairly straightforward solution to Laplace's 

Equation which is relevant to the more advanced problems considered later. Because the 

mathematics is fairly standard the solution is given with little derivation. 

The problem represents a simple two dimensional building, with a fixed pressure inside 

and out, and a linear change in pressure across the walls. The parameters n and m are 

used to allow a general solution to be found. It is defined by the following pressure 

distribution on y=O, also shown as figure 3 . 1 .  

lxl > n, P(x,0) = 0 

m < lxl < n P(x,0) = n - lxl 

lxl < m P(x,0) = n - m 

0 
-n -m 

Pressure 

0 

Figure 3. 1:  Pressure distribution on y=O for solution 1 

m n x axis 

The value of m represents the distance from the centre of the house to the inside edge of 

the wall, while n is the length to the outer edge of the wall. Using a Laplace transform 

method the solution is found to be 

itP(x,y) � ( (n±x) . tan- •( n;) )  - ( ; . ln(y 2 + (n±x)2)) 
- ( (m±x) . tlln '( m;) )  - ( � . Jn(y 2 + (m±x)')) 
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Each of the four braced terms are to be repeated with plus and then minus, giving eight 

terms in all. This result for the pressure field is plotted in figure 3.2, with the factors m 

and n equal to 2 and 3 respectively, and the pressures normalised. This shows that the 

boundary conditions have been satisfied correctly, with a linear pressure change between 

m and n on the x axis. 

6.001------''---�---'----_._ _____ __._ ___ _._ __ �_._ __ 

·o �. Q ;z, 

0.00 1 .00 2.00 3.00 4.00 5.00 

Figure 3.2: Pressure contours for solution 1 

Flow rate for solution 1 

� ci 

()' ()-;. 

6.00 

By differentiating (3 . 1 )  to give dP/dx, and then integrating this in Darcy's Law (2. 1)  with 

respect to x from -m to +m, gives the flow rate, Q, as 

2kP 
Q = 

0 . [(n +m).ln(n+m) - (n-m).ln(n-m) - 2m.ln(2m)] 
(n-m)nµ 

(3 .2) 

Here the indoor pressure is set to P0, and the factor (n-m) is needed to account for this. 

Note that the flow is predicted to be linearly related to the indoor pressure, the 

permeability of the soil and a factor relating to the shape of the building. 

This flow result is the same as that produced by Landman and Delsante [Landman 86] 
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but via an alternative method involving Fourier series. They gave their result in terms of 

different parameters, but they are exactly the same. Note that in the limit m tends to n, 

the first and third terms in the square bracket cancel and the second term simplifies to 

ln(n-m). This predicts an infinite flow rate, as can be found for the simpler 'Top Hat' 

problem. 

The problem presented here corresponds to an assumed pressure distribution. The 

pressure is unlikely to fall off exactly linearly across a wall, but avoiding any error 

involved in this requires considerably more effort, as discussed in the next section. The 

solution found in this section can be compared with that in the next section, or used to 

estimate the flows in a similar physical situation, if the permeability of the soil is known. 
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Chapter 4: Analytic solution to pressure field for a mixed boundary value problem 

Introduction 

A mixed boundary value problem is one where the type of boundary changes from fixed 

pressure to fixed flow rate (or pressure gradient). In particular in moving from open air 

to a solid wall we move from a pressure boundary to a no-flow boundary. This can be 

solved numerically, although the detail of the result near the change-over point can be 

difficult. 

Here the problem is tackled analytically. It cannot be evaluated easily because the 

solution consists of integrals which have to be found numerically. However it has been 

possible to calculate the flow rate into the 'house' in a fairly simple way, and this result 

will prove useful. 

The problem is a development from that in the previous chapter. Here no assumption is 

made about the pressure change across the wall of the house. The only assumption is of 

no flow vertically into the base of a wall. Although walls built with no footings are no 

longer allowed within building regulations, there are many houses built in the past which 

were built without foundations. Hence the problem has some validity in its own right. In 

addition it can be extended to a more general case with the technique discussed in the 

following chapter. Some of this material was published in [Cripps 93-2] , but this chapter 

gives a more complete description of the study. 

The bare soil house 

From chapter 2 we assume we are trying to solve Laplace's Equation 

azp azp - + - = 0  
ax 2 ay 2 

(4. 1)  

in the half plane y < O.The boundary conditions come from considering the problem: 
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Outside 

P = O  

Soil 

Inside 

P =  Po 

Figure 4. 1 :  Schematic diagram of 'house '  

This house is then modelled by assuming some behaviour on the surface, defined as y=O. 

The conditions on y=O are shown on figure 4.2 below. This represents the soil surface, 

P=O, no flow within solid walls, aPtay = 0, and a fixed pressure inside a house, P=Po. 

This gives a good representation of the position in a house built with a timber floor with 

no concrete oversite, and the huts on the BRE radon pit. 

P = o aP!ay = o 

-m -1 

P = Po 

0 

Figure 4.2: The pressure field problem 

aP!ay = o P = o 

m 
x axis 

In the method used the pressure problem is then represented using a complex variable 

form. Let w(z) be a function of the complex variable z = x + iy. Then w(z) can be written 

w(z) = U(x,y) + i. V(x,y). (4.2) 

The use of a function of a complex variable is useful because of the fact that any function 

of a complex variable automatically satisfies Laplace's Equation. This means that the 

problem here is to find a solution which matches the boundary conditions. The Cauchy 

Riemann Equations state that 

au av 
ax ay 

and 

au 
ay 

= av 
ax 

(4.3) 

(4.4) 
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Using these and the boundary conditions on the P problem in figure 4.2 allows us to 

define the boundary conditions on the related problem in w(z) as in figure 4.3 below. 

V =  0 U = -B V =  Po U = B  V =  0 

I I I I L' k--L" L' L" x axis 
-m - 1  0 1 m 

Figure 4.3: Boundary conditions on the w problem 

Here B is a constant to be determined. The boundary of the w region is called L. A part 

of the boundary where the real part is defined is labelled L', while those where the 

imaginary part are defined are labelled L". Note that since V is an even function of x, 

from the Cauchy-Riemann equations (4.3 and 4.4) U must be odd, hence the choice of 

±B for the L" regions. Finding the constant B is a main part of the solution to the 

problem. The constant B is also important in finding the flow rate into the house. 

So if we can solve for w we then take the imaginary part, which will give the pressure 

field V(x,y). The U part of the solution tells us about the pressure gradients. 

Now [Muskhelishvili 46] gives the solution to this type of problem as, p. 28 1 

w(z) = J_ 
1ti 

( (z-a1)(z-CZi)) J (z-b1)(z-b;) L 
( (t -b1)(t-b;)) h(t)dt + C. I ( (z-a1)(z -fLi) l 

(t-a1)(t-CZi) t-z � (z-b1)(z-b2) 

where 

C is an arbitrary real constant to be determined, 

h(t) is given by the condition on w on the boundary L (i.e. y=O), 

the points � are where a boundary of type L" changes to one of type L', 

the points bj have the opposite change, L' to L" . 

(4.5) 

For this problem the a1 , � have values -m and +1 , and b1 ,  b2 terms -1 and +m. Inserting 

these in ( 4.5) defines the solution to the problem. However the value of h(t) has to be 

inserted into the expression, and this results in 5 different terms to the result, because 

there are 5 different regions to be considered. However for two of these it is zero so they 
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make no contribution. 

h(t) is defined as follows: 

t < -m h(t) = 0, 

-m < t < - 1  h(t) = -B, 

-1 < t < + l h(t) = i.P0• 

+1 < t  < +m h(t) = +B, 

t > +m h(t) = 0. 

The other problem to consider at this stage is the argument of expressions containing t 

within the root sign in the integral. As the value of t changes the expression in the root 

changes sign, and hence the argument of the root of it needs to be considered separately. 

The arguments are defined as follows: 

x=-m x=- 1 x=l x=m 

arg t+m = TI  arg t+m = 0 arg t+m = 0  arg t+m = 0 arg t+m = 0  
arg t+l = TI  arg t+l = TI  arg t+l = 0 arg t+l = 0 arg t+l = 0 
arg t- 1 = rr  arg t-l = rr  arg t- 1 = rr arg t- 1 = 0 arg t- 1 = 0  
arg t-m = TI  arg t-m = TI  arg t-m = TI  arg t-m = rr arg t-m = 0 

Figure 4.4: Arguments of expressions in t 

Using these allows the correct calculation of the root terms in equation (4.5). That the 

solution defined above meets the boundary condition can be checked by calculating the 

values on the boundary by examining the terms in ( 4.5). Some care needs to be taken in 

treating the principal values of integrals where the integrands diverge at some point on 

the boundary. The solution does match the condition, but the confirmation of this is too 

long to reproduce here. 
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Finding the constants B and C 

The next step is to find the constants B and C, using the fact that the expressions for w 

must be finite. Concentrating on the x axis , where the boundary is defined, we re-write 

equation (4.5) in terms of x instead of z, and substitute for the a and b terms, with 

irn z ---+ O+ in the integrand. Under this limiting process, (4.6) yields a principal value 

integral and a term from the pole at t=z which does not contribute to (4.7). Hence 

w(x) = _
1 
Tii 

( (x+m)(x- 1 )  l [ +Jm 
(x+ l )(x-m) -m ( (t+ l )(t-m.) J h(t)dt + iCTI] . 

(t+m)(t- 1 ) t-x 
(4.6) 

From equation ( 4.6) at x = m,  or at x = - 1 the outer factor goes to infinity, so the inner 
terms must also total zero or w will diverge. Hence at x=m, expanding (4.6) into the 3 
parts, including the effect of the arguments of t, which produces an i term for each part 
which all cancel 

- 1  
0 = J -m 

Similarly at x = - 1  
- 1  

0= J 
-m 

( ( - 1 -t) (m-t) l -Bdt + J+i 
(t+m)( l -t) t-m - 1  

( (t+ l )(m-t) l P0dt + 
(t+m)( l  -t) t-m 

+m 

J +1 

( (t+ l )(m-t) l Bdt + CTI . 
(t+m)(t- 1 )  t-m 

( ( - 1 -t)(m -t) ] -Bdt + J+l (t+m)( I -t) t+ 1 -1 

( (t+ l ) (m-t) l P0 dt + 
(t+m)( l  -t) t+ 1 

+m J 
+ 1  

( (t+ l)(m-t) ] Bdt + CTI . 
(t+m)(t- l ) t+ 1 

(4.7) 

(4. 8) 

By subtracting (4.8) from (4.7) to remove the C term, an expression for B can be found. 

After some rearrangement it is given by 

, 
dt 

B = -Po · m (4.9) 

Using this expression within equation (4.7) or (4.8) leads to the simple result for C 

c = 0 . (4. 10) 
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The result for B is defined by two elliptical integrals. These are given in tables, or can be 

found numerically. Some values for B for different values of the parameter m are given 

below. For values of m near to 1 ,  or large values of m an approximate result can be 

found for B. These are given in Appendix A to this part. 

m B I  P0 

1 . 1  1 .41  

1 .2 1 .20 

1 . 5  0.95 

2.0 0.78 

Table 4. 1 :  Values of BIP0for different values ofm 

Complete expression for the solution 

Hence combining the previous results the full result is 

w(z) = _!_ � ( (z+m)(z-1 )) 
ni (z+ l)(z-m) 

[ l  ( ( - l -t)(m -t) ) -Bdt + J (t-+m)(I -t) t -z -! 

Using the result 

( (t+ l)(m-t)) Padt 
+ 

(t+m)(l -t) t-z 

(4. 1 1) 
+m ( (I+ l)(m-1) ) Bdt l 

· f (t+m)(t- 1 )  t -z +I 

In order to evaluate the result from equation (4. 1 1) and the definition of B a program 

was needed to calculate the integrals numerically. This required careful handling of the 

regions near to the changes between types of boundary condition, since at these points 

the terms involved become large. 

This method was used to produce the plots shown in figures 4.5, 4.6 and 4.7. These give 

a result which meets the boundary conditions, and appear reasonable. 

In figures 4.5 and 4.6 the parameter m had value 2. This is an unrealistic situation, since 
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it implies walls half the width of the space they enclose. However it shows the boundary 

conditions better than an example with smaller m. 

In figure 4.5 the whole region is shown as a pressure contour plot. The flow of gas 

would be perpendicular to the pressure contours at all points , with the rate proportional 

to the pressure gradient or inversely proportional to the separation of the lines. This can 

be thought of as a marble rolling down a hill. In this plot the main pressure boundary 

conditions are seen to be met correctly. 
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Figure 4.5: Pressure contours when m=2 
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Figure 4.6: Pressure contours when m=2: enlargement of 'wall' region 

40 



Figure 4.6 is a close up of the right hand wall of figure 4.5 .  This shows the pressure 

contours meeting the y=O line perpendicular to it. Hence because no flow occurs along 

pressure contours , no flow occurs across y=O between x=l and x=2 as required by the 

boundary conditions. Note that the kinks in the lines are due to not calculating enough 

data points for all regions, rather than representing any strange behaviour. 

The non 'straight line' pressure drop between x=l and x=2 is the main difference 

between this result and the one found earlier in chapter 3 .  There the pressure drop across 

the wall was forced to be linear, but this implied flow within the wall, which may or may 

not be valid. 

Figure 4. 7 shows the situation when m = 1 . 1 .  This means the walls are one tenth of the 

width of the room, which is more realistic than the previous result. The pressure 

contours are squeezed closer together at the walls, which means faster flow in those 

regions. 
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Figure 4. 7: Pressure contours when m=l . 1  

Flow produced by the pressure distribution 

A key result is the flow rate into a house produced by a given pressure distribution. This 

is given, assuming linear i.e. Darcy flow, by the integral of the pressure gradient between 

the two walls. This gives the result for the flow as 
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flow 
+] 

= J - k aP 
-
µ · -a lro · dx 

- 1  y 

+] f_ k  av -µ . �a ' y=O · dx . 
- I  y 

From the Cauchy Riemann equations (4.3 and 4.4) this is then equal to 

+l 
flow = f _! . au I 

- 1 µ ax y=O . 
dx . 

(4. 12) 

(4. 13) 

But this is easily evaluated, since U is known at - 1  and 1 as B and -B respectively. 

Hence the flow rate is simply given by 

2Bk 
flow = --

µ 
(4. 14) 

Here the flow is given in m3/s per metre of wall. Using this and the known values of B 

found earlier we can predict the flow rate expected for different geometries. This is 

returned to later. Note that as for the simpler solution of chapter 3 the solution for the 

flow rate is proportional to the pressure and a function of the geometry, although this 

function is different here. 

42 

" 



Chapter 5: Conformal mapping of the mixed boundary value solution 

Introduction 

Conformal Mapping is a process whereby a solution to a problem found in one 

co-ordinate set is transferred to another co-ordinate set. This gives a solution to a 

problem which we may not have been able to solve in another way, or may be simpler 

than a direct method. It is discussed in most standard maths for degree level scientists 

text books, for example [Boas 83] , or [Arfken 85] .  

Therefore, because we have solved a mixed boundary value problem in the previous 

chapter, we can use that solution to find the solution to another mixed boundary value 

problem by mapping the first onto a different co-ordinate set. The first step was to tackle 

a problem with thin foundation walls extending into the ground. The walls were assumed 

to allow no flow through them, which is a reasonable approximation in permeable soils. 

Then the method was extended to problems where the walls have thickness as well as 

depth. This problem is more general than the first and only slightly more difficult to 

evaluate. However it is easier to make approximations to the flow result in the thin wall 

case. 

The methods used predict both the flow rate caused by the defined pressure distribution 

and the pressure field in the soil. The result for the flow rate is the simpler, and will be 

the most useful. The pressure field description involves numerical integrations, and is 

therefore harder to use. However it will be useful for model inter-comparisons and 

understanding experimental data. 

Because the equation solved, Laplace's Equation, is applicable in other fields, these 

results may be of interest to those working outside of soil gas modelling. Flow of heat is 

the most obvious example, since heat loss through ground floors is very closely 

analogous to these problems. 
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Pressure field for house with bare soil floor and thin footings 

Problem definition 

The mixed boundary configuration of chapter 4 gives the solution to a problem where 

the boundary condition was defined all along the soil surface. It consisted of areas where 

the pressure was set to 0 (outside), areas where no flow could occur (walls) and areas 

where the pressure was set to P0 (inside). The majority of buildings have walls which 

extend down into the ground, so we would like to be able to solve for this type of 

problem as well. As a first step we will look at a thin wall extending down into the 

ground as shown in figure 5. 1 below. 

P = O  

wall 
no flow 

aP/ax = o 

(-d,O) 

2 I 4 

(-d,-c) 
3 

P = Po (d,O) 

5 1 7  

(d ,-c) 
6 

P = O  

wal l 
no flow 

aP/ax = o 

Figure 5. 1:  Diagram for the mapped pressure field problem, the Z(X, Y) plane 

Note that d and c are positive, real numbers. 

8=1 

At first sight the problems described by figures 5 . 1  and 4.2 may not appear very similar. 

However following the path from points 1 to 7 of figure 5. 1 and comparing it to moving 

from left to right across figure 4.2 shows the similarity. First there is region (from 1 to 2 

for figure 5 . 1 )  with fixed pressure 0, then a region (from 2 to 3 to 4) with no flow 

perpendicular to the surface, then a region of fixed pressure P 0 ( 4 to 5), another region of 

no flow (5 to 7) and finally another region of fixed pressure 0 (7 to 8). Points 1 and 8 are 

both taken to be at infinity, and so are essentially the same point. 
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The problem then is to find the transformation that maps points from figure 4.2 onto 

figure 5. 1 ,  so that we can find the pressure field for figure 5 . 1 without further solving of 

the basic equations. 

Unfortunately the transformation is somewhat complicated. The layout we are trying to 

map from is shown as figure 5.2. The points 1 '  to 7 '  on figure 5.2 are the points in the 

z(x,y) plane which will transform to the Z(X,Y) plane as points 1 to 7.  

1 '  2' 3' 4' 5' 6' 7' 8' 

V =  O I U = -B I V =  Po I U = B  I V =  O 

J I I 
-m ->.. -1 0 1 >.. m x axis 

Figure 5.2: Diagram of the plane mapped from, the z(x,y) plane. 

Definition of the transformation 

The mapping used is called the Schwarz-Christoffel transformation [Carrier 66] . It gives 

the transformation which maps a plane onto a closed polygon, if the positions of the 

comers and angles at each comer are known. It is 

z n 
Z(X,Y) = f(z) = a J � (z 1-e)(cx/n)- I  dz 1 + b 

Zo 

where 
a, b and z0 are constants to be determined, but we can choose b = z0 = 0, 

o:j are the angles at the points in the Z plane, 

ej are the positions of the corresponding points in the z plane, 

(5 . 1 ) 

n is the number of points on the x axis, here 7 since points 1 and 8 are the same. 

In this case the angles o:j are rr./2, 2n, n/2, n/2, 2n, n/2 respectively for the points 2 to 7. 

The ei are the points on the Y axis -m, -A., - 1 ,  1 ,  A., m. 

Hence the transformation needed is 
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( z (z !L-'A2)dz ' l Z = f(z) = am 
· I J[(z /2 _ 1 ) . (m 2z 12- 1 )] 

This can usefully be rearranged to 
, 

f(z) = am 2 . 

z tz 
z {<-

2 
- 1 ) 

2 Z I 
J m . dz 1 + ( 1 -�) . J dz 

17 12  2 /2 
o V \Z - 1 )  m o /[(3-- 1). (z 12- 1 )] 

m 2 

(5 .2) 

This expression contains commonly occurring elliptic integrals which have to calculated 
numerically for nearly all values of m and z. The values are found in tables, for example 
[Abramowitz 65], or by numerical integration. Hence (5.2) can be written in a shorter 
form using notation for the elliptic integrals, 

Z = am2 . E(-, z) + ( 1 --) . F(-, z) [ 1 )..2 1 l 
m m 2 m 

where 

F(l/m, z) is the elliptic integral of the first kind, 

E(l/m, z) is the elliptic integral of the second kind. 

Finding the parameters in the transformation 

(5 .3) 

There are then three unknowns remaining, a, /... and m. However there are three points 
where the result of the transformation is known: 

f(I ) = d corresponds to points 5 and 51 

f(}..) = d - ic corresponds to points 6 and 61 

f(m) = d corresponds to points 7 and 71. 

(5.4) 

(5 .5) 

(5.6) 

We could equally well have used the points 2, 3 and 4, but the symmetry used earlier 

means no further information can be gained from that. 

Hence we have a fully defined result, but its use is not straightforward. In order to use 

equation (5.2) the conditions (5.4) to (5.6) need to be used with the full expressions for 
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the integrals from (5 .2) or the shorthand form (5.3). 

Using (5 .4) in (5 .3) we obtain 

1 A2 1 Z = f(l )  = am 2[E(-, 0- 1) + ( 1 --) . F(-, 0- 1)] = d 
m m z m 

where the E and F terms are integrated from 0 to 1 .  Similarly from (5 .5) we have 

1 A2 1 Z = f(A) = am 2[E(-, 0-1..) + ( 1 --) . F(-, 0-1..)] = d - ic 
m m 2 m 

and from (5.6) 

1 ). 2 1 Z = f(m) = am2[E(-, 0-m) + ( 1 --) . F(-, 0-m)] = d .  
m m 2 m 

(5.7) 

(5 . 8) 

(5.9) 

The path of the second (5 .8) and third (5 .9) integrals includes the earlier ones ; for (5.8) 

we can separate out the first part of the path (0 to 1 ), and so look at the second part (1 

to I..) as 

1 1..2 1 f(l ) + am 2[E(-, 1-1..) + ( 1 --) . F(-, 1-1..)] = d - ic . 
m m z m 

But f(l)  = d so (5 . 10) simplifies further to define c in terms of a by 

1 1..2 1 am 2[E(-, 1-1..) + ( 1 --) . F(-, 1-1..)] = -ic . 
m m 2 m 

Similarly from (5.9) we obtain 

1 ). 2 1 f(I..) + am 2[E(-, 1..-m) + (1 --) . F(-, 1..-m)] = d . 
m m 2 m 

But from (5.8), f(A) = d - ic, so that 

1 1..2 1 am 2[E(-, 1..-m) + ( 1 --) . F(-, 1..-m)] = ic . 
m m z m 

(5. 10) 

(5. 1 1) 

(5 . 12) 

(5. 13) 

Comparing the equations (5 . 1 1) and (5. 1 3) indicates that there is a relation between the 

sizes of m and I.. . They are dependent on each other, and so cannot be chosen separately. 

Since for this problem m is of more use I will assume a value of m and find ). from it. 

Either (5. 1 1) or (5. 13) gives a relationship between a and c, while (5.7) or (5.9) relates a 

and d. Hence c can be given in terms of d by dividing (5. 1 1) by (5.7), or whichever form 

is most convenient. In order to choose a pair of values of c and d and find the values of 
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m and .A which correspond to them it is necessary to use an iteration method to find the 

appropriate values of m and .A .  

Finding Afar given m 

Because both (5.7) and (5.9) have d on the right hand side the two integrals are equal. 

But the path of the integral in (5 .9) includes that in (5 .7), so that these simplify to give 

m 2 J z . dz 
A. 2 = ·1 [cz 2-m 2).(z 2 -0]2 

m 

J dz 
i [Cz 2 -m 2) . (z 2 - l )p 

(5. 14) 

These two integrals are standard elliptic integrals whose values can be found in tables, 

e.g. [Abramowitz 1965] . From these it is possible to find the values of the parameters m 

and ).. from c and d. Some values are given below. For certain ranges of values, for 

example m close to 1 or m large, an approximation to the result in (5 . 14) can be used. 

When m is close to 1 the approximate result is 

).. "" 1 + (m- 1 )  
2 

When m is large 

)..2 .,. m 2  
ln(4m) 

An indication of how these can be derived is given in Appendix B .  

m J.. c d a 

3 1 .991 1 1 . 8  0.322 

2 1 .499 1 2.87 0.986 

1 .5 1 .2499 1 4.926 2.654 

1 .2  1 . 1 1 10.969 8 .328 

Table 5.1: Some of the values of the parameters 
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Using The Transformation Formula 

Now we can find all the values we need in the transformation (5.2) we can proceed with 

using it. Hence we can choose any point z in the z(x, y) plane, and (5.2) gives us the 

position of the corresponding point in the Z(X, Y) plane. Since the problems are 

equivalent, we then can say that the pressure at a point Z(X, Y) is the same as that at the 

corresponding point z(x, y). Thus the problem is essentially solved. 

We have the solution for the mixed boundary value problem in the z plane, and used it in 

chapter 4 to evaluate the result at discrete points in an x, y grid. In using the 

transformation (5.2) derived above we find the points in the Z plane to which each point 

in the grid corresponds. This means we do not get a regular grid of points in the Z plane, 

but have enough points to find the overall description of the pressure field. By choosing 

different points in the z plane we can add detail to the most important region in the Z 

plane. 

The integrals in equation (5.2) are difficult because the variable z' is complex. We tackle 

it by integrating along a convenient path, say (0,0) to (x',0), then to (x',y'). this simplifies 

the integrals since dz' is either dy or dx. 

z' = x + i.y 

dz' = dx + i.dy 

Using this gives two separate integrations to be carried out, in the x and y directions. In 

this work the real and imaginary parts of the integrals were separated and calculated 

separately. 

It is important to consider the arguments of the terms within the square roots in the 

terms to be integrated. These are defined as follows 
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Above the cut l ine 

arg ( z2 - 1 }  
arg ( z 2 /m2 - 1 ) 

Be l ow the cut l ine 

arg ( z2 - 1 ) 
arg ( z2 /m2 - 1 }  

= IT I = IT 
1 

= 0 
= IT 

'A 

= IT = IT I : �IT I 
Figure 5.3: The arguments of the complex terms 

= 0 = IT 

= 2IT = IT 

m 

= 0 = 0 

������������> 

= 2IT = 2IT 

x 

In carrying out the integration it is important to be consistent and work either above or 

below the x axis. This choice affects the arguments resulting from the above diagram, 

and hence changes the form of the terms to be integrated. However the result is the same 

in either case, provided the choice is applied consistently. 

In order to carry out the numerical integration the standard Simpson's Rule was used for 

each part of the path required. However the process is not straightforward because the 

terms on the denominator of equation (5.2) tend to zero at certain points, when z' = 1 or 

when z' = m. This does not mean the integral diverges, but it does mean that extra care is 

needed in carrying out the numerical integration. 

The value of the denominator tends to 0, but in such a way that the integral of it is finite. 

In order to evaluate the integral, it is necessary to approach the point in very small steps, 

but without quite reaching it. This is achieved by reducing the step size progressively as 

the point is approached, until the contribution is so small it can be ignored. 

Pressure Field 

A result from the numerical integration of the transformation (5.2) is figure 5.4. We read 

in the result from the mixed boundary value problem or 'flat' problem of Chapter 4. 

Then the values of x and y from that problem are transformed to the equivalent points X 

and Y in the problem with depth, using (5.2). These are then output to a file, along with 
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the corresponding pressure for the point. This information can then be plotted as a 

contour map of the pressure field. 

y 

0.00 0.50 1.00 1 .50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 
x 

Figure 5.4: Contours of pressure for the transformed mixed boundary value problem 

On a contour plot, flow occurs at right angles to the contour lines of constant pressure. 

Consider it as a surface plot, and imagine the path a ball-bearing would take on the real 

surface. This is the path that gas would take down the pressure gradient. The 'wobbly' 

contours near the wall are a function of the lack of detail in this region, and the ds

continuity occurring there. 

Flow rate 

The value of the function U is transformed in the same way as the function P by the 

transformation Z = f(z). In calculating the flow rate in chapter 4 the only values of U 

which mattered were those where y = 0 and x=- 1 ,  and y = 0 and x =+ 1 .  These points 

map onto the points X = -d and X = +d on the X axis of the transformed plane, which 

are the points which are needed for the flow calculation in the Z plane. Hence, since 

same values apply at the 'key' points as for the untransformed problem, the flow is again 

given by: 

k flow 
= 

-.2B 
µ 

where B was defined in the chapter 4 equation (4.9). B is a constant for any given 

problem in the 'flat', untransformed co-ordinates. This flow is the same as for the 

5 1  

(5 . 17) 



corresponding problem and means a given value of 'm' in the 'flat' problem corresponds 

to a specific ratio of c to d in the second problem. Some examples are given in the table 

below. 

m d/ c c / d  B / P0 
1 . 0 0 1  2 0 0 1 . 6  0 . 0 0 0 5  2 . 8 6 1 2  

1 . 0 1 2 0 1  0 . 0 0 5  2 . 1 2 9 6  

1 .  0 2  1 0 1  0 . 0 1 0  1 .  9 1 0 5  

1 .  0 5  4 1  0 . 0 2 4  1 . 6 2 3 4  

1 . 1  2 0 . 9 9 0 . 0 4 8  1 . 4 1 0 3  

1 .  2 1 0 . 9 7 0 . 0 9 1  1 . 2 0 3 9  

1 .  3 7 . 6 2 0 . 1 3 1  1 . 0 8 8 3  

1 .  5 4 . 9 2 6  0 . 2 0 3  0 . 9 5 0 3  

1 .  7 3 . 7 5 9  0 . 2 6 6  0 . 8 6 5 5  

2 2 . 8 7 0 . 3 4 8  0 . 7 8 1 7  

2 . 5  2 . 1 6 6  0 . 4 6 2  0 . 6 9 5 1  

3 1 .  8 0 . 5 5 6  0 . 6 3 9 6  

5 1 .  2 1 6  0 . 8 2 2  0 . 5 2 6 1  

1 0  0 . 8 3 7  1 . 1 9 5  0 . 4 2 6 1  

2 5  0 . 5 8 7  1 . 7 0 4  0 .  3 4 1 1  

1 0 0  0 . 4  2 . 5 0 0  0 . 2 6 2 2  

1 0 0 0  0 . 2 6 3 . 8 4 6  0 . 1 8 9 4  

1 0 0 0 0  0 . 1 9 1  5 . 2 3 6  0 . 1 4 8 2  

Note that when m is close to 1 ,  the ratio c/d is equal to half of m- 1 .  This is encouraging, 

as it suggests that a shallow cut into the ground has equal effect on the flow rate to a 

no-flow region on the surface of length equal to the length of both sides of that cut. This 

seems a reasonable result. 

When c/d becomes larger the flow rate reduces significantly, and the relationship 

between m and c/d changes. In Appendices C and A expressions for c/d and the flow 

function B are investigated for the cases when m is large and m is close to 1 .  

Second Conformal Mapping Problem 

Problem definition 

Now that we have the solution to a problem with thin footing walls it is natural to try to 

extend it to a more realistic problem, where the walls have thickness and depth. This then 

corresponds more closely to a real structure. 

The problem with thick walls is defined by figure 5.5 below. 
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Figure 5.5: Geometry of 'building ' 

This can be related to the plane problem defined by figure 5.6 below 

z(x,y) 

y 
- d - c  - b  - a  a b c d 

0 

x 

Figure 5.6: The zplane mappedfrom 

Note that the notation used here is slightly different from that used before, although this 

is not significant. Here the (a, b, c, d) replace the previous choice of ( 1 ,  A, m) from 

figure 5 .2. This means that a different choice of arbitrary variables is used to the previous 

case, and the scale factor 'a' from the first example is chosen as 1 .Because of this the 

point on the z plane nearest the origin, (a, 0), is not necessarily at the point ( 1 ,  0) as in 

the previous case. 

The angles a2 to a9 are 

<Xz = as = a6 = <X9 = rr./2 

<X3 = <X4 = <X7 = <Xg = 3rr./2 

so that in the equation for the Schwarz-Christoffel transformation [Carrier 66] we get 

Z r I I 

Z(X,Y) = f(z) = A  J (z +b)(z '+c)(z 1-c)(z 1-b)]2 d 1 
I Z + b .  

zo [ (z I +a)(z '+cl)(z '-d)(z '-a) J2 

53 

(5. 18) 



Then on setting b and z0 equal to 0, and A to 1 as the arbitrary constants, then combining 
the terms we obtain 

;: r /2 
I 

Z = f(z) = J (z -c 2)(z /2-b 2)]2 dz ' 

[ /2 
I . 

o (z -dz)(z a_a z)p 
(5. 19) 

Equation (5. 19) defines the transformation. It transforms the points x = a, b, c, d, in the 

z(x,y) plane, to the points 6, 7, 8, 9 in the Z(X, Y) plane. From symmetry these four 

points also correspond to the points labelled 5, 4, 3, 2 in the X negative half of the Z 

plane. 

Using the transformation, with the notation 

f(X1,Y1) = (X1,Y1) = XI +  iY1 

at these known points we have 

f(a,0) = (p,O) = p, 

f(b,0) = (p,r) = p + ir, 

f(c,0) = (q,r) = q + ir, 

f(d.O) = (q,s) = q + is, 

and hence 

a [ f2 
I 

P = f(a,O) = J (z -c 2)(z 12 -b 2)]2 d ' 

[ fl. 
I Z 

o (z -d2)(z 12-a 2)]2 
(5.20) 

In this case all of the terms in the brackets are purely imaginary, so the 'i' terms cancel 

and p will be real and positive. Also 
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b 
f 

1 
za-c 2 z a-b2 2 

p + ir = f(b,0) = J ( )( 
)].!. dz

1 
o [<z /l-d2)(z 12 _a 2)] 2 

but p is equal to the part of this integral from 0 to a, so 

b 1 
. [cz 12-c 2)(z 12-b 2)]2 ir = J 1 dz ' . 

a [ (z 12-d2)(z 12-a 2)]2 

(5.2 1 )  

(5.22) 

Looking at the terms we see that r is real and negative. Similarly from f(c,0) = q+ir we 

obtain 

1 
c [<z /l _c 2)(z ll _b 2) F q = J I dz 1 
b f(z /l-d2)(z /2-a 2)l2 

and q is real and positive; lastly 

d I 
is = J

[<z 12-c 2)(z /l-b 2)]� dz ' . 
c rcz /2-d2)(z 12-a 2)l2 

(5.23) 

(5 .24) 

This gives s as a real value, but with its sign either positive or negative, depending on the 

sizes of a, b, c, d. Integrating these expressions numerically for a range of values of a, b, 

c ,d gives the results in the table below. 

a b c d p q r s 

1 .  0 0  1 .  2 0 0  1 .  8 0 0  2 . 0 0 1 . 3 2 3  1 .  6 2 4  - 0 . 2 8 2  - 0 . 0 0 1  

1 .  0 0  1 . 4 0 0  1 . 6 0 0  2 . 0 0 1 . 4 4 5  1 . 4 7 7  - 0 . 4 7 3  - 0 . 0 0 3  

1 .  0 0  1 . 0 1 0  1 . 9 9 0  2 . 0 0 1 . 0 3 2  1 .  9 6 3 - 0 . 0 1 5  - 0 . 0 0 0  

1 .  0 0  1 .  0 0 0 1  1 .  9 9 9  2 . 0 0 1 .  0 0 1  1 .  9 9 9  - 0 . 0 0 0  - 0 . 0 0 0  

1 .  0 0  1 . 4 5 0  1 .  5 5 0  2 . 0 0 1 .  4 5 6  1 . 4 6 4  - 0 . 4 9 8  - 0 . 0 0 3  

1 .  0 0  1 . 4 9 0  1 .  5 1 0  2 . 0 0 1 .  4 5 9  1 . 4 6 0  - 0 . 5 0 8  - 0 . 0 0 3  

1 .  0 0  1 .  4 9 9  1 .  5 0 1  2 . 0 0 1 . 4 5 9  1 .  4 6 0  - 0 . 5 0 9  - 0 . 0 0 3  

1 .  0 0  2 . 0 0 0  3 . 0 0 0  4 . 0 0 2 . 1 7 3  2 . 4 5 1  - 1 . 3 5 2 - 0 . 0 7 0  

1 . 0 0 0  5 . 2 4 0  5 . 2 5 0  1 0 . 0 0 4 . 2 5 2 4 . 2 5 2  - 5 . 0 8 3  - 0 . 0 0 6 6  

1 . 0 0 0  4 . 9 0 0  5 . 6 0 0  1 0 . 0 0 4 . 2 4 0  4 . 2 8 6  - 5 . 0 2 0  - 0 . 0 1 6 3 

1 . 0 0 0  4 . 0 0 0  6 . 5 5 0  1 0 . 0 0 4 . 0 3 6  4 . 6 5 0  - 4 . 4 1 5  0 . 0 0 3 6  

1 . 0 0 0  2 . 0 0 0  8 . 9 0 0  1 0 . 0 0 2 . 6 0 9  7 . 3 5 9  - 1 . 6 7 8  - 0 . 0 2 7 4  

1 .  0 0 0  1 . 1 0 0  9 . 9 0 0  1 0 . 0 0 1 .  2 6 3 9 . 6 2 7  - 0 . 1 5 9  - 0 . 0 0 2 7  

Table 5.2: Values of the parameters from the second conformal mapping problem 

It doesn't look as if these integral expressions can be simplified further, nor is it possible 

to choose values of p, q, r and s and find, directly, the values of a, b, c and d which 

produce them. However it is fairly easy to find particular values of p, q, r and s by 
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experimenting with the values of a, b, c and d within the integration program. 

Flow rate 

Using exactly the same analysis as for the flow rate of the first conformal mapping 

solution earlier we know that the flow rate is the same for any problem where the value 

of 'm' as used in chapter 4, (in this problem d is equivalent to 'm' if 'a' has the value 1) .  

In this case this means any system which has the same a and d has the same flow rate. 

The figures 5.7 and 5 .8  show equivalent shapes when a =  1 and d = 2  and then d = 10. 

I a = 1 b = 1 .0 1  c = 1 .99 d = 2 I I a = 1 b = 1 .2 c = 1 .8 d = 2 I 
o om ii 11 Ill 

-0.2 t- r -0.2 "-

... 
-0.4 .... -0.4 "-

-0.6 I- -0.6 I-

-0.8 I- -0.8 .... 

-1 '--���---'-����-'--���--' -t �----------------�----------------�---------------' 
0 2 3 0 2 3 

la = 1 b = 1 .4 c = 1 .s d = 2 I la = 1  b = 1 .499 c = 1 .so1 d = 2 I 
o �----------... -----------..1 O (Jllll._._._._ __ .. ._._._ __ ._._1111 

-0.2 I- -0.2 I-

�-· [ � I � 
-0.6 

-0.4 I-

-0.6 I-

-0.8 I- -0.8 I-

I 
-1 

-t ...._ __________ .__ ______________________ __, 
0 2 3 0 1 2 3 

Figure 5. 7: Examples of equivalent shapes when a = 1 and d = 2 
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I a = 1 b = 1 . 1 c = 9 .9 d = 1 o I a =  1 b = 2 c = 8 .9 d = 1 O 
o r-"I:============�----�--, 0 

-2 I- -2 . 

-4 I- -4 � 

-s L__����-'--����-'-����--' 
-8 I I 

0 5 10 15 0 5 10 1 5  

I a = 1 b = 4 c = s .55 d = 1 o I a = 1 b = 5 .24 c = 5 .25 d = 1 o 
0 -------.... --------------------� 0 -----------------

-2 I- -2 I-

-4 I- -4 L 
.. 

-s L__��������������� -a �·����-'-���������� 
0 5 1 0  15 0 5 

Figure 5.8: Examples of equivalent shapes when a = 1 and d = 10 

Case of the radon pit hut 

10 1 5  

As an example of the application of this flow result, consider the huts on the radon pit at 

BRE. These are discussed more in Chapter 6. The huts on the site were built on to a 

concrete ring beam which has dimensions as follows: 

Full width of ring beam: 

Horizontal thickness of beam: 

Depth of beam: 

3.3 m, 

0.58 m, 

0.4 m. 
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From these the parameters from the Z plane are as follows: 

p = 1 .07 m, 

q = 1 .65 m and 

r = -0.4 m. 

Hence q/p = 1 .54 and r/p = -0.37 4. 

From an iteration process with the numerical integration programme these same ratios of 

q/p and r/p are found to be given by 

a = 1 ,  b = 1 .425, c = 3 .04 and d = 3.48. 

Then to find the flow rate, we use the value of d as the parameter m in equation 4.9 

which gives the flow factor B as 0.6014 (from a nwnerical integration). Hence the flow 

is given by: 

Flow = 2 .  klµ . AP . 0.6014 . 

So for 50 (Pa) as the pressure difference, and µ for air is 1 .83xI0·5 (Pa.s) this would give 

Flow = 3.3xl06.k (m3s·1 per metre of wall). 

Since the internal length of the hut built on the ring beam is 2.14 m in each direction this 

is multiplied by 4.28 to give the total estimated flow rate as 

Flow = l4x106 • k (m 3s -1) = 5xJ010• k (m 3h -1) . 

Then with the laboratory measurement of the sand permeability, l .  lxl0·10 m2, the 

predicted flow rate at 50 Pa is 

FlOW50 = 5.6 (m3h-1). 
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The experiment reported on in chapter 6 finds the flow rate at 50 Pa to be 14  (m3h-1) ,  so 

the agreement is quite good. These results and reasons for differences are discussed 

further in Chapter 7. 

Pressure field 

By modifying the program used for the thin wall problem, the pressure field for the thick 

wall problem can be calculated using the transformation equation (5. 19) . This involves 

using the calculated values of the parameters a, b, c, d which correspond to the desired 

values of p, q, r, s .  

The results for some of the set of solutions where a is 1 and d is 2 are shown in figures 

5.9 to 5 . 12. The first of these corresponds very closely to that of figure 5 .4 of section 2. 

The others show the result for progressively 'fatter' walls, leading to figure 5. 12, which is 

close to the result for the untransformed problem of figure 5 .2. 

Note that the model provides no data at all for the region within the wall. The contour 
lines drawn are 'made up' by the plotting program, and are of no validity. This also 
causes the 'wobbles' in the lines near the wall, particularly in figure 5.9 . 

y 

-1 .0 

0.00 0.50 1 .00 1 .50 2.00 2.50 
x 

Figure 5. 9: Pressure.field contours when a =  1, b = 1 . 45, c = 1 .55, d = 2 
(gives p = 1 .456, q = 1 .464, r = - .5 ,  s = -0.04) 
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QOO 0.50 1 .00 1 .50 2.00 2.50 

x 
Figure 5. 1 0: Pressure field contours when a =  1, b = 1.2, c = 1.8, d = 2 

(gives p = 1 .32, q = 1 .62, r = -.28, s = -0.001)  

0.001 · �//m111 7 1 111\\\"-... ' ' 1 

y 

-0.5 

-1 .0 
0.00 0.50 1 .00 x 1 .50 2.00 2.50 

Figure 5. 11:  Pressure field contours when a =  1, b = 1.05, c = 1.95, d = 2 

(gives p = 1 . 12,  q = 1 .86, r = - .08, s = - .001)  
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Figure 5. 12: Pressure field contours when a =  1, b = I .OJ, c = 1.99, d = 2 

(gives p = 1 .03, q = 1 .96, r = -.0 16,  s = 0) 

Conclusion to chapter 5 

This chapter has shown that it is possible to transform the result from one soil gas flow 

problem to another. In this way we obtain the result of a problem which we could not 

have achieved in a more direct way. 

Although the results cannot be found exactly, because of the elliptical integrals within 

them, they give a number of valuable results. Of most use are the flow rates into a bare 

soil house predicted for different sized foundation walls. We can also find the pressure 

field produced for the same problem, which will be useful in the verification of 

computational models. The approximations to the flow result allow fairly simple 

expressions for the flow rate predicted to be written down. 

The method could be applied to more complex and non-symmetric problems, and to any 

equivalent problem involving Laplace's equation. An obvious example would be heat loss 

through a ground floor. 

There are also possible extensions to the method; in principle any shape made up of 

straight lines could be mapped in the same way, although every extra comer makes the 

calculations longer. Finally it will be necessary to consider the influence of the third 

dimension, since it will obviously have an impact in most real buildings. 

61 



Chapter 6: Experimental results 

Introduction 

The analytical solutions discussed before all relate to the solution of the pressure and 

flow equations for a building with a bare soil floor. The purpose of the experiment 

which is described below was to try to validate the result of that model by taking a 

measurement of that flow. However this is not straightforward as there is no direct way 

of measuring the flow through the soil. 

The concept of the experiment was to try to measure for soil what a fan pressurisation 

test measures for a building, that is the overall leakage through all possible flow paths. In 

a fan pressurisation test, [Stephen 88], a fan is installed in the outer wall of a building, 

usually in a doorway. The rates of flow required to produce a series of pressure 

differences between inside and out are measured. These pressures are generally -50 to 

+50 Pa, �ith steps of 10 Pa. From the plot of these results the characteristic leakiness of 

the building is estimated. It is usual to express it as the number of air changes per hour 

(ach) at 50 Pa pressure, often called n50• The air change rate is the volume flow rate of 

gas divided by the volume of the building, so it has units s-1 or more usually h-1 or ach. 

Typical values of n50 for UK houses are in the range 10-15  ach at 50 Pa. This is relatively 

high on an international comparison, with countries with cold climates, eg Sweden, 

routinely achieving values as low as 1 ach at 50 Pa, [AIVC 94]. The choice of 50 Pa is 

essentially arbitrary, but is the value usually used, so I have used it in this work. 

In this chapter the experiment carried out by Andrew Cripps and Paul Welsh is 

described. The following section compares the result to that from the analytical solution. 

The BRE Radon Pit 

The radon pit consisted of sand about 6 m by 10 m and 4 m deep. The sand contains high 

levels of radium, which results in high radon levels in soil gas in the sand. On top of the 
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sand two structures were built. These were essentially identical, so that changes to one 

structure could be monitored against the other as a control. BRE was using the facility to 

investigate the methods to remediate houses with timber floors, but this work does not 

report on these experiments. There were two major problems with the facility which 

meant that the experiments were not continued in it. One was that the drainage never 

worked correctly, so that the water level was very high in the sand, greatly effecting the 

radon level . The other was that the huts were not sufficiently like real houses to make 

the findings from the main experiments directly applicable to them. The work programme 

has been transferred to a full size test house. 

The purpose of the test was to make measurements to predict the flow through the soil 

due to an applied pressure below the floor. This then gives data with which to compare 

the results of the modelling studies into the same problem, and helps us to understand the 

entry rates of radon into homes constructed with a suspended timber floor. 

The main problem in doing this is that if a fan sucks air from the space below the floor, 

much of the flow will occur through the floor. This is because the floor of the building is 

much leakier than the sub-floor walls and the soil itself. Hence a method was needed to 

prevent flow through the floor, or to account for it. 

The method we chose to use was to balance the pressure in the 'house', Pm' with that in 

the under floor area, Pu· The idea is shown in the diagram below. 

Sand surface 

FlowQm • 

FlowQu . 

L 
t 

Main Space pressure Pm 

Underfloor pressure Pu 

• FlowQs 
• • 

Figure 6. 1:  The experimental arrangement 

• FlowQw 

LJ 
� 

The pressure across the floor is changed using two fans. One fan sucks air from the main 
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space, at a rate Qm. A second fan sucks air from the under floor space, at a rate Qu. All 
the visible holes in the wall are sealed. The flow Qu, when the pressures are equal across 

the floor is the 'leakage' of the soil Qs and the subfloor walls Qw combined. The walls here 

were painted on the inside with a bituminous paint, and the air bricks were carefully 

sealed. As a result the majority of the flow was probably going through the soil and not 

through the walls. 

The fans used were not very easy to adjust, so it was not practical to obtain zero values 

for the pressure across the floor. Instead we took a number of readings of pressure 

difference across the floor for different flow rates for the main space. These then gave a 

curve from which we could estimate the value of the flow at zero pressure difference. 

Basic results 

One complete set of these results is given in the table which follows. These data are 

plotted in figure 6.2 below the table. It shows on the y axis the pressures produced 

across the floor of the hut, plotted against the hut fan flow which produced it. On the 

second y axis is the hut to outside pressure difference, plotted at the same under floor fan 

flow rate. The hut fan was left at the same setting, but the flow rate through it varies 

with the flow through the under floor fan. 

Main - Underfloor Mean in - out Hut fan Under floor fan 

pressure P "�· Pressure P ,,,,, flow, 0� flow 0 .. 
Pa Pa m3h-1 m3h-1 

-0. 1 -53.5 46 1 .5 
-0.06 -63.05 43.5 4.8 
-0.05 -72.75 40.5 14.4 
0.03 -88.0 36 24.6 
0.07 - 101 32.5 33 
0. 16 - 1 12 29 41.4 
0.23 - 127.5 24 54.6 
0.24 - 128.5 23 54.6 

Table 6. 1: Results from test 2 
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Figure 6.2: Graph of pressures generated against underfloor fan flow 

Straight line fits to the two sets of points are also shown on the plot, and for the pressure 
across the floor the lines showing the 95% confidence limits (assuming normally 
distributed errors) are also included. These line fits are given by 

P floor = -0. 1 1 6  + Qu . 0.0063 

or with the 95% confidence limits as 

Pfloor = (-0. 1 2  ± 0.04) + Qu . (0.0063 ± 0.0008). 

This gives the flow through the under floor fan at which zero pressure occurs across the 

floor as 

Qo = 1 8.3 m3h-1. 

However within 95% confidence limits this is 

1 1  m3h·1 < Q0 < 28 m3h-i. 

This error is fairly large, in spite of the efforts made to improve the experiment, and 

indicates the difficulty of accurately measuring the small pressure drop across the floor. 

Repeat tests 
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We carried out three more tests with the underfloor fan at a different setting, and these 

are summarised below. There is still considerable uncertainty in the final predicted value, 

but the result is more reliable than the one we made earlier when we attempted to 

equalise the pressure across the floor. 

Set number Pressure (in-out) Under floor fan flow 
Pa m3h-1 

2 -79.2 18.3 
3 -77 .8 24.6 
4 -60.7 17.5 
5 -34.6 9.7 

Table 6.2: Combined results from sets 2-5 

These data are plotted in the graph which follows. 

� 30 � .s 
c J!l 
0 20 0 = 
iii "C c =i 

.r:. g> 1 0  

e £ 
;:: 0 u::: 

Graph of flow through the underfloor fan against pressure across the hut 

for zero p ressure across the floor 

3 • 

0 ....._�����---������������--������������� 
-90 -70 -50 -30 - 1 0  10 

Inside hut - outside pressure (Pa) 

Figure 6.3: Flow through the under floor fan against the pressure across the hut 

The central line is a straight line fit to the best data as calculated from the 4 points from 

data sets 2 to 5. These four data points fit to a straight line with an R2 (root mean square 

value) of 0.8. Each of these data sets also gave 95% confidence limits, not shown here. 
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The straight line is given by 

Qu = 0.9 - 0.26.Phut m3h·l. 

From this we predict the value of the flow at 50 Pa to be 

Qu5o = 14 m3h·1 

with the result being between 8 and 26 m3h·1 with a confidence of around 90%. 

Measuring the permeability of the radon pit sand 

In order to compare the theoretical model to the measured flow rate from the radon pit 

we needed to know the permeability of the sand. This can be measured either in situ, or 

using a sample in the laboratory. Stephen Sweeney and Andrew Cripps measured a 

sample of sand contained within a simple plastic pipe. The air flow was provided by a 

compressed air cylinder, and the flow rate measured by both a rotameter, a hot wire and 

a hot bulb anemometer. All three were used partly to check on each other at the low 

flow rates needed, but also because they were being compared with each other anyway 

as part of another experiment. These flows were measured in a 100 mm diameter pipe; 

the sample was in a larger pipe to allow larger flows to be used. 

The measured data gave a best line fit as 

Velocity = 0.008. Pressure (cms·1). 

Hence the flow rate is given by 

Flow = (0.008 I 100) . nr2 . Pressure (m3s.1) 

where r is the radius of the small tube. Using this in Darcy's Law, rearranged as 

k = µ.L. Q I (8P. A) 

where L is the length (m) over which the pressure drop 8P (Pa) occurs, and the other 

terms are as defined earlier. The data are as follows 
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Viscosity of air u 1 .83E-05 Pa s 

Length of tube L 0.2 1  m 

Radius of small tube, r 0.05 m 

Radius of large tube 0.076 m 

This gives the result for the permeability as 

k = 1.3 x 10-10 m2 

This result is supported by a better measurement made at the National Radiological 

Protection Board, which from 4 measurements gave the average answer: 

k = 0.9 x 10-10 m2 

Note that these experiments always contain some error due to the problem of the transfer 

of the sand from the pit to the laboratory. It is not possible to know if the same 

conditions of compaction and moisture have been achieved in the laboratory, so there is 

inevitably some error. It is likely that the NRPB test involved better compaction of the 

sand, giving the lower permeability result. 

Conclusions 

We have used two fans in one of the BRE radon pit huts to measure the leakages of the 

parts of the hut. The floor is a great deal more leaky than the shell of the hut, with the 

pressure drop across the floor being 150 times smaller than that across the shell of the 

hut. The upper part of the hut is a little leakier than the lower part, and the overall 

leakage is about 2.5 air changes per hour at 50 Pa. 

The flow through the sand is predicted to be about 14 m3h-1 at 50 Pa. 

We also measured the pressure set up in the sand at a number of points near the hut. 

These show that the pressure is measurable, but not too large to affect the behaviour of 

the neighbouring hut. 
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Chapter 7: Comparison of analytical and experimental results 

Chapter 5 presents the solution for the flow rate into a 'house' with a bare soil floor and 

footing walls with width and depth, using the conformal mapping of the solution found in 

chapter 4. Then chapter 6 discusses an experiment carried out by the author, with 

colleagues at BRE, on the flow rate into a hut with a suspended timber floor. The 

geometry corresponded to the previous solution, allowing a comparison of the two; this 

is the subject of this chapter. 

Chapter 5 equation (5.25) gives a theoretical expression for the flow rate into the radon 

pit as 

Flow = 14xl06 • k (m3s-1) 

= 5xl010 • k (m3h-1) 

where k is the permeability of the sand in the radon pit. 

Since the flow rate was measured (see Chapter 6) as 14 ± 6 m3h-1 using this in equation 

(5.25) suggests the permeability of the sand to be 

�and-pit ""' 2.8 x 10-10 m2, 

but with the 90% confidence interval based on the uncertainty in the flow measurement 

being 

1 .6 x 10-10 m2 < ksand-pit < 5 .2 x 10-10 m2. 

This is typical for sands [Mowris 86] and is close to that measured for the sand in the 

laboratory, 

�and-lab ""' 1 x 1 0-10 m2. 
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The cause of the difference is likely to be one of the following: 

1) Neglecting the corner effects in calculating the theoretical flow rate into the hut. 

The fact that the model assumes infinitely long walls means that the flow per 

metre is under predicted near a corner. This is because it only considered flow in 

two dimensions, and this is not true near the comer. The effect of this is difficult 

to calculate, but could be significant. 

2) The leakiness of the subfloor walls of the hut has been neglected in the theory. 

This means that all of the flow measured going through the fan has not 

necessarily come through the sand as has been assumed here. Hence the real 

flow through the sand at a given pressure will be lower than that measured here, 

although the amount of the difference is hard to estimate. 

3) Leaks from the pipes used to measure the sand permeability in the laboratory. 

When the permeability of the sand was measured in the laboratory it is possible 

that some leakage occurred. This would suggest a greater rate of flow through 

the sand than actually occurs, resulting in a predicted permeability higher than 

the correct value. This is perhaps indicated by the fact that the NRPB 

measurement mentioned in chapter 6 gave a result slightly lower than that 

carried out at BRE. The NRPB test used a metal container that was more air 

tight than that used in the BRE test. 

4) Uncertainty in the compaction and water content of the sand in the laboratory. 

The degree of compaction of a material, and its moisture content affect the 

resulting permeability. In general a more compacted material has less air space 

within it, and so allows less flow through it for a given pressure. Hence in 

measuring the permeability of a sample of sand it is necessary to consider the 

degree of packing, and how this compares to conditions in the ground. It is likely 
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that any sample of sand will be less compacted in the laboratory than in the 

ground, so that the laboratory will give a value of permeability higher than the 

'real' one. 

However sand is relatively less prone to packing effects because of the small size 

of the particles, so that the effect due to compaction will be less than in some 

other materials. This topic is returned to in the part of this thesis on high 

pressure flows. 

The moisture content also has an impact, with a high moisture content expected 

to reduce permeability by occupying the air space through which gas moves. If 
the tested sample is too dry it would be expected to give a high result, but if it is 

too wet it would probably be too low. 

Both 1 and 2 would cause the calculated permeability to be reduced from the 3 x 10·10 m2 

predicted, while 3 would reduce the laboratory measured permeability. Point 4 could 

affect the permeability in either direction, and deserves further investigation. It is likely 

however that the first two effects will be larger than the others, which would reduce the 

prediction of permeability to closer to the laboratory result. 

Overall the result is clearly very encouraging, and shows good agreement between the 

two methods of finding the permeability, well within the considerable experimental errors 

involved in the experiments. 

Comparing the two theoretical results 

It is also interesting to compare the results of the simple analytical result of chapter 3 and 

the more advanced solution of chapters 4 and 5 .  Carrying out the flow rate calculation 

using equation (3.2), with the factors m and n being 1 .07 and 1 .65 respectively for the 

radon pit hut, the flow rate per metre run of wall is given by 

Flow = l .5xl010 • k (m3h-1 per metre run of wall). 
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As before there are 4.28 metres of wall, so that the full result is 

Flow = 6.4xl010 • k (m3h-1) . 

This result is higher than that predicted for the more advanced theory which with the 

measured flow rate of 14 (m3h-1) then predicts a slightly lower permeability of 

�and-pit � 2. 1 x 10-10 m2• 

The simpler theory is expected to produce a higher flow rate because it has neglected the 
depth of the footing walls, so this difference is as expected. However it is interesting to 

note that the difference is comparatively small. Further, the simpler theory has given a 

result closer to the laboratory test for the sand permeability. This is probably due to the 

reasons given above for the difference between the theory and the experiment, all of 

which still apply to the simpler theory. 

Nevertheless, given the errors in the experimental data, it is not clear that the extra effort 

involved in the more advanced solution is justified, since the simpler solution has given a 

similar result. However it is only possible to observe this by calculating both, and extra 

insight is gained by the process. In addition, as the footing walls become deeper, the 

difference would become larger. 
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Chapter 8: Comparing the analytical result with that of Landman and Delsante 

The work which is closest to the result in chapter 5 has been done by Landman and 

Delsante [Landman 86], [Landman 87- 1], [Landman 87-2] . They were looking at the 

heat loss through a ground floor slab, but the solutions they produced, and the flow rate 

predictions they made can be transferred directly to gas flow. There are some differences 

in the boundary conditions between the two problems, but the physics is the same. 

The technique used by them was to find a Fourier series solution to Laplace's Equation 

in each of a number of defined regions, and then match these at the boundaries between 

the regions. In general this results in an infinitely large number of simultaneous 

equations, to which an approximate solution can be found by assuming the terms beyond 

a certain number can be ignored. This gives a set of equations which can be solved by 

matrix inversion techniques. 

They used this technique on a number of different problems of heat flow from a concrete 

floor, and how it is affected by positioning insulation at different places. In their first 

problem [Landman 86] they considered a thin vertical layer of insulation at the edge of 

the floor slab. They then considered a thin horizontal layer of insulation [Landman 87-1] ,  

and finally looked at a problem close to that of chapter 5 here, with a region of insulation 

at the edge of the floor slab with both width and depth [Landman 87-2] . 

In order to compare the result found here the solutions from the first and third papers 

need to be combined. In all cases they assumed a linear fall in temperature from the 

inside of the house to outside, ie the same as looked at in Chapter 3 (but for pressure). In 

the absence of insulation this assumption has a significant effect on the predicted flow 

rate. However when there is insulation present the difference caused by the simplifying 

assumption is not important. 

Their geometry is given in figure 8 . 1 below. Note that o is the width of the insulation 

material and d its depth, L the half width of the 'house' and 2E the width of the wall. 

Region 4 is the insulation material, regions 1 ,  2 and 3 are the soil, which is considered to 

be same in each region. The temperature distribution is given as the top half of the plot. 
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Figure 8. 1: Reproduction of Fig I of [Landman 87-2] 

The most significant difference between the thermal and pressure problem is in the 

relationship between the conductivities of the different materials (for temperature) and 

the permeabilities (for pressure). The thermal conductivity of soil and concrete are 

assumed to be similar by Landman and Delsante, which is a reasonable approximation. 

However the permeability of concrete is generally many orders of magnitude less than 

that of soil. Hence it is possible to compare the two modelling results because of the 

investigation of thermal insulation by Landman and Delsante. The insulation had a very 

low thermal conductivity (not always treated as zero) which is then equivalent to the no 

flow assumed for the concrete in this work. 

In [Landman 87-2] the rate of flow of heat through the floor is calculated for different 

parameters, and this is shown in their Fig 2, reproduced here as Figure 8.2. 
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Figure 8.2: Reproduction of Fig 2 of [Landman 87-2) Graph of normalised flux against 
the ratio of depth of insulation against building half width, 

The parameter y used here is the ratio of the conductivity of the insulation to that of the 

soil. We are interested in comparing to their solution with y = 0, meaning a perfect 

insulant, which is what the concrete footing wall in the air flow case approximates too. 

Taking the case where their d/L is 0.2, their normalised flux <f>' is close to 0.6. The 

normalised flux is the ratio of the flux with the insulation to that without it, which is 

given in [Landman 86 equation (18)] as 

�. = !( m[ L;• ] + � m[ L:• ] ) (8. 1 )  

where the parameters have been defined for the figure above. It has already been noted 

that this solution is the same as that found in chapter 3 ,  with the changes to notation. 

Using the data given for the calculation by Landman and Delsante, the parameters are 

given as follows 

L = O. l ,  

dL = 0.02, 

E = 0.002, 

0 == 0.0006. 

Using these in equation (8. 1 )  above gives a result for <f>o as 3 . 133, so that the result for <f> 
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IS 

<P = 0.6 x 3 . 133 = 1 .88 

and this is used to define the total flow as 

QT = <f> 6.T k s 

where 
QT = total heat flux (Watts per metre of wall), 

t::. T = Temperature difference between inside and outside the building (K), 

ks = thermal conductivity of soil (Wm-2K1). 

(8.2) 

(8.3) 

Hence the variable <P is equivalent to twice the variable B found earlier in Chapters 4 and 

5, if the pressure difference is factored out of the expression for B (Chapter 4 eq 4.9 for 

B and Chapter 5 equation 5. 17 for the flow rate). 

Given the parameters defined above it is possible to use the method of Chapter 5 to find 

the value of B appropriate for the same geometry. The values of L, d and o given above 

produce values of the parameters defined by figure 5.5 of Chapter 5 as 

p = 0. 1 ,  
q = 0. 1006, 
r = -0.02, 
s = 0. 

By iteration, using the integration code developed for chapter 5, these are given by the 

following set of parameters in the transformed plane: 

a =  1 ,  
b = 1 .22, 
c = 1 .29, 
d = 1 . 5 1 .  

This gives the key result that the ratio of d (as defined in Chapter 5 not by Landman) is 

1 .5 1  times a, which is equivalent to the parameter 'm' of chapter 4 being 1 .5 1 .  This gives 

a result for B as 

.!!.._ = 0.95 
Po 

2B 
Po 

1 .9 (8.4) 

The two results (8.2) and (8.4) agree well, indicating that the methods are producing the 

same result in this case. This gives considerable confidence in the method used here. 
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Chapter 9: Using a finite difference model on the natural flow problem 

As an alternative to using an analytical model it is possible to use a finite difference 

technique to find the pressure and flow fields for a given geometry. The theory of this is 

discussed in the High Pressure Part of this thesis as it has also been used for looking at 

higher pressure flows. However it can be applied to the same problems discussed in this 

part. 

The most significant results come from the flow rates. Although it depends significantly 

on the permeability of the soil, for most soils (as against carefully chosen aggregate 

materials) there is little difference between the flow rates with crack sizes above a 

relatively small size - about 1 mm for the geometry used to generate the results below. 

Crack width Flow (m3/h) Effective resistance 
(mm) (Pa per m3/h) 

10 . 16 20.8 

5 . 1 55 2 1 .5 

1 . 143 23.3 

0.5 . 1 12 29.8  

0.2 .046 72.5 

Table 9. 1: Flow rate and effective resistance against crack width. 

This initially surprising result is very significant, as it explains why it is very difficult to 

prevent radon entry by the sealing of floors. The resistance of the floor to the flow of gas 

is generally smaller than the resistance of the soil below the floor. As a result it takes a 

very large increase in the resistance of the floor (eg sealing up nearly all of the cracks) to 

have an impact on the flow rates. This work supports this view, but is not the first to 

observe the result. The use of a resistance model to give an understanding of soil gas 

flow has been used before and is returned to later in Part 2. 

Given the flaws in the modelling techniques used here it is not valid to use this type of 

result other than in a qualitative way. However the understanding of what is going on in 

radon entry is still worthwhile. 
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Chapter 10: Conclusions to natural flow part 

In �is part the results of analytic studies of the flow of gas into the void below a 

suspended timber floor have been presented. These give complicated expressions for the 

pressure fields being produced, but much simpler forms for the flow rates. In each case 

the flow rate was found to be proportional to the permeability and the internal pressure 

as expected, but also proportional to a geometrical factor which can be found 

comparatively easily for any floor geometry. 

A method for measuring the flow rate through the soil below a building with no concrete 

oversite was described, and the initial results presented. The technique will not be 

generally applicable because of the leakiness of most buildings, but could be of some use 

in measuring soil leakages. 

The results for the two parts of the work have been compared through the permeability 

they predict for the sand at the BRE radon pit. Considering the considerable variability of 

permeabilities and the difficulty of measuring them accurately, the two predictions 

compare well with a direct experimental measurement of permeability. 

In addition the overall flow rate has been compared with that predicted by a different 

theoretical method produced by another worker looking at heat flow. This produces a 

result in close agreement to that given here, suggesting that both methods are giving 

good answers. 

There is insight gained into the flow processes going on in the soil by carrying out the 

more complex modelling process. However given the considerable uncertainty in 

estimating the permeability of the soils involved it is not clear that the more advanced 

techniques are justified, given that the differences between the two are quite small. 

Nevertheless it would not be possible to be sure of this without having carried out the 

calculations. 

It would be possible to use the techniques given here to generate an 'atlas' of standard 

shapes and their corresponding flow rates. This would apply to heat flow problems as 
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well. It is left to future workers who might continue work in these areas. 

The use of a finite difference model to generate similar results is discussed briefly, but the 

insight into the flow processes can be gained from either type (analytical or 

computational) and they each have their benefits. 
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Appendices to Natural flow part 

Introduction 

During the development of the analytical solutions presented in chapters 4 and 5 there 

were a number of results found which can only be expressed in terms of elliptic integrals. 

These can therefore not be expressed in terms of exact functions, but need to be 

evaluated by using tables or numerical integration. 

However most elliptic integrals can be approximated by simple functions for some range 

of values. This Appendix gives the methods for deriving these approximate results, and 

indicates their range of application. In some cases it is preferable to use an approximate 

result since it allows a result to be expressed in terms of the parameters which define it. 

Of course the range of application of such a result is important. 

Generally these approximate results are only available for the simpler solutions with 
fewer parameters. In this case only the 'thin wall' problem has been considered, since the 

thick wall has too many parameters to make progress practical. 

The following results are considered: 

Appendix A: Expressions for B as a function of m 
Expression for B when m is close to 1 
Expression for B when m is large 

Appendix B: Finding expressions for A. as a function of m 
The form of A. when m is close to 1 
The form of A. when m is large 

Appendix C: Finding expressions for c/d as a function of m 
Finding c/d when m is close to 1 
The form of c/d as a function of m when m is large 

Appendix D: Finding expressions for B as a function of c/d 
The form of B as a function of c/d when m is close to 1 
The form of B as a function of c/d when m is large 
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Appendix A:  Expressions for B as a function of m 

In Chapter 4, equation (4.9) gives the flow function B as 

1 

J-

B = -P 
o 

0 . m 
dt { J(tz- l)(m 2_t2) 

(Al ) 

Rearranging the numerator of the expression into the complete elliptic integral of the first 

kind, usual notation K, gives the numerator as 
1 

dt - Po . J I t '  m o . ( 1 -t'}(l -
m'

) 

- - p 0 K_,(-1-). - . 
2 m m (A2) 

The integral in the denominator can be also be expressed as the complete elliptical 

integral K, but with a different parameter. From [Abramowitz 65] p 596, 17.4.43 it is 

equivalent to l/m.F(<!>,M), where 

sin2(<!>) = m2(m2 - 1) I m2(m2 - 1), 

so that 

<I> =  rt/2. 

Hence the elliptic integral is complete. The parameter M is given by 

M = (m2- l ) I m2 = 1 - 1/m2· 

Hence the denominator of (Al)  is given by 

..!_ . J 1 _ _  
1 l · m .n.l mz (A3) 

and so combining these gives 

K(l/m2) B = -Po · K(1 - 1/m2) 
(A4) 
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Expression for B when m is close to 1 

Approximate functions for the complete elliptic integral K are given in standard tables, 

for example [Abramowitz 65] and [Gradstheyn 80] . Using these when m is close to 1 
allows (A4) to be rewritten as 

B "' - Po In( 16 l 
7t (1 - 1/m 2) 

Expression for B when m is large 

A similar process gives the form when m becomes large as 

B "' 
-nP0 -rtP0 

ln(16m2) 2ln(4m) 

(A5) 

(A6) 

These approximations allow the value of B to be found very quickly for the extreme 

values of the parameter m. Since m is often quite close to 1 the form of equation (A6) is 

often likely to be appropriate. 
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Appendix B: Finding expressions for 1 as a function of m 

fu chapter 5 the variable A. was found to be given by equation (5. 14) as 

A,2 = 

m 2 J z . dz 

1 [(z 2 -m 2). (z 2- l )p 
m dz { (Cz 2 -m 2). (z '- l)P 

(B l)  

This expression can be simplified when the parameter m is either close to 1 or  large. As 

in Appendix A the method given here uses the fact that the expression for A. involves 

standard elliptic integrals, for which there are asymptotic results available. In terms of 

these standard integrals (B 1 )  can be written as 

)..,2 = m 2 E(<j>, a) 
F( <j>, a) 

where 

and 

<t> = sin-1 { 1/m2(1/m2-l )  /{ 1/ m2(1/m2- l } }  = sin-1( 1 )  = rr./2 

a = cos-1(1/m) 

E is the elliptical integral of the second kind, 

F is the elliptical integral of the first kind. 

(B2) 

Because <t> is rr./2 the elliptical integrals E and F are called complete elliptical integrals. 

Using the notation for complete elliptical integrals (B2) can be rewritten as 

A.2 = mz . E(sin(o:)) 
K(sin(a)) 

where 

K is the complete elliptical integral of the first kind. 

The form of 1 when m is close to 1 

(B3) 

Equation (B3) together with results from standard tables allow an approximate 

expression for A, to be found. When m is close to 1 then a is small, and this allows 

simplification of the expression, according to, eg, [Abramowitz 65] and [Gradstheyn 80]. 
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After some working and a binomial expansion the approximate result is 

). "" 1 + (m- 1) + O((m-1 )4) . 

2 

The form of A when m is large 

When m is large the expression in (B2) gives a as close to rr./2, so that different 

approximations apply to the previous case. Using these the result is found to be 

2 
). z °' 

m + 0(1 )  ln(4m) 
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Appendix C: Finding expressions for c/d as a fWJction of m 

This Appendix gives the methods for finding approximate results for the ratio of c/d 
when m is close to 1 and when m is large. 

The ratio of c/d is defined by dividing equation (5. 1 1) by (5.7), but using the form of the 
transformation function f(z) given as the first line in equation (5.2) . This defines c/d by 

c = 
d 

.). 
(z 2 - )_2) dz { [(m 2 - z 2)(z 2 - l )]v. 

l 

I cz l - )..2) dz 

0 

Finding cld when m is close to 1 

(Cl) 

The numerator of the expression for the ratio of c to d can be found for m close to 1 as 

follows. 

Let 

m =  1 +a 

A. =  1 + Via 

z = 1 + Y2u.a 

dz = '12du.a 

where 0 < a <  1. The second of these is suggested by (B4). Then the numerator of (Cl )  

becomes 

1 

J ( 1  +ua +u 2a2/4) - ( 1  +a+a2/4) . a12 . du 
0 [(1 +2a +a2 - ( l +ua +u 2a2/4)) . ( l +ua +u 2a214 - l)]v. 

(C2) 

This expression can now be put into integrable form by expanding the last two terms in 

the denominator with the binomial theorem. At this point the number of terms in a needs 

to be chosen, here we keep terms up to a3, so that the expansion needs to keep terms to 

az. 
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a 
1 (u - 1) . ( l + a(u+ l ) 

2 f 4 
) . I I 

0 

a(2+u) + 3a2 (2+u)2 
8 128 

� - IU  

This expression simplifies considerably, to give 

a 1 (u - 1) .( 1 + � 

2 f 32 
. du 

0 
• 

1 - ua + 3u za2 I . du 
8 128 

(C3) 

(C4) 

The u integrals can be found by substituting u = s2, and then making a second 

substitution of s = v2sin6 leading to the result for the numerator of equation (Cl) as 

.E. ( 1 + �J . 
m · 32 

(C5) 

Tackling t;he denominator involves a different technique, called matched asymptotic 

expansions. The problem is that the integrand in (C6) below diverges at z=l, even 

though the presence of the A. 2 in the numerator means that we expect there to be a limit. 

i (z 2  - A. z) dz denominator = J . 
o [(m 2 - z 2)( l  - z 2)]in 

(C6) 

Putting the upper limit as Z, denoting the resulting integral by l(Z) and differentiating 

with respect to Z gives 

di 
dZ 

= (Z2 _ A.2) 
[(m 2 - z2)( 1  - z2)f!z (C7) 

Then the denominator required in (C6) is 1(1) . Making the substitutions for A. =  1 + a/2 
and m = 1 + a as before gives 

di 
d'Z 

_ 
(Z2 - o +a+a214)) 

[((1 +2a+a2)) - z2)(1 - Z2)]in 
(C8) 

Now since the problem with this expression occurs when Z=l ,  we need to treat it 

differently near that region. However for other values of Z there is not the same problem, 

and we can proceed with the solution. Near to Z=l a different approach is needed to 

give a different approximation to the solution. Because the solution is needed for all 
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values of Z the two regions must match each other; this is the essence of the method of 

matched asymptotic expansions, see [N ayfeh 73] for more information on the method. 

Looking first at the region away from Z=l and rearranging the denominator of (C8) 

gives 

di 
dZ 

= cz 2 - C l  +a+az/4)) 

( 1  - z2)( 1 + c2a+a2) ) v1 
( 1 -Zz) 

Expanding the root term in the denominator with the binomial theorem and some 

manipulation produces 

(C9) 

di = - 1  + az . [ 1 - 1 l + a3 . 
[ -3 + 1 l (C lO) dZ 4(1 -Z2) 2.(1 -Z2)2) 4( 1 -Z2)2 2 . (1 -Z2)3) 

The a3 term is not needed and will be dropped in the following. To integrate this the 

terms in Z2 need to be expanded into partial fractions. Using: 

1 1 [ 1 -Z/2 1 + Z/2 l 
( l -Z2)2 = 2 . ( 1 -Z)z 

-
( 1  +Z)2 

(Cl l) 

Using this in equation (ClO), and integrating gives several terms which cancel, so that I 

is given by 

1 = -z + - -- --- + oca3) + A . a2( 1 1 ) 
8 l +Z 1 -Z (C12) 

But since I = 0 when Z = 0 from equation (C6) that the constant of integration A = 0. 

To deal with the region near Z=l define 1-Z = at and write the 'outer' solution (Cl2) in 

terms of t to give 

a2( 1 _ .i.) 1 = at - 1 + 8 2 -at at (C13) 

So to order a2, and dropping at, which is small compared to 2, the 'outer' solution is ( 1 ) a2 l = - l + a t - St +
M (C 14) 

To tackle the other region where Z is close to 1 start from equation (C8). When Z is near 

1 each term in the expansion (ClO) will be of similar size, because the increasing powers 

of a are matched by increasing powers of l/(1 -Z2). Hence a different expansion is 
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needed; substitute as in (C 13) 

1-Z = at, 

dZ = -a.dt, 

z2 = 1-2at+a2t2 

then 

1 di ( 1 -2at+a2t2 - (1  +a +a2/4)) - - - = ----------------
a ·  dt [(( ! +2a +a2) - ( 1 -2at+a2t2)) . (1 - ( 1 -2at+a2t2)))]'h (C l5) 

Simplifying, using the usual binomial expansion and simplifying to terms of order a3 on 

the right hand side gives 

_ di  = a(2t + I) ( 1 +�) 
dt 2[t(l +t)]  Vz • 32 

The integral of this can be written as 

-I= - 1  + of1 

where f 1 is defined by 

f -
t (2t1 + 1 )  dtl ( az ) 

1 - . 1 +- + B [ 2[tl ( l +tl )] 'h  32 1 . 

(C l6) 

(C l7) 

(Cl8) 

And this then defines the inner part of the solution. B 1 is a constant which can be found 

from matching the two solutions from the Inner and Outer parts. Changing the form of f 1• 

by adding and taking away t, helps with the matching, changing (C1 8) to become 

= 1 +- - 1 dt + t + B . 
[ az ) r ( (2t1 + 1)  l f1 32 [ 2(tl( l +tl)J 'h  I I (C 19) 

Now the two parts of the solution must match each other when t is large, i.e. as we move 

away from the Z=l region. So equating (Cl 7), (C19) with (C14) gives � a1 J ' ( (2t + 1 )  ) a a1 
-1 + 1 +- J 1 - 1 dt1 + at + as1 = at - 1 - - + - . 

32 0 2[tl ( l  +t1)JY2 St 16 
(C20) 

Now the method requires all of the terms to match between the two sides of this 

expression, up to the order of the accuracy needed. The terms - 1  + at cancel directly, 

and we drop the o3 term on the left, so (C20) simplifies and rearranges to 

88 



B =  1 - dt - -
t ( (2tl + 1) l 1 

1 I 2[tl ( l +tl)J' h 1 8t 
a + - .  
16 

(C21) 

This integral cannot be found, but if the upper limit can be changed to infinity then it can 

be. Although t does not reach infinity we can write the integral to infinity if we add a 

correction factor. The correction factor matches the 1/8t term in (C21), as the following 

shows. We write 

] =  1 - dt 
t [ (2tl + 1)  l I 2[t1 ( 1  +tl)]' h  1 

therefore dJ/dt is given by 

dJ - ( 1 - (2t + 1 )  l 
dt 2[t( l +t)] V2 

This expands via the binomial theorem to give, for t >> 1 

dJ - 1  -3 - = - + O(t ) . 
dt 8t2 

(C22) 

(C23) 

(C24) 

Hence the correction term for changing the integral limit in (C21 )  from t to 00 is given by 

+ 1/8t + 0(1/t2). Clearly this term will tend to zero as t tends to infinity and it cancels out 

the term in (C21 ). The integral in (C21) with t=oa can be found by substituting t = 

sinh2(6). This leads to the result 

Bi = -1h + � 
16  

(C25) 

The answer we are interested in is the value of I when Z=l ,  so that from (Cl 7) with t (t 

= 1 -Z) as 0 

-l(z=I)  = - 1  + a.B1 • 

Hence the denominator comes out as 

1 + .§_ 
2 

az 

16 

(C26) 

(C27) 

Combining this with the expression for the numerator in (C5), and using the binomial 

expansion again, simplifies the result for c/d to 
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.E - a [ 
d - 2 1 � + ..!.!. a2] 

2 32 (C28) 

This fits very well with the calculated data from the numerical integration program as 

shown below. With the 3 term approximation being reasonable even when the a term is 

0.7, which is not particularly small compared to 1 .  

Graph of c/d against (m- 1 )  
corrparing full and approxirrate solutions 

0.5 ,-------------------

0.4 

0.3 

:e 0 
0.2 

0.1  

0.2 0.4 0.6 

(m-1 )  or delta 

0.8 

• c/d - full result + c/d - approx result 3 terms 

* c/d - approx result - 2 terms 

Figure Cl : Ratio of cld as a function of the parameter a 

The form of cld as a function of m when m is large 

1 .2 

As before the starting point is equation (Cl) .  In this case the denominator is the easier 

term to find. Because both A. and m are large with respect to 1 ,  the denominator of (Cl )  

simplifies to 

I ).2 . dz 
denominator 

� { m( 1 _ z 2JV1 
This is a standard integral, sin-1(z), and hence 
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. 
- ).2 1t denomznator "' -- . -
m 2 

Making the substitutions 

A = l + µ 

m = l + 1: 

where µ and 1: are both large then (C30) becomes 

denominator = - µ2 _:: 
1: 2 

(C30) 

(C3 1)  

In Appendix B an expression for ').. as a function of  m when m is  large was given as 

).2 = m2 
ln(4m) 

and so, since when m is large 1: and m are effectively equal 

2 
1:2 

µ "" In(41:) 

so the leading approximation for the denominator is 

-1: 1t -- -
ln(41:) 2 

(C32) 

(C33) 

(C34) 

The expression for the numerator is more difficult, because the integrand is complicated 

near z= 1 .  It can be tackled using the same 'Method of Matched Asymptotic Expansions' 

used earlier. 

Making the substitutions 

').. = 1 + µ, 

z =  1 + µP, 

dz = µdP 

and rearranging the resulting terms gives the numerator as 

I 

J 
µ2 . (P- 1) . (2+µ +µP) . dP 

0 [(µP(2 +µP) . (1: -µP) . (2+1: +µP))Y2 • 
(C35) 

To evaluate this it is helpful to replace the upper limit of (C35) by p and differentiate 

with respect to p. Then, denoting the result by J(p) the required result will be J( l) .  
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dJ -- µ2 . (p - 1 ) . (2+µ +µp) 
[(µp(2 +µp) . (-c -µp) . (2+-c +µp))Y' (C36) dp 

Then since µ and -c are large compared to 2 this simplifies considerably to 

dJ -- µ3 . (p-1) . ( l +p) 
[(µp . (-c -µp) . (-c +µp))Y' (C37) dp 

This simplifies further to 

dJ 
dp 

µ2 . (p 2- 1) 
p . [-c2 _ µ2p 2r (C38) 

This integral is found by splitting the numerator into two, and substituting p = 1/q for the 

second term. This gives 

J(p) = 
µ2 

(-c2 _ µ 2p 2rh 

µ2 +..!. . cosh - i( -2...) 
't µp 

+ c . 

Where C is a constant. This is equivalent to 

J(p) = 
µ2 

('t2 - µ2p 1) 'h 1 [ 'C ('C2/µ2 -p 2f2] + - . ln - + + c . 
µ2 'C µp p 

At p= 1 this is 

J(l )  _ 

µ2 
(-c2 - µ2}!12 

+ 
..!. . ln[� + (<'lµ'- J)"] + c 

µ2 'C µ 

The constant C needs to be found by matching the solution with that close to the 

'difficult' region near p=O. From (C40) with p small, 

J(p) - 'C 1 1 � 2'C ) - - -- + - . ln(p) + - . - + c . 
µ2 µ2 'C 't µ 

For the 'inner solution' for p close to 0, writing µp = t in (C36) gives 

dJ _ µ 
dt 

-
µ2 . ( ;- 1) . (2+µ +t) 

[(t(2+t) . ('C -t) . (2+'C +t))Y' 

This simplifies, since µ and -c are is large, to 

dJ -µ3 µ-= dt 'C . [t (2 + t)] Vz 
Hence J can be written as 
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J(
µ

) = -

�
2 

. [ rt dt 1 

[t 1 (2 +t 1)] 'h 
- t 1.dt ' l + Yzln(t2 + 1 )] 

t /2 + 1 
(C45) 

since J=() when t=O. Here the 2nd and 3rd terms cancel, but using both helps to simplify 

the result. The integral part gives the result log(2) when t tends to 00 ,  giving the constant 

of integration, so that J is given by 

2 2 

J(µ) = ..=!:._ . [ ln(2) + ln(t)] = ..=!:._ . [ ln(2) + ln(p) + In(µ)] 
1: 1: (C46) 

Now (C46) where pµ becomes large must match (C42) where p becomes small, and this 

defines the constant in (C39) by 

-(ln(2) + ln(p) + In(µ)) 
= 

_2_ - In(p) + In(2•/µ) + c 
'! µ2 '! '! 

the terms in log(p) cancel, so that the constant is given by 

c = -2._ - In(2-r/µ) _ ln(2) - In(µ) . 
µ2 1: 1: 1: 

Hence the solution to the numerator of (Cl )  is given from (C41)  and (C48) as 

(C47) 

(C48) 

J(l) = _ (t2-µ2)11 + _::_ _ ln(2) _ In(µ) + l. J� + ( ± - 1) v'] - l 1..f 2•) . (C49) µ2 µ2 µ2 1: 1: 1: ll1µ µ2 1: ll\ µ 

Hence the result for c/d is given by dividing (C49) by (C34), or more simply (C3 1), to 

give 

-rec = - 't(r-µ2)y, + ,2 
- ln(2) - Jn(µ) + J� + ( ,2 - 1) y,] - 1.J 2•) 2d µ2 µ2 ll1µ µ2 ll\ µ 

(C50) 

It can be expressed in terms of -r only rather than -r and µ, using (C33), and letting 

log(4-r) = x to simplify the expression to 

..:2:£ = - x(l - llx)Y' + x - ln(2) - Jn(_::_) + In{xy, + (x-l)Yz] - In(2xYz) 2d ..[x (C5 1) 

But the second and fourth terms combine to log 4 + Yzlog(x), and the first can be 
expanded with the binomial theorem to give, finally, for the leading terms when x >> 1 ,  

- = 1 - - - ln(2) - -ln(x) . TIC x( 1 ) 1 
2d 2x 2 (C52) 

The result (C52) tends to that found from the full expression (C 1) for large values of -r, 

but it is not a particularly useful approximation. This is because the term x = log(4-r) is 

not very large even for large values of -r .  
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Appendix D: Finding expressions for B as a function of c/d 

The form of B as a function of c/d when m is close to 1 

In Appendix A an approximation for the flow parameter B in terms of the length 

parameter m was found. Then in appendix C an expression for c/d as a function of m was 

given as well. Here an approximate expression is found which gives B directly as a 

function of c/d. 

Appendix A, equation (A6) gave 

B = _ po 1n[ 1 6 l 
1t • ( 1  - l/m 2) . (Dl) 

Writing m = 1 I ( l+a) where a i s  small, then neglecting terms of order a2 compared to a, 
and using a binomial expansion, (Dl) simplifies to give 

B = -:o 1n( �) 
In Appendix C, c/d was found to be related to the same a by 

.£ = � . ( 1 - � + l.!..a2) . 
d 2 2 32 

(D2) 

(D3) 

Again neglecting terms of order a2 compared to a in the simplest approximation this 

gives 

c 
d 

"' a 
2 (D4) 

Combining this result with equation (D2) above gives a simple result for B as a function 

of c/d, given by 

B = -� . 1n( 4:) (D5) 

Equation (D5) gives a correlation which is better than might be expected given the 

approximation made in dropping the a2 term for c/d. The log fit is very good up to c/d 

equal to about 1 .  
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The form of B as a function of cld when m is large 

In appendix C the result for c/d when m becomes large is derived. From (A6) and the 

first term of (C52), on eliminating x, 

B � -P d 0 -c 
(D6) 

However this result is not particularly useful as it requires an unreasonably large value of 

the parameter m to be valid. It does however give the end limit of the expression for the 

relationship between B and c/d. 
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Part 2: High pressure flows and pressure extension 

Chapter 1 :  Introduction 

Chapter 2: Theory and literature review 

Chapter 3:  Modelling the Darcy Law 

Chapter 4: Modelling using the Darcy-Forcheimer Law 

Chapter 5 :  Permeability theory and measurements 

Chapter 6: Pressure extension measurements and analysis 

Chapter 7 :  Conclusions 

Chapter 1: Introduction 
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In part 1 on natural driven flow the driving forces for the entry of soil gases into 

buildings were discussed in some detail. Given that pressure driven flow is expected to 

dominate over diffusive flow in most conditions where risks to health are significant, 

much attention has been given to preventing this pressure driven flow from occurring. 

The main technique used for this is the radon sump [BRE 92], known as a sub-slab 

ventilation (sometimes depressurisation) system in the USA In this a small void is 

formed below the floor of a building, and air is sucked out of it using a fan, see the figure 

in the introduction at the start of this thesis. If the system works then air is pulled from 

the building down through the floor and into the sump. This flow is the reverse of the 

normal situation described in the natural driven flow chapter, and will effectively prevent 

radon entry. Experience shows it to be effective in most cases [Cliff 91 ] .  

The purpose of  part 2 of  this thesis is to look at the way in which these sump systems 

behave, and in particular to understand the way the soil or hard core materials in which 

they operate affect their performance. These experimental and modelling studies serve to 

support the design of cost effective remedial and protection measures for radon by 

helping us to understand why the flows and pressures measured in them occur. Through 

this increased understanding we are able to improve our designs, overcome difficult 
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cases and avoid problems in the future. 

Chapter 2 introduces the theory relating to higher pressure flows, and reviews some of 

the work done elsewhere on these types of problem. 

In early work on this subject the Darcy law was always used to describe the flow of gas. 

Modelling using the Darcy law is discussed in chapter 3 of this part, with a mixture of 

computational and analytical techniques having been used. This work was carried out by 

the author, developing from work elsewhere. 

However the linear Darcy law is not appropriate in many cases, and a non-linear law is 

needed instead. This is discussed in more detail in chapter 4, which contains simple 

solutions to the Darcy-Forcheimer equation found by the author. 

In chapter 5 the key variable in soil gas modelling (permeability) is discussed, and the 

theories u�ed to estimate its value for different materials are presented. These are then 

compared with BRE measurements of the permeability of some common hard core 

materials. These experiments were mostly carried out by an undergraduate student 

working under the author' s supervision. Further analysis of these results is then given, 

and these are related to a number of formulae used by other workers for predicting 

permeability based on grading curve information. 

The issue of pressure field extension is discussed in chapter 6. This is the distance over 

which the pressure caused by a sump is found to have an influence. If this is too small the 

sump is less likely to be effective in reducing indoor radon levels. Measurements made by 

BRE and by contractors on behalf of BRE are considered, and analysed using the models 

proposed in chapter 4. The impact of the choice of hard core materials is discussed. 

Chapter 7 contains the conclusions to this part, which address the implications of the 

work on non-Darcy modelling and the pressure field extension results. The main choice 

to be made when designing protection measures is what sort of hard core material to use, 

and evidence for UK houses presented suggests that it is unlikely to be worthwhile to use 

the most expensive materials. 
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Chapter 2: Theory and literature review 

The review of work on low pressure flows covered most of the modelling work carried 
out into radon movement. There are only a small number of papers which have looked at 
the non-linear effect of higher pressure and hence higher speed flows. Most of these have 
come from Lawrence Berkeley Laboratory in the USA. 

There has been more work in the other main subject area for this part, that of pressure 
field extension, so this is discussed in the second half of this chapter. 

Darcy-Forcheimer modelling 

At low flow speeds the flow through a porous media is generally well described by the 
linear Darcy Law discussed earlier. At higher flow speeds this starts to break down, and 
a non-linear description is needed. There are a number of possible choices, [Bear 72] , of 
which the Darcy-Forcheimer law has had the most use. It is given by (2. 1 )  

VP = _J: . v ( 1  + c j v j )  
k 

where 
v is the velocity of flow (mis), and v = Q I A 

Q is the flow rate (m3/s), 
A is the area of flow (m2 ), 
k is the permeability of the soil (m2 ), 
µ is the dynamic viscosity of the fluid flowing (Pa.s), 
P is the excess pressure of the fluid compared to ambient (Pa), 
x is the length over which flow occurs (m), 
VP is the gradient of P (Palm), and 
c is the Forcheimer term, of order 10, (s/m). 

(2. 1)  

The new 'constant' c is another parameter to describe the material along with the 
permeability, k. Experiments in the USA [Bonnefous 92-1]  and ours at BRE suggest that 
values of around 10 (s/m) are typical. This suggests that for a material with this c value 
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and a flow speed above about 0.01 mis then the non-Darcy flow would be expected to 

have an influence, and above 0. 1 mis it would start to dominate. 

In order to model soil gas flow with the Darcy-Forcheimer equation new techniques are 

needed which are beyond the scope of this paper. The basic problem is that unlike the 

Darcy Law it cannot be combined with a continuity equation to give a simple equation 

for the pressure. In fact the use of the Darcy Law is particularly straightforward because 

it produces the Laplace Equation when combined with the continuity equation. The 

Darcy-Forcheimer equation does not have these benefits. 

In chapter 4 some particularly simple solutions to the Darcy-Forcheimer equation are 

presented. However more progress has been made on finding solutions to it numerically 

at the Lawrence Berkeley Laboratory (LBL) in California. Most of the modelling work 

was carried out by Yves Bonnefous when studying for his PhD at LBL, but the ideas for 

the work are shared between the team. 

Some of the work on landfill gas modelling has also addressed high pressure flows, 

particularly when referring to gas extraction from landfill sites. This needs a non-Darcy 

type law, but is not a problem which has been addressed in this work. 

Pressure extension measurements 

The idea of measuring the pressure extension of a sump is well established. The basic 

idea follows from the fact that a sump works by reversing the flow across the floor. In 

order to do this the pressure below the floor must be lower than that above it at all 

points on the floor. This can be measured relatively easily, usually by drilling a hole 

through the floor and inserting a tube, but sometimes by leaving measuring tubes below 

the floor when it is laid. The pressure extension is then the distance from the suction 

point at which some given reference pressure is achieved, 5 Pa for example. 

Some installers of systems in the USA choose to test the pressure extension achieved by 

a sump system they are installing to check whether it is going to work. If the pressure 

extension is not good enough they then install a bigger fan until it is, probably avoiding 
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the need to return later. 

In the UK we have chosen not to do this test routinely, for a number of reasons. Firstly it 
does not tell you with certainty if the radon level will be reduced. Sometimes the 
pressure extension is not perfect, but the main entry route for radon may be stopped so 
the radon level will be lowered significantly in spite of the incomplete pressure extension. 
Secondly the people who carry out the radon remedial work in the UK are mostly 
'normal' builders, who would not be familiar with the equipment needed, and are not 
trained to interpret pressure measurements. This could be overcome but it is not clear 
that it is worth doing so. Finally it is not good practice to drill holes in floors without a 

very good reason. It is disruptive, noisy and dusty, and provides a potential entry route 
for radon however carefully it is resealed. 

Nevertheless there is a certain amount to be gained from looking at results of pressure 
extension tests, and those carried out by BRE are addressed in chapter 6. 

Much of the work in this subject does not get published as it is done by practitioners. 
However Chick Craig at the US Environmental Protection Agency (EPA) has published 
a number of papers on pressure extension [Craig 93]. He was responsible for trying to 
reduce radon levels in large buildings, schools and hospitals in particular. He was able to 
achieve very large pressure extensions, up to 50 m in some cases, by using very carefully 
chosen hard core materials below the floor. He also had to ensure that each sub-floor 
wall had enough holes within it to allow air flow through it, without weakening the 
structure. 

In the UK, Trevor Gregory from Cornwall County Council and Roger Stephen at BRE 
have tried to copy the results achieved by Craig, but with varying levels of success 
[Gregory 93, Stephen 95 , Cripps 95-3] . This is discussed further in chapter 6. 
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Chapter 3: Modelling the Darcy Law 

lntro.duction 

This chapter covers attempts to model the behaviour of gas extraction systems using the 
Darcy Law. It becomes clear in Chapter 4 that this approach is flawed because at the 
higher flow rates involved in gas extraction the Darcy Law is not valid. However there is 
still an amount which can be learnt in a qualitative sense from this work. 

There are two quite different approaches used in this chapter. The first is a finite 
difference model, giving an approximate solution to Laplace's Equation in a defined 
region, by making approximations to the differential equation. The second method 
assumes that the extraction point behaves as a sink of material, and uses source/sink 
theory from other Physics disciplines to provide solutions. It might prove useful in 
making comparisons with some particular types of computational solution, and has been 
used elsewhere for studying extraction systems from landfill sites. However only the 
initial steps are reported on here. 

The computational solution is more general, but is relatively time consuming to use, in 
particular when small changes to a parameter are needed. Nevertheless it is the only way 
to account for all of the details of the geometry of the building. 

Finite difference model 

The computer model used was based on those developed at LBL [Loureiro 87] ,  [Mowris 
86] . It is a finite difference model, which solves Laplace's Equation for the pressure in 
the soil below a house. 
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The assumptions made in the computer model are: 

• Linear flow according to the Darcy Law (whether this is justified is discussed later), 

• No flow through floor or walls, apart from through a smooth edge crack, 

• Linear flow through that crack, 

• Sump modelled as constant pressure region at centre of floor slab, 

• Permeability constant and homogeneous within each of a number of defined regions. 

The way in which these are used in the finite difference code is not original, and so is not 
reproduced here. It has been covered extensively elsewhere, and was based on the work 
of Mowris [Mowris 86] and Loureiro [Loureiro 87] . 

The geometry considered first is given in figure 3. 1 below. 
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lOO h 
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JI 
D.!• Floor s:lab , j Ill • Hud core 
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Figure 3.1 :  The rrwdelled house 
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The model calculates the pressure field within the soil and hard core below the house and 
the rate of flow through the crack and through the sump. Two contour plots of pressure 
fields are shown in figures 3.2 and 3.3 below. In figure 3.2 the hard core material 
(permeability k = le- 10 m2) is much more permeable than the soil (k = l e- 12 m2). This 
results in essentially one dimensional flow in the hard core material, from the crack and 
into the sump. The soil plays little part in the flow, and the fall off in pressure from the 
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sump is close to linear in the hard core material. 
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Figure 3.2: Contour map of the pressure field for hard core more permeable than soil 

In figure 3.3, however, the soil and hard core permeabilities are equal at le- 10 m2, so the 
flow in the soil is significant, and the pressure decreases from the sump faster than in 
figure 3.2. The resulting pressure field extension (the pressure field at the edge of the 
slab compared to that at the sump) is not as great as in figure 3.2. 
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Figure 3. 3: Contour map of the pressure field when hard core and soil are equally 

permeable 

104 



The flow rates predicted vary with the permeability of the soil and hard core as shown in 
table 3.1 below. The flow rate given assumes a perimeter of 30 m, which is typical for a 
small UK house. The model ignores edge effects, so we are effectively looking at an 
infinitely long house, for the purpose of simplifying the problem. This is a serious flaw in 
the model, particularly when a sump is being considered, which is clearly not 'long ' . The 
model is not as bad when it is used to consider a house without a sump, for which the 
'comers' are less important. 

The resistance to flow, R, of the combination of house, soil and hard core is defined as 
the pressure in the sump, P, divided by the flow produced by it, Q, i.e. R = P I Q. When 
using a radon sump the lower the resistance the better, as this allows the same pressure 
to be achieved with the minimum fan power. However if no sump is being used the 
problem is more complicated as it might be better to have more resistence as this helps to 
keep gas out. 

Comparing results 1 and 4 of table 3 . 1 shows that the difference in the ratio of the 
permeability of the hard core to that of the soil has a large effect on where the flow 
occurs. 

Permeability Permeability Crack Sump Crack Resistance 
of hard core of soil width flow flow (Pa I 

(m2) (m2) (mm) (m3h.1) (m3h.1) (m3h-1) ) 

1 le- 10 le- 12 1 3.9 3.6 23 

2 le-9 le- 12 1 34 30 3.0 

3 le-8 le-8 1 2200 41 0.045 

4 le- 10 le- 10 1 23 2.8 4.4 

5 le- 12 le- 12 1 0.24 0.03 420 

6 le- 10 le- 12 10 4.8 3.7 2 1 

7 le- 10 le- 12 0.2 1 .4 0.09 72 

Table 3. 1:  Computer predicted flows for different permeabilities and crack widths 
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In result 1 the hard core is much more permeable than the soil, so that most of the flow 
goes through the hard core and through the floor crack, and very little (about 10%) goes 
through the soil. This is a good result from the radon reduction point of view, as is 
supported by the good pressure extension shown in figure 3.2. In result 4 however the 
flow through the crack is fairly small compared to that through the soil, as the path 
through the soil is easier for the gas. This results in decreased pressure extension as seen 
in figure 3.3. 

Comparing results 1 with 2, and 3 with 4 and 5 shows the close to linear relation of flow 
rate with permeability, as expected from the Darcy Law. When the permeability is high 
enough the approximation of linear or Darcy flow ceases to be valid [Bonnefous 92]. If 
we assume a sump surface area of 0.25 m2 then a flow rate of 100 m3h-1 represents an 
average speed of entry to the sump of about 0. 1 ms·1 . At this speed we are close to the 
limit for using Darcy's Law. 

Comparing cases 1 , 6 and 7 shows the predicted relationship between flow rate, 
resistance to flow and crack width, and these data are plotted in figure 3.4 below, 
together with some additional data . 
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Figure 3.4: Graph of predicted resistance to flow against crack width 

Until the crack width becomes small, less than 0.5 mm, the width of the crack does not 
have a significant effect on the resistance to flow, because most of the resistance occurs 
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in the soil and hard core. For very narrow cracks it becomes significant, but these are 
unlikely to be found without larger cracks being present as well, so the latter tend to 
dominate the flow field. This result is significant in the absence of the sump as well, and 
was discussed in the natural flow part earlier. 

Experimental results 

During the installation of remedial measures in buildings in the UK, BRE have been able 
to collect data on the flow rates and pressures produced by sumps. Some results are 
shown here in table 3.2. Most of these results are unpublished data from visits by BRE 

staff to high radon houses in Devon and Cornwall, the exact locations being confidential. 
Those marked GS are also discussed in [Gregory 93]. 

File number Sump Pressure Flow rate Resistance (Pa I 
(Pa) (m3h-1) (m3h-1) ) 

57 88 160 0.55 

58 105 180 0.58 

68 172 120 1 .43 

134 250 100 2.50 

136 100 324 0.3 1 

Pool school GS 334 107 3. 12 

St Leven School GS 125 158 0.79 

Table 3.2: Pressures, flows and resistances measured in UK buildings 

The flow rates measured here are similar to those predicted by the computer model for 
soils with permeability of order le-9 to le- 10 m2• From these results we can estimate the 
permeability of the ground below these buildings, if we make significant approximations 
about the material below the buildings. 

The resistances vary over an order of magnitude, which suggests that the permeabilities 
will also do so. Given that permeabilities of soils can vary by up to 10 orders of 
magnitude, it is surprising that there is a comparatively small range of resistances in tests 
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so far. This probably indicates the leakiness of construction in the UK, as leakage paths 

other than through the soil or edge crack as modelled disrupt the predictions of the 

simple model used here. 

Usually the make up of the soil below the floor of a building is not known. The 

modelling results show that a number of different combinations of soil and hard core 

permeabilities and floor leakages could produce the same overall resistance to flow. For 

example compare results 2 and 4 of table 3. 1 , where the flow resistance is similar for 

different combinations of permeability. The measured flow resistance cannot tell us about 

this; more pressure measurements would be needed in the hard core or soil to observe 

the type of pressure distribution. 

Cost of running a radon sump 

A typical UK sump uses a 75W fan, which at 7.6 p per kW hour would cost £50 per year 

to run. However the use of the sump results in additional ventilation in the house. The 

computer model predicts that a proportion of the flow into the sump will come from the 

house, through cracks in the floor. In fact when the hard core is less permeable than the 

soil below it, most of the flow comes through the floor. Field evidence of sump flow 

rates show we can create an additional flow of about 100 m3h-1 through the floor of the 

house. 

Using the BREVENT model of ventilation [Cripps 92] we can estimate that for a typical 

UK house this would result in an overall increase in ventilation in the house of roughly 

half of the flow, i.e. 50 m3h-1 . Then if we assume that the external air is 10 °C colder 

than the indoor air, we can predict that the fan results in an increase of about 170 W in 

the heating load. If this is needed throughout a six month heating season we can predict 

an additional heating cost per year of between £20 for gas and £55 for on-peak electric. 

This cost may appear small, but will not be negligible for many householders. 

Stepped floors 

One of the main benefits of using a computational model is that there is no limit, in 
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principle, to the complexity of the geometry which can be considered. Therefore as some 

UK homes are built with a stepped floor, I carried out some modelling work to look at 

how the location of a radon sump affects its performance. 

Given the flaws in the model when it considers radon sumps this work is not considered 

further here. 

Conclusions to finite difference model section 

The computer model is able to predict the correct order of magnitude of the flow rates of 

sumps as measured in the field. The results of computer predictions and field 

measurements can usefully be expressed via a resistance of the whole system to gas flow. 

The relationship between the permeabilities of the soil below the house and any hard core 

material is a key parameter in the performance of the sump. If the hard core is highly 

permeable, much of the flow into the sump is likely to come from the house and the 

pressure extension below the slab is improved. This may lead to higher fuel bills, but is 

expected to be more effective in reducing the radon levels. 

However there are two significant flaws in using the model for this type of work. Firstly 

is the non-linear nature of the flow, discussed further in chapter 4. It will result in over 

predictions of the flow rate for a given pressure, because a source of resistance to flow is 

being ignored. Probably more significant is the fact that a three dimensional problem has 

been addressed with a two dimensional model. In spite of the fact that buildings are 

generally rectangular, the sump is better described in cylindrical polar coordinates if only 

two dimensions can be used on the available computer. This is because the way in which 

the pressure 'spreads out' from the sump is neglected completely in two dimensions. 

This was not an issue for the 'no-sump' problem considered in the natural flow part, but 

cannot be ignored here. 

Nevertheless the understanding of how sumps operate, and the significant proportion of 

the air reaching a sump coming from the house are still valid and useful results from 

these modelling results. 
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Source/sink theory 

Modelling of sources and sinks 

Introduction 

In this section the pressure distribution caused by an assumed flow is considered. Often 
remedial measures to protect against soil gases involve blowing into or sucking gas from 
the soil. These processes can be represented by sources and sinks of fluid, provided the 
area of extraction or entry of gas is fairly small, and the detail near that point is not of 
great importance. 

A source, see for example [Batchelor 67] , is a point from which fluid is emitted 
uniformly in all directions and at a constant rate. A sink is the opposite, a point where 
fluid is removed. 

Although not ideal, a two dimensional model of the pressure field around sources and 
sinks gives some information about how the sink behaves. 

Definition of the problem 

x = O  x = l 
Source at 

y = O  I 
xii aP/ay = O  I 

P = P0 P = O  

y = .. 
aPtay - o  

Figure 3.5: Pressure field problem 

In the absence of the source at (a,0) there would be a steady pressure gradient across 
from x=O to x=l , with no y variation, i.e. 

P = P0 (1 - x) . (3 .2) 
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Taking this linear part out of the problem simplifies it slightly, and it can be added in 
again later. 

When this work was first attempted a solution was found using a Fourier Transform 
technique. However there is a much simpler solution method which uses the method of 
images. Only the latter is used here. 

Ignoring the applied pressure gradient due to P 0 the problem can be considered as that in 
the following diagram. 

y = O  

P = O on all x lines 

y = oa 

x = -3 -2 -1  0 1 2 3 4 
Sourcel at 

I '"'' I • I VtJ I • I v·• I • I r.n I • 8Pl8y = 0 

aPtay = o 

Figure 3.6: Diagram of problem set out for method of images solution 

Putting a source of opposite sign at x=-a cancels the effect of the first source on x=O. It 
is shown above by the striped box. The pressure field due to both of them will include 
zero along the line x=O as required. Similarly another negative source at x=2-a would 
balance the first source along x=l . However we must also consider the images of these 
two image sources. 

The image source at x=-a has to be balanced by a positive image source at x=2+a in 
order to keep the zero pressure on x=l . Similarly another positive is needed at x = -2+a 
to balance the negative at 2-a on the x=O zero pressure line. This is not the end of 
course, as each added pair need another pair to balance them and the diagram above 
gives the first few image sources in either direction, with positive sources as solid square 
boxes, negative sources as striped boxes. 
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In mathematical notation there are positive sources at x = 2n + a, negatives at x = 2n - a, 
where n is any integer. The number of image sources is infinite, but since the region of 
interest is between x=O and 1 it is clear that the later image sources have less and less 
effect due to their distance from the origin. 

This is the basis of the Method of Images, used widely in physics, and also elsewhere for 
gas flow [Mutch 90]. A single source of strength m at (r, 0) gives the pressure 

P = -m . ln((x - r)2 + y 2) , (3 .3) 
and then substituting for each r using the position of the images defined above, and their 
strengths as +m or -m, the complete solution by the method of images is 

p = -m 
"t In ( y2 + (2n + a - x)2l · 

11 = - y 2 + (2n - a - x)2 
(3.4) 

This result is plotted in figure 3.7, where a source of strength 0.5 has been placed at the 
point (0.325, 0). On x=O the pressure is forced to 1 , while it is 0 on x=l . All of the 
boundary conditions are met in this plot, although there is always a small truncation error 
which can be seen along the x=O line. There the pressure is very slightly less than 1 for y 
> 0.6, but not significantly. 

1 .501 I I \ , I I , 
1 I 

0 0 0 :....i bl i-.> (11 0 (11 � \ \ I i \ l \ I 1 .00 I I i . \ . \ . I . \ . 
\ \ \ \ 

. \ \ . \ . \ \ \ '"-._ \ .,  \ I 
o.s01 -· 1·00 • ........._ \ \ L 

\ . \ /. 1.25-...... . "-. 0 \ l " \ ·...i \ I ..--- ,, , .... , I / --......._ \ ' ..,. \ I I / , .,,..-..., '\ \ \ \ \ I I I / ..---·-� '\. \ • i i · ' �' ·-:::- "- \ \  \ .  : l : ! (/ �� ... \ \ \ \ I 
0.00 I I i ! ', 1&\}' \ . ·, ) : i l I . 

0.00 0.20 0.40 0.60 0.80 1 .00 

Figure 3. 7: Pressure field contours for the first source model 
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By y=l .5 the effect of the source (or sump) has almost gone, and the result is close to 
that in the absence of it, as we would expect. The pressure at the source is clearly very 
high, tending to infinity in fact. The value at this point is not significant, because we 
cannot achieve a point source in practice. What will be of more interest is the pressure a 
small distance from the source, which could represent the pressure at the edge of a radon 
sump or landfill bore hole. 

There is no reason why a second or third source couldn't be included in the analysis, 
resulting in more terms of the same form as those in (3.4). 

A second problem: No flow on x=l 

Another useful problem is defined by having a no-flow boundary at x=l , instead of the 
zero pressure used earlier. Zero pressure is defined on x=O, and there is no flow across 
x=l , so that aPJax=O there. There is no flow across y=O, which is satisfied by the 
symmetry of the problem. 

y = O  

y = ""  

x = -3 -2 - I  o , 1 ,  2 4 I Source1 at i I - 1 =  jx - a  I I I F71 .;_ I 
1 _ 1 ,,,, , •••• 1 _ , _ , ,,  •• .... , _ aP!ay = O  . I I I I 

! P =  I I I I I I aP1a� = o o I I x odd lines I dashdd I 
! I 

aP!oy = o 

Figure 3.8: Diagram for second method of images problem 

The source at (a,0) is balanced to give P=O on x=O by the negative image source at (-a, 
0). Then to force no flow on x=l due to the original source another positive source is 
needed the same distance the other side of it, and so on. 
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The positive sources are found at 

. . . -4+a, -2-a, O+a, 2-a, 4+a, 6-a . . . 

or 4n+a, 4n+2-a where n is any integer. 

The negative sources are at 

. . . -6+a, 4-a, -2+a, 0-a, 2+a, 4-a 

i.e. 4n-2+a, 4n-a where n is any integer. 

From these we can write down the solution, in the same way as before. .. 
P = -m E in[( y 2 + (4n + a - x)2 l ( y 2 + (4n+2 + a - x)2l l 

· y 2 + (4n-2 - a - x)2 y 2 + (4n - a - x)2 (3.5) 
tl = -eo 

This result is plotted in figure 3.9, with a source of strength -0.5 (i.e. a sink) at x=0.325. 

--,,,--/; 
�'}� / 
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Figure 3. 9: Pressure field contours for the second source problem 

This shows that the result matches the boundary conditions correctly. The horizontal 
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lines at the x= 1 boundary indicate that no flow is occurring across it, since flow is 

perpendicular to pressure contours. The zero pressure on x=O is also clearly satisfied. It 
is less clear that no flow occurs on y=O, because the pressure lines are not all 

perpendicular to it. This is probably due to not calculating enough points close to y=O. 

Conclusions to source/sink part 

In this section analytical solutions have been found for the pressure fields caused by 

combinations of sources and sinks in two dimensions. Although not corresponding 

exactly to reality, they give some insight into the way that sumps or other pressure 

devices behave. In particular it gives the 'shape' of the pressure field generated by an 

extraction point of a given power, and this corresponds closely to the situation with a 

sump. The solutions therefore have some value in helping us to visualize the flow. 

The solutions generated are better, to some extent, than the finite difference solution, in 

that a pressure does not need to be defined, just a source strength. This then corresponds 

quite well to a fan, which has a given power rather than a defined pressure. This analogy 

fails when the pipe work associated with a fan is included; this cannot be taken into this 

simple model. 

However the method is mainly limited in its application because it can only be used 

with certain simplified geometries. Because these do not correspond to the 'real' layout 

of a house, they have a limited application, and so have not been taken further in these 

studies. 
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Chapter 4: Modelling using the Darcy-Forcheimer Law 

This chapter presents some simple analysis of the Darcy-Forcheimer law, and the 
solutions to it in cylindrical polar coordinates which are used in the analysis of pressure 
extension data later on. It also presents a new model within this for considering the 
pressure within the hard core below a floor slab. 

The key equations used are Darcy's Law as before 

Q = _ Ak . aP 
µ ax 

or \IP = -.H. . v 
k 

where 
Q is the flow rate (m3/s), 
k is the permeability of the soil (m2 ), 
µ is the dynamic viscosity of the fluid flowing (Pa.s), 
A is the area of flow (m2 ), 
P is the excess pressure of the fluid compared to ambient (Pa), 
x is the length over which flow occurs (m), 
VP is the gradient of P (Palm), 
v is the velocity of flow (ms-1 ). 

and the Darcy Forcheimer Law which is 

\IP = -.H. . v ( 1  + c.v) 
k 

where all the variables are the same apart from the extra constant 

c is the Forcheimer term, of order 10, (s/m). 

(4. 1 ) 

(4.2) 

The problem to be considered is described by the figure below, which represents either a 
sump or a pressure extension test. 
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Suction 

Figure 4. 1: Diagram of pressure extension test 

Assumptions used 

Pressu re 

tapping 

a) The floor of the house and the soil below the hard core are much less permeable 
than the hard core. Hence it is reasonable to assume no flow through the floor or 
the soil. 

b) The suction hole extends down to the base of the hard core material, so it is 
possible to assume no vertical variation in pressure. 

c) Away from the walls there will be radial symmetry, so cylindrical coordinates can 
be used, with no variation in the <!> direction. 

d) The effect of the end of the hard core material is ignored, so that the region is 
effectively infinite. 

From a) the total flow rate through a cylinder of any radius will be the same. Hence using 
c) for either of the two pressure equations, the velocity at any radius is given by 

v = _g__ 
2rr.r.d 

where 
r is the radius from the central suction point (m), 
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d is the thickness of the hard core layer, assumed constant (m). 

Substituting this into the Darcy-Forcheimer Law expressed in cylindrical polar 

coordinates, and integrating with respect to r, gives the predicted relationship between 

the pressure difference between any two points and their radii. It is given by 

P - P = --- log (-) - - - - -µ Q [ r 1 cQ ( 1 1 l l 1 2 k.2rtd e r2 2rtd r1 r2 
where 

P1 and P2 are the pressures (Pa) at radii r1 and r2 (m) respectively. 

(4.9) 

Setting c = 0 simplifies this to the Darcy case, with the non-linear term in Q 

disappearing. This applies when the velocity of flow is low, or in certain materials, 

generally with very few 'fines' in them. Fines are the smallest size particles within a hard 

core material. The term is often used without a particular definition beyond this, but a 

measurement would need to define the sieve size considered as 'fine', for example 1 mm. 

It is interesting to note the fact that in the Darcy case the pressure varies with the log of 

the radial distance, and hence the assumption of cylindrical symmetry is better than it first 

appears. This is because the log of the distance to the comer of the floor is not greatly 

different from the log of the distance to the middle of any wall. 

A comparison of this result to experiments is made in chapter 6. In some cases measured 

by Wimpey Environmental Ltd on behalf of BRE the fit to this model is good. However 

this is not always the case and another possible model takes account of the resistance to 

flow of the crack at the join between the wall and the floor. 

Resistance model 

Other work, for example [Mowris 86] , shows that there can be a significant resistance to 

flow due to the crack between the wall and the floor slab. These cracks are almost 

impossible to eliminate from the concrete so must be considered in all models. If the hard 

core material is very permeable it is possible for this to be the dominant resistance to 

flow, i.e. the element within the path of the flow of gas which has the greatest impact on 
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the flow. Hence it is useful to consider a resistance model of gas flow to try to include 
this effect along with that of the hard core. The resistance due to a crack is defined for 
laminar flow as 

A.Pcrack Qcrack = Rcrack 

where the pressure is the pressure across the crack, and the resistance is given by 
Mowris [Mowris 86] as 

R = crack 

where 

12µ L slab 
L crack " 1crack 

µ is the dynamic viscosity of air (Pa.s), 

(4.5) 

(4.6) 

Ls1ab is the length of the edge of the crack, ie the perimeter of the floor slab (m), 
Lcrack is the thickness of the slab, ie the vertical length of the crack (m), 

tcrack is the width of the crack (m). 

Combining this with the pressure drop for the hard core material by adding the 
resistances gives the result 

A.P = aQ ( ln(redg) - ln(r) + cQ ( _!_ - -1-J J + Q · Rcrack 21td r ,
.
edge 

where 
a =  µ/27tdk, 
and the other variables are as defined earlier. 

(4.7) 

This model contains three parameters to be matched against the experimental data, k, c 
and Rcrack• and is helpful in some cases. The main problem is that the width of these 
shrinkage cracks cannot be measured with great accuracy, and will not be constant 
anyway. This limits the application of the model to helping to understand the scale of the 
effects which limit the flow of gas. However as is shown in chapter 6 it is able to give 
answers to the correct order of magnitude, and is useful in understanding the relative 
scale of the components of the resistance to flow. 
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Chapter 5: Permeability theory and measurements 

Introduction 

This chapter looks at how the permeability and related parameters can be measured, and 

how the problems in this process were overcome. The data from statistical analysis of 

pressure and flow rate results are also compared with predictions of permeability based 

on the measurement of the physical dimensions of the aggregate particles, expressed 

through the grading curves. 

Experimental Method 

The basic procedure for these experiments was to pass volume-known flow rates of air 

through a sample of an aggregate. The pressure drop across the aggregate was 

measured, and this data was analysed statistically so that the values of c and k could be 

found. The experiments and the analysis were carried out at BRE by undergraduate 

students under the close supervision of the author. 

The original apparatus is shown below as figure 5 . 1 . The design was based on USA 

standards [AS1M 90] and UK Department of Transport standards [DoT 90], and from 

work at LBL [Gadgil 91] . A long wooden box was filled with the aggregate to be tested. 

Wire mesh was placed at each end of the box to contain the aggregate while allowing air 

flow through it A plenum chamber was fixed to both ends of the box to make the 

pressure measurement easier and to minimise momentum effects which might affect the 

result. The aggregate was loaded into the box and levelled, but not compacted. 

To measure the pressure across the aggregate, pressure tappings were inserted into both 

'end boxes' ,  with tubes leading to a micro manometer. A sheet of foam was placed on 

top of the aggregate to prevent air from flowing between the aggregate and the lid. A fan 

provided the pressure difference; the rotameter set in series with the fan adjusted the air 

flow out of the aggregate, and a TSI flowmeter measured how much air was drawn into 

the aggregate. The rotameters also measure the air flow rate which goes through the fan. 
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I BRE aggregate testing box I 
Pressure tapping p1 Press u re  tapping p2 

II Foa m II Plenum chaml>ar :llllll�llllllMMlllMl'! I � : .. , 
• 

Fran fbwmeter 

Aggregate Wire mesh screen 

Figure 5. 1 :  The experimental apparatus 

The experiment was carried out as follows. The fan was turned on, and the rotameter 

valves were opened fully to allow the maximum air flow through the aggregate to allow 

any settling of particles to occur. Then a series of measurements were taken for different 

rotameter flow rates, down to the lowest flow possible with that rotameter set, around 5 

cubic metres per hour. The results for the first experiment undertaken are plotted below. 
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Figure 5.2: Pressure drop against flow rate for MOT 1 
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The central line, marked with the squares, is the flow rate measured by the rotameter set. 

The lower line is the flow measured by the flowmeter at the other end of the box. If the 

experiment and apparatus were perfect, then these would be the same. However, there is 
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a large difference between them, caused by air leaking into the apparatus. The top line 
shows the percentage of the rotameter reading that must have been leaked into the box 
or connecting pipes. A leakage of 10% might be considered acceptable but, since this 
initial set had an average value of almost 40%, steps were taken to reduce leakage. 

Improvements to the method 

It seemed that the most likely place for air to enter the apparatus was through the joints 
and walls of the long aggregate box. The joints were further sealed with silicone sealant 
and a 1200 gauge polyethylene sheet was laid in the box and the aggregate placed in it, 
to prevent air from entering the aggregate at any place other than at the ends. Enough 
plastic sheet was used so that there was an overlap on top. 

The long flexible pipe was also seen as a possible way for air to enter the system; it was 
now under more pressure (a few thousand Pascals) than under normal operation. It was 
not practical to attempt to seal it, and so a pressurisation test was carried out on it. The 
pipe was detached from the apparatus and sealed at its open end. A pressure tapping 
was inserted into the plug. The fan was used to create pressures and the rotameters 
displayed how much leakage was taking place. The statistics package SPSS fitted a cubic 
line to this data and this was used to correct the results from the original experiment, 
reducing the unaccounted for leaks by an average of 33%. When the experiment was 
repeated with the plastic sheet surrounding the aggregate the unaccounted-for-flow 
percentage fell to an average value of below 15%. 

Another possible source of leakage is the boxes attached to the ends of the test cell. The 
amount that the end boxes leak will depend on the pressure they contain. Assuming that 
they are identical, since the box nearest to the fan is at a higher pressure than the other 
means that it will leak more. This means that the flow rate measured at the lower 
pressure, 'open to the outside air end' of the system will be closer to the flow through 
the test box than the flow which reaches the fan. It would therefore be reasonable to take 
the open end (TSI flowmeter) flow as the 'correct' flow. However in these results a 
small correction was made to account for the pressure in the outside box. 
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Analysing the data 

The data were analysed with the SPSS statistics package, the results fitting well to the 
Darcy-Forcheimer equation (4.2). The results for the first aggregate tested are given 
below. 

Correlation coefficient of SPSS fit, r2. 0.99985 

Value of parameter c 13 .4 ± 2.0 

Value of permeability k 2. 7 x 10 .g ± 0.4 x 10 .g 

Table 5.1 :  Results of permeability experiments on MOT type 1 sub-base. 

The error ranges quoted are 95% confidence limits. 

The other aggregates were tested and their values of c and k were calculated in the same 
manner. Figure 5.3 shows all the Qa plots for the different aggregates. 
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Figure 5.3: Pressure against flow results for all.five aggregates 

These plots were used to calculate c and k. The results are given in the table below. 
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A_g_gregate Forcheimer term, c (sm-1) Permeabilitv, k (m2) 

10 mm single sized 4.7 ± 0.7 (2. 1 ± 0. 2) x 10-s 

20 mm single sized 6.7 ± 0.8 (9.9 ± 1 .0) x 10·8 

20 mm graded 6.0 ± 1 . 1 (9.3 ± 1 .4) x 10-8 

40 mm _graded 14.6 ± 4.6 (2.7 ± 0.8) x 10-7 

MOT type 1 sub-base 13.4 ± 1 .7 (2.7 ± 0.3) x 10-s 

Table 5.2: Results for permeability and Forcheimer term for each of the five aggregates 

Errors quoted are two standard deviations, which represents a 95% confidence interval. 
Figures 5.4 and 5.5 show both of these sets of results, and the same errors are displayed 
as bars. 
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Figure 5.4: Permeabilities of aggregates 
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Figure 5.5: Forcheimer terms of aggregates 

An unknown in these tests is the effect that compacting the aggregates would have. In 

reality, if the aggregates were being used, they would be compacted, either using a 

mechanical device, or by the weight of concrete or other materials on top. To investigate 

this in the laboratory it would be necessary to devise a compaction method that could be 

quantified. Some aggregates, such as the single sized aggregates, would resist 

compaction more than aggregates with more widely varied particle sizes. Some tests 

carried out on a commercial basis, and so not reported on here, indicate that for the 

MOT type 1 material the effect of compaction is to reduce the permeability considerably. 

The MOT type 1 sub-base has a significant amount of fines in it, and the effect that time 

would have on the settlement of fines is also beyond the scope of these tests. Fine 

aggregates are defined in BS 882: 1983 as aggregate which mainly passes through a 5.0 

mm BS 410 test sieve. Fines is not defined as a term in itself, but is taken to mean the 

part of the aggregate less than 5 mm in size. It is possible that the region where fines 

collected would have a different permeability from other parts of the aggregate, and this 

is certain to affect the performance of real fill materials. 

Figure 5.4 above shows the relationships between the permeabilities. The two 20 mm 

aggregates have, to this level of accuracy, the same permeability. The 40 mm aggregate, 

as would be expected, has the highest permeability of those tested. It also has the 
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highest percentage error; this could be due to the box being too small to test particles of 

this size accurate! y. 

The Forcheimer term represents the way that the resistance to flow of air increases the 

faster it travels through the aggregate. It has been suggested that a high c value would 

mean that the aggregate changes, with smaller particles being moved amongst the larger 

ones as the flow rate increases. Thus it would be expected that the MOT sub-base, with 

many different sizes of particles, would have a high value of c, which it appears to. The 

40 mm graded aggregate also has a high c value, but whether this is due to the same 

reason is unknown. However, the 20 mm single-sized aggregate has the same value of c 

as the 20 mm graded, when it would be expected that the single sized aggregate would 

have fewer small particles and thus a lower c value. These issues are better investigated 

by looking at the grading curves for the aggregates. 

Grading curves 

Another test to describe an aggregate is to measure its grading curve. This is carried out 

with a standard set of sieves, through which the sample is passed, largest sieve first. The 

weight held by each sieve is recorded, and the combined result plotted as the grading 

curve. By extrapolating between the measurements, this gives the proportion of each size 

of material at any given size. 

BRE has a concrete laboratory which carried out these tests for this project. The results 

for the five samples are given as figures 5.6 to 5. 10. 
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Figure 5. 10: Grading curve for MOT Type 1 

Simplified variables used in the description of aggregates 

Rather than using the full grading curve to describe a material, there are a number of 

different dimensionless grain size coefficients. One is Hazen 's effective grain size 

coefficient or the uniformity coefficient [Bear 72] ,  defined as 

where 

Cu = d60 I d10 

d60 is the diameter allowing 60% of the material to pass 

d10 is the diameter allowing 10% of the material to pass. 

When Cu is small, less than 2 say, the sample is considered to be uniform, and the larger 

the value, the greater the variation in sizes within the material. The values appropriate for 

the 5 materials tested have been calculated from the grading curves and are given in table 

5.3 below, together with measurements of porosity. 

These results help to explain some of the results of the flow experiments. Comparing the 
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grading curves of the two 20 mm aggregates it is clear that they are extremely similar, so 
it is no surprise that their permeabilities and Forcheimer terms should be close together. 

Both the 40 mm graded and the MOT 1 have a measurable quantity of small sized 
particles, or fines, whilst the others do not. This probably explains the larger Forcheimer 
term of these two samples, as this is believed to be a function of the ease of small 
particles to move within the material, blocking pores. The three smaller sized aggregates 
are almost without fines, so might be expected to have lower Forcheimer terms. 

Another important parameter for an aggregate is the porosity, defined as the proportion 
of the volume occupied by air. This means it is a dimensionless factor with values 
between 0 and 1 .  In general a higher porosity leads to more air flow. It is normally 
measured by the amount of water a sample can absorb within a known volume, in this 
case a plastic bucket. 

Spheres can have values between 0.26 and 0.48, according to the packing arrangement, 
so it is clear that the values given here for the un-compacted, single sized aggregates are 
quite high. The porosity of the MOT is greatly reduced by compaction, as might be 
expected from the range of sizes within it. However it is difficult to greatly reduce the 
porosity of single sized materials by compaction, as the 10 mm single sized result shows. 

A_g_gre_gate d..,n (mm) drn (mm) C,, Porosity () 

10 mm single sized 7.5 3.5 2. 1 0.37 uncompacted 
0.35 compacted 

20 mm single sized 14 9 1 .6 0.43 uncompacted 

20 mm _graded 16.5 10 1.7 0.46 uncompacted 

40 mm graded 22 12  1 . 8  0.45 uncompacted 
0.39 compacted 

MOT type 1 sub-base 15 0.6 25 0.32 uncompacted 
0.22 compacted 

Table 5.3: Grain size diameters, uniformity coefficients and porosities for the 

aggregates 
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However comparing the grain size coefficients for the two larger sized materials shows 

there is a considerable difference between them. The MOT type 1 has a very wide spread 
of sizes, and this causes much less free space in the aggregate for air to flow in, because 

it packs together so effectively. This causes the significant difference between the 

permeabilities of the MOT type 1 and the 40 mm graded, which are a factor of ten apart. 

Using grading curve information to estimate permeabilities 

There are a number of formulae relating the permeability of an aggregate to the grading 

curve information, and six are given below. In all cases the diameters d are in metres. 

Hence some of the formulae are not as they appear in the original documents, which used 

a mixture of m, cm, mm and µm. 

1)  Fair & Hatch [Bear 72,  p 134] 

k = _!_( ( l  -n)2 ( ��L. )2) -1 

m n 3 100 dm 

where 
m = packing factor (around 5), 

a =  sand shape factor (6.0 for spheres to 7.7 for angular grains), 

n = porosity, 

p = percentage of sand held between adjacent sieves, 

� = geometric mean sizes of adjacent sieves (m). 

2) Kamal et al [Kamal 91],  

(5 . 1 )  

K = -3.46 - 18.5x10-3d10 + 17 .6x 10-3d20 + 1 .2xl0-6d10
2 + 0.62xl0-6d20

2 (5 .2) 

where 
K = hydraulic conductivity in ms·1, convert to k by k = Kµ I pg, 

µ = viscosity (Pa.s), 

p = density of air (kgm-3), 

g = acceleration due to gravity (ms-2), 

d10 , d20 = diameters of sieves that let 10% and 20% of the material through (m). 
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3) Sherrard et al [Sherrard 72] , taken from [Jones 91] suggest 
k = 0.0035d1/ . 

4) Kenney et al [Kenney 84] 

k = f x 10- 3 d/ f in range 0.5 to 1 . 

5) Hazen [Bear 72, p 133] 
k = 0.6 17x l0-3 d102 . 

6) Kozeny Carman [Bear 72, p 166] , for uniform spheres of radius r (m) 

k = 4r2 n 3 
1 80 ( l -n)2 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Each of these has been used to predict the permeability values for each aggregate. The 
results are shown in figures 5. 1 1 to 5 . 15 , compared with the measured result from the 
laboratory tests. This shows that there is considerable variation between the different 
models for permeability based on these types of measured data. 
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Figure 5. 15: Model measurement comparison for MOT type 1 compacted, porosity 0.22 

Generally the Kozeny Carman equation gives good results for the four cases where the 
materials were close to single sized. The model is not applicable for the fifth case, the 
MOT type 1 ,  where the size range is very large, and we cannot assign a radius for the 
simple 'billiard ball' model. The accuracy of the model requires a good measurement of 
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the porosity, as this is the dominant part of the equation. For spheres, in the 'billiard ball' 

model, the calculated porosity varies between 0.26 and 0.48 depending on the way they 

are arranged [Bear 72] . Hence even in this simplest case it is not possible to know the 

porosity of a randomly produced sample. 

However when the porosity values measured in the laboratory are used the results are 

reasonably accurate. For the 10 mm aggregate there was little impact on the porosity due 

to compaction resulting in a small change in the predicted permeability. However for the 

aggregates which compact more, the MOT 1 and the 40 mm graded, the situation is 

more complex. For the MOT 1 ,  using the 2 extreme values of porosity in the Kozeny 

Carman equation results in a predicted factor of four difference between the permeability 

values. The result for the 40 mm graded is closer to the measured value when the 

compacted value of porosity is used. 

The message from these results is that the compaction method for the test cell used for 

the permeability needs to match that used for the test volume used for the porosity test. 

We did not give enough attention to this aspect within these tests. 

Models 3, 4 and 5 all base their answers on the sieve diameter which allows a particular 

proportion to pass through them. It is probably because of the small range of sizes 

present in most of these samples that these methods are unreliable. The Kenney et al, and 

Hazen results are generally a little low, but this could also be because of the small degree 

of compaction in these experiments. This is particularly the case for MOT 1 ,  where the 

predicted results are more than two orders of magnitude lower than the measured result. 

We would expect a significant reduction in permeability from compaction for the MOT 

1 ,  but we would not expect the same effect with the other, near to single size materials. 

The Fair and Hatch formula appears the most complete. However it is heavily 

dependent on the porosity measurement for its result. Hence the extra accuracy implied 

by the use of all of the grading curve information may be misleading. The Kamal formula 

also gives more terms than seem likely to be relevant, given the considerable 

uncertainties in the data. The original version gives figures to five significant figures, 

which cannot possibly be valid. 
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Hence it is clear that there is no guaranteed method for evaluating permeability without a 
direct measurement. However for near single sized materials the simplest model works 
well, and could be used. For materials with a wider distribution of sizes it is necessary to 
consider the degree of compaction, and prediction of permeability will be very difficult. 

Conclusions to chapter 5 

In the experiments described in this chapter, the permeability and Forcheimer term for 
five different aggregates were measured. A long wooden box was used to contain the 
aggregate, and the pressure gradient through it was measured for different rates of air 
flow. The data gained was used with the Darcy-Forcheimer law to arrive at values for 
both the permeabilities and the Forcheimer term. 

The grading curves for the aggregates were also measured at BRE, and this information 
was used to explain the differences between the permeabilities and Forcheimer terms of 
the differ�nt materials. Several different models were compared to see which one best 
describes the permeability, based on grading curve information. These varied between 
aggregates, suggesting that using formulae for the permeability is not a reliable method. 
For the well graded stones the simplest, 'billiard ball' type model gives reasonable results. 

The 40 mm graded has the largest permeability by some distance, a factor of three above 
the two 20 mm ones. These two have very similar results, although they are given 
different descriptions. In these experiments the difference between the MOT type 1 and 
the 10 mm single sized is very small. Because the MOT type 1 has a wider spread in 
material sizes within it, it would be easier to work with in practice, so it would appear to 
be a better choice. Single sized aggregates generally give better air flow rates, but are not 
as easy to work with, and are more expensive. Hence their performance must be 
significantly better to justify their use. In fact only the 40 mm aggregate has a 
permeability much larger than the MOT type 1 ,  at around nine times greater, so on this 
evidence the choice would be between these two. 

The main concern with this result is over the compaction which would normally be 
applied to these materials in use, and which would reduce their permeabilities. 
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Chapter 6: Pressure extension measurements and analysis 

Introduction 

This chapter looks at the results of experiments to consider pressure extension, a concept 

discussed in chapter 4. Pressure extension is the proportion of the pressure generated at 

the central extraction point which is measured at any other point in the hard core or soil. 

In general it is good if the pressure extension is large all over the floor area of the 

dwelling, as this will mean that the effect of the extraction of gas is covering the 

maximum area possible. It is therefore of interest to see what causes the pressure 

extension to be good, or similarly why it should be bad. 

There are two sets of experimental data, one from a large number of tests carried out by 

drilling holes after construction, and the second from a smaller set where tubes were laid 

before the floor slab was poured. 

The first experimental programme was undertaken by Wimpey Environmental Ltd, using, 

where practical, floor slabs constructed by Wimpey Homes Holdings Ltd. They located 

suitable floor slabs, and before the walls were built, tested the floor for its pressure 

extension. They also collected a sample of the hard core material used to measure its 

grading curve. 

The second set of tests were carried out by Roger Stephen of BRE and Trevor Gregory 

of Cornwall County Council. They measured the pressure extension in a number of 

schools by laying plastic tubing below the floor just before the concrete floor was 

poured. Then when air was sucked from a central sump after the floor was present they 

were able to measure the pressures without further disruption to the building. It also 

allows repeat tests to be carried out to look at the effect of time on the flow of air. 

Both of these sets of data give information about the behaviour of different floors and 

the effect of the hard core used when building them. These results are the subject of the 

analysis in this chapter. 

137 



The aim of the work is to support the choices which have to be made in designing houses 
so that they do not have high radon levels, but without spending more money than is 
necessary. The concern about hard core materials is that by being too specific about what 
should be used then builders might be forced to transport material over a long distance, 
with resulting increased costs and heavy lorry journeys. Therefore it is important to 
understand what is necessary, and how best to use the materials available. 

Set 1: The 'Wimpey ' tests 

The aim of the pressure extension tests is to measure the pressure produced at the edge 
of a floor by extracting air from the centre. In these tests this was achieved by drilling a 
central suction hole, pulling air from it with a vacuum cleaner, and measuring the 
pressure at a series of smaller holes in the floor slab. Full details of the experiment are in 
the final contract report, which contains all of the measurements as well [Wimpey 95] . In 
total 78  tests were carried out in a wide range of locations. This work was also discussed 
in a paper by Bell and Cripps [Bell 94]. 

As well as measuring pressures the flow rate through the system was measured, to allow 
analysis of the overall resistance of the floor to gas flow. A sample of the hard core 
material from each site was collected, and tested to give the grading curve of each 
material, using British Standard sieve tests [BSI 90] . 

It was originally intended to undertake tests on dwellings only in the areas most affected 
by radon. However this was not possible because of the relatively small number of 
dwellings being constructed in these areas at present. There is also a general preference 
for the construction of precast suspended concrete floors in the affected areas, because 
of the cost and practicalities of building in protective measures for in situ concrete floors. 
This meant that a number of tests have been undertaken on floors near to, but outside of, 
the designated affected areas. 

Resistance to flow 

The simplest way to represent the data is to compare the ratio of the pressure generated 
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by the vacuum cleaner to the total flow produced by it. This defines a flow resistance, 

which describes the performance of the whole system. It can also have value in helping 

to choose the appropriate size for a fan to suck air from the radon sump. However the 

size of the drilled hole has an impact on the result, so it would be more usefully done 

with the full sump system set up. 

The results for the flow resistance, R = �p I Q  (Pa I m3/h), for all of the Wimpey tests 

are given in figure 6. 1 below. The results show that this floor resistance varies markedly, 

with variations between 0. 15  Pa/(m3/h) to 2500 Pa/(m3/h), although most results were in 

the region of 100 Pa/(m3/h). 
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Figure 6. 1 :  Graph of resistance to flow against test number 

The first point to note is that the first 10 or so tests carried out were probably flawed as 

the results are very different from the later ones. There is probably a source of leakage 

which was later eliminated, as the initial resistance is very low. 

The later results are less spread out, but still show a variation over 2 orders of 

magnitude. This shows the wide range of results occurring, which is typical of tests 
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involving permeability. However given that permeabilities of soils vary over many orders 
of magnitude this result suggests that either the permeabilities of hard core materials 
have.a smaller range, or there is some other effect reducing the apparent range. 

Pressure field models 

The 78 sets of data were analysed using a statistics package to fit the results to equations 
(4.4 with c = 0), (4.4) and (4.7), as developed in chapter 4. The first ten sets of data 
were not processed as they were not good enough for the models to be applied to. There 
were not enough points in some sets and the other results were not smooth enough 
curves. This may reflect the fact that these were the first tests carried out by Wimpey, 
and so they were less familiar with the equipment and procedures. 

The three models (Darcy-Forcheimer (4.4), Darcy(4.4, c=O), and resistance mode1(4.7)) 
were applied to each data group and the resulting estimates for the parameters k, c, and 

R.:rack were recorded. These estimates were used with the model equations to plot a line 
through the data points obtained experimentally. One such set of results is shown below, 
although in this case the Darcy-Forcheimer model and resistance model coincide, so the 
resistance line is not shown. 

Graph of pressure against radial distance for Wimpey test no 1 76 
Comparing data with Darcy Forcheimer and Darcy law curve fits 
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Figure 6.2: Comparing pressure field data with Darcy-Forcheimer and Darcy models 
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This set of results shows a typical relationship between the Darcy and the Darcy
Forcheimer models. The Darcy fit is quite good but the extra term in the Darcy
Forcheimer model enables a better fit to the data. If another term was added, to consider 
the effects of the cube of the velocity, the fit could follow the experimental data even 
more closely under some circumstances. However, it would be hard to justify adding 
another term from the physics of the system. 

Comparing Darcy and Darcy-Forcheimer results 

The Darcy model gave reasonable results in all the tested cases. While the fits were not 
always as close to the data points as the Darcy-Forcheimer lines were, the Darcy values 
for the permeability were always in the expected orders of magnitude. In contrast, eight 
data sets gave the Darcy-Forcheimer permeability values to be around six orders of 
magnitude above the Darcy values from the same data. Examining the data sets revealed 
that in all these cases, the pressure started high and then dropped off very sharply. The 
Darcy-Forcheimer fit gave large permeability values and Forcheimer constants with huge 
errors. An example of one of these data sets is shown below. 
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Figure 6.3: Graph of pressure against distance where the models fail 

All three of the models tested give lines close to the first data point. The models then 
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cannot produce a curve which turns rapidly enough to fit the lines closely to the next 

point. Six of the eight data sets that showed this behaviour were the only six where a 

sandstone aggregate was used under the floor slab. 

Examination of the grading curves showed that this material had a much higher 

proportion of small particles than any of the other aggregates used. This would be 

expected to give it a low permeability, resulting in the steep pressure gradient near the 

suction point as the data points show. 

To obtain a result from these 6 data sets, the first point was ignored and the models were 

applied to the remaining points. In some cases this worked, in that the parameters 

returned by the statistics package were in the expected range. In other cases, this did not 

work and the next data point had to be removed as well. However, the act of removing 

these data points to achieve a result may well have altered the results sufficiently to make 

them meaningless. Certainly in some cases the data had to be cut down so much that the 

shape of the curve was lost completely. To obtain better results using the sandstone, it 

would probably be necessary to repeat the experiment, taking more pressure 

measurements close to the sump. 

In the remaining sixty or so cases where the Darcy-Forcheimer model worked, some of 

the Forcheimer constants were returned as negative values. This would imply that the 

resistance to flow decreases with increasing flow rate, which is most unlikely to occur. 

In some of these cases, the error associated with the Forcheimer constant meant that it 

could be zero. However, this is not true in all cases and may mean that there is a problem 

with the model, or that more data points are needed. These results mean that the Darcy

Forcheimer law must be used with care in this type of experiment, and that the Darcy 

Law may be more reliable. 

Resistance rrwdel 

The resistance model equation (4.7) has produced good results for some cases; however, 

it returned satisfactory values for k and c in less than half of the cases. In some of the 

142 



others a good fit was found but with values of completely different orders of magnitude 
to what was produced by the other models. The statistics package does not attribute 
physical meaning to the values and so produced the best fit it could. Unfortunately, in 
most cases, the values were unacceptable. Below are some specimen results, case 125 
(where the models worked well) and case 120 (where the resistance model returned 
unacceptable figures). 

Experiment Model used Permeability K Forcheimer Resistance term (Pa 
number (m2) term c (s/m) s /m3) 

125 D-F (8.6 ±1 .0 ) x 10·1 1 1 12 ± 30 -

Darcy (5. 1 ± 0. l) x 10-1 1 - -

Resistance (8.7 ± 1 . 1) x 10-11 1 18 ± 40 (5.7 ± 0.2) x 10 4 

120 D-F (4.0 ± 0.4) x 10-10 83 ± 45 -

Darcy (3.2 ± 0. 1) x 10-10 - -

Resistance -7.7 x l0-3 -8 .7 x 109 (6.2 ± 1 .2) x 104 
± 2.6 x 106 ± 3 x 1018 

Table 6. 1 :  Results for a 'good' case and a 'bad' case 

Furthermore, the slabs for which the resistance model worked were spread evenly 
throughout the data. There does not seem to be any common factor in the cases that 
failed that might suggest a link between them. At least one failure in the resistance model 
occurred at each site, and the permeability and Forcheimer constants for the failed cases 
were similar in magnitude to those calculated for the slabs where the model worked. 
However, where the model worked, it gave permeability and Forcheimer constants very 
close to those calculated from the Darcy-Forcheimer model. In addition, the 'crack width' 
values calculated from the resistance model using equation (4.6) were believable in that 
they were all around 1 mm in magnitude. It is probably the case that the information 
from the experiment is not sufficient to evaluate the resistance of the crack, which is 
generally small compared to that in the hard core. 
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Comparing permeability results for the different sites 

The Darcy case permeabilities for every slab are given in figure 6.4 below 
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Figure 6.4: Graph of Darcy model permeability for each slab. 

However each individual slab came from one site, each of which used a similar hard core 

for each of the slabs laid at it. The average permeability and Forcheimer constant for 

each site is therefore of interest, and the results are given in the table below. 
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Ag2:regate Slab numbers D-F model 
Average k (m2) Average c (s/m) 

MOT 1 #1 1 16- 122 2.3 x 10-9 43.7 
MOT 1 #2 152- 158 6.4 x 10-9 86.9 
MOT 1 #3 159-162 7.8 x 10-9 191 .9 
2 11 clean stone 127- 128 4.3 x 10-9 - 13.9 
2 1 1  clean stone #2 147- 1 5 1 3.5 x 10-9 98.8 
2" clean stone #3 130- 132 4.5 x 10-9 969.6 
40 mm chatter 123- 126 2.0 x 10-10 784.8 
40 mm chatter #2 140- 143 6.9 x 10-9 209.2 
Quarry rubble 144- 146 1 .9 x 10·1 37.7 
3" clean stone 109- 1 15 1 .3 x 10"8 - 18.9 
Trench fill 129 2.2 x 10-9 66.2 
Sandstone 133-139 - -

MOT &QRmix 163-169 7.0 x 10·9 234.7 
Granular type 2 170 3.0 x 10-9 -40.4 
40 mm screened 171 - 177 1 . 1 x 10"8 13.6 

. Table 6.2:  Average results for permeability and Forcheimer term by site 

Comparing results from Wimpey tests with laboratory experiments. 

Darcy model 
Average k (m2) 
1 .4 x 10-10 
1 .4 x 10-10 
1 .5 x 10-10 
2.6 x 10-9 
1 . 1 x 10-10 
8.3 x 10·10 
2.8 x 10·12 
3.9 x 10-10 
4.0 x 10-9 
2.6 x 10-s 
5.6 x 10·11 
1 .7 x 10-11 
1 .2 x 10-10 
2.0 x 10-10 
2. 1 x 10-10 

The average results from table 6.2 can be compared with earlier penneability 
experiments carried out for the author at BRE in the laboratory and discussed in chapter 
5. Because we have the grading curves for both sets of aggregates it is possible to 
compare the results for similar materials in the two tests. The BRE aggregates were 
known as 'MOT' , 'large' , 'medium' and 'small' , with the sizes of large being up to 40 
mm, of medium up to 20 mm, and small up to 10 mm. There was no Wimpey result 
corresponding to the 'small' case. 

The first graph, figure 6.5, shows the average permeabilities from the Wimpey tests, with 
the laboratory results overlaid. 
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Figure 6.5: Comparing results from Wimpey tests to BRE laboratory tests 

This shows that the permeabilities measured by Wimpey appear to be about 10 times less 

than those measured in the laboratory, apart from the MOT type 1 .  This graph also 

shows that taking the average over the slabs in the sites reduces the spread in the data 

significantly. Whereas in figure 6.4 there was a four order of magnitude spread, most of 

the points in figure 6.5 are within one order of magnitude. 

Grading curves for the different aggregates were also drawn up. An example is shown 

below. 
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Figure 6.6: Grading cunJe for 3" clean stone 

We selected the material from the Wimpey tests whose grading curve corresponded most 

closely to one from the laboratory tests. This was done to compare the results from the 

two different experiments, as the names of the aggregates alone are not enough: a 40 mm 

aggregate on one site may have very different constituents to a 40 mm aggregate on 

another site. The table below shows the results of the comparison. 

BRE aggregate Wimpey aggregates with Ratio of calculated 
closest grading curves permeabilities BRE : Wimpey 

MOT type 1 sub-base MOT type 1 (nos. 1 ,2,3) 0.6 : 1 
2" clean stone (no. 2) 0.97 : 1 

Granular type 2 1 . 1  : 1 

Medium 2" clean stone (no. 1 )  23 : 1 

Large 3" clean stone 13 .8 : 1 
40 mm chatter 900 : 1 

Table 6. 3: Comparing results of Wimpey and Laboratory tests on similar material 

These figures show that the BRE 'medium' and 'large' aggregates, while being similar in 

composition to some of the Wimpey aggregates, have larger permeabilities than them. 

This almost certainly reflects the fact that the Wimpey aggregates were more compacted 

on site than these BRE aggregates could be in the laboratory. 
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The MOT sub-base 1 tested at BRE might have been compacted a similar amount to that 

used by Wimpey, as the permeabilities are comparable. This result is unexpected since 

the MOT is expected to compact the most on site, so a large difference might have been 

expected, and there is no obvious explanation for this. 

Pressure extension 

To be effective a sump must overcome the internal pressures within the house generated 

by wind and stack effects. Typically these are no more than 5 Pa, and so for slabs where 

the pressure at the edge does not reach more than 5 Pa, there might be problems with 

remediation later if it proves necessary. 

In these tests over half of the slabs did not exceed 5 Pa at the edge. It was hoped that 

there would be a clear correlation between the aggregate used and whether or not the 5 

Pa criterion was met. However, there was no one aggregate that consistently produced 

the neces�ary pressure at the slab edge. Most of the aggregates were used in more than 

one experiment, and of those experiments, some gave 5 Pa and some did not. 

Permeability of aggregate vs. slab number 
Squares indicate 5 Pa at the slab edge 
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Figure 6. 7: Comparing pressure extension to permeability 

If less permeable aggregates were more likely to give better pressure extension, the 
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lower part of figure 6.7 should contain squares indicating success, and the upper part 

should contain circles that show that 5 Pa was not produced at the edge. The points 

circled with the dotted line are those with the lowest permeabilities, and most of those 

cases are successes. Of those seven points, the four on the right are slabs where '40 mm 

chatter' was used and the other three are MOT type 1 sub-base. However, MOT 

aggregate was used elsewhere with mixed results, as was 40 mm chatter. 

The outcome of this is that no aggregate stands out as the best one to use from the 5 Pa 

test point of view, and it is not clear that the permeability has an impact on the pressure 

extension. It is not clear why, out of a set of results using one particular aggregate, some 

satisfy the 5 Pa condition and some do not. There are a number of possible reasons for 

this: 

1 )  The experiments were not identical, so the different geometry could affect the results. 

2) The permeability of the soil under the aggregate could affect where the air flows from 

into the suction area, and if it is a high permeability soil the hard core could be largely 

by-passed. In future work it would be helpful to investigate the permeability of the 

soil as well as the hard core. 

3) The size and position of cracks in the floor-slabs and any voids within the hard core 

could effect the result, by providing a short cut for the air to flow through. 

Set 2: Cornwall County Council tests 

In each of these tests the floor of a school was due for renewal, and the opportunity was 

taken to study the way in which the design and installation of the floor affected the 

pressure extension. In each case a sump was installed in case it was subsequently needed 

to reduce the radon level if it should be high after the work was carried out. This meant 

that no extra hole had to be drilled to provide a suction point. In addition a number of 

plastic tubes were laid below the floor slab to enable a grid of pressure measurements to 

be taken below the floor, without further disruption of the building. Each of the cases is 
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considered separately. This work was carried out by Roger Stephen and Trevor Gregory, 

but the author has analysed the data. 

Case studies 

The case studies are reported fully in [Gregory 95 and Gregory 93] . A brief description 

of them is included here to give the background and to allow comparisons between the 

pressure field extension results obtained. 

Case study 1 - St Levan School 

In this school of a total floor area of 145 m2, an area of floor 87 m2 was replaced with 

concrete on builders rubble as hard core fill. Because of a history of high radon levels, 

sub-slab depressurisation was provided by incorporating two BRE/CCC " standard 

sumps" below the floor linked by 1 10 mm rigid PVCu pipe work to a single extract fan. 

The pressures measured in the sumps were very different, 125 Pa for the sump with the 

shortest pipe run and only 56 Pa for the other sump which has a pipe run twice as long 

and with an extra bend. 

A year later the pressures in the sumps were found to have risen considerably to 138 and 

7 1  Pa. The pressures under the floor had also risen, though to varying degrees. A third 

visit was made to the school another two years later. The sump pressures were found to 

have fallen to 1 16 and 6 1  Pa but the normalised pressure field was almost identical to 

that found on the second visit. It is not clear why these pressure changes should have 

occurred. Falling pressure might be expected due to settlement of the hard core making 

gas flow easier, so this could explain the fall between the second and third results. 

The normalised results for the first and third visits are presented in figure 6.8 and show 

that there is considerable scatter, particularly for the third visit. This may be partly due to 

interaction between the two sumps and partly due to variations in permeability. 
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These data also suggest that the pressure field extension has actually improved slightly 

over the first year of operation rather than deteriorated. Possible reasons for this 

improvement include a change in moisture content of hard core/soil and (partial) 

blockage of air flow paths around the edges of the floor. 

Case study 2 - Trannack Primary School 

Encouraged by the work at St Levan School, and by work on permeable hard core fill by 

the EPA in America [Craig 90, Harris 9 1] a similar exercise was carried out at another 

small primary school at Trannack. In both size and construction it is very similar to St 

Levan. A floor replacement exercise was carried out together with the fitting of a single 

central sump and 5 1  small bore pressure tubes. The significant difference between this 

floor and St Levan is that the hard core fill was covered by a 1 50 mm thick high 

permeability layer of 25 mm granite chippings. This was an attempt to achieve a 

particularly good pressure extension in this study. 

Unfortunately the chippings delivered to site contained considerable fine material and so 

the hard core was less permeable than had been intended. The total floor area replaced 
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was 7 1  m2• A fan was fitted to the sump and a full set of sub-floor pressure 

measurements taken, presented as a contour plot in figure 6.9. 
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Figure 6. 9: Contour plot for the pressure extension at Trannack 
12 .0d (m) 

The contour plot shows a computer estimated fit between points at which the same 

pressure would be measured, equivalent to the height contour lines on a geography map. 

An interesting feature of this plot is the way in which there is a direction for which the 

pressure falls away much less than in the other directions. This implies some variation in 

the hard core in this direction, and it makes the results much harder to interpret. One 

· possible reason for this effect is a drain pipe laid in pea shingle located near this region. It 

is important to remember that this could occur with any floor slab, so all results where 

the data were collected in one direction only must be treated with care. 

Case study 3 - Pool School 

The original floor of one of the classrooms of Pool School was replaced during 1993 . 

Again, a sump with capped off pipe work and small bore test tubing was fitted when the 

floor was replaced. The new floor was similar to that used at Trannack but this time the 
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permeable hard core layer had little fine material in it and was covered with a 2000 gauge 

(0.3 mm) polyethylene sheet before blinding with dry lean-mix concrete (coarse sand and 

cement) instead of sand. Thus the blinding was prevented from entering the permeable 

layer by the extra membrane. The floor area replaced was 35 m2• 

A fan fitted to the sump, gave a pressure of 58 Pa, and a full set of sub-floor pressure 

measurements were taken. The results are presented in figure 6. 10. The pressure field 

extension was good, certainly better than at St Levan or Trannack, although the floor at 

Pool is significantly smaller than the other two. There was also little scatter in the data. 
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Figure 6. 1 0: Pressure field extension for Pool School 

The pressure measured in the sump at Pool was much lower than that measured at both 

St Levan and Trannack and with similar pipe work attached to the fan outlet. It was 

concluded that the good pressure field extension combined with a relatively high air flow 

rate was due to both high hard core permeability and the small floor area. It was hoped 

that the next case study, having a much greater floor area, might provide more useful 

information. 

Case study 4 - Launceston College 

At Launceston College gymnasium the original 254 m2 wooden sprung floor needed to 
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be replaced. The small bore test tubing and a single central radon sump were fitted 

across the 16  metre square floor area. 

The replacement floor comprised: builders rubble hard core fill up to top of sleeper walls, 

300 mm thick layer of high permeability hard core of clean 25 mm granite chippings, 

2000 gauge (0.3 mm) polyethylene membrane, blinding layer of dry lean mix concrete, 

glass fibre reinforced heavy duty polyethylene damp proof membrane with lapped and 

taped joints followed by the 125 mm thick concrete slab. 

A significant difference between Launceston College and the previous case studies was 

the presence of a concrete oversite below the rubble hard core fill layer. This would be 

expected to greatly limit, though not eliminate, air flow from the soil below the 

permeable hard core, which might be expected to help to maintain the pressure field to 

the edges of the floor. 

The results for Launceston College, figure 6. 1 1  show that the pressure field extension 

achieved was similar to that at Trannack and considerably worse than that achieved at 

Pool and in an American study [Harris 91] .  This result was particularly disappointing 

because the floor construction was known to have been exactly to specification and 

should have provided the optimum conditions for excellent pressure field extension. 
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Figure 6. 1 1 :  Pressure field from Launceston College 
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The sump pressure measured at Launceston was only 42 pascals, even without the 

resistance of a fan outlet pipe and rain cap as was used at Trannack and Pool. This 

suggests that the air flow rate was indeed higher at Launceston (we estimate an air flow 

rate of approximately 257 m3/h). It would appear that the concrete oversite, bounding 

wall and floor slab surrounding the permeable hard core layer were not particularly 

airtight. Most of the pressure drop appears to occur through the permeable hard core 

material. 

Case study 5 - Stoke Climsland 

Stoke Climsland school was under construction when measurements were taken. 

Changes were made to the original floor specification as follows: top 150 mm of sub slab 

hard core changed to clean 25 mm granite chippings ; use of dry lean-mix concrete as a 

blinding instead of sand; provision of short lengths of 32 mm diameter plastic pipe at 

approximately 1800 mm centres to encourage communication through the numerous 

internal foundation walls below the floor slab. The remaining floor construction remained 

unaltered. The existence of these internal walls within the foundation region was the 

main difference from the previous cases, and presents an extra challenge in ensuring 

good pressure extension. 

Results for all three sumps were taken, the actual sump pressures measured being 101 ,  

1 2 1 and 15 1 Pascals and estimated air flow rates 270, 260 and 230 m3/h in sumps 1 ,  2 

and 3 respectively. The pressure results for sump 2 are given in figure 6. 12  below. 

The pressure field extension at Stoke Climsland, presented in figure 6. 12, was similar to 

that obtained at Launceston, in spite of the numerous internal foundation walls and 

absence of a membrane under the blinding, but again was not as good as had been hoped 

for based on American experience [10] ;  see discussion below. 
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Figure 6. 12: Pressure field at Stoke Climsland, compared to USA result 

Although these results show pressure extending a considerable distance from the sump, 

the results are much less dramatic than those from the USA. It is not clear why this 

should occur, since a lot of care was taken in the design and installation of this floor. A 

feature not apparent from the sump 2 data was a definite drop in pressure at the sub floor 

walls, which the USA study appears to have avoided. 

Discussion 

The principal problem in building radon protection into floors is to balance the need for 

air flow through the hard core material to protect against soil gas with the structural role 

of the hard core in supporting the floor slab and the practicalities of constructing the 

floor. If the builders are not happy building with a particular hard core they are unlikely 

to do so, and will build in a different way. In England this has been seen with the move in 

Devon and Cornwall (as the most affected counties) to building precast suspended 

concrete floors. This is due in part to problems with the hard core, and also to the 

requirement to lay the slab on top of the inner leaf of the cavity wall. To reduce the costs 

to a minimum these may need to be looked at again. 
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This work suggests that some of the materials routinely used on English building sites 

may not be adequate for ensuring sufficient air flow. The current mention of using 'clean 

permeable hard core' is not adequate, and it may be necessary to describe the type of 

material more carefully in future. However the results from the Wimpey tests indicate 

problems in specifying hard core materials and getting a reliable result, as materials 

which are officially the same gave very different results. 

One problem which it was not possible to address in the Wimpey work is how the layer 

of sand 'blinding' ,  generally laid on top of the hard core before the floor slab is poured, 

affects the air flow performance. The use of a membrane over the hard core material 

seems to have been effective in the Cornwall test, together with lean mix concrete in 

place of a blinding layer. Whether this could be a routine method will need further 

investigation. 

Other possible solutions to the problem could lie in using mixed layers of hard core, or a 

ventilation layer of another material. In the former case two layers of hard core would be 

used, the lower one ideal for compaction, like MOT Sub Base Type 1 ,  and a more 

permeable upper layer to allow air flow. An alternative is to replace the upper layer with 

a geo-textile and drainage matting. 

An interesting result found in both sets of tests is the significant difference between 

floors of similar specification. For example at Pool the specification for the floor was 

accurately followed and the result was excellent pressure field extension but this success 

was not repeated on the much larger floor at Launceston using an identical floor 

construction 

Another area of concern is why the UK results do not match those found in the USA 

tests [Craig 90, Harris 9 1) .  This is in spite of the great care taken in some of the tests to 

achieve good pressure extensions. This deserves further study. 

157 



Comparing the test methods 

The two different methods of obtaining pressure extension results give different but 

complementary information on the behaviour of floor slabs. The method used in the 

Cornwall tests gives a lot more information on each site, but could only be used for 

selected cases. There would be no benefit in using it in a wider number of cases, and this 

would be very expensive. 

The vacuum cleaner type of test could be used for post-construction testing, in order to 

help in the sizing of a fan for a particular floor, and if the floor has been laid correctly. 

However it is unlikely that this will be worthwhile in the UK where the cost of remedial 

measures has to be kept to a minimum. It also punctures the damp/radon proof 

membrane in a way which is difficult to repair. The technique does give useful 

information on how different hard core materials perform, and this information can be 

used to help to inform future choices. 

Conclusions to chapter 6 

A total of 78 tests of the air flow through hard core materials were carried out by 

Wimpey Environmental under contract to BRE, using a post construction technique with 

a vacuum cleaner. In addition five detailed tests have been carried out by installing plastic 

tubing below the floor before it is laid. Overall these show that there is a wide variation 

in the behaviour of the air flow in the hard core materials resulting from sucking from the 

centre of a floor slab. However careful choice of hard core specification and avoidance 

of excessive blinding can significantly improve under-floor permeability compared with 

normal UK floor construction practice, even when not carried out perfectly. 

However given that relatively few sump systems fail to reduce radon levels, and most 

new homes are protected by existing measures [Woolliscroft 94] it would not be 

appropriate to spend too much money on improving the fill material. It is unlikely to be 

cost effective. 
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The extent of the pressure extension varies considerably, with more than half of the large 

group of floor slabs having less than 5 Pa at the edges. In the detailed cases the 

performance achieved in tests by the EPA in the USA was not reproduced. It is not clear 

why this occurred. 

The Cornwall work indicates that blinding materials should be kept out of the permeable 

material to improve pressure extension. A polyethylene membrane would achieve this 

and may allow the usual sand blinding to be used. Alternative systems involving lean mix 

concrete blinding layers or preformed gas collection layers deserve consideration. 

The increased pressure field extension obtained by improved design could result in 

new-build properties requiring fewer under-floor suction points and/or a reduction in fan 

power consumption with a greater degree of confidence of success than at present. This 

will apply particularly to large non-domestic buildings. However, this must be balanced 

against the extra floor construction costs, practical difficulties and current inconsistency 

in results. 
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Chapter 7: Conclusions 

In this part the effect on soil gas flow of the pressures caused by fans has been 

considered. This reflects the widespread use of 'sump' systems for reducing indoor radon 

levels, and the wish to optimise their design. The way in which these sumps behave has 

been considered, along with the pressures they achieve in different hard core materials 

and the soil around a building. 

Modelling 

The first area of study used a two-dimensional linear finite difference model of the gas 

flow. This is significantly flawed because neither the 2D nor linear approximations are 

valid. Hence the results can only be used with caution and in a qualitative way. 

Nevertheless they do help us to understand where the flow is taking place, and the 

impact of different layers of hardcore material. 

In particular the fact that most of the flow into a sump is coming from the house allows 

an estimate of the heating cost of the sump system to be made; it is in the range £20-£50 

per annum for a typical size house. Another key understanding from this type of 

modelling, but not original to this work, is the fact that the width of cracks in a floor slab 

is not very important in soil gas flow. This is because the resistance to flow due to the 

soil is much greater than that due to the crack (under most circumstances). This 

therefore explains why it is so difficult to seal a floor to keep out radon. 

The possibility of using source and sink theory to examine soil gas flow was also looked 

into. The lack of flexibility in the geometry meant that this work was not taken very far, 

but there is some qualitative value in the solutions anyway. They could also serve to give 

reference solutions for comparing with computational solutions. 

The Darcy-Forcheimer Law addresses the non-linear nature of soil gas flow at the 

pressures occurring when sump systems are used. It requires a second parameter to the 

Darcy Law, which is known as the Forcheimer term. This work recognises the need for 

the more complex law, and uses it in some very simple, essentially one dimensional, 
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Chapter 5: Time-dependent solutions to the landfill gas concentration equation 

Contents 

Introduction 

The steady-state solution 

Time-dependent solution using Laplace Transform method 

Time-dependent solution using a numerical method 

Introduction 

In order to investigate techniques for measuring landfill gas flow, Richard Hartless of 

BRE had a soil cell built. It has about half a metre depth of sand suspended above a void 

region, into which gases can be supplied. These gases then travel up through the sand 

and can be observed leaving the sand at the top surface. Although the soil cell was 

intended for studying the use of techniques to observe the exit rate of methane and other 

gases, it has been necessary and interesting to understand the behaviour of the gas within 
the soil cell as well as when it leaves it. This experimental work has not been published 

formally, so cannot be referenced at this stage. 

The problems encountered when using this soil cell are the reason for this modelling 

work. It was necessary to understand the flow processes going on in the soil cell to 

interpret the results from it. The experiments were carried out by Richard Hartless in 

consultation with the author, and by an undergraduate student under the supervision of 

the author. 

Gas concentration equation 

Clements and Wilkening [Clements 74] wrote the one-dimensional transport equation for 

radon, given previously in equation (2. 12), as 

ac D a2C 

at E az 2 

1 a(vC) _ 1..C + <1> 
-;· az 

(5. 1 ) 
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where 
C is concentration of radon (mol m·3), 

D is diffusion coefficient of radon in soil (m2s-1), 

e is the soil porosity (), 

v is the velocity of the soil gas, or fluid volume current density (ms-1), 

A. is the decay constant of radon (s-1), 

<f> is the radon production rate (mol m·3 s·1), 

z is the spatial direction (m), 

t is time (s). 

In this form both the diffusion of gas and the pressure driven flow are accounted for. For 

landfill gas the decay term AC would not be present, since for most situations the gases 

would not change after production, although the issue of solubility in water could 

become important. Hence for landfill we would take A as zero, while the production term 

<f> would be hard to define because of the variable nature of landfill gas production. 

However if our concern is only the transport of methane away from some source, then 

the production term can also be set to zero, and a concentration and pressure boundary 

condition assumed instead. This makes for a helpful simplification of the equation to 

ac D 22C 1 2(vC) 
at = �- az 2 

- �----a;- (5 .2) 

lf the velocity term v is not known it has to be found by solving the pressure equation. 

This aspect is discussed in chapter 3.  In general equation (5.2) will be difficult or 

impossible to solve exactly if the velocity v changes over time or with depth. It is 

possible to tackle the general problem with a computer model, but considerable insight 

can be gained from looking at the cases where the velocity is constrained in some way so 

as to make the solution much more straightforward. 

The simplest case is to set up a constant velocity and wait for a steady-state condition to 

be reached. This is addressed in the first part of this chapter. From this the natural 

development is to consider the effect of an imposed velocity on the concentrations. It 

allows the time scale for changes in measured concentrations to be estimated. Some 

knowledge comes from an exact solution to this problem, discussed in the second part of 

the chapter. More detail comes from a simple one-dimensional numerical model, which is 
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situations. 

Experiments in the laboratory 

These results were then used to interpret the results from laboratory and site 

measurements of pressures and flow rates. The simplest were carried out on a series of 

samples of hard core in a box in the laboratory. When the leakage of the box itself can be 

understood these give good results for the permeability and Forcheimer terms of these 

materials, but of course only for the conditions in the box. The issues of compaction and 

moisture content were not within the scope of the equipment available, and because of 

leakage effects not all hard core materials can be measured. 

The problem caused by the conditions of the tests can be seen from the comparison of 

the measured results to those from the various theories (mostly empirical) relating 

permeability to the grading curve information for a hardcore material. None of the 

theories gives a result which consistently matches that of the experiments, but they can 

give a reasonable approximation, and these are much easier to obtain than direct 

measurements. 

Experiments on site 

The next set of data presented concern measurements of pressure extension on real sites. 

Some of these were carried out by colleagues at BRE, others by a contractor. The 

interpretation of these gives some indication of how different hardcore materials affect 

gas flow in practice, through the concept known as pressure field extension. 

In the tests carried out for BRE by Wimpey Environmental Ltd (now Wimtech) 78 floor 

slabs were measured after the concrete had set but before the walls were built. The test 

could be a post construction test for the suitability of the hardcore for use with a sump, 

but the test is not likely to be cost effective. Combined with measurements of the grading 

curves of the materials used these results give considerable insight into the variation in 

air flow between floor slabs. 
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The tests carried out by BRE and Cornwall County Council used tubes inserted before 

the concrete floor was laid to measure the pressure field. This gives a wider spread of 

measurements without affecting the floor, but is more expensive. They also show the 

variation between floors, and in particular the difficulty of achieving really good pressure 

extension. 

The most significant finding is that the differences between the behaviour of different 

hardcore materials are not as large as expected, and they probably do not justify the cost 

of using 'better' materials. This financial check is an area of work which needs to be 

taken further, but it reflects the high cost of using and transporting 'special' hard core 

materials, and the many complications of what appears to be a simple problem. The cost 

savings from better pressure extension should come from being able to use a smaller fan 

to remove radon. Since most new buildings don't need to use the fan anyway, and the 

cost saving is quite small, it is not worth spending more on the hard core material unless 

it is needed for some other purpose, drainage being the most likely. 
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Chapter 1 :  Introduction 

Time dependent effects 

Most soil gas modelling carried out has concentrated on steady-state problems, 

principally because of simplicity, but also because some aspects of radon entry can be 

well described as steady-state. However there is increasing evidence of the need to look 

at some time-varying effects, as they can be significant in certain circumstances. 

There are many possible time-dependent effects, the main ones of which are briefly 

discussed below. 

1 )  Changing aunospheric pressure 

As the pressure in the atmosphere changes, due to the movement of weather systems, the 

pressure of the air at the surface of the soil is also changed. This pressure is transmitted 

into the soil, and generates flows of gas. Because the soil does not allow very free flow 

of gas it can take a considerable time for these flows to take place, so time scales of 

order days will need to be considered. 

2) Wind induced pressure fluctuations 

The wind speed changes continually, over time scales of seconds for gusts, and hours for 

average speeds. The pressures induced by the wind at the surface of the ground or in 

buildings can cause gas flow in the ground, particularly for more permeable soils. 

3) Aunospheric tides 

The effect of the gravity of the moon causes the familiar water tides that affect the 

oceans. A much smaller effect happens to the air as well, and results in a 12 hour cycle of 

changing pressure. Under some conditions the flow of air in and out of the soil is enough 

to cause significant soil-gas entry into a building. 
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4) Changes in water table 

The level of the water table can affect gases in the ground, in a number of different ways. 

Radon is soluble in water, so more radon will escape from the ground if the water table 

falls. Methane is fairly insoluble, so that a rising water table causes more methane to 

leave the ground, in particular as compared to carbon dioxide which is water soluble. 

The level of the water table tends to change slowly, but could still be significant under 

some circumstances. 

5) Human behaviour 

There are many ways in which the way in which people behave can affect gases in the 

ground. Changes in ventilation systems, opening windows, levels of heating and others 

can all affect the flows of gases. This behaviour is generally time-dependent but also 

unpredictable, so it is usual to assume a worst case behaviour. 

6 ) Changes in landfill site behaviour 

A landfill site is usually filled over many years, and the chemistry and biology going on 

inside it develop as the amount of air, water and nutrients change. This results in 

significant changes in the gas flow rates caused, although this usually is relatively slow, 

with time scale of years. 

This work on time-dependent flows 

The work presented in this part concentrates on the first of the effects given above 

(atmospheric pressure effects) since it is known to be able to have a significant impact. 

All of the others could have impacts over a wide range of time scales, and might need to 

be addressed under certain circumstances. 

There has been less work in the area of time-dependent modelling than in the steady

state; the main work that has been carried out is discussed in the literature review 
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presented as chapter 2. Because the subject is less advanced it has been necessary to 

carry out studies at a more fundamental level than in the steady-state case. Therefore the 

main aim of the work presented here was to understand the processes going on in order 

to decide on the key factors likely to affect the levels of hazardous gases observed in 

measurement studies. 

In chapter 3 solutions to a time-dependent equation for the pressure field are presented 

and discussed. These give insight into the flow of soil gas in general, without considering 

the nature of the gases themselves. It shows the time scales appropriate to particular 

types of problems, and the considerable impact that the soil permeability has on the 

response time of gases in the ground. 

In chapter 4 some specific problems to do with radon gas are considered, and the way in 

which the concentration develops in response to changing atmospheric pressure is 

modelled. This again shows the time taken for changes to develop, and the impact of 

falling pressure in raising the gas concentration. The main problem with the approach 

taken in this chapter is that it cannot account for all of the factors which take place in 

reality. 

In chapter 5 problems of landfill gas flow are looked at. This subject is less advanced 

than that for radon, and there are extra problems with measurement techniques. Hence 

the work presented here was carried out to make better use of measurement data being 

collected by my colleagues at BRE. The main findings relate to making sense of the 

problems encountered in laboratory tests, but also the way in which both diffusive and 

pressure driven flow need to be considered in landfill gas studies. 

The two modelling studies of chapters 4 and 5 are then compared with experimental data 

in chapter 6. There are two major long term experiments being carried out by my 

colleagues at BRE, and they provide data to make simple comparison with the modelling 

predictions. These are only able to give qualitative support to the predictions as the 

problems modelled are not of the same complexity as the 'real' ones. However they 

indicate that the modelling is giving the right trends. 
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The most useful experiment is the 'sand box' one also reported on in chapter 6, which 

corresponds closely to the modelling result found in chapter 5.  Here it has been possible 

to understand the considerable problems found with the experiments, as the time

dependent effects were very significant. 

These studies of time-dependent flows are at a less advanced stage than the steady-state 

ones. Hence it has not been possible to design any new or improved solutions to the 

problems of protecting buildings against hazardous gases. However we have been able to 

reach a number of conclusions on the significant factors and the time scales which matter 

to the entry rates. In order to take this further, models will need to be developed which 

include the more complex interactions between the pressure inside a building and the 

weather outside, and the way in which both affect the gases in the ground. 

For the subject of radon the long term aim from this work is to understand the short term 

variations of gas level, with a view to predicting the long term average values. This work 

only represents a step in this direction, and much more work needs to be done. 

For landfill gases the main problems to be worked on are understanding the 

measurements made on site, and then predicting the worst case effects. The former is 

important to cost-effective decision making on what to do with contaminated sites, the 

latter to protecting buildings against possible explosions. This work has made some 

progress in part of the measurement problem, but further work is needed. 
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Chapter 2: Theory and literature review 

This chapter gives the background to other work which has looked at time-dependent 

effects on soil gas, and an outline of the theory. It is an extract from a published BRE 

report, [Cripps 95-2] and reviews relevant work done so far in the field. The papers 

reviewed are divided into 

• Analytical studies, 
• Computational studies, 
• Those consisting only of experimental results. 

Of course many papers contain a mixture of the types of study. Papers considered come 

from a variety of different fields, principally radon and landfill gas migration, but 

including heat flow and soil clean-up by air extraction. Those considered here are those 

of most relevance to the work which follows in this part of the thesis, and these are 

therefore mostly analytical studies. The purpose is to show where other workers have 

reached, and what this thesis has developed. It should also be useful to others talcing the 

subject on further. 

The analytical studies mostly use the same equation for soil gas pressure, but then 

produce different solutions according to the boundary conditions applied. The 

computational work is quite varied in its coverage, including studies of methane 

generation in landfill sites, migration from sites and radon entry. The experimental 

studies cover both landfill site behaviour and work on the release of radon from soil. 

Analytical Studies 

Effect of changing atmospheric pressure 

One of the earliest papers to consider time-dependent pressure driven gas flow in soil 

was by Fukuda [Fukuda 55] . He derived the one dimensional equation for pressure 

variation in the soil with time as 
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azp = 
az 2 

a.2 . ap 
at 

(2. 1 )  

where 

and 

a.2 = µe/kP 0 

P(z, t) is the pressure in the soil, taken as a difference compared to P0 (Pa), 

P0 is the mean atmospheric pressure (Pa), 

z is distance into soil (m), 

t is time (s), 

µ is viscosity of soil gas (Pa.s), 

e is porosity of soil ( ), 

k is permeability of soil (m2). 

This equation (the diffusion equation) in similar form to (2. 1 )  is used to describe the 

pressure field in soil in almost all of the papers. In some it is generalised to three dimensions, 

[Kimball 7 1] .  To proceed with a solution to (2. 1 )  the boundary conditions for the problem 

need to defined. 

Sinusoidal pressure variation at the surface 

Fukuda solved for the surface pressure varying as eiwt on the surface z=O, as an 

approximation of the type of pressure variation seen due to the wind. This gave a result for 

the pressure transmitted into the soil which varied with soil permeability and porosity: 

P = P0 + P, . real [ e '@'. ex� -�az) . exp( -i�az) ] 
= P0 + P, . ex� -�az) . cos(0>t - �az) . (2.2) 

He concluded that wind gustiness only transmits a very small distance into a sandy soil, and 

this has little impact on gas movement. However he did not consider other possible time 

scales nor a range of soil permeabilities. 
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Kimball and Lemon [Kimball 7 1] extended the method to three dimensions. They 

modelled the way a general sinusoidal pressure variation affects the pressure in the soil. 

Any effect can then be found from the superposition of waves of different frequency. The 

purpose of the work was to look at evaporation from soil and aeration of the soil, but the 

results are still of interest. 

The equation they modelled was 

- = - -- -- + - + -Bp k.P o ( azp azp azp) 
at µE 

. 
Bx 2 2y 2 2z 2 

(2.3) 

This is the three dimensional version of (2. 1) .  The solution they derived is too long to 

reproduce here, but gives the pressure field in the soil due to a two-dimensional pressure 

wave caused by wind fluctuations on the soil surface. They first gave the general 

solution, which assumes waves of different frequencies, and then looked at single 

frequencies and how they vary in their transmission into the soil. The results were 

discussed in terms of the root-mean-square velocities and displacements, and showed 

that the frequency has an impact on both. A major trend reported was that low 

frequencies result in the largest displacements. 

Delsante, Stokes and Walsh [Delsante 83] also tackled the sinusoidally varying pressure 

problem, but used a Fourier Transform approach. Delsante co-authored a number of 

papers which are relevant to soil gas modelling, although written in heat flow notation, 

but the other papers were steady-state. In this paper they used Fourier Transforms to 

tackle the general problem of heat flow in three dimensions and with time variation, 

although to obtain a manageable result some simplifications were needed. Most of the 

expressions for the answers to problems are cumbersome, but the results are useful. 

The temperature at the surf ace was assumed to vary as 

T(x, y, z, t) = F(x, y, z) . e iOt . (2.4) 

The diffusion equation for temperature is 
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\12T(x, y, z, t) = _!_ . oT(x, y, z, t) 
K Ot (2.5) 

Note that this is exactly the same as the pressure equation used by Kimball and Lemon 

[Kimball 7 1] ,  apart from the change from P to T and the constant being written in a 

different way. Hence the results of this paper can easily be transferred to the pressure 

field problem. 

They gave the solution to the time-dependent problem by using Fourier Transforms as 

F(x, y, z) 
1 

21t2 

l 
. • ( 2 2 2)2 J J -zw1x -zc.>-zJ -z c.>1 + "'2 +a ('·' w ) dw dw e e · g ""1 • 2 1 2 

where a = (iO/K)v., K is the diffusivity and g is given by 

g wl 'w2) - e . F(x, y, 0) dx dy . ( 
_ J J ic.>1x + ic.>-zJ 

(2.6) 

(2.7) 

Then a particular problem can be tackled by including a chosen form of the T distribution 

on the soil surface. However the mathematics of processing the results is not trivial, and 

they only presented results for simplified cases. These include a single inclined step and a 

double inclined step, both in only two dimensions, and the equivalent in three 

dimensions. These step functions mean assuming that the temperature falls linearly across 

the walls of a house, which is often a good approximation. An indication of complexity 

of the result is that in the last case the flux is given by a function with 1 6  different terms 

added together. 

Linear pressure increase at the surface 

Clements and Wilkening, and Clements [Clements 74- 1] ,  [Clements 74-2] chose to look 

at a steadily increasing pressure on the surface. They used the same pressure equation, 

(2. 1 ), as Fukuda, with slightly different notation. 

With the linear pressure change at the boundary this gave the general solution: 

1 7 1  



p = az [ p '(t - <) . ,-312 • exp ( -cx:�2) d< (2.8) 
2{i 

where 

p*(t) is the atmospheric pressure variation at the surface z=O. 

If the function p*(t) is chosen as at where a is a constant and t is time then (2.8) 
leads to 

p = (at + aa2z 2/2) erfc --- + aaz[iFi . exp ---( az) ( a2z 2] 
2.[t 4t (2.9) 

Putting this pressure result into Darcy's Law gives the vertical flow velocity v at any 

point as 

v = -2acx( �) � .  ( �cxz;, erfc ( �{i) + exp ( -cx::2) ) 
At z=O, the soil surface, this simplifies to 

V = -2a � Ek . {t . 
µP0rc 

(2. 10) 

(2. 1 1) 

This function v gives the velocity of gas flow out of the surface when the atmospheric 

pressure is changing at the given rate, at. Hence this should be measurable with a flux 

box technique, Hartless [Hartless 95] . 

The authors also tried to solve the radon concentration equation. They wrote the one 

dimensional transport equation for radon as 

ac D a2c 1 3(vC) _ /..C + <I> 
-; az 3t E 3z 2 

where 

C is concentration of radon in the soil (Bqm-3) , 

D is diffusion coefficient of radon in soil (m2s-1), 

E is the soil porosity ( ), 
v is the velocity of the soil gas, or fluid volume current density (ms-1), 
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). is the decay constant of radon (s"1), 

<I> is the radon production rate (Bqm·3s-1), 

z is the spatial direction (m), 

t is time (s). 

The steady-state solution of (2. 12) when the velocity v = 0 and the surface concentration 

is constrained to be zero is then 

C � i ( I  - exp ( zf1)] (2. 13) 

They stated that the radon concentration equation (2. 12) cannot be solved analytically 

other than for the case with v = 0. They proposed to use a finite difference technique to 

tackle the full problem. 

In the last part of the paper the authors compared the theory to simple soil cell results, 

and data from a site in New Mexico. They were able to monitor radon flux from the 

ground as well as changing atmospheric pressure, and these gave good agreement on the 

key prediction, i.e. the change in flux due to a change in atmospheric pressure. 

Radon 

Hintenlang and Al-Ahmady [Hintenlang 92] and [Al-Ahmady 93] did some of the earliest 

work to address the time-varying aspects of radon entry into homes. Experimental data 

from one particular Florida house showed that there is an unexpected peak in radon entry 

into a dwelling when the internal/external pressure difference is close to zero. They 

proposed that this was due to atmospheric tidal effects over a 12  hour period. A fairly 

simple model was used to look at this effect, with the soil pressure as a decaying 

exponential, following the air pressure. The time-lag between the two pressures was held 

to be the cause of the radon entry. This gave a method of understanding the experimental 

result, rather than a solution to the fundamental equations. 

The expression they proposed was a decaying exponential 
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( -Atl pss(t+At) = P/t+At) - [Pb(t+At) - pss(t )] . exp 
T

R 

where 

P � is the sub-slab pressure (Pa), 

Ph is the basement pressure (Pa), 

t is the time (s) and 

TR is a characteristic time for the soil to adjust to the pressure change (s). 

(2. 14) 

This model then allows for the fact that it takes a certain time for any change in pressure 

to be transmitted through the soil, and excess pressure is therefore 'stored up' and 

released during times of falling atmospheric pressure. This is then proposed as the 

possible mechanism for why the radon levels are high when the average indoor-outdoor 

pressure difference is small. 

Recent work by Robinson and Sextro [Robinson 95] at Lawrence Berkeley Laboratory 

involves examining the effect of changing atmospheric pressure on the entry rate of 

radon into a test basement. They conclude that a significant proportion of radon entry 

can be due to atmospheric fluctuations, equivalent in their case to the entry rate caused 

by a steady pressure of 0.5 Pa, although this depends on the soil conditions. They used 

continuous monitoring of radon levels and pressures, together with a one dimensional 

time-varying model. 

Other analytical studies 

Alan Young [Young 89] derived an analytical solution to the problem of the rate at 

which methane could be extracted from a landfill site, with the intention of burning it for 

electricity generation. He modelled a number of extraction pipes at different points in the 

landfill site as sinks of gas, and was able to predict the effect of their failure. The 

modelling was all steady-state, and assumed a constant and simple production rate of 

methane. 
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Computer Modelling Studies 

The many computational studies of soil gas flow cover a variety of different types of 

problem. Some concentrate on the landfill site and gas generation, whilst others assume 

some generation rate of gas and look at the way in which gas migrates from the site. This 

is our principal concern, since it affects the measures needed for protecting buildings 

against landfill gases. Other work has looked at the effect of varying atmospheric 

pressure on radon movement, and some studies consider vapour stripping wells. Only the 

most relevant ones are presented here. 

Migration from landfill sites 

Moore [Moore 79- 1] started with a model of flow in capillary tubes and generalised this 

to a porous medium. The computer predictions from this model were then compared 

with measured flows in test cells, containing different sands. 

Developing from this he applied the same methods to a landfill site, and the study of 

boreholes. The finite element method was used in the study of the landfill site, and 

methane levels predicted over many years. These predictions are compared with data 

from a site in California. In the last part the code was used to evaluate protective 

strategies against the migration of methane. 

Moody, Rodwell and Ghabaee [Moody 92] is a major report which builds on a previous 

literature review by Ghabaee and Rodwell [Ghabaee 89] , and is focused on landfill gas 

modelling. They assumed a constant gas generation rate, but looked at the transport of 

gas in the gaseous form, and dissolved into water. They included the different behaviour 

of different gases within and around a landfill site. 

The model used a finite difference method to predict the development of concentrations 

of different gases over a long period of time. The predictions are compared with 
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simplified analytical solutions. They briefly considered changing atmospheric pressure, 

and saw the expected increase in gas flow out of the ground when the atmospheric 

pressure drops. 

Movement within a landfill site 

Mohsen, Farquhar and Kouwen [Mohsen 80] modelled the movement of gases in a 

landfill site, using a time-dependent finite element computer model. They gave a good 

description of the theory of the problem, and showed that the method agrees well with a 

simple analytical solution. The model assumed a source region with a constant 

concentration of landfill gases and a constant pressure gradient. Although they described 

the pressure field equations for soil gas flow, these were not used in the paper. The 

predicted results were used to compare with data from a landfill site over a number of 

years. They used a time-varying boundary condition to model freeze/thaw of the soil, 

which is unusual. 

The authors presented the equations in axi-symmetric form, which is an improvement on 

the one-dimensional model. The resulting equations were then solved using a finite 

element method, which is explained in reasonable detail. However in their analysis the 

authors assume a flow velocity, and only solve for the diffusion of the gas concentration. 

They compared the result of their finite element method solution with a solution to a 

simplified problem. Using only 12  domains (or elements) they obtained a fair agreement. 

Next they looked at data from a landfill site and compared it to their modelled 

predictions of concentrations of methane. These were good considering the difficulty of 

the subject, generally under-predicting, but always within a factor of two. 

In the last sections they looked at the effect of freezing the soil surface, installing venting 

trenches, and using the model as a design tool. The effect of freezing and thawing the 

soil surface was to increase the gas concentrations in the soil during the winter months, 

and then have them falling in the summer. In their case the effect was not large, but this 
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could have a more significant effect in more permeable soils, or with higher gas 

production rates. Also because of the modelling exercise being limited to the landfill site 

itself, they did not address the fact that the soil under a house would not be frozen while 

that around it would be. This could be significant where freezing is a common effect. 

Metcalfe and Farquhar [Metcalfe 87] gave results from a time-dependent finite element 

computer model of gas migration from a landfill site, and the corresponding field 

evidence to complement it. The mathematical model is presented briefly but adequately; 

the computer code used was taken from an existing ground water flow model. 

The model included diffusion of the different components of the flow through each other, 

to give a concentration equation as shown below. They modelled the concentration 

equation as 

e ac = j_ ( D ac + D ac ) + 
at ax xx ax xz az 

ac ac + j_ ( D ac + D ac J az zx ax zz az 
- v - - v -

where 

x ax z az 

Dxx, Dxz and Dzz are components of the hydrodynamic dispersion tensor, 

vx, vz are the velocity components calculated from the Darcy Law, 

C is the concentration at any point, 

e is the porosity of the soil. 

(2. 15)  

They used a finite element technique, first to solve the pressure field, and hence find the 

velocities, and then to calculate the concentration field from those. The code used was 

originally developed for ground water flow, and was adapted for this use by the authors. 

To run the model they assumed a fixed concentration of methane in the centre of the 

landfill site, which they justified from experimental data. 
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Atrrwspheric pressure changes - Landfill sites 

Several papers by Alan Young, from Oxford University Mathematics Department, report 

on computational studies of how landfill sites respond to atmospheric pressure changes. 

[Young 90] is a short paper giving an outline of the methods being used. The model had 

only one spatial dimension but is time-dependent, and allowed the atmospheric pressure 

to change. This was seen to be an important factor in the rate of exit from the landfill 

site. The equations were solved with the finite element method. 

The equations used were the usual Darcy's Law and mass conservation, but were written 

in different units from those used in the other papers. He predicted the response of the 

system to sharp changes in atmospheric pressure. 

[Young 92] is an extension of [Young 90] . Here the author looked at the differences in 

behaviour of the different gases in the mixture of gases that makes up landfill gas. The 

results predicted that the measured proportions of methane and carbon dioxide will vary 

with time because of atmospheric pressure fluctuations rather than changes in generation 

rates. Hence it is important to look at the changes in pressure over time when 

considering measured data, and he recommended that measurements should be taken 

during periods of falling atmospheric pressure. 

He predicted that this variation in concentrations was a result of the different solubilities 

in water of the principal landfill gases, methane and carbon dioxide. If the atmospheric 

pressure falls then soil gas will rise up through the soil. Because carbon dioxide is more 

soluble than methane more of the carbon dioxide will dissolve into the water in the upper 

levels of soil, and the methane concentration in the soil gas which reaches the surface will 

be higher than for steady-state conditions. 

In the reverse condition, when atmospheric pressure is rising, the soil gas is pushed down 

into the soil by air entering from outside. As a result, carbon dioxide dissolved in water 

will come out again, and the relative proportion of carbon dioxide to methane will 

increase. Since some of the gases still diffuse out of the soil surface, a measurement 
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taken during rising atmospheric pressure will show more carbon dioxide than expected. 

Radon 

Narasimham et al [Narasimham 90] used a fluid-flow model developed for water flows, 

but adapted for gas flow. By running the model with varying time periods for the 

oscillation of the surf ace pressure they achieved different flow rates. They concluded that 

the effect can be significant at low permeabilities with higher frequencies. In these cases 

the radon entry rate can be enhanced considerably. The concept clearly deserves more 

study. 

Another paper by the same authors [Tsang 92] extended [Narasimham 90] . Here the 

authors looked at the way in which changing atmospheric pressure affects radon 

movement, using a time-dependent finite difference model. The model was two

dimensional in space, and was used in two configurations, one a solid floor with a crack 

in it, the other a bare soil floor. 

They were able to predict the increase in radon entry over that due to a steady-state 

pressure difference, for different permeabilities and atmospheric pressure fluctuations.  

For example, for permeability k = lx10·12 m2, and a 250 Pa pressure change amplitude, a 

time of fluctuation of 24 hours gave the largest increase in entry rate, of 1 20%. They 

also found that small fluctuation effects can increase flow above diffusion levels, even in 

the absence of a fixed pressure driving force, explaining the continued presence of radon 

in summer conditions when the stack effect (internal-external pressure difference due to 

temperature) is reduced. 

Purely Experimental Studies 

This section contains a description of a number of papers which consist almost entirely of 

the results from experimental work. These provide possible sources of data to use to 

compare with models, although the applicability of the results varies considerably. 
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Radon flux with atrrwspheric pressure changes 

Kraner et al [Kraner 64] reported on the successful measurement of radon fluxes from 

the ground and concentrations in the soil as long ago as 1964. They included significant 

observations on the effect of atmospheric variables on radon. As well as the usual 

increased flux for falling atmospheric pressure, and the consequent changes in 

concentration with depth, they saw an increase in soil gas radon following heavy rain. 

This was thought to be due to the soil being effectively capped by the rain water. 

Schery and.Gaeddert [Schery 82] and Schery et al [Schery 84] gave experimental data 

for the variation in radon flux with atmospheric pressure. No modelling was attempted at 

this stage. They used a 'flux box' technique with a continuous radon monitor to measure 

the radon flux from the ground. They predicted an enhancement of around 10% in the 

flux as a result of atmospheric pressure cycling. 

More recently advances in technology have lead to an increase in the number of people 

able to measure radon levels continuously, and there is a growing amount of data 

available. Examples include [Welsh 95] ,  [Kies 95], [Genrich 95] and [Hubbard 95] .  This 

group of papers were all presented at the NRE VI conference at Montreal in June 1995. 

Behaviour of landfill sites 

CH2M Hill Engineering Ltd [CH2M 89 and 90] is a detailed report on a major study of 

how to protect buildings against landfill gas. The reports start with a lot of data from site 

investigations. From these remedial actions were designed and then installed, and the 

success of these measures was then assessed with more measurements. The protective 

technique used was subfloor de-pressurisation, as in many radon-affected buildings, and 

this was used in several different buildings. Overall the work was found to be successful, 

since the methane levels near the houses were reduced considerably. 

The second phase work involved further monitoring on the same site. Overall the work 
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gives valuable data on the development of gas concentrations and pressures in soil near a 

landfill site, and the effectiveness of the chosen remedial works. No modelling work was 

included in the study. 

Hartless [Hartless 95] at BRE has been developing methods for monitoring landfill gas 

on sites. He covers the techniques which can be used, and many of the problems with 

them. The techniques considered address pressure and flow measurements, with flow 

measurements being the main problem. The methods available include direct ones, such 

as rotameters and hot wire probes, and indirect ones, of which the flux box is the most 

important. 
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Chapter 3: Time-dependent solutions to the pressure equation 

Introduction 

In this chapter particular problems of time-dependent flow which can be tackled 

analytically are considered, to see what insight they can give to problems of soil gas 

flow. In particular the effect of changing atmospheric pressure on gas flow is examined. 

As discussed in chapter 2, some other work has been done, particularly on the pressure 

field equation. The main results are extended and applied in this chapter to the solutions 

noted below. Studying the pressure equation allows the flow rates produced by changing 

pressures to be predicted, but not the concentrations of the gases involved. In some 

situations this may be all that is needed, and a 'worst case' result can always be found 

from assuming the maximum gas concentration applies throughout the soil. 

In this chapter there are solutions given for three different problems: 

1) Steadily changing surface pressure 

2) A sudden jump in surface pressure 

3) A sinusoidal variation in surface pressure 

The first and third solutions are reproduced from papers by other workers, whilst the 

second one uses the method of the first on a new problem. In each case the significance 

of these to soil gas flow is discussed, and this chapter concentrates on application rather 

than attempting new solutions. The principle issue is how these affect the measurements 

made during the investigation of soil gas flows. In particular the flux from landfill gas 

sites is seen to vary with atmospheric pressure changes, and this affects the interpretation 

of any particular reading of gas flow. 

The solutions for the first problem are not new. The second solution uses the same 

method as the first but has not been published before, to my knowledge. The third 

solution has been looked at in a different way by other workers. This work extends that 

presented in [Cripps 95- 1] .  
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The pressure equation 

Starting from the paper by Fukuda [Fukuda 55] or Clements and Wilkening [Clements 

74-1] ,  also given as equation (2. 1 )  in chapter 2, the pressure equation can be taken to be 

a1p - 2 ap 
- - cx . -
az 2 at 

where 

a.2 = Eµ/kPO (sm-2) 

E is the porosity of the soil, the proportion of free space within it ( ), 

µ is viscosity of soil gas (Pa.s), 

P 0 is the mean atmospheric pressure (Pa), 

k is the permeability (m2). 

(3 . 1 )  

This equation c an  be derived by assuming a flow into the ground, and considering the 

flow into and out of an element of thickness dz. For fairly small flows the pressure does 

not change significantly, and the perfect gas law can be taken to apply, which all leads to 

equation (3. 1) .  A derivation of it is given by Fukuda [Fukuda 55]. 

Equation (3. 1 )  is the standard diffusion equation, for which much work has been done, 

especially in the field of heat transfer. To tackle it the boundary conditions must be 

specified, since they affect the method which is best suited to solving it. The choice of 

boundary condition defines the three solutions presented here. 

Problem 1: Steady increase in suiface pressure starting from time zero 

In this case the initial pressure distribution is defined as zero for the whole region, and 

then an applied change in surface pressure starts at time t=O. The change in pressure will 

be taken as linear with time, since this is simplest, but also represents the effect of a 

moving low pressure atmospheric (cold) front reasonably well. Equation (3. 1) is solved 

using a Laplace Transform method. This method reproduces the work of Clements and 

Wilkening [Clements 74-1] ,  but extends it a little. 
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The Laplace Transform is defined by 

p (z, s)= J p(z, t) . e -st . dt 
0 

Applying this to both sides of equation (3. 1 )  means that the left-hand side does not 

change, but the right hand side simplifies to 

a2p = rx2 (sp - p(O)) az2 
Since p(O) = 0 this can be solved easily giving 

(3 .2) 

(3.3) 

p = A(s) . exp(rxz{S) + B(s) . exp(-rxz{S) (3.4) 

Now [Clements 74- 1]  worked with conventional axes, so that as z tended to -00 the 

solution p is required to be finite. Hence the term B(s) must be zero or the inverse 

transform and the solution p will not be finite. Thus 

p = A(s) . cxp(rxz{S) . 

The function A is an arbitrary function of s, which can be found from the boundary 
condition on z=O. There p = p*(t) so that in (3.2) 

(3 .5) 

p (O, s) = A(s) = J p*(t) . e -st . dt 
0 

(3.6) 

Hence A is the Laplace Transform of p*. The solution for p is the Inverse Laplace 

Transform of (3.4). To obtain p from (3.5) and (3.6) the Convolution Theorem must be 

used, see for example Arfken [Arfken 85] ,  p 849, equation ( 15 . 196) . It states that if the 

inverse of p is equal to the product of two Laplace Transforms, A *(s) . q*(s), then p can 

be written as 

p (t) = f A(t - -c) . q(-c ) . d-c (3.7) 
0 

In this case A is then p*, and q is found from the inverse transform of the exponential 
term in (3.4). This is given in tables, for example [Abramowitz 65] p 1026 no 29.3.82. 
This gives the general solution as 

(J. �2 t ( l p = -
2
frr_ . [ p * (t - -r) . -c -312 • exp -� d-c . (3.8) 

If p*(t) is defined as at so that the surface pressure increases linearly with time, then 
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(3 .8)  can be re-written to give the general solution ([Clements 74- 1 ]  equation 17).  Note 

that since z is defined to always be negative it can be simpler to write z = -y. Then using 

K = cx2y2/ 4  

gives (3.8) as 

p = a: . £ (t _ <) . , -312 . exp ( _ �) d< . (3.9) 

Then substituting K/u2 = -r gives 

p = a/K 
{n . f 

(K I t)v. 
(t - ..!£) . exp (-u 2) du 

u 2  (3. 10) 

Integrating the second term by parts gives two terms still to be integrated with factors 

multiplying exp(-u2), and one other term. The two terms cannot be integrated exactly, 

but are in a standard form called the complementary error function, erfc, which is given 

in tables. Writing those integrals as erfc gives the final pressure solution as 

p = (at + acx2y 2/2) erfc ( cxy ) - acxyltfi . exp ( - cx2y 2) 
2{t 4t 

(3. 1 1) 

Then substituting back to z gives the solution as derived by Clements and Wilkening, 

their equation 17  [Clements 7 4- 1] .  

p = (at + acx2z 212) erfc --- + acxzltfi . exp ---[ cxz] ( cx2z 2] 
2.Jt 4t 

(3. 12) 

An example of this is given as figure 3 . 1  below, where the pressure at different depths is 

shown as a function of time. In this case and the velocity plot later the following data 

were used 

a =  - 1  (Pals) 

k = l e-11 (m2) 

E = 0.5 () 

µ = 1 .83e-5 (Pa.s) 

In the figure the surface pressure is falling at 1 Pascal per second, while the pressure at 
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different depths follows behind, with little effect at a depth of 0.7 metres, in this time 

scale. 

Graph of press ure against time 

At different depths i n  soi l  

2 .--�������������������������������--. 
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[ 
Time (s) 

+ depth O (m) + --0. 1  

.. --0.3 ... -0 .5 
... -0.2 

• -0.7 I 
Figure 3.1: Graph of pressure against time for the sloping step problem 

Finally by putting this pressure result into Darcy's Law the flow velocity at any point can 

be found. Darcy's Law is 

k v = -- . VP . 
µ 

(3. 13) 

The differentiation of (3. 12) is not trivial, initially giving 4 terms. The derivative of the 

erfc term is given by 

.i:___ erfc (y) = - 2 exp (-y 2) . dy 
dx {TI dx (3. 14) 

However two of the resulting terms cancel out, and the others combine, giving the 

velocity as equation (3. 15) .  Equation (3 . 15) is slightly different from [Clements 74-1] 

equation 1 8, which is probably a typographical error since it disagrees with their result 

for v at z=O. The expression for the velocity is 

v = 
-

2aa( �) ill) . ( �az� eifc ( ��) + exp ( -":�') ] 
At z=O, and after substituting for a. this simplifies and agrees with Clements and 

Wilkening [Clements 74- 1] equation 19. 
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V = -2a � Ek . .ft . 
µP0n 

(3. 16) 

Figure 3.2 is a plot of equation (3. 15), showing the development of the velocity with 

time, and hence with the changing atmospheric pressure. Because the surface pressure is 

falling, the velocity is upwards out of the ground. The highest value occurs at the 

surface, but the flow starts to be noticeable at a depth of about 1 metre after 10 seconds. 

-c;;-E .§. 

Graph of velocity against tim e  
At different depths i n  soil 

0.015 .---------------------------------. 
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... Deplh o (m) + -0. 1  + -0.2 

-e- -0.3 .... -o.s + -0.7 

Figure 3.2: Graph of velocity against time for the sloping step problem 

From this expression we can calculate a rate of flux out of a unit area of ground, if we 

know the appropriate values of the parameters a, e and k. The fact that the rate is 

dependent on the square root of the time t, and also the permeability k is significant. It 

reflects the fact that the pressure in the soil builds up gradually with time, and faster for 

higher permeability soils. This increase in the sub-surface pressure then restricts the rate 

of increase in velocity at the surface. 

Examples 

An active landfill site might develop an overpressure of 100 Pa within it, which would 

generate a steady-state flow through the surface layer. Suppose that this layer has the 

following properties: 
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permeability 

depth 

soil gas viscosity 

k = le-12 (m2) 

L = 1 (m) 

µ = 1 .83e-5• 

Then the background flow velocity can be estimated from Darcy's Law (3. 13) as 

v = 1e-12 * 100 I 1 .83e-5 = 5.se-6 mis. 

This gives a flux rate per square metre of 0.002 m3/h or 330 cc/min. 

Now consider the effect of falling atmospheric pressure. If a low pressure front passes 

the landfill site, the pressure could fall of the order of 50 mBar over 5 hours. This is the 

same as 1000 Pa per hour, or 0.28Pa/s. Using this in equation (3. 16) for the surface 

velocity gives a flow velocity of 

v = 2 * 0.28 * (2.95e-7) * t'12• 

Hence after 1 hour the surface velocity would have reached 9.9e-6 mis, while by 5 hours 

it would be 2.2e-5 mis. These are a factor of 2 and 4 larger than the expected steady-state 

velocity, although there are a large nwnber of approximations contained in the 

calculation. However the main result is that the effect of the changing atmospheric 

pressure can easily be of the same order as typical steady-state flows. This means that the 

flux rate measured at this time will be significantly different from the long term average. 

Reversing the change in pressure, ie rising pressure, means that the flow from the ground 

will be significantly reduced from the average level. This is probably the worst condition 

for making a measurement, because the level measured will be significantly lower than 

the 'real' values, and a site might be considered 'non-gassing' when it is. 

This type of analysis has been developed by Young [Young 90] who used a numerical 

model to predict the flow of gas out of the ground for varying pressures. He also 

considered the mixture of gases in the ground, and their varying solubilities. In particular 

because Carbon Dioxide, C02, is soluble in water the proportion of methane in soil gas 
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will rise because of C02 being dissolved into water within the soil. This will have its 

strongest effect when atmospheric pressure is falling, so that gas is rising up through the 

soil and C02 is dissolved into water with low C02 levels. 

The main conclusion is that the atmospheric pressure can have a significant impact on 

gas flows, and must be taken into account when taking readings of flux rates and gas 

concentrations. 

Problem 2: Instant change in pressure 

If instead of the gradual increase in pressure of the above example the pressure is taken 

to jump suddenly to some fixed surface pressure at time zero, the same method can 

produce a result. It gives a simple one-dimensional solution to the problem of how a fan 

system affects the soil below it when it is turned on. The analysis begins at equation 

(3.8) above. 

The pressure is defined to be zero everywhere up until time t=O. At that moment the 

surface pressure is then assumed to jump instantly to PT and our interest is in the way in 

which the soil below responds to the sudden change. In equation (3.8) the function p*(t) 

is simply the constant PT so that the solution is just 

a cx2z 2 t ( J p = -
2
frr. . p T [ 1:-312 . exp -� di: . (3. 17) 

Making the same substitutions as before, y = -z, K = cx2y2/4 and 1: = K/u2 makes the 

integration the standard erfc form again. Terms cancel leaving the result just as 

p = pr . erfc ( - 2� l (3. 18) 

This development in pressure is plotted in figure 3.3. It shows the initial surface pressure 

being maintained, and the pressures at greater depths gradually rising towards the surface 

pressure. 
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Figure 3.3: Graph of pressure against time for the instant pressure problem 

The flow velocity can also be calculated easily from this result, using equation (3. 14) for 

the differential of the erfc term. This gives the result for the velocity as 

v = p �k J_ . ( - a.2z 2) 
r . .  exp --

µPon ft 4t (3. 19) 

The similarity with the earlier result is clear from the constant terms. The terms in t and z 
show the expected behaviour. The flow rate is initially small apart from at the surf ace 

itself, then builds up in the lower regions of the soil, before reducing again as the whole 

soil region reaches the same pressure PT. This is shown in figure 3.4, where for small 

time the velocities at depth are increasing, before falling away as the effect of the 

pressure pulse dies out. 
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Figure 3.4: Graph of velocity against time for the instant pressure problem 

It is also useful to find the maxima and minima of this result. By differentiating (3. 19) 

with respect to t the minimum velocity is found to be as t tends to infinity, as expected. 

The maximum velocity occurs when 

eµ z 2 
t = - -

kP0 2 (3 .20) 

This gives insight into the time which it takes for the signal from a pressure change to 

travel into the soil. Of course it would not occur exactly like this in a multi-dimensional 

situation, so the result has only limited application, but it does give a useful time constant 

for soil flow rates. 

Given the following typical values of these parameters, the typical time scales for 

different permeabilities can be estimated. 

Porosity e 

Viscosity µ 

Atmospheric pressure P 0 

0.5 () 

1 . 83 e·5 (Pa.s) 

1 e+5 (Pa) 
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4.6e - 1 1 z t = . z . 
k (3.21 )  

Hence at a depth of 1 metre, the maximum velocity for different soil types can be 

estimated to occur as shown in table 3 . 1  below. This shows the considerable variation in 

time scales associated with the different types of soil. In the case of the clay it would 

only require a depth of 4 metres before the maximum velocity would take a whole day to 

occur, while the high permeability fills respond almost instantly to the imposed pressure 

change. This is significant because a similar process must occur in the real three

dimensional situation, and this must be considered when using a pump at the top of a 

bore hole to extract gas from a site for measurement. The gas reaching the surface will 

not be representative of the deep soil gas for quite some time after turning on a pump. 

Soil type Typical soil permeability m2 Characteristic Time 

Clay le- 14 1 .3 hours 

Sand le-12 46 seconds 

Gravel le- 10 0.46 seconds 

Special �raded fill l e-8 0.0046 seconds 

Table 3. 1: Time scales for velocity at 1 metre to reach its maximum for different soil 

types 

In these cases the characteristic times are inversely proportional to the permeability of 

the soil. 

Problem 3: Cyclical (sinusoidal) variations in pressure 

Another reasonable assumption is to consider the change in atmospheric pressure to be 

sinusoidal. Actual weather systems do give a fair approximation to this, with the change 

from high to low pressure and back again occurring typically with a time scale of around 

five days. In addition wind effects can be represented by the superposition of different 

sinusoidal changes in pressure with time scales of order seconds, and this was considered 

by Kimball and Lemon [Kimball 7 1] .  Some work by Hintenlang and Al-Ahmady 
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[Hintenlang 93] suggests that atmospheric tides, with a 12 hour cycle like ocean tides 

also affect soil gas flow. 

Hence we see that there is the possibility of atmospheric or surface pressure cycling over 

a whole range of time scales, making a general result of considerable value. 

Although we wish to represent a sinusoidal variation, it is most easily done in the 

complex exponential form. We assume that the surface pressure varies as p(t) = ei<.>\ then 

we expect a solution in the form P = P0 + Q(z) . eiwt. In equation (3. 1) this gives for Q 

e iwt . a1Q = a.2 
• 

iw . e iwt 
. Q(z) . 

az 2 

This gives the general solution for Q as 

Q = A.exp(az/fW) + B.exp(-az/fW) 

(3.22) 

(3.23) 

But the root of i is (1 +i)/V2, and the solution for Q must be finite as z tends to 

infinity, so that A must be 0. This gives Q, and hence P, as: 

. lw . lw  lw lw P = P0 + P, . e '"''.  exp(-� 2az) . exp(-1� 2az)= P0 + P, . exp(-� 2az). cos(w t - � 2az) , 
(3.24) 

where Pt is the amplitude of the surface pressure fluctuation. Generally the complex 
exponential would be replaced by cos( wt - azv(w/2)), ie the real part of the result. This 
result reproduces that of Fukuda. It can then be differentiated to find the velocity at any 
point from Darcy's Law. 

aP = Pt . - (1  +i)a r: . exp( - r: cxz) . e iwt. exp(-i lw az) . 
az � 2 � 2  � 2  (3.25) 

Taking the real part of this and us�g it in Darcy's Law, and substituting C for av(w/2), 
and then taking the real part of the expanded expression (3.25) gives 

kCP e -cz 
V = r 

• [cos(w t - Cz) - sin(w t - Cz)] 
µ 

When z=O this simplifies to 

kCP 
V(O) = t . [cosw t - sincu t] 

µ 

(3.26) 

(3 .27) 

But c = av(w/2), and a.2 
= Eµ/kPO so that c = v(weµ / 2kPO) and the permeability k and 

viscosity µ appear in the full expression as root terms, equation (3.27) becoming 
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V(O) 0 P, . � EkO> 
. [ COSO> t - sinO> t] . 

2µP0 
(3.28) 

This result means that the permeability has a square root impact, ie less than linear, on 

the velocity of soil gas flow from the soil surface. This is of essentially the same form as 

that for the linear pressure rise considered earlier. The finding that the permeability has 

only a square root impact on the velocity in equation (3 .28) is interesting, since it is not 

the same as in the Darcy Law (3. 13). It reflects the fact that the soil gas pressure follows 

the surface pressure, and more permeable soils follow more closely than less permeable 

ones. 

The pressure field decays with depth exponentially, with the decay constant as C. Hence, 

as expected, the pressure field extends further for larger permeabilities. It is also 

predicting that the pressure extends further for lower frequencies of atmospheric 

pressure fluctuation. 

Examples 

As with the other two problems the analytical result to this problem lends itself to a 

visual representation of the pressure developing with time and depth. Figure 3.5 shows 

the pressure against time at different depths. The pressure at any depth lags behind that 

at the surface, and is damped so that its absolute value is lower. Figure 3.6 shows the 

velocity developing with time with the same parameters as Figure 3.5. 
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Figure 3.6: Graph of velocity against time for the sinusoidal pressure problem 

An interesting feature of the plots against time is that there is generally a depth in the soil 

where the pressure is in the opposite phase to that at the surface. This is because of the 

time lag for the changing pressure signal to reach the lower levels of the soil. The radon 

modelling work by Hintenlang and Al-Ahmady in Florida [Hintenlang 93] is based on 
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this concept. The atmospheric pressure fluctuations they took to occur due to 

Atmospheric Tides, with a time cycle of around 12  hours. The fact that the inside of the 

basement of a house was in step with the external pressure then allowed radon-laden air 

to enter from the soil next to it, which is at a higher pressure. 

To examine how significant this effect can be, substitute for ex in (3.24) and look at the 

phase effects on the pressure: 

P = P 0 + P, . ex{ - z � �;) cos [ w t  
-

z � �;) (3.29) 

The exponential term indicates the damping effect of the soil on the overall size of the 
pressure, and so has no impact on the phase of the pressure wave. However if w is large 
and k small then the wave will be damped fairly quickly. 

The expression in the cosine term defines the phase of the pressure at any point. If the 

second part, which includes the z term, is equal to TI then the pressure at that depth z will 

have the opposite phase to that at the surface. Using the same values for the parameters 

in the expression that were used before: 

Porosity E 
Viscosity µ 

Atmospheric pressure P0 

0.5 (), 

1 .83 e-5 (Pa.s), 

1 e+5 (Pa), 

the expression for the first depth, zopposite where the soil pressure is first of opposite sign 

to the surf ace pressure is 

z . = 4.64e5 (klw)'h = 1 .85e5 (kc)v. opposite ' 

where 

w defines the rate of change in surface pressure, and is given by 2TI I -r ,  

't is the time for one complete cycle. 

(3.30) 

Thus to find a typical value of the depth at which the pressure is first in the opposite 

phase we need to choose an appropriate value for w. Wind gustiness can be considered 

to be a change with time scales of order 10 seconds, while the atmospheric tides have a 

cycle of 12  hours . These give values for w of 0.63 and 1 .45xl04 s·1 respectively. 
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Substituting in (3.30) gives simple expressions for the depth value as a function of the 

permeability as follows 

10 second 12 hour 

zopposite = 5.8xl05 kV. 3.8xl07 kv. (3 .31)  

Hence if we are most interested in a depth of 1 metre, the permeability at which it is first 
exactly out of phase is 

10 second k opposite = 3xl O -12 
12 hour 

?xJ0 -16 
(3.32) 

These results only indicate a feature of a soil type but help to explain the atmospheric 
pumping effect over a half day time scale, which can result in increased entry rates. When 
the atmospheric pressure is lower than its mean value, flow could occur into a basement. 
The expression here for phase would only matter when greater accuracy was needed, or 
in very permeable soil. 

Conclusions to chapter 3 

The results in this chapter show how soil gas pressure responds to atmospheric pressure 

changes, and allows us to understand some aspects of the gas flow produced by these 

atmospheric driving forces. 

If there is a steady change in atmospheric pressure, due to a passing weather front, it can 

produce a flow as large as that due to the pressure which has built up in a landfill site. As 

a result the weather conditions need to be taken into account when considering the 

measurements taken on site. 

When a pressure is switched on instantly, for example with a fan, then there is a time lag 

before the effect reaches soil at greater depth. This would be seen on site with a delay 

before the concentration of gas changed significantly. 

When a sinusoidal variation of pressure is assumed, different depths in the soil will be at 

different phases of the cycle. This could help to cause the entry of soil gas into houses, 

because the soil at depth is out of phase with that in the house. 
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Chapter 4: Time dependent solution to the radon concentration equation 

Introduction 

In this chapter the radon concentration equation is studied, and steady-state and time

varying solutions to it are produced and their implications considered. These solutions 

involve using two analytical techniques, Matched Asymptotic Expansions and Laplace 

Transforms, and a simple numerical model. The Expansion results are not easily 

obtained, and serve mainly to validate the numerical predictions. The Laplace Transform 

Solution gives a useful general result for the flux of radon from the soil surface. The 

numerical solution allows any general problem to be solved, and has been seen to 

compare well with the exact solutions found analytically. Considerable knowledge of the 

time it takes for pressure changes to result in concentration changes comes from 

analysing these results. 

The solution for the pressure field problem from the previous chapter is used here again 

as a necessary part of solving the radon equation. Clements and Wilkening [Clements 74-

1 ]  wrote the one-dimensional transport equation (2. 1 2) for radon as 

ac D azc _ ...!_ a(vC) _ )..C + <t> 
at = �. az 2 E . az 

where 

C is concentration of radon (mol m·3), 

D is diffusion coefficient of radon in soil (m2s-1), 

E is the soil porosity ( ), 

(4. 1) 

v is the velocity of the soil gas, or fluid volume current density (ms·1), defined as 

positive upwards, 

A. is the decay constant of radon (s-1), 

<P is the radon production rate (mol m·3 s·1), 

z is the spatial direction (m) and 

t is time (s). 
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In this form both the diffusion of gas and the pressure-driven flow are accounted for. It is 
much simpler to solve this in steady-state, and the results are useful when considering 
time varying problems, so the steady-state solutions are presented first. 

Steady-state Solutions 

Assuming that the surface has zero concentration, and that the soil is of infinite depth, 
the steady-state solution of (4. 1 ) when the velocity v = 0 can be calculated as 

C = i . ( 1 - exp ( z.wJ) (4.2) 

Note that z has to be negative or this solution diverges. Here the decay term A. cannot be 
set to zero since this gives the correct but not helpful result of infinite concentration if 
there is production and no decay. If we impose a constant velocity onto the system, but 
still allow it to reach steady-state then the result is a little more complex. If the imposed 
velocity is V0 then equation (4. 1 ) becomes 

D a2C Vo ac - A.C + <I> . 0 
= -;· az2 - ---;-· az (4.3) 

Solving first for the equation without the constant <I> by assuming a solution of the form 
C = Derz + Ee-gz 
gives a quadratic equation in f, since E must be zero to satisfy the condition as z tends to 
-00• Combining with a constant term to match the condition at z=O this gives the result 
for the concentration to be 

C = i . ( 1 - exp z . ( v. + v;
D 

+ 4DEA) )  (4.4) 

This result simplifies to that of (4.2) when V0 = 0. It is also interesting to look at the 
result when the velocity is large compared with the diffusion term D, so that for V 0 

positive (4.4) can be simplified to 
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<J> ( zV0) C = � .  1 - exp D (4.5) 

Hence if the velocity is large and positive (i.e. towards the soil surface) then the 

exponential term tends to zero, and nearly all of the soil has the same concentration as 

the deep soil. This assumes that there is no depletion of the radon or other gas being 

created, which may not be the case. 

If the velocity is negative (i.e. into the soil) then (4.4) simplifies differently for large 

velocity, and needs a binomial expansion of the root term, which gives 

<I> ( - �) C = � . 1 exp I Vo I (4.6) 

Because z is always negative, and V 0 taken to be large, this gives zero except when ze). 

becomes large enough to match V 0. The results for the radon concentration at different 

applied velocities in steady-state conditions are shown in figure 4. 1 .  It shows the zero 

velocity result, with the lines either side for positive and negative velocities. When the 

flow is down into the ground the radon concentration is lower at all depths. As well as 

the exact result from equation (4.4) the approximate results from equation (4.5) and 

(4.6) are also shown in figure 4.2 . This shows that a velocity of 10-5 (mis) is large for a 

soil gas flow, because the exact and approximate results are so close together. 

Graph of concentration against depth for different soi l  gas velocities 
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Figure 4. 1 :  Graph of radon concentration against depth, exact results. 
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Figure 4.2: Graph of radon concentration against depth, showing approximations 

Non steady-state problems 

As soon as the velocity within the concentration equation (4. 1 )  is not a constant the 

solution becomes a lot more difficult, and an exact solution is unlikely to possible. 

However some progress can be possible, after making approximations. 

In this part of the chapter the same general type of problem has been tackled in a number 

of different ways. First the limit of analytical results is explored, taking an approximation 

to the full problem for small time. This method is applied to two different flow situations, 

a gradually increasing surface pressure, and a suddenly applied velocity. 

Next the development of concentration is considered with a Laplace Transform method, 

which can give an exact solution under certain conditions. 

The final solution type considered here is numerical, because the governing equations 

can be solved to some degree of accuracy for any situation with a numerical method. It 

has been used to compare to the earlier analytical results , and to the general cases which 

the analytical methods cannot solve. The comparisons are generally good, and show that 

the numerical method is valid, if slower to use, than an exact solution. 
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Linear increase in surface pressure 

We first consider the problem where the pressure is gradually increased at the surface, 

which was discussed earlier for the pressure alone. This can result from the changing 

atmospheric pressure, perhaps as the result of a cold front passing the point. This leads 

to a fall in pressure of about 50 mBar in a period of hours, so a maximum of around 10 

mBar per hour. This is equivalent to 1000 Pa per hour or 2.8 Pa per second. 

The velocity of the gas varies according to equation (3. 15), as found in chapter 3. This 

shows that the velocity is initially very small, and the effect will take some time to reach 

the deeper parts of the soil. Hence it is interesting to look separately at the two zones, 

one near the surface where the effect of the pressure change will have reached, and the 

other deeper in the soil, where no change can occur for some time. The solution for the 

two regions must join together in the central region, but the solution will be hardest to 

obtain there. 

This problem can be tackled using the method of matched asymptotic expansions. The 

workings are rather long, so they are presented in Appendix A. The result is reproduced 

here. An approximation to the solution for small time and z = O(tv.) is assumed to be in 

the form of an expansion in powers of time T (T = t) and functions of the variable, (, 

equal to the depth z over the square root of the time, so ( = z I tv.: 

1 3 
- -

C = C0((). T 2 + C1 ((). T + Cz((). T 2 (4.7) 

After separating the terms in the radon equation by powers of T each term C0, C1 and C2 

can be found in turn 

co "' 
<f>(

p 
A. , 

C = -<I> rz 1 · �  2A 
= � z 2 

2D/E
. 

T 
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C = B ( i +..£.] . {iAej _ll + Bi (2,2 + 8A)e -:: - B <t>( _r_ + ') 2 1 2 12A 'J l 2fA 12 . 2 6A 

+ Y/�O) [-�exp ( - ":"] - a( ,[ii eif ( -�() ] + � �! 1(0+ - Y";"'] . 
where 

(4. 10) 

B1 and B2 are found from the boundary conditions, and are given in Appendix A, 

A = D/e, 

p = (eA.IDY'\ 

f is the solution to the steady-state solution, ie equation ( 4.2), 

y = 2aak/(µnv.) from equation (3. 1 5) for the velocity of flow written as v = 

ytYzg((), 

a =  eµ/kP0 

and the other variables are as defined before. 

Application and interpretation of the solution 

In principle it would be possible to calculate values of C resulting from this analysis using 

a spreadsheet, and approximations to the erf terms. However some of the terms in the 

expression for C2 give problems due to their extremely small size, so it was better to 

write a short QuickBASIC program to sum the terms. Some results are shown in figures 

4.3 and 4.4. 
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Comparing analytical (solid) to numerical model (points) 
Graph of radon concentration against depth z at different tirres (hours) 
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Figure 4.3: Graph of radon concentration against depth 

Analytical: Graph of radon concentration again.st depth z at different times 
Larger depth range 

50 .....-������������������������������--. 

40 

I c "' 30 

-� -g .::: !l! c ::I Q) 0 0 .c. 8 I- 20 

� 1 0  

,a 

,JJ �CJ 
,/) ,,@ 

,/:) ,p 

<J P  
p l#  

,@ 
,,@ 

.P 
lJ 

O<F-���������---''--���������--'-���������---' 
0 5 1 0  

depth z {m) 

.. x o hours o 13.9 hours - Exact O hours ) 
Figure 4.4: Graph of radon concentration against depth, greater depth 

204 

1 5  



These graphs show that the boundary conditions have been met, but also that the range 

of application of the result is very limited. In figure 4.3 the development with time can be 

clearly seen, with air moving upwards carrying higher concentrations of radon up with it. 

That the solution matches at large ( rather than diverging is shown in figure 4.4, which 

extends the result of 3 to larger z. It is a limitation of the method that for z more than 

about 0.6 the approximation to the initial condition as an expansion in powers of z is no 

longer valid. However for this region the initial condition will be the solution for small 

time, as the effect of the change at the surface will not have reached that depth. 

Comparing the sizes of the respective parts of the solution gives an indication of the 

range of application of the solution. For small values of the time, the terms in the 

expansion (4.7) differ by an order of magnitude. However as the ti.me progresses the 

third term increases in size, so that it becomes equal in order to the second and then the 

first. At this point the assumption in the method is not valid, and it cannot be applied. 

Hence the solution can only be used for the initial period of time, while the third term 

component is small. In the case shown in figure 4.5 below, beyond about 200 seconds 

the result is not valid, and since the rate of increase in pressure was 0. 1 Pals this implies 

the solution would not be valid for a change in pressure of more than 20 Pa. 
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Figure 4.5: Graph of the size of the terms in analytical solution against time 
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It is not easy to apply the result of this section directly. However later in this chapter it is 

used to verify the small time accuracy of a numerical solution which can be extended to 

much larger values of time. The two agree well. 

Instant velocity problem 

Although the problem is not strictly physically realistic, the application of an instant 

velocity V 0 at time zero is not too far from the reality of some situations. When a 

pressure is imposed the velocity will often reach steady-state quite quickly, while the 

concentration takes much longer to adjust, because it requires the bulk movement of gas, 

not just a pressure wave to transmit it. 

There are two methods to attack this problem, the method used in Appendix A for small 

time, and the Laplace Transform method used for the pressure problem earlier. It can 

also be tackled numerically, and this is covered later. 

Matched asymptotic expansions 

The main part of this approach is reproduced as Appendix B .  Because the velocity is 

constant with time the procedure is simpler than for the earlier case in Appendix A. The 

result only needs to use two terms to involve the velocity, and is therefore simpler to use. 

It is limited in application, however, because the expansion of the initial condition into 

powers of z is poorer in two terms than in three. This further reduces the length scale 

over which the solution is valid. The result of this calculation can be seen in figure 4.6, 

where the result is plotted against the numerical result discussed later. 
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Plot of radon concentration against depth for increasing time 
For instant velocity , corrparing analytical (continuous lines) and numerical methods (data points) 
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Figure 4.6 Graph of radon concentration against depth 

For small values of z and t the concentration results are very close to each other, but as z 

increases the analytical method tends to give higher concentrations than the numerical 

calculation. This can be seen in the way the solid lines separate from the points as the 

depth increases. This is because the solution given is the inner solution, which matches to 

the steady-state solution at greater depth. It is not able to give the solution at larger 

depths or times. As a result of this the analytical solution is mainly of use to check that 

the numerical solution is giving the correct initial solution. 

Laplace Transform method 

An alternative to the matched expansions technique for this problem is to use a Laplace 

Transform to solve it. Laplace Transforms are a powerful technique for solving 

differential equations, particularly for those where an initial condition is given, and the 

time development from that is needed. The standard work on this topic relates to heat 

conduction [Carslaw 59] ,  and has been used in work at the laboratories of KVI in the 

Netherlands for radon [Van der Spoel 93]. 
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Again the working of this is quite complicated, so it is presented in Appendix C. A 

summary of results are given below. It is not possible to evaluate the concentration 

without doing a numerical integration of the following expression 

_ K1(z)J00 sin (K2(z) . (u-p)0.s ) e -ur du 
C - -- + 

7t u(A. - u) p 

<P [1 - exp z(� + �+EA) ] - �  [i _ exp( zV
o) ] e ->-1 , A. 2D 4D2 D A. D 

(4. 1 1 ) 

where 

K1 and K2 are functions of z defined in Appendix C, 

p = V02/4DE + A.  
and the other variables and constants are as defined earlier. 

However more progress is possible on the flux rate, which comes from the gradient of 

the concentration. The total flux at any point is a combination of diffusion and pressure 

driven flow. This can be written for a general flow velocity V as 

ac Flux J = -D . - + V . C . 
az (4. 12) 

However we are most concerned with the flux at the surface, which is simpler because 

we generally define the surface concentration as 0, so only the diffusive flux is needed. 

The value of 2C/2z at z=O can also be evaluated as (Appendix C) 

�� = ( �rd� J.1 . ,) , - nITT . ( I  - er{( t�: + All l l 
- ( �r A�e -M [�e ;� - nm; . ( I  - er{[ �lll 

+ <t> [ Vo + 
A 2D 

vo2 + EA - Vo e -'J.J] 
4D2  D D 

(4. 13) 

From (4. 1 3) we observe that, at time t = 0, the gradient is zero as all the terms cancel, as 
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expected. As t tends to infinity, only terms from the third line remain as the error 
function terms tend to one and therefore disappear, as do all of the exponential terms. 
These then match the steady-state solution given by differentiating (4.4) and setting z=O. 

Applying this solution 

This solution allows the calculation of the development of radon concentration with time, 

using a numerical integration, but more usefully the development of the radon flux at the 

surface can be found. Figure 4. 7 shows the radon concentration gradient at the surface 

developing with time. In this case it takes a considerable time to reach the steady-state 

value, but it is important to note that there is zero initial radon in the ground, so much of 

the time is spent building up the radon level in the soil. 
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Figure 4. 7: Graph of the gradient of the radon concentration against time 

This type of solution will be more useful for methane (discussed in chapter 5) where 

BRE have a test cell where the knowledge of the time taken to reach near steady-state 

will be of value. The KVI work [Van der Spoel 93] relates better to this radon solution, 

but they also had a finite length scale, which this does not. 
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Numerical solution 

In general a problem cannot always be solved analytically, and as we have seen, even 

simplified problems are hard to solve, and limited in their range. As a result it is often 

necessary to tackle the problem with a numerical or computational method. The easiest 

way is to use an explicit method to solve the concentration equation. 

The equation to solve is (4. 1)  again, and to make the computer solution possible the 

space is divided up into a grid, with steps dz and time is advanced in steps dt. Then 

each of the differential terms is approximated from the values of the concentration at 

neighbouring grid points as follows 

ac Cr+1 - Cr = 
at t 

where Cr+i ,Cr are the concentrations at time step r+ 1 and r respectively 

(4. 14) 

For the z differential there is a choice to be made between the three possible ways to 

discretise the equation, the choice depending on the direction of any flow in the system. 

In order they are known as upwind, downwind and central differences. 

ac 
az 

= c11+ l  - CTI c,, - c,i-1 cn+I - c,,_ 1  o r  or �����-
dz dz 2.dz 

(4. 15) 

where cn+l ,en, cn-1 are the concentrations at grid positions n+l ,  n and n- 1 respectively. 

For the second differential the first two forms for dC/dz are combined to give 

a1c C + C - 2C 
_ 11+1  11 -l n 

az 2 (dz)2 
(4. 16) 

These can then be combined into equation (4. 1)  to give the expression for the 

concentration at time step r+ 1 from the concentrations at time step r at the point n itself 

and the two neighbouring points . This defines an explicit method, where the calculation 

can be carried out in one step, because it does not involve the concentrations at the new 

time step of the values at neighbouring points. Methods which do use that information 

are called implicit, are more stable (ie not prone to diverge and give completely wrong 

answers), but are harder to use. 

2 10 



Constant velocities 

As a first step, setting the velocity equal to zero allows the method to be checked when 

there is an exact solution to the steady-state result - equation (4.4). The full expression 

from combining equations (4. 1 4), (4. 1 5) and (4. 1 6) into (4. 1 )  is 

C = C + dt.�( D (Cn .. 1 + Cn-1 - 2C,)l - 2:( C,, .. 1 - C,.l - A.C + ¢] 
r .. 1 r � E (dz)2 E dz n (4. 17) 

The first test of this was with no velocity, and C=O everywhere initially, and the second 

with different values of v. Both compare well with the exact results, and the numerical 

result also indicates how long it talces for the result to reach the steady-state solution. In 
both cases it is necessary to have a large enough maximum z value for the numerical 

solution, or an error is introduced. 

The boundary conditions used in the z direction were C=O on z=O, and ac1az = 0 at the 

bottom boundary of the region. This is why it had to be set deep enough to match the 

exact solution. The exact solution with a finite boundary condition can be found but is a 

little more complicated. 

Time varying velocities 

Because we have the exact solutions for velocity developing as the surface pressure 

develops under some conditions we can insert the velocity into the computational 

solution without the need to calculate it numerically. This concentrates on the rising 

surface pressure problem, as it is the case where most progress was possible analytically. 

The velocity comes from equation (3. 15) of chapter 3 and needs to be differentiated with 

respect to z to give av/az. These are then used in the modified concentration equation as 

[( D (Cn+I +C1.-i -2C..)l V(z,t) ( Cn .. 1 -C�1) _ Cn BV(z,t) _ A.C + ¢) · C - C + dt - --
a n r+I - r • E (dz)2 E dz E Z 

4. 1 8) 

These are then used to calculate the velocity and gradient of velocity at each time and 

depth in turn. A result for the linear increase in surface pressure was shown in figure 4.3. 
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This plot indicates that there is very good correlation between the analytical and 

numerical solutions in this case. The analytical solution found in Appendix A starts to 

become too high for larger z, because the approximations made in obtaining it depend on 

the expansion of an exponential in powers of z. The analytical solution is only really valid 

close to z and t=O. 

This can also be seen from figure 4.6 earlier which is for the case where a velocity is 

switched on at time t=O and maintained after that. This solution has been given in 

Appendix B as an analytical solution, using only two terms. This results in the two 

solutions diverging earlier on, because the two term expansion is not as good as the three 

term one. 

Conclusions to chapter 4 

In this chapter several different problems of the time varying radon equation have been 

tackled, using a mixture of different methods. 

An analytical method (matched asymptotic expansions) has given a solution for small 

time to the problem of a linear increase in surf ace pressure, and an instantly applied 

velocity. The same problems have been addressed with the Laplace Transform method, 

which gives an exact definition of the result, but because this involves an integral it is not 

easy to use. Then all the solutions have been compared with that from a one-dimensional 

numerical model, which produced results very close to the analytical methods. 

These results show that there is a considerable time between a change to the velocity of 

flow of soil gas and a significant change in the radon concentration. This means that care 

must be taken when collecting data on concentrations as to what the flow conditions are 

at the time of any measurement. 

Depending on the conditions there will be either an analytical or numerical solution 

available for the radon concentration. Comparison of the modelled solutions is discussed 

in chapter 6. 
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discussed in the third part of the chapter. 

The conditions modelled here correspond most closely to the soil cell set up in the 

laboratory at BRE. This allows us to make a direct comparison between the measured 

and predicted behaviour, and improves our understanding of the results from the soil cell, 

an outline description of which is shown in the figure below. 

z = a, C = c. 

Sand 

z = 0, C = Co 
False floor (P1) 

Figure 5.1: Diagram of soil cell 

Steady-state solutions 

i4 Q 

In steady-state, with a constant velocity V 0, the concentration equation simplifies to 

0 = D . 

azc 
- Vo . 

ac 
az2 az (5.3) 

For the controlled experiment in the soil cell, the boundary conditions can be defined by 

z = O C = C0 

z = a  C = Ca 

This corresponds reasonably well to the arrangement in the laboratory soil cell, once it 

has reached steady-state. Then in the simplest case, V 0=0, the concentration is given by 

C(z) = C0 + (Ca - C0) . � 
a 

and the concentration gradient, which is needed to find the flux at any point is 

2 15 

(5.4) 



ac Ca - Co = 
az a (5.5) 

If the velocity is non zero, the solution is slightly more complex, but the solution is of the 

form A +  Bepz , and after applying the boundary conditions it gives 

Vcfl VoZ 

C(z) = Ca - Coe '"D + (C - C )e Ii 0 a 
Vcfl 

1 - e D 

The gradient of this is given by 

aC(z) Vo -- = -
az D 

VoZ 
(C - C )e D 0 a 

Vcfl 
1 - e D 

(5.6) 

(5.7) 

Although it is not immediately obvious, these results are the same as V 0 tends to zero as 

those for V 0 = 0. This can be shown by expanding the exponentials in powers of V JD. 

The final limit to consider is that of large velocity, or equivalently small diffusion 

coefficient. When DN0 << 1 (5 .6) implies that C(z) � C0 except where z-a = O(DN0). 

Then it becomes 

V0(z-a) 
C(z) .. C0 + (C0 - C)e D 

Thus the concentration is at its 'floor' value except in a narrow region near the top 

where it adjusts to the boundary layer of thickness O(DN 0). This boundary layer is 

evident in Figures 5 .2 and 5 .3 below. 

(5.8) 

Figure 5.2 shows the concentration as a function of depth across the soil cell for different 

flow velocities. Similarly figure 5.3 shows the gradients of concentration varying with 

flow velocity. Note that the flux depends on the gradient of the concentration as well as 

the velocity. 
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Graph of steady state concentration against depth 
at different ratios of velocity to diffusion coefficient 
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Figure 5.2: Graph of methane concentration against depth in steady-state 
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Figure 5.3: Graph of concentration gradient against depth in steady-state 
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However in the flux box tests using the soil cell the flux out of the soil cell was found to 

take an extremely long time to reach a steady-state value. Hence it is useful to look at 

the expected time for the concentration to reach steady-state, and the expected 
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behaviour in between. This is particularly important for 'real' site conditions, where 

steady-state is unlikely to occur. 

Laplace Transform solution for time dependent flow 

The Laplace Transform method was used in chapters 3 and 4 on pressure and radon. The 

method follows that of the radon case quite closely, and has strong similarities, but the 

different boundary conditions cause the result to be quite different. 

We are trying to calculate the resulting development in the concentration, due to a 

constant velocity V0 imposed at time 0. Taking a Laplace Transform of equation (5 .2), 

with respect to time, gives 

2- v: -D
. 
a C _ _Q ac _ sC = _ F(O) . 

E az 2 E az (5 .9) 

Here F(O) is the concentration function before the velocity V0 is 'switched on' ; we will 

generally use zero for simplicity. It is possible to obtain a solution with other expressions 

for F(O), for example the solution for one steady-state velocity. However the more 

complicated expressions are unlikely to lead to results of greater practical importance. 

The solution for the complementary function is of the form ecr.z where a is given by 

Vo a = - + 
2D -

(� + Es] 
4D 2 D 

(5. 10) 

At this point the boundary conditions are applied. These again correspond to the 

laboratory experiment. This requires the concentration to be forced to a certain value Ca 
at the top and C0 at the bottom of a box, (usually 100% at the bottom, and 0% at the 

top),  with the top of the box a metres above the bottom. Using these the transformed 

boundary conditions are C0 I s  at the bottom, z = 0, and Ca I s  at the top, z = a. These 

can then be used to find the form of the transform of c when ca = 0 as 

- C0 l V0 zJ C = +- exp --
s 2D 

l exp\(z-a){fJ - exp\(a-z)/ks)j 
exp(-a/fs) - exp(a/fs) 

2 Vo Es where k = -- + -s 4D 2 D 

(5 . 1 1 ) 

Now as before we have to invert this to give the result for the concentration C. The 
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result is found using the inverse Laplace Transform integral 

y+ ioo 
1 -

C = -. f C(s,z) e s' ds 
2m y - ioo 

(5. 12) 

As for the radon case in Appendix C qnd chapter 4, using this involves finding a residue, 

at s = 0, and handling the point where � = 0. The residue at s = 0 is found from (5. 1 1) to 

give part of the result as 

C(z) = 

V0a VoZ - --
ca - Coe D + (Co - C)e D l e �z - e 

v
�a J = C _,_����-'-

v0a O V0a 
� � 

l - e D l - e D 
(5. 13) 

the second result applying when C3=0. This is exactly the same as the steady-state 

solution, which is encouraging. However since it has no time dependence, the residue at 

the other point must give the rest of the result. 

It simplifies the working to make substitutions at this point 

k _ e ( v6 ) 
s - D 4De 

+ s = q z (p + s) 
( V0 z) and K3(z) = Co exp 

2D 

# 2 
Vo 

where q = and p = --
4De 

Then (5. 10) becomes 

C = K3(z) [ exp((z-a)q�) - exp{(a -z)q�)] 
s exp(-aq�) - exp(aq�) 

This is expressed more simply in terms of hyperbolic sines 

C = K3(z) [ sinh((a -z)q�) ] . 
s sinh(aq�) 

(5. 14) 

(5. 15) 

(5. 1 6) 

Now this expression might contain a branch point when p+s = 0, as occurred in 

Appendix C. However because both numerator and denominator have a sinh term this 

does not occur. However there is a series of poles resulting from the denominator, which 

can be seen by rewriting the expression again in terms of sines, since sinh x = sin(ix) I i 
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C = K3(z) [ sin(i(a-z)q�) ] . 
s sin(iaq�) 

(5 . 17) 

This expression has poles whenever the sine in the denominator is equal to zero, that is 

when 

iaq� = ± mt . (5. 18) 

Hence the poles are whenever s is given by 

Sn = - ( :: r - p · (5. 19) 

This result means that there is an infinite series of points where the expression has a pole, 

and each will contribute to the total through the residue at a given point. To find the 

residue from (5 . 17) we use the numerator over the differential of the denominator, 

evaluated at s0, see eg [Boas 83 ] p 599. This gives 

R(sn) 
K3(z) 

Sn 

sin�(a-z)qJp + sn) 
iaq cos(iaqjP + s n) 

2Jp + Sn 

. e snt 
(5.20) 

But the expression (5. 18) allows this to be simplified considerably, since it gives a value 

for (p + s0)v. in terms of n, and this makes the i terms cancel. The cos term on the 

bottom is either 1 or -1  depending on the value of n. Hence it gives a term (- 1 )0• The 

final form for the residue due to the point where � = 0 is then 

R(s ) = sm nrr:-- . e n • 
2nrr:K3(z) [ . ( (z-a) l l s r 

n ( - 1)" Sri (aq)2 a (5.21)  

The index n has integral values from 0 to infinity. The summation over n of  the 

expression in equation (5.21)  matches the steady-state solution at time t=O. However it 

takes a large number of terms to reach convergence of the series when the time is small. 

A value of n of around 100 or more is needed, because the result is of order l/n only. 

Once the time increases the exponential term greatly reduces the size of each term and 

the convergence is quicker. In summing the terms the sine terms and the - 1°  simplify. 

Hence the full solution for the concentration at any given time is given by 
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C(z,t) = c. ( e -ii - e -'5) + • 2mtK3(z) sin ( nrtz) 
va I: 

a s t  
- 1 

e n 

1 - e D sn (aq)2 
. 

(5.22) 
This method produced the plot shown in figure 5.4. It shows the methane concentration 

as a function of depth at different times before steady-state has been reached. It also 

shows the result of a numerical method for solving exactly the same problem, and the 

two solutions match extremely well. The method used for the numerical model was a 

simplified version of that discussed in the next section of this report. 
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Figure 5. 4: Graph of concentration against depth for different times 

0.6 

The gradient of the concentration at any point can be found directly from (5.22) by 

differentiation. It is also possible to use the Laplace Transform method directly to obtain 

it, but there is no benefit from doing this. 

Numerical solution - taking account of a void 

In chapter 4 a simple numerical model was introduced to solve the radon concentration 

problem in the many conditions where it cannot be solved exactly. The same process can 
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be used in the case of landfill gas. As a first step the method has been applied to the 

arrangement of the soil cell discussed earlier. However the void at the bottom of the sand 

has been introduced as an extra feature of the model. 

An important feature of the soil cell is the considerable time it takes for the methane 

concentration to reach a significant level, or for the sand to become saturated. This 

reflects the fairly low rate of input needed to keep the pressures down and to avoid the 

risk of explosion ! This time scale has already been understood from the Laplace 

Transform solution given previously. 

It is also significant that the methane is supplied through a void space at the base of the 

sand. This region is initially full of air, and it takes some time to fill with methane. In 

addition it is possible for this void region to retain some air, which can diffuse down 

through the sand just as methane diffuses up. Hence the void is included as a part of the 

numerical model. It is one of the advantages of a numerical model that this sort of 

feature can be added quite easily to the model. It would be difficult to include this in an 

analytical model as it involves linking two differential equations through a solution at the 

boundary of the regions they describe. 

There are two main disadvantages compared to an analytical solution. One is that it takes 

longer to produce a new solution with a slightly changed parameter. The other is that 

there is some uncertainty about the accuracy of the solution because of the 

approximations involved in the method. However the fact that the numerical method is 

possible for most situations where an analytical solution cannot be found makes it very 

useful. 

It is possible to use a numerical method to calculate the pressure field caused by 

introducing gas into the bottom of the soil cell. However common sense, and 

approximate calculations indicate that the time taken for the pressure and velocity to 

stabilise is very small compared to the time it takes for the concentrations to change. 

Hence at present the model assumes that the pressure, and hence the velocity, can be 

assumed constant. Then the equation for the sand region is, from (5.2). 
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ac D a2c 
at E az2 

v ac 
E . az (5.23) 

The basis of the numerical model is that the equation can be expressed in terms of 

approximations to the differential terms. These approximations are based on the values 

of the concentration at points on a 'grid' of depth and time. As in chapter 4 the key 

approximations are 

ac c,+1 - c, 
= 

at dt 

where Cr+i ,Cr are the concentrations at time step r+ 1 and r respectively. 

(5.24) 

For the z differential there is a choice to be made between the three possible ways to 

discretise the equation, the choice depending on the direction of any flow in the system. 

In order they are known as upwind, downwind and central differences. 

ac 
az 

= 
c,, + 1 - c,, 

dz 
C,, - c11 - I cn + I  - c,, _ 1 or or �����-

dz 2.dz (5.25) 

Here Cn+i ,Cn, Cn.1 are the concentrations at grid positions n+ 1 ,  n and n- 1 respectively. 

The third form of (5.25) is appropriate for most cases, and was used here. A form which 

gives greater accuracy can be used for the end element, ie when n=O. It is 

ac0 
= 

-3C0 + 4C1 - C2 
az 2 . dz 

(5.26) 

This form gives a better result when the gradient at the boundary is needed. This does 

not have a particularly large effect in most cases, but helps to account for differences in 

flux rates at higher velocities. For the second differential the first two forms for ac1az 

are combined to give 

a2C C,,+1 + C,,_1 - 2C,, 
= 

az 2 (dz)2 
(5.27) 

These expressions are combined into equation (5.23) to give the solution for any point at 

time r+ I based on the values for the concentration at time r. A significant limitation of 

the method is that the time step used cannot be chosen freely. To prevent the solution 

diverging, the time step must be less than a value dependent on the spatial step length dz, 

defined by 
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dt � � dz 2  
n · 2 (5.28) 

This limits the speed of the run, because the time step is of order ten seconds to one 

minute, but with modem computers it is not a significant problem. 

The model for the concentration in the void is a simple mass balance one. It assumes that 

the mixing is good between the air and methane, so that a single zone can be used. The 

mass of methane in the void below the soil cell is then governed by 

ac ac d . A . - = Q,.n .C.n - VA.C + DA.-
at l az 

where 

d is the depth of the void region (m), 

(5. 29) 

A is the area of the sand, (rn2) and also of the void, so d.A is the void volume, 

C is the methane concentration in the void (% ), 

Qin is the volume flow rate into the void, controlled by the user (m3/s), 

Cin is the concentration of the gas flowing into the void, chosen by the user (% ),  

V is the velocity of the flow in the sand (mis), 

D is the diffusion coefficient of methane in the sand (rn2/s), 

ac1az is the concentration gradient at the bottom of the sand (%/rn). 

In the method the void concentration is recalculated each time step, with the last value of 

ac1az providing a link with the condition of the sand. The new value of c is taken as the 

lower boundary condition for the sand region, so that C is continuous across the join 

between the two regions. The concentration in the void is a function of time only, i.e. 

there is no spatial variation considered. This method is acceptable provided the changes 

are not too fast, but can lead to instabilities if the flow rate into the void is large 

compared to the volume of the void. 

A detail of the method concerns the velocity and the porosity e. The velocity of flow out 

of the soil cell, assuming no leakage, is given by V = Qin I A. However the velocity of 

flow in the sand must be greater than this because a proportion of the space is filled with 

sand particles. Hence the velocity of flow in the sand is V = Qin I (Ae). It is important to 

account for this when considering the time it takes for the methane to reach the top of 
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the soil cell. If there is no diffusion it must take a time equal to the depth of the sand 

divided by the velocity for any methane to arrive. This will be affected by the choice of 

which velocity to use. This time factor could give an alternative method to measure 

porosity. Although it is not likely to be more accurate than the conventional methods it 

does allow for the measurement to be taken without disturbing the sand in the soil cell. 

The final part of the theory of the model is the flux equation. The key parameter of 

concern is the amount of methane which leaves the surface of the ground, since this is 

what can be measured and is needed for risk assessment. This is given by the flux rate, J, 

defined as 

ac l = - D . - + v . C az (5.30) 

This can be found at any point, since it should be the same in steady-state for all values 

of z. It is generally easiest to evaluate at the top surface where C is zero, and so only the 

gradient term matters. 

It is because both the flux and the void equation use the concentration gradient of the 

sand at the end of the box that the more advanced form given in (5.26) had to be used. It 

was not used for the radon case, but might have helped with the radon flux predictions. 

Details of the programme are not given here. However it was programmed in Microsoft 

Quickbasic, and runs easily on a 486 IBM compatible computer. The run time depends 

on the grid sizing and time duration required, so varied from a few seconds to 20 

minutes. 

Application of the model 

Figures 5.5 to 5.8 show typical outputs from the model. The values chosen for the key 

parameters were permeability, k = l e- 10 m2, and diffusion coefficient D = 6.3e-7 m2/s. 

The permeability was that found earlier for the sand in unpublished work by Richard 

Hartless. The diffusion coefficient needs more work on it, and so this value may not be 

appropriate. Figure 5.5 shows the development of concentration with time for a very 
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small flow rat.e into the void region, 0.01 litres/min. The concentration takes around 200 

hours to approach steady-state, as is shown by figure 5.6, giving the surface flux rate 

changing with time. Because there is very little pressure-driven flow in figure 5.5 the 

result is nearly a straight line, which would be the result for diffusion only. Notice also 

that the concentration at depth zero, the bottom of the sand, is predicted to reach only 

about 0. 13 ,  because of air diffusing down through the sand to the void region. 

In figure 5.7 the concentrations for a higher input flow rat.e, 0.5 litres/min are given. 

Here the curve is strongly affected by the pressure-driven flow, with concentrations close 

to 100% occurring for most of the sand depth. In addition the system reaches 

equilibrium more quickly, as the flow carries methane across the sand more quickly than 

diffusion alone can. Tiris is seen in figure 5.8, where the flux rate at the surface reaches 

the steady-state result by 40 hours. Nevertheless this process is still quit.e slow to reach 

equilibrium, given that at this flow velocity the methane might be expected to take 

around 17 hours to travel the 0.5 metres up the soil cell. 
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Figure 5.5: Graph of normalised concentration against time, flow = 0.01 litres/min 
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The model can also be used to look at how the flux and concentration respond to 

changes in applied flow rates. This proved too time consuming with the Laplace 

Transform method. Two typical results are given as figures 5.9 and 5. 10. In figure 5.9 

the input flux was halved after 60 hours, and the flux out of the soil then falls off quite 

rapidly, but still take many hours to approach the new steady-state value. In figure 5. 10 

the input flux is increased after 30 hours, before the first steady-state level has been 

reached. It then takes another 20 hours to approach the new steady-state value. The way 

in which these results compare with experiments is discussed in the next chapter. 
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Chapter 6: Comparison of results with experimental data 

There are three sources of data from BRE experiments which can be used to make 

comparison with the results from the modelling studies given in chapters 3, 4 and 5.  The 

most direct comparison comes with the methane work from chapter 5 and soil cell tests 

in the laboratory. This is the first area discussed in this chapter and was carried out by 

the author and a student working under direct supervision. In addition BRE have two 

full-scale tests going on, one in a house affected by radon, and another in a test structure 

built on a landfill site. In both of these cases data for gas levels in the structures, and 

atmospheric pressure and other weather data are being measured continuously over 

extended periods of time. This allows the detailed examination of changes over time, and 

also a statistical based approach to longer term trends and averages. This chapter looks 

more over the shorter term. These two experiments are being carried out by colleagues 

at BRE, and the author has no direct involvement in them. 

Laboratory tests 

The soil cell was discussed in chapter 5, so the description will not be reproduced here. 

One of the main observations from the soil cell tests described earlier is the very large 

time that it takes for the soil cell to respond to changes in the input flux rates. This 

reflects the significant part that diffusion has to play in the movement of gas for the flow 

rates being applied. In one particular test of interest the input flow rate was reduced from 

370 to 72 ml/min, having been held at the higher value for a considerable time. The 

outgoing flux was then measured at subsequent times as indicated by the discrete points 

on figure 6. 1 .  This flux was found by measuring the build up of gas in a flux box on top 

of the sand. 
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Figure 6.1 :  Graph of flux rate against time, comparing model to experiment 

In the flux box measuring technique used here, gas reaching one quarter of the top of the 

sand surf ace is collected in the flux box. Hence the total flow will be close to four times 

that given here, assuming that each quarter of the box behaves in the same way. This is a 

reasonable assumption, although the presence of the flux box must have some impact. 

Multiplying the flow results by 4 implies that more methane leaves the soil cell than is 

supplied to it. This means there must be some problems remaining with the experiment, 

some of which are addressed below. 

The main problems with the experiment are: 

a) Input flow rates are difficult to measure because they are small, and they fluctuate. 

This fluctuation is due to the difficulty in maintaining a steady flow rate from a gas 

bottle which gradually discharges the gas in it. 

b) The gas detector used (Flame Ionization Detector) is very sensitive and has a 

limited range: 0-1 % by volume. Hence the input flow rates had to be small to 
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ensure the concentrations in the flux box were not off scale. It is possible to use an 

fufra Red detector with the flux box, and this has a wider range, so this might be 

used in future work. 

c) There remains an uncertain amount of leakage through the walls of the soil cell. In 

spite of considerable efforts to seal the sides of the box there is still a percentage of 

the flow which escapes through the wooden sides of the box. It is hard to estimate 

the scale or effect of this, but it is probably around 10% of the total flow, meaning 

that a 10% error can be anticipated in many results. 

fu figure 6. 1 the experimental result is compared to that produced by the computer 

model, although the considerable uncertainty of the experimental data makes a 

quantitative comparison difficult. fu order to carry out the calculation the diffusion 

coefficient for the sand had to be estimated. The value of the diffusion coefficient of 

methane in air is l .5e-5 m2/s [Hooker 93] , and an estimate of the value in a porous 

material can be made as [Penman 40] 

D = 0.66 . E . Dair (6. 1) 

fu this case the value was estimated as 4e-6 m2, and the correlation is fairly close. 

Methane test site 

At the gassing landfill site the levels of methane and carbon monoxide are being 

monitored every two hours underneath the cap of the landfill site. Because little is known 

about the horizontal variations this gives a condition which is close to one-dimensional. 

A typical result is shown as figure 6.2, which comes from the work by my colleagues 

Richard Hartless and Louise Collins. Their work will be published elsewhere in the 

future, so this study has not taken the analysis of their data very far. 
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Figure 6.2: Graph of landfill gas concentrations and atmospheric pressure against time 

It is clear from this plot that, in qualitative terms, when the atmospheric pressure falls the 

methane and carbon dioxide levels at the surface rise, and vice versa. Although the 

analysis is slightly different for landfill gas and radon, this result strongly supports the 

results of the modelling work in chapters 3 and 4. 

However there is not a direct correspondence with the modelling results from earlier, as 

the physical arrangements are different. At the landfill gas test site the data are collected 

for the concentration just below a solid floor slab, but this is not the situation modelled, 

and adds complications. This is because the flow path from a point below the floor slab is 

complicated to calculate, and will not be a one-dimensional problem. Hence no further 

analysis has been made to try to find a quantitative fit to the experimental data. 

Further BRE work by Richard Hartless and Louise Collins is expected to address the 

correlations between weather variables and landfill gas levels. 
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The radon house 

The BRE test house is at Okehampton in Devon, within a "radon affected area" , and is 

being used to test out remedial measures. It is set up to monitor radon concentrations 

above and below the ground floor, and all of the relevant weather and internal 

conditions. The radon test house is discussed more fully in the paper by Welsh [Welsh 

95] , who is responsible for running this experiment and provided the data for the graph 

shown below. 

The radon test results do not agree as well with such a simple model as those from the 

gassing landfill site. For the radon case the radon is measured in a void below the floor of 

the house. This void is linked to the ground across a soil surface, but also to outside air 

through ventilation openings, and to the house through holes and cracks in the floor. 

Hence it is affected by other factors, of which wind speed seems to be the most 

important. Figure 6.3 shows a comparison between radon level, atmospheric pressure 

and wind speed for different times. Note that the wind is quoted in (mm/s) so the values 

are of a similar order of magnitude to the radon concentration values. The wind seems to 

have a direct effect on radon levels, probably because higher wind speeds lead to greater 

depressurization of the house, causing more radon to be sucked up from the soil. This 

effect appears to be large enough to cover any atmospheric pressure effect. This is 

complicated by the existence of a relationship between pressure changes and wind 

speeds. 
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Figure 6.3: Radon concentration, wind speed and atrrwspheric pressure against time 

The monitoring work continues at both sites, so that more data will be available in the 

future. For the radon case it will be vital to model the more complicated interactions of 

the house, subfloor void and soil with the changing weather conditions, in order to 

understand fully the processes taking place. 

It would in principle be possible to extend the existing one-dimensional model of radon 

concentration to account for the way in which the house interacts with the weather. The 

basis of models to consider the ventilation aspects are well known [Cripps 92] and 

progress in this area is being made by other workers, including Lynn Hubbard in 

Sweden. This work will help the use of shorter term measurements in detecting high 

radon houses. However within the time scale of this work it has not been possible to 

address this next step. 
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Chapter 7: Conclusion to time dependent flow part 

In this part the way in which soil gas levels change over time has been investigated, using 

a mixture of analytical and computational techniques. These models have been compared 

with some experimental results, which indicate that the general results are correct, but 

that in several cases there is much more to be included in a complete model. 

Pressure problems 

In chapter 3 the solutions to the pressure equation were considered. The particular cases 

considered were a steady increase in surface pressure, a suddenly applied pressure 

change and a sinusoidal variation in pressure. These allow us to understand the way in 

which bulk flows of gas respond to external pressure changes, caused by the weather or 

mechanical systems. Since these can have a significant effect, taking account of the time 

was seen to be important under some conditions. 

Radon problems 

In chapter 4 several different problems of the time varying radon equation were tackled, 

again using a mixture of different methods. 

An analytical method gave a solution for small time to the problem of a linear increase in 

surface pressure, and an instantly applied velocity. The same problems were tried with 

the Laplace Transform method, which gives an exact definition of the result, but because 

this involves an integral which cannot be evaluated exactly it is not easy to use. Then all 

the solutions were compared with that from a simple one-dimensional numerical model, 

which produced results very close to the analytical methods. 

These results show that there is a considerable time between a change to the velocity of 

flow of soil gas and a significant change in the radon concentration. This means that care 

must be taken when collecting data on concentrations as to what the flow conditions are 

at the time of any measurement. 
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Landfill gas problems 

In chapter 5 several different problems relating to landfill gas were tackled, using a 

mixture of different methods. They concentrated on problems related to the BRE 

laboratory soil cell. In this a flow of pure methane is introduced into the base of column 

of sand, and the flux of methane emerging from the top of the sand is measured. 

The problem has been tried with the Laplace Transform method, which gives an exact 

definition of the result for a simplified geometry. In order to model the effect of a void 

region below the sand a simple one-dimensional numerical model was used. This 

produced results which match the simplified analytical solution very closely. 

These results show that there is a considerable time between a change to the velocity of 

flow of soil gas and the resulting change in the gas concentration. This means that care 

must be taken when collecting data on concentrations as to what the flow conditions are 

at the time of any measurement, and what they have been in the past. As well as 

predicting the result following the imposition of a flow of gas onto the sand, the model 

can predict the effect of a change in the input flow rate on concentrations and the 

outgoing flux. 

Comparison with experiments 

In chapter 6 the results from three different BRE experiments were compared with the 

modelling results given earlier. 

The laboratory results give good qualitative support to the landfill modelling work, but 

there remain problems with the accuracy of the measurements. It is interesting that the 

tests which were supposed to test out the performance of the computer model against a 

known data set ended up showing the problems with the experiment. These are still 

under examination and have still to be resolved. 

The landfill gas test site gives very good qualitative support for the modelling results, as 
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the concentrations of gas below the floor of the structure respond as expected to changes 

in atmospheric pressure. 

However at the radon house the situation is more complex, and the effect of the wind on 

the radon level in the void below the floor means that a simple model based on 

atmospheric pressure is not enough, and a more complete model to include the 

ventilation of the house is needed. 

Overall it is clear that there are significant time-dependent effects occurring which affect 

the rates of gas entry into homes. Modelling these allows us to understand the processes 

going on, and therefore have guidance on how to prevent problems occurring. There are 

also applications in making more use of short-term measurements of radon levels in 

houses, by using other data about the house and weather conditions to interpret a smaller 

amount of time-varying data. 
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Appendix C: The Laplace Transform method for solving a time dependent differential 
equation 25 1 

Appendix A:  Solution to radon equation with rising surface pressure 

This appendix gives the detail of the solution method for the radon concentration in soil 

when the surface pressure is changing linearly. The method used is that of matched 

asymptotic expansions. Because of the nature of the solution method, the solution 

produced is limited in its range of application to small time and small depth of soil. 

The principle of the method is that for most problems there are two distinct regions 

where different approximations can be made. For both of these regions a solution can be 

found, subject to the validity of the approximations being made. Then a good 

approximation to the complete solution can be found by matching the two solutions 

across the region which separates them. 

At large depth, where the effect of the surface pressure changing has not yet reached, the 

result for the concentration is that given by (4. 1 )  for zero velocity. Along the z=O 

boundary the concentration will still be zero. It is not a condition that is used, but at 

large time the velocity will be very large, and the concentration will be the same for all 

depths, either C=O for flow into the soil, or C=<P/').. if the flow is upwards, as in (4.4) and 

(4.5). 

Because, from (3. 15), the velocity is proportional to tv2 it is reasonable to assume that the 

concentration will be a function expanded in powers of (• also. Also the form of the 

velocity equation (3. 1 5) suggests that the new variable ( = z I t'h will be useful. Note 

that because the flow is below ground level, z and hence ( are both negative. Using this 

the velocity can be written as 
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v = yt".g<O where g(() = ( � a(y'it erfc ( -�() + exp ( - a:(') )  (Al) 

and 

y = 2ao:k/(µ7tl4) 

Using the new variable, together with T for t means that the equation for concentration 

also has to be changed. Using the chain rule the transformation gives 

a 1 a az r·1• · a( and a a ( a - = - - ¥2- . -at ar r a( 
Using these in the concentration equation gives 

ac _ Yi(  ac = .!!.._ a2c _ _ 1_. acvc) _ t..c + cl> 
aT T 

. a( Te . a(2 T112e a( 
Near the surface where C=O, the solution is assumed to be of the form 

1 3 
- -

C = C0((). T 2  + C1((). T + Cz(() . T 2  + O(T2) 

(A2) 

(A3) 

(A4) 

Substituting this into equation (A3) gives an expansion of the terms of the equation in 

powers of T, namely 

1 1 1 1 
1 -- 3 - r a -- -

-C T 2 + C + -C T 2 - �.- (C T 2 + C + C T 2) = 
2 o 1 

2 2 2 ac o 1 2 

1 1 1 1 
D

.L (C T-2 + c + c r2) - 1-.j_ (gC r2) - /..(C r2) + cl> 
e ac2 o 1 2 e ac o o 

(A5) 

where terms up to and including those of order T'h have been displayed. In order to 

proceed with it T must be assumed to be small, so that the different powers of T can be 

taken separately. Doing this gives equations for each of C0, C1 and C2. Consider first the 

three terms in T'h. 
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First tenn of the inner solution 
From (A5) it follows that the equation for C0 is 

1 ( ac0 D a2C0 
-C - - - = - -

2 O 2 . a( E • a(2 

One way to tackle this equation is to differentiate again with respect to (, giving 

( azco D a3Co - -- + - -- = 0 
2 . 

ac2 e
. ac3 

This gives the second derivative of C0 as 

azc (-8{2) _
o
� = A . e  

ac2 
E where B = 

4D 

(A6) 

(A7) 

(A8) 

and A is a constant to be found. It is easily given by considering (A6) when ( = 0. Since 

the boundary condition at the surface implies that C0(0) = 0, it follows from (A6) that 

C0 ' ' (0) = 0 also. Hence A = 0, and a double integration of (A8) leads to 

C0 = C 1( + D 1 (A9) 

where D '  = 0 and C'  is a constant to be determined by matching with the outer solution, 

where ( = 0(1) .  

The outer solution is dominated by the condition at t=O. This is given by a function f(z) 

which in most cases will determined by equation (4.2), the steady-state solution for no 

applied velocity. Since g(() is exponentially small as t tends to 0 when (-() is 0(1) it 
follows that, in the outer region, C is unaffected by the term in v in (A3). Thus C may be 

written as 

C = f(z) + t . F1(z) + O(t2) (AlO) 

where 

D F1(z) = -f11(z) - f(z) + <f> 
E (Al l )  

and is zero if f(z) happens to be the steady-state solution. It follows from (Al O) that at 

the inner edge of the outer region 
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2 3 C "' /(0) + z/1(0) + !:._! 11(0) + !:._f 111(0) + 
2 6 

t [ � (/11(0) + efw(O) + . . .  ) - A(/\0) + ef1(0) + �!11(0)] + <t>] 
Now in our case f(O) = 0, and then substituting for C in place of z gives 

3 r2 r3 2 
c "" C{tf'(O) + .!:!..!..111(0) + _1, t-!111(0) + 

2 6 

t [ � (/11(0) + Cftf'"(O) + . . . ) - A [(ftf'(O) + c;1f"(O)] + <t>] 

(A12) 

(A13) 

Note that the second lirie is absent if f(z) is the steady-state solution (4.2). For simplicity 

henceforth we shall assume this is so and hence for small z 

<I> 2 2  3 3  
f(z) "' - ( -zp - !:...l!_ - !:....L) 

A. 2 6 (Al4) 

where the constant p is (eA/D)112. Matching the leading tenn of (Al2) detennines the 

constant C '  in (A9) as -(f)/A. so that C0 is given by 

co "" - <f>(p A. 
. (Al5) 

Here we recall that z, and hence C, is negative so that the match is effected as z tends to 

0 from below and as C tends to minus infinity. Hence to this approximation the first term 

in the expansion for the concentration C is just an approximation to the steady state 

solution, -<f>zp/A., as it must be. The 1 I ty, contained in the C tenn of (A15) cancels with 

the ty, in equation (A4), so there is no time dependence in this tenn. 

Second term of the inner solution 

The tenns in T° from equation (AS) give an equation in C1 similar to that in C0 , but 

differing by the constant multiplying the first order tenn in C. It is 

D a2C1 ( ac 
-;· ac2 + 2· a/ - cl = - <I> . (A16) 
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To make the notation easier, let D I E be A. Then a complementary function comes from 

trying C1 = (2 + b, which gives b = 2A. Progress can then be made by trying a solution 

of the form y(() . ((2 + 2A) in (A16) with the right-hand side set equal to zero. This 

gives an equation for the new function y which can be simplified to 

a2y ay ( ' + 4( ) - 0 
ac2 

+ ac 2A c2 + 2A 
- . 

lne integral of this is given by 
_,2 

ay e 4A - = B . --
a( cc2+2A)2 

(Al7) 

(Al8) 

The integral is not obvious, but can be checked by differentiation. This enables a part of 

the solution to be evaluated, as the integral of (A18), but the exponential term can be put 

into a simpler form. If we satisfy the boundary condition that C1(0) = 0 and take the 

solution ( ) ' _,, 2 -1;2 
1 2 - 1 -C = A - +l._ . Je 4A d(' + - A (e 4A -

�(2 1 2 4A 2 1 2A 
0 

(Al9) 

then differentiation and substitution in equation (Al6) shows that this satisfies the 

equation correctly, including the right-hand side. Now for large negative values of ( this 

must match with the second term of the expansion of the boundary condition at time t = 

0, equation (Al 4 ), and this allows the determination of the arbitrary constant A1. Hence 

C1 = f' ' (0) . (2 which for the case defined here gives simply -<f>/A.(2• This means that 

A1 must be zero for this initial distribution. This simplifies the result significantly, so that 

-"' -"' z 2 c = _'+' . ,2 = _'+' __ _ 

1 2A 2D/E T (A20) 

Putting this into equation (A4) for C shows that the T term cancels, and we are left with 

the second term in the expansion of the function f(z). Whilst this result is to be expected 

in retrospect, the solution (A19) would apply to other forms of the function f, and leads 

to equation (A23) below. This would allow the calculation of the development in C from 

some initial condition with or without an imposed velocity. 
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Third Term of the inner solution 

The term of (A5) in T'h is more important, because it brings in the velocity term for the 

first time. The terms are 

D a2c2 C ac2 - le = + 1..j_ (gCo) + A.co -;· 2(2 
+ 2· a( 2 2 E a( (A21) 

It is significant that the last two terms contain C0 as a forcing term. The terms in C2 are 
similar to those which have occurred before for C0 and C1 the complementary problem is 

given by 

a1c2 ' ac2 3 A.-- + -.- - -C = 0 
ac2 2 ac 2 2 (A22) 

This can be solved by differentiating (A22), and then observing that the equation in 

aci1ac is the same as that for the complementary function for C1 earlier. This means that 

the solution to (A22) is 

ac ( J ' _,,2 -e 
_2 = B ..!.. + (2 . fe 4A d(' + _! B (e 4A - B �((2+2A) ' 
ac 1 2 4A 2 1 2 2A 

0 

(A23) 

where B1 and B2 are arbitrary constants. This can be integrated by parts to give the 

complementary function for C2 as ( l , _,12 -e 
c = B i+-.L . Je 4A d(1 + !.2..(2(2 + 8A)e « - B <f>(_r_ + O 2 1 2 12A 12 2 6A 

0 

(A24) 

There could have been an additional constant in this expression, but it turns out to be 

zero for (A22) to be satisfied. 

Moving on to the particular integral, using equation (A15) for C0 as f ' (0).( and 

expanding the right hand side of (A21 )  gives 
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D a1c2 ' ac2 - le = + yf i (O) (g + (g i) + Af i <OK - -- + - .- 2 e · a(2 2 a( 2 e 
Then using equation (3. 15) for the velocity term g gives, 

g = - ( a(; erfc ( -;() + exp ( -":'') )  
so that, writing erfc as 1 - erf, we obtain 

g+(g 1 = ( - exp ( -":'') ) - a(fn( 1 - ert ( -;' ) )  
Substituting this into equation (A25) gives the right-hand side as 

RHS = + yf�O) [-e<p ( <�) + a({ii erf ( -�() l + lf1(+, - Y"f l 

(A25) 

(A26) 

(A27) 

(A28) 

There are then three parts which need to be tackled separately. Starting with the linear 
terms in (, trying C2 = (3 in the LHS (left-hand side of (A25)) produces a linear term, 

LHS((3) = 6(D/e . (A29) 

The exponential term also satisfies the equation itself, provided that the value of a is 
limited, as the following shows. Trying C2 = exp (-cx2(2/4) in the LHS of (A25) gives: 

Let e '  = exp[ - a:(' J then 

LHS(e *) = r-D
. a2( 1 - cx2(2 l + -cx2(2 - 1_1 * 

e 2  2 4 2
e . 

This rearranges to give the condition as 

LHS(e *) = [ -(2a2( cx2. D - 1) - a.2.!2 - l] e • 

4 E 2E 2 

(A30) 

(A3 1) 

Hence we are able to continue only if a2.D/e = 1 .  This restriction is rather significant 

and limits the range of application of the results produced by this method. There is a 

more general solution without this extra condition, but it significantly complicates the 

method. It is given at the end of this appendix, but here we proceed with the simpler 

solution. Since at this stage the purpose of this solution is to verify a numerical method 
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under restricted conditions, and at small time, then the restriction is not so important. If 
the condition is met then the left hand side simplifies to 

UIS(e ') = [ - � - � l e '  = -2e ' . (A32) 

Moving on to the erf term, trying it multiplied by ( in the left hand side gives 

LHS((erf) = - . + + - . erf - -- - -(erf (A33) 
D ( -2ae * a3 (2 e * l ( ( a( e • i 3 
e rn 2rn 2 rn 2 

Where e* is the same exponential term appearing in equation (A30) and erf is the term 

erf(-(a/2) term being considered. Again this simplifies if a2.D/e = 1 ,  as the terms in (2 

will then cancel out leaving only the erf terms, which combine, and one exponential term. 

-2e * LHS((erf) = -- - (erf 
a{n (A34) 

From the three equations, (A29), (A32) and (A34) the complete Particular Integral can 

be built up, combining terms from the e* and erf parts to cancel each other out and to 

match the right hand side as given in equation (A25). This gives the particular integral as 

Pl = + Yf:(O) [•;exp ( _ a:(') - a(fii erf ( -;() ] + � df'<+ - ya:] . 
(A35) 

Full solution 

Combining this with the solution to the complementary equation, (A24), gives the full 

solution. This contains two constants to be established from the boundary conditions. 

Thus altogether 

C2 = -B1 (l+...f...) . {'itAej _..:i_) + B1 (2(2 + 8A)e -s - B2<f>(_f_ + () 2 12A 'J l 2/A 12 6A 

+ Yf:(O) [+;exp ( - a:(') - a(fii erf ( -;() ] + � �/1(0+ - yafi'] 
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• •:''" 

Now on ( = 0, C2 = 0, and using this in (A36) gives B 1  as 

B = .:i. Yf1(0) = 9y<I> -� e . 1 4A E 4D DA 
(A37) 

The terms in (3 must match those in the solution for small z, ie the initial condition f(z) 

as in (A14). Hence 

- <I> .P 3  = _!!J_ . 

J
oo e ��2d(1 - B2<I> + _!_�f1(0) [A - ya{IT.] . 

A 6 12A 6A 6 D E 
0 

(A38) 

Note that the sign of the B1 term has changed because the integral is now to infinity, 

which is positive, rather than ( which is negative and was present in (A24). Substituting 

for the form of f ' (0) means the left-hand side cancels with the term in A on the right. 

The integral multiplying B 1  is equal to (nA)''\ so that the constant B2 can be evaluated as 

B = -B fitA + ( EA ) 'h( ya{IT.J 2 1 2<1> D AE 

Inserting the expression for B 1  brings (A39) to 

B = _2_.1_ r-; + ( EA ) 'h( Y a{IT.J 2 8 D� I D AE 

which simplifies to give 

B2 " 
+y ff ( - 8� + � D�J 

(A39) 

(A40) 

(A41) 

These can then be combined to give the complete solution. As a check it is worth noting 

that at large enough negative ( the terms in ( all cancel out so that only the term in (3 

remains, and this is required to match the solution in the outer region. 

In fact this matching defines the range in the z direction for which the method is valid. 

We have matched the solution to the solution in the absence of velocity expanded in 

powers of z. This is only valid for values of I zp I very much less than 1 .  This can be seen 

from the graphs discussed in the main part of the report, which show the solution to be 
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converging to the dominant term of the approximation, rather than to the steady state 

solution. 

Solution without the condition on a 

If a is allowed any value then a particular integral to equation (A25) can be found using 

the method of variation of parameters. With D/e = A set equal to 1 it is found to be 

fii. elf(�) . (a'('( a' _ 2) - 6a() PI = 
2 1 )2 6(0: -

-a.2{2 
4 

+ 
e . {2o:2(2(a2 - 2) - 4(o:2 + 1 )) . 

6(a2 - 1 )2 

(A42) 

This solution can be checked by differentiating it twice, and inserting the results into 

(A25) with A = 1 .  In addition it would need to be scaled to account for A taking values 

other than 1 .  However the special case was sufficient to check on the numerical results. 
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Appendix B: Concentration equation with instantaneously applied velocity 

If the velocity V 0 is switched on at time t=O then the solution method is made easier 

because the velocity has no ( dependence. Making the same change of variables to ( and 

T, and the same assumed expansion in powers of T\4 as before equation (AS) of 

Appendix A becomes 

1 1 1 1 
le r -2 + c + le r 2 - l._i_ (C r -2 + c + c r 2) = 

2 0 1 2 2 2 ac 0 1 2 

2 _ l 1 v 1 D.J_ (C0 T 2 + C1 + C2 T2) - �.j_ (C0 + C1 T2 + C2T) (B l) E ac2 E ac 
1 3 

- -- A( Co T 2 + cl T + c2 T 2) + cl> . 

Then equating terms in each power of T gives equations in C0, C1 and C2 as before. In 

fact the equation involving C0 alone, in powers of T� is exactly the same as in the earlier 

case, equation (A6). Hence the result for C0 is the same as that given in equation (AlS), 

c "" 
- cf>(p o A . 

The terms in T0 (i.e. no T dependence) are 

D. azc1 + l. ac1 - C = - Vocf>P - cf> E ac2 2 ac 1 EA 

(B2) 

(B3) 

This is very similar to (A16), but with an extra constant term on the right hand side. In 

Appendix A the full solution for equation (A16) was found as (A19), from which ( 1 r2 ) ( -(' 2 1 -(2 ,i.. ( V ) C = A -+-" . Je 4A d(1 + - A (e 4A - -"' (2 1 + � 1 2 4A 2 1 2A EA 
0 

(B4) 

since C(O) = 0. If, again, the initial condition is taken to be the steady-state solution (4.2) 

in the absence of V 0 , then the large negative ( behaviour of (B4) must be -(2cf>/2A 

as for C1 in (A20). This determines the constant A1 as 

A == 1 
2V0cf>p A../EDn 
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The first two terms are 

1 
C = C0(,). T 2 + C1(0. T (B6) 

and were plotted earlier as figure 4.6. The last two terms of (B4) are time independent, 

but the first two terms illustrate the early time dependence. Further terms are required to 
improve the approximation for larger times and depths, but it is unlikely to offer any 

additional advantage to the numerical solutions of the full equation. 
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Appendix C: The Laplace Transform method for solving a time dependent 

differential equation 

The problem is to calculate the resulting development in the concentration, due to a 

constant velocity V0 imposed at time t=O. The equation under consideration is again the 

radon concentration equation (4 . 1) , namely 

D a1c 

E az2 
I a(vC) 

_ J..C + cl> 
�- az 

ac 
at (Cl) 

Taking a Laplace Transform of this, with respect to time and with parameter s, gives 

D a1c 

E az2 
V0 ac _ (J.. + s)C = - <I> - F(O) 
E az S (C2) 

where F(O) is the solution to the radon concentration before the velocity V 0 is 'switched 

on'. Trying ea:z as the complementary function implies that a is given by 

Vo a = +- ± 
2D 

( v.2 

4�' + �(A + s)] (C3) 

Since in these problems z is always taken to be negative then the negative sign leads to 

divergence as z tends to minus infinity, so that only the positive sign can apply. The 

particular integral to (C2) depends on the form of F(O) assumed. In the simplest case it is 

zero, and then a particular integral is 

C = � 
s(J.. + s) 

(C4) 

The solution to the transformed concentration is found by combining the two parts of the 

solution, and using the fact that C and its transform are both 0 at z=O, to give 

C = 
cl> (1 - e az) 

s(A. + s) 

where z is always negative and a positive as defined above. 
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In the more realistic case F(O) will be given by the solution for the steady state conditions 

as found earlier, eq (4.2). Then the equation becomes 

D a2c vo ac - 4> 4>( ( �A.l l -.- - --- - (A. + s)C = -- - - 1 - exp z -
E az 2 E az s ). D (C6) 

The complementary function is the same as before. The first two parts of the right hand
side are matched by <I> I .As leaving just the last term with the exponential. Trying a 

multiple of the exponential as the particular integral satisfies the equation when it is 

multiplied by a term which simplifies to 

c = B ' ex� z�) where B t _ _ <f>( l l ). V0./). I De + s 

Hence combining this with the complementary function gives 

C = E exp(az) + � _ 
4>( exp(z./el. I D) l 'As ).. Vo./'A I De + s 

(C7) 

(C8) 

where a is given by (C3) with the positive sign. Because C=O on z=O, the transform is 

also zero for z=O, giving us the constant E, so that the transformed concentration is 

- <I>[ ( -V0J).. I De ] 1 ( exp(z./e!. I D
} l l C = - exp( az) . + - - . ).. s (V0./!. I DE + s) s V0./'A I DE + s (C9) 

Writing J for V0.(MDe)v. and grouping the terms on the right brings this to a form which 

is essentially very close to that for the simpler case, i.e. 

c = 4> [exp(az) . ( -J ) + ( J + �l - exp(zJe).. I D))l l ). s U + � s U + � (ClO) 

The problem now is how to transform these back to give the required solution C. For 

both the simpler solution with F(O) = 0, and the more realistic form given as (ClO), the 

chief problem is the inverse transform of the term exp( az) because it involves the 

exponential of a root of s within the term a. 

252 



The inverse Laplace Transform integral is defined as 

y 1" jco 1 -C = -. f C(s,z) e st ds 
2m Y - jco 

(C 1 1) 

The y is chosen so that all of the "singularities" of the integrand are to its left. To find an 
integral of this form usually involves finding the sum of the residues, using the Cauchy 
Integral Theorem, eg [Boas 83), p590, and integrating around a path which takes 
account of any branch point. 

The Residue Theorem states that the integral around a closed loop is [Carslaw 59] 

C = 2rti I: residues within curve , (C 12) 

provided that the only singularities of the function within the region C are poles. 

Initial condition no radon 

Now we can use (Cl 1) in our cases, first for the simpler case where the radon 
concentration is initially z.ero. The solution will be the sum of the residues coming from 
the terms from (C5) above, multiplied by the est term. These must be found at the two 
poles, s = 0, and s = -A.. Using [Boas 83] p 598, the residue is given by 

R (z0) = f(z0) . (s-z0) • 

Here the function is given by (C5), expanded as 

C = 
<f> 

( 
(zVo) 

( 
s(A. + s) 

1 - e w . exp z 

This then gives the residue at s = 0 as 
v: 
2 l l _O_ + E 

4D
2 

D 
(A. + s) 

R(O) = <f> [1 - exp z(�+ 
A. 2D 

�+EA) ] 
4D2 D 

while for s = -A. it is 

R(-).) = _ <f> [1 - exp z(�+ IY1] ] e -J...i 
A. 2D � 41)2  
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This simplifies further, to 

R ( -A) = -� [I - ex� ';o) ] e -� (Cl7) 

Hence in the simpler case with F(O) = 0 we can find the sum of the residues, and hence 
the result for the closed curve. However in both cases there is also a branch point to take 
account of, which makes the solution more difficult. 

Because of the form of a in the expression for the inverse of C there is a point, p, 
where (s+p) changes sign. Because the root of this term is taken there is a branch 
point at s = -p and account must be taken of this in the integration. The problem can 
be avoided by integrating along the path shown in figure Cl, where the branch line is 
avoided in the integration, which follows the path abcdefga. 

c 

f 

y 
� I -

0 

b 

a 

g 

Figure Cl: Argand diagram with cut line 

x 

The part of the integration path needed is from g to b, and is referred to as I. The 
integrals from b to c and f to g will go to zero as the points are taken towards 
infinity. The integral round the circle d to e goes to zero as the radius tends to zero. 
This leaves the remaining parts from c to d and e to f along with the residual within 
the closed curve. Hence I is defined by 

254 



-p 
I + f Ce s1ds + f Ce s1ds = 2ni I: res . 

-p 
(C l 8) 

The process of tackling the integral is almost identical for both forms of the inverse of C, 

as defined by (C5) and (C lO).  This is because they both contain the same term ex. Here 

we will continue with the simpler form, but it is no different to use the other form. The 

terms not including ex are not included, as they cannot contribute to this integral. The full 

expression (C5) can be made shorter using temporary groups of parameters 

C =  

VoZ ( ) y, 
- "'e 2D z(�r . yo2 + A. + s e K2(z).(p ... s)"' 
---'-'t'--e D 4D€ = K1 (z) . 
s(A. + s) s(}. + s) 

VoZ 
where K1 (z) = -<Pe 2D , 

( l v. Kz(z) == z � and 

v 2 
- 0 � p - -- + 11. .  4De 

(C l9) 

The expression for the case where F(O) is not 0 is of exactly the same form, but the 

constant terms change. The important point is the argument of the exponential of (p+sy-''. 

Just above the negative x axis of the argand diagram, figure C 1, we define it as +n 

while just below it is -1t. Then when the square root is taken the two points come out 

with opposite sign, because eirrr2 and e·irrl2 give i and -i respectively. If we insert the 

expression from (C19) into (Cl &) and use the square root results we have 

-p 
I + f K1(z) e 

i�(z). lp+s ll'i 
e stds + J Kl (z) s(A. + s) -p 

This simplifies further to 

I + K1(z) J 2; sin (K,(z). lp+s i05 } e" d.! 

e -iK2(z). Ip +s l "'  

s(A. + s) 
e stds = 

= 2ni � res . 

2rti I: res . (C20) 

(C2 1) 

Substituting s for -u makes the result look better formulated, dividing through by 2i, and 
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removing the modulus signs as they are no longer needed, and inserting the results for 

the residues 

I 
21ti 

_ _ K1(z) .. sin (Kz(z) . (u-p)05) e -ut du 
- C - -1t-J u(A - u) p 

+ 

<f> [I _ exp z( Vo + Vo2 + €A] ]  - <f> e ->..t [i _ exp( zVo] ]  ;\ 2D 4D 2 D ;\ D 

(C22) 

This fully defines the result for the concentration C. Unfortunately although the integral 

is well defined, it cannot be integrated exactly. It could be found numerically but this is 

not particularly useful. 

Flux 

However more progress is possible on the flux, which comes from the gradient of the 

concentration. The total flux at any point is a combination of diffusion and pressure 

driven flow. This can be written as 

ac Flux J = -D . - + v . C . az (C23) 

However we are most concerned with the flux at the surface, which is simpler because 

we generally define the surface concentration as 0, so only the diffusive flux is needed. 

The z differentials of the two residual terms give 

a <f> [( Vo Vo2 EA] ( Vo -R(O) = -- - + - +- exp z - + az I.. 2D 4D 2 D 2D 

and 

a V, (zV0) 
-R (-J...) = <f> ___Q e D e -Ai az )... D 

At z=O they are 
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(C25) 



a _ _ <f> [ Vo Vo2 eA. Vo -A.tl -�R (z-0) - -- - + --+- - - e 
az A. 2D 4D 2 D D 

(C26) 

The integral term is slightly more complicated, but because sin(z) is 0 at z=O, the term 

which includes dK1 I dz from the differentiation disappears, and the cos term is 1 ,  so 

from equation (C22) the differential becomes 

_a_c = _K_1 Cz_) 
J 
.. _______ _ 

az 1t 

dK2(z) . (u-p)o.s e -ut du 
dz. 

u(A. - u) p 
Substituting for K1 and K2 at z = 0 gives 

ac = - ( �1 0.5 <P 00 (u-p)0.5 e -ut du 
az l z =O D nf p 

Then splitting the integral into two parts using partial fractions 

ac = - ( !:_) 0·5 �[ .. (u -p )05 e -ut du 
az l z =O D A1t f p 

+ j (u -p)o.5 e -ut du l 
P (A. - u) · 

(C27) 

(C28) 

(C29) 

The first integral is in a form given in tables [Gradstheyn 80] page 3 15 no 3.363 1 ,  while 

the second one is of the same form after substituting u = v + A.. 

ac = - ( !:_) 0·5 �[ ... (u-p)05 e -ut du 
az l z =O D A1t f p 

+ 
.. (v-(p-A.))o.s e -vie -J..1 dv l . (C30) f -v p-)i. 

The integral is given as 

j (u-p )0·5 : -" du = � . e -p• - ",fp . ( 1  - erfi.;pi)) · 

p 
(C31 )  

While for the second integral p must be replaced by p-A., which is V02 I 4De . Using this 

we can write the complete solution for the concentration gradient at z=O as 
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ac 
az l z-0 = - ( �)" A�l�e -( 1 ») ' - x ( 4�E 

+ Al ( I  - eif( ( 4�E + Al ,) l 
+ ( �r A�e -h [�e 1 - x� . ( I  - eif( �ll l 

- cf> ( Vo + 
A. 2D 

0 EA 0 -)J V 2  v l 
4D 2 +D - D e c32) 

We see on looking at the limiting cases of this, that at time t = 0 the gradient is zero as 

all the terms cancel, as expected. As t tends to infinity, only terms from the third line 

remain as the erf terms tend to one and therefore disappear, as do all of the exponential 

terms. These then match the steady state solution given by differentiating (4.4) and 

setting z=O. 

Applying this solution 

This solution allows the calculation of the development of radon concentration with time, 

using a numerical integration, but more usefully the development of the radon flux at the 

surface can be found. Figure 4.7 shows the radon concentration gradient at the surface 

developing with time. In this case it takes a considerable time to reach the steady state 

value. 
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Conclusions 

The work presented in this thesis covers several different modelling and experimental 

studies carried out by the author as part of the team at the Building Research 

Establishment investigating how to protect buildings against soil gases. It has addressed 

the issues under three separate headings: 

• Flow due to natural driving forces, 

• High pressure flows, and 

• Time dependent effects. 

Each of these separate parts has its own conclusions, so this more specific material is not 

repeated here. 

For each part a combination of modelling techniques have been applied to the problems 

considered and experiments analysed. The modelling techniques used varied from simple 

analytical models through more advanced analytical techniques to numerical solutions. 

Some of these developed directly from the work of others, but many are new to the soil

gas field. Most of the experiments were carried out by the author or under his direct 

supervision, but others were being carried out by colleagues at BRE for other reasons, 

and proved useful here as well. Further, some work has been developed directly from the 

work of other researchers elsewhere. 

It is difficult to assess the real level of contribution of this type of work. This is because 

the direct applications are generated by the team as a whole, and the key question is, 

"How much benefit is derived from the process of modelling and experimental 

investigation?" 

This is hard to quantify, as it comes in the form of increased understanding of the 

processes involved in soil gas flow, and explanations of the phenomena which are 

observed on site. It would be good to be able to say that a new technique for removing 

radon from homes developed from this work, but it would not be true ! However we as a 

team have continued to improve our advice to the Government and the public, and have 
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published reports on many aspects of how to protect buildings from soil gases. 

Particular areas developed in this work were: 

• The flow rates generated by 'sumps' .  

• Where the flow from a sump comes from, and hence their associated energy 

costs. 

• A technique for measuring the leakage of the substructure of a house (under 

some conditions). 

• The ease of air flow through different hard core materials. 

• How pressure extension tests can be used in testing floors for air flow. 

• The way in which changing atmospheric pressure affects soil gas. 

• The techniques used for monitoring the flow of gas from soil. 

In all of these areas there have been some new developments presented here, sometimes 

in the form of results specific to the UK, i.e. our floor type or our hard core materials, 

but in general these represent a small step forward in some part of the overall 

understanding of soil gas flow. 

The future 

In the UK at least the main issues relating to radon gas seem to be understood, and we 

have a good record of reducing radon levels in houses. This means the main steps need 

to address locating houses with high levels and ensuring their cost effective treatment. 

This has been reflected in the change of the BRE work programme, with more bias 

towards advice work, and less on the fundamentals. Remaining areas of interest will 

mainly concern reducing the cost of remedial actions, and the use of lower power fans in 

sump systems is a particular interest. 

In the European context however there is a lot more need for progress. The UK, along 

with Sweden, are well ahead of the rest of Europe in carrying out radon work on houses. 

This means we have a lot of experience which we can share with our partners, as they 

address the particular issues in their countries. These are caused by the significantly 
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different building styles in different countries, and the climate differences too. 

The landfill gas side is less advanced, but as the pressures on building land continue into 

the next century it is likely to become more of an issue. At present housing developments 

are not allowed on landfill sites because it cannot be guaranteed that the householders 

will look after the measures needed to stop any hazard. Hence only certain types of 

controlled developments are allowed on these sites. Although this restriction is unlikely 

to change there is the possibility of building near to landfill sites, if good, cheap measures 

can be designed. 

However the main area for current progress is that of continuing to understand what the 

measurements made on landfill sites mean. There is considerable variation in what is 

meant by particular measurements made on a landfill site, and the way in which these are 

interpreted varies considerable. More modelling studies will help in the interpretation of 

measurements, and can hopefully help towards better and cheaper information. 

This point leads on to the need for more work on time dependent modelling. At present 

radon measurements need to be taken over a long time, usually three months, to obtain a 

satisfactory average value. This leads to considerable delay between the decision to 

investigate for radon and any action being taken. It is a particular problem because it 

cannot be incorporated into the house buying process as it would cause an unreasonable 

delay. However it is likely that a better understanding of time dependent effects and the 

way that these interact with the weather should lead to the option to use shorter term 

measurements combined with weather data and a model. This could be a useful tool to 

encourage wider take up of measurements, especially if it can be made cheap enough to 

be within the house buying chain. 

Another area for consideration is the use of preformed plastic 'void formers' just below 

the floor of a building to improve the ventilation there. These have been used 

successfully for water drainage, but have not been studied as thoroughly for radon or 

landfill gas. 

It is interesting that the experiments on hard core materials did not show a particular 
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preference for any material, suggesting that it is not the crucial factor in sump 

perf onnance. This deserves further study to try to come to a full understanding of what 

the main factors are which cause this, and whether these can be used to improve the 

protection of new buildings against soil gas. 
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