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Abstract

The steepest descent and simulated annealing optimization techniques are used to simultaneously estimate the effective mixing
volumes and air exchange rates of a large partitionless building exhibiting heterogeneous spatial air flow conditions. The optimization
is conducted using varying quantities and qualities of simulated tracer gas measurements. A simulated three-compartment system is
numerically investigated to assess the performance of the parameter estimation methods. When simulated tracer gases are released
in each zone, both techniques estimate actual parameter values within 10-35 percent. When tracers are released in selected zones,
reasonable estimates were obtained for those zones in which a simulated gas was released, but significant errors are evident for the

non-release zones. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

C; concentration of contaminant or tracer gas in zone /

S, mass release rate of contaminant or tracer gas in zone
i

V. volume of zone i

f,; rate of air low from zone i to zone j

n  number of zones

1. Introduction

Interest in air flow patterns, distribution, infiltration
and energy loss in residential and occupational buildings
can be traced back to economic issues related to the
energy crisis two decadesago [1, 2]. As the cost of heating,
cooling and ventilating a building rose, buildings were
designed and constructed to reduce the exchange of air
and heat between a building and the outside. In recent
years, concerns related to indoor air pollution, caused in
part by “tighter’ buildings and in part by physical, chemi-
cal, or biological contaminants in building materials, fur-
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7813,

'Sinden’s approach assumes constant volumes and air exchange rates.
While this muy be an over simplification in many systems. this model
has been widely used for demonstration purposes and found to be
appropriate for many indoor air quality assessments.

nishings. processes or the ventilation system itself, have
increased the need for effective characterization of build-
ing ventilation. As a result, a number of studies on air
flow and infiltration based on Sinden’s first-order multi-
compartmental conservation of mass approach [3] (illus-
trated in Fig. 1 and formulated as Equation 1) have
been conducted.' This paper intends to expand the set of
analytical tools available for conducting and interpreting
such studies. by identifying optimization methods for
simultaneously estimating effective compartmental vol-
umes and air exchange rates.
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1.1. Model calibration

The inter-zonal air exchange rates for Sinden’s model
can be calibrated using tracer studies; most commonly
the constant source/injection method [4-6] or the decay
method (4, 5]. In both methods, different inert tracer
gases, not found in or near the building (so that C, =0
and S; is controlled), are simultaneously released and
measured in each of the building compartments. Hence,
a building comprised of n compartments (not including
the outside) requires » tracer gases.
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Fig. I. Illustration of a three compartment plus "outside” indoor air model.

In the constant source method, the tracer gases are
released until steady-state gas concentrations are
achieved in each compartment so that Equation | reduces
to Equation 2.

0=S—-GC)Y fy+ Y Cfy: fori=1,n )
/=0 j

j=1

The n#°+n unknown air exchange rates are estimated
using the » sets of compartmental concentrations, one
for each tracer gas released (yielding n x n = n* measure-
ments and corresponding equations), and the air flow
conservation constraint for each compartment (yielding
n equations):

N 2
S fi= Y fir fori=1,n (3)
j=0

i=0

In the decay method, tracer gas is released as an initial
pulse (r < 0) and the emission rate is zero thereafter
(+ > 0). Assuming that the duration of the pulse is short
relative to themixingrates, the release is assumed to occur
instantaneously so that Equation | reduces to Equation 4.

‘?Ci " ] " )
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The n°+n unknown air exchange rates are solved by
simultaneously integrating the n” equations for the period
of observation and invoking the n conservation of flow
equations. The reader is referred to Lagus and Persily’s
study for a detailed description of the procedure [4].

1.2. Motivation

Central premises of both of the multi-zone calibration
methods are that: (i) the number, location and size of
each well-mixed zone are known a priori, and (ii) tracer
gases can be successfully released in each zone. Thesc
assumptions are often appropriate for average size resi-
dential buildings, since intra-room mixing is usually
orders of magnitude faster than inter-room air exchange
and physical walls act as partitions for each zone, so
that each room may act like a well-mixed compartment.
However, in very large rooms with localized ventilation
and/or source locations, a significant spatial con-
centration gradient may persist. dictating that the single
well-mixed compartment approach may be inup-
propriate. Hence, the first-order approach must be aban-
doned for a more mechanistic second-order model (e.g..
[7]). However, the latter approach can be com-
putationally intensive and in some cases, sufficicnt data
may not be available to estimate the parameters of thc
model for estimating building-wide ventilation or long-
term human exposure.

We suggest that a large compartment may instead bc
satisfactorily represented as a combination of several
well-mixed surrogate -ones which are spatially located so
as to capture the significant portions of the concentration
gradient across the room. This maintains the simplicity
of the well-mixed, first-order, conservation of mass
approach, yet captures some of the heterogeneity in the
room. Unfortunately, there is considerable ditficulty in
determining the appropriate number, location and sizc
of the surrogate zones and the corresponding inter-zonal
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air exchange rates. Qualitative experiments (e.g., visual
smoke candle releases) can be used to help guide selection
of the relative number and location of each surrogate
zone within the room. Nevertheless, without exactly
knowing the effective mixing volumes for each surrogate
zone, neither of the two parameter estimation techniques
discussed above can be used to estimate theeffective inter-
zonal air exchange rates.

An appropriate estimation technique must be able to
simultaneously estimate the effective mixing volumes and
the air exchange rates given the number of surrogate
zones and their relative locations. The method should
also be capable of making reasonable estimates when
tracer gases have not been released in each of the zones,
since, in many cases, there will be difficulty accurately
releasing the gases in the partitionless area. To our knowl-
edge, there is no analytical or numerical transformation
that can be designed so that a system of equations can be
directly solved for all possible unknown volumes and
inter-compartmental air exchange rates in this case.

O’Neill and Crawford [8] suggest an approach using a
least squares regression technique in which a single tracer
gas is released in each compartment. They demonstrate
their approach in a controlled experimental facility for a
simplified three-zone model, where four of the twelve
unknown flow rates were eliminated (set to zero) and
three could then be solved using conservation of net flow;
leaving only five air exchange rates and the three volumes
to be estimated. In addition, tracer gas measurements
obtained for the demonstration exhibited very little noise.
The performance of the algorithm was not tested for
cases where significant measurement error was present.
Hence, the presence of local solutions to the least squares
regression (directly influenced by the number of unknown
air exchange rates. the noise in the measurements and the
requirement that gases be released in each zone) has not
yet been considered.

We evaluate a general approach using standard opti-
mization techniques. The suggested optimization algo-
rithms seek to minimize an objective function that allows
for estimation of unknown compartmental volumes and
flow rates. for cases in which tracer gases are not released
in every zone. Two optimization techniques are
considered. First, the relatively simple technique of stee-
pest descent optimization is applied and shown to be
effective incases where a tracer gasis successfully released
and measured in every zone. Second. the more com-
plicated and computationally intensive technique of
simulated annealing optimization is demonstrated as a
possible solution method for the case in which an incom-
plete set of measurements results in local minimum solu-
tions which render the steepest descent technique
inefTective. Similar optimization techniques introduced in
this paper have been successfully applied in other appli-
cations (e.g., [9, 10, 11]).

It is important to note that the purpose of this paper

T e
| ]

is not to identify the best or most efficient optimization
algorithm possible for a specific application. Rather, we
wish to promote further investigation of parameter opti-
mization techniques for IAQ models by demonstrating
the capabilities and limitations of two widely-used algo-
rithms. Further study of this topic will allow for improved
estimation efficiency and algorithm development.

2. Optimization for parameter estimation

Parameter estimation using combinatorial opti-
mization is primarily used for problems where direct ana-
lytical or numerical estimates cannot be determined, or
when it is computationally infeasible to do so. In other
words, we know there is some combination of volumes
and air exchange rates that will best describe the system
of interest, but there is no direct method of finding it. In
optimization, possible solution combinations are
indirectly evaluated by comparing possible solutions to
optimization criteria, commonly termed the objective
function [10], which characterizes the fit of the predicted
to the measured concentrations. The algorithm ‘solves’
the problem (i.e., estimates the parameters) when it min-
imizes (or maximizes, depending on how the criteria is
described) the value of the objective function.

In this application, the minimization of the sum of the
square difference between predicted and measured zonal
concentrations (Z(measured—predicted)’: for all data)
was chosen as the objective function. The minimum
square error criteria is commonly used for its cor-
respondence to mean value prediction in linear or non-
linear regression and its ability to describe the overall
trend in the model prediction without being overly influ-
enced by outliers. Figure 2 illustrates the optimization
routine. Upon initialization of the volumes and air exch-
ange vates, the IAQ model is evaluated and con-
centrations are predicted. Optimality is then evaluated
and if necessary, new parameter values are chosen based
on the optimization method's search algorithm. With
each iteration, the solution vector is checked to ensure
that physical constraints are not violated before con-
centrations are again predicted. The procedures and
properties of the steepest descent and simulated annealing
methods are briefly discussed, followed by an illustrative
application.

2.1. Steepest descent

Steepest descent is a simple and robust method for
optimization when the solution field contains only one
possible minimum (or maximum) solution vector. The
algorithm has no method of differentiating between the
global optimum and a local convergent solution. Esti-
mation is achieved by iteratively trarveling in the direction
that yields the greatest improvement of the objective

I
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function. Commonly, thisis conducted by first evaluating
the gradient of the objective function as a function of
each decision variable (ie., unknown parameter). The
perturbation with the steepest slope is selected as the next
iteration, and is continually updated until the gradient
changes sign (i.e., the objective function cannot be further
improved moving along this path). At this point, all of
the parameter gradients are re-evaluated and updating is
conducted again following the parameter yielding the
steepest slope.

2.2. Simulated annealing

In cases where the solution field contains many locally
optimal solutions, any parameter estimation algorithm
will have difficulty differentiating between the globally
and locally optimal combination(s). Aside from exhaus-
tively evaluating all possible combinations, there is no
computational method capable of providing a definite
solution to such systems. Obtaining a *very good’ solution
that is physically plausible (i.e., consistent with con-
straints) may be the most that can be expected.

The central principle of simulated annealing is the spor-
adic willingness of the algorithm to accept a worse par-
ameter combination assuming that, by chance, the
current solution is at, or on the road to, a local minimum
combination [12, 13]. By accepting a worse combination
when specific conditions are met, the algorithm allows
itself the chance to jump’ out of a local minimum and
follow a different search path. The method is analogous
to procedures used for metal refinement. To reduce a
metal from a high to low energy state in which the atomic

. Illustrative description of the optimizution algorithm for parameter estimation (adapted from Fig. 3 in [10}).

structure is arranged in a more orderly manner, the metal
is first heated to a very high energy state and then cooled
slowly following a strict temperature schedule. If the
metal is cooled too quickly (i.e., quenched), the atomic
structure may not have sufficient time to become properly
arranged. As a result, the quenched metal may not ach-
ieve the desived low energy state. Similarly, if the par-
ameter estimation algorithm quickly moves to the first
minimum found in the solution field and stops, it is as
if estimation was quenched and the resulting optimal
combination will most likely be at a local minimum.
Instead, the algorithm improves the chance of finding
lower energy levels by slowly searching the full field of
possible combinations. always accepting better com-
binations and allowing for the occasional paramcter com-
bination in a new domain of the parameter space that is
less optimal than the current iteration.

At each iteration, the algorithm generates a possible
combination of decision variables by changing the value
of a random number of parameters in the previous com-
bination. If the new combination does not violate any
constraints, the IAQ model and the objective function
are evaluated. If the value of the objective function is
worse than the previous solution, a randomly generated
value, uniformly distributed between O and I, is compared
to the value of P defined as Equation S:

P =exp[—(E,—E\)kT] (5)

where: F, and F,are the values of the objective
function at the previous and current iterations,
respectively; k is a scaling parameter and 7 is
the dynamic annealing temperature.
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Only when the random number is less than P is the
worse combination accepted. If the value of the objective
function is less than the previous solution, the com-
bination is always accepted and the value of T is dec-
remented. Note that as T decreases, the threshold
probability, P, decreases, so that acceptance of less opti-
mal solutions becomes less likely.

When the number of rejections at the current com-
bination is greater than a specified amount (i.e., the algo-
rithm cannot find a better combination or will not acceplt
a worse combination because cither the temperature is
too low or the increase in energy to the suggested com-
binations is too great) the optimization is completed.

Notice that this method does not guarantee absolute
convergence; termination is strictly dictated by the num-
ber of attempts made to move from the current combi-
nation. Irrespective of whether the lowest energy state
has been found (ie., the predicted volumes and air exch-
ange rates are not the best fittingcombination), the results
may be close enough to the actual values for appropriate
applications (e.g.. building-wide ventilation and long-
term TAQ studies).

Note also that the evaluation of the [AQ model
requires the division of the air exchange rate by the eftec-
tive mixing volume. It is therefore mathematically feas-
ible to have a domain of parameter combinations that
may equally match the best fitting parameter com-
bination (i.e., there is an indeterminate solution). The
possibility of this occurring increases as the number of
zones where a tracer gas is released decreases. However,
by using constraints to limit the search domain based on
knowledge of the physical system. and by understanding
the limits of the estimation techniques of these cases. it is
likely that the occurrence of these circumstances can be
limited or. if they do occur. be recognizable.

3. Anillustrative demonstration
3.1. Description of the demonstration model

The three-zone model illustrated in Fig. 1 has been
widely used as a demonstration system for applications
in multi-zone modeling. Each zone is allowed to interact
with the other compartments and the outside environ-
ment, which is assumed to act as a perfect sink with zero
concentration and infinite volume. To evaluate the [AQ
model, Equation 1 is numerically integrated using the
4th-order Runga-Kutta technique [14], chosen because

“When the measurement error generating procedure yielded a nega-
tive concentration, as can occur when assuming a normally distributed
error structure, the value was replaced with a zero concentration. This
paratlels the assignment ofu zero concentration to a measurement when
anexperiment yielded a de minimus concentration (i.e.. below detection
limit).

of its robustness, stability and ease of computation. In
addition, ill-conditioning of the matrix of air exchange
rates does not contribute to numerical error of the solu-
tions, since these solutions are not dependent on direct
estimation of the determinate of the matrix as in the
eigenvalue approach used by Sinden [3] (see also dis-
cussion in most elementary texts on differential equa-
tions, such as [15]).

To test the alternative parameter estimation methods,
synthetic tracer gas concentrations were simulated by
evaluating the IAQ model with separate unit releases of
a tracer gas in each of the three zones. Table | (second
column) summarizes the assumed parameter values for
the test simulations. Noise was generated in the dataset
by assuming a normally distributed measurement error
structure with a standard deviation proportional to the
true value’ (i.e., a fixed coefficient of variation (COV)).
Figure 3 depicts four experimental cases for a unit gas
released in Zone 1 for a duration of 150 s, ranging from
relatively precise (COV = 0.1) and frequent (every 50 s)
measurements (Case A) to imprecise (COV = 0.5) and
infrequent (every 150 s for 35 min and every 300 s there-
after) measurements (Case D). Similar synthetic measure-
ments are simulated for a unit source release in Zone 2
and in Zone 3 under the same cases but, for brevity, are
not illustrated here. Also, three levels of available data
were considered for the release of different tracer gases:
(1) in all three zones; (ii) in Zones 1 and 2; and (in)
only in Zone 1. The four cases and three conditions are
thought to span the range of results that could typically
be encountered in a tracer study of a building comprised
of three partitionless surrogate zones.

3.2, Results and discussion

Initial values of the surrogate zones’ volumes and air
exchange rates were set close to zero. Constraints to the
optimization routines included limiting the sum of the
three compartment volumes to be less than or equal to
an assumed total building volume (note that the effective
mixing volume in the simulations was assumed to be 90%
of the building volume), and non-negativity for both the
volumes and air exchange rates. These minimal con-
straints were chosen, since little understanding is often
available to make better initial guesses or place tighter
constraints on the unknown parameters in the par-
titionless zones.

The standard steepest descent algorithm was unable to
converge to an optimal solution because the search rou-
tine began to oscillate between selections as the algorithm
approached the actual values. This occurred because the
algorithm re-evaluates the gradients of the objective func-
tion only when the objective function cannot be improved
by continuing to proceed along the current path. This
results in parameters overshooting their optimal values
far enough that when the gradients are re-evaluated, the




298 M.D. Sohn, M.J. Small; Building and Entironment 34 (1999) 293-303

Table |

Summary of the optimization results for the condition when a different tracer gas was released in each surrogate zone. The percent error from the
actual values are in parentheses. C1. C2 and C3 are the steady-state concentrations for a unit release in Zone | for Zones 1, 2 and 3, respectively

Steepest descent

Simulated annealing

Case: Actual A B C D A B8 C D
VI (m3) 40 41 (3%) 45(13%) 42(5%) 49 (23%) 41(3%) 45(13%) 42(3%) 45(13%)
V2 (m3) 20 18 (10%) 13(35%) 18 (10%) 13(15%) 18(10%) 13(35%) 18 (10%) 13(35%)
V3 (m3) 60 60(0%) 60 (0%) 67(12%) %) 60(0%) 60(0%) 67 (12%) 75(25%)
f10 m3 s) 0.03  0.0302(1%) 0.0308 (3%) 0.0299 (0%) 0 0"99 (0%) 0.0302 (1%) 0.0307 (2%) 0.0299 (0%) 0.0302(1%)
f12 (m3s) 0.01 0.0098 (2%) 0.0100(0%) 0.0096 (4%) 0.0086 (14%) 0.0098 (2%) 0.0100 (0%) 0.0096 (4%) 0.0083 (17%)
f13 (m3s) 0.0l 0.0101(1%) 0.0103(3%)  0.0105(5%) 0.0112(12%) 0.0101(1%)  0.0103(3%)  0.0104(4%)  0.0113(13%)
f20 (m3,s) 0.03 0.0294 (2%) 0.0272(9%) 0.0283 (6%) 0.0237(21%) 0.0294 (2%) 0.0272(9%) 0.0283 (6%) 0.0238 (21 %)
21 (m3;s) 0.01 0.0101 (%) 0.0110(10%) 0.0100(0%) 0.0101 (1%) 0.0101 (1%%) 0.0110(10%) 0.0100(0%) 0.0097(3%)
23 (m3 s) 0.01 0.0098 (2%) 0.0091 (9%) 0.0090 (10%)  0.0053 (47%) 0.0098 (24%) 0.0091(9%) 0.0091(9%) 0.0055(45%)
30 (m3 s) 0.03 0.0297 (1%) 0.0283(6%) 0.0276 (8%) 0.0227(24%) 0.0297 (1%) 0.0283(6%) 0.0276 (8%) 0.0218(27%)
31 (m3s) 0.01 0.0101 (1%) 0.0106 (6%) 0.0100(0%) 0.0093 (7%) 0.0101 (1%) 0.0106 (6%) 0.0099 (1%) 0.0092 (8%)
f32 (m3 s) 0.01 0.0096 (4%) 0.0088 (12%)  0.0095 (5%) 0.0071(29%) 0.0096 (4% ) 0.0088 (12%) 0.0095(5%) 0.0074 (26%)
Cl (mgm3) 444 4.44(0%) 4.4(1%) 4.48 (1%) 4.56 (3%) 4.44(0%) 4.41(1%) 4.48 (1%) 4.55(12%)
C2(mgm3) 111 1.11 (0%) 1.15(4%) 1.15(4%) 1.27(14%) 1.11(0%) 1.15(4%) 1.15(4%) 1.25(13%)

3 (mg'm3) .11 1.12(1%) 1.17(5%) 1.22(10%) 1.48 (33%) 1.13(2%) 1.17(5%) 1.21(9%) 1.52(37%)

gradient of the parameter just evaluated has the steepest
gradient now in the opposite direction. To eliminate this
problem, the gradients ol the objective function were
evaluated at every iteration so that the search always
followed the steepest path. While this increases the
numerical computations conducted at each iteration,
overshoot is also minimized. which in turn, decreases the
number of iterations over which the model is evaluated.
Hence, computational time is not significantly increased.
No oscillations occurred and convergence was always
achieved using this approach.

Tables 1, 2 and 3 summarize the estimated parameter
values that result from the optimization, including the
percent deviation from the actual value, and the steady-
state concentrations from a unit release in Zone | for
tracer gases released in each of the Zones, in Zones | and
2,and only in Zone I, respectively. For comparison, Figs
4 and 5 illustrate the performance of the two algorithms
in a scaled graphical format for the Case A and D
measurements, respectively. Parameter estimates from
Cases B and C are consistent with the results illustrated
in Fig. 4, but, for brevity, are not illustrated here.

When sources are released in each of the zones (Table
1 and Figs 4 and 5), predicted parameter values in Cases
A, B and C are in good agreement with the true values.
Values predicted in Case D suggest less effective, though
still reasonable estimates, given the limited quantity and
quality of the synthetic measurements. Also, the pre-
dicted parameter values and the final value of the objec-

"Note that this method. which requires much more computational
effort thun either of the optimization techniques. would be unfeasible
for applications with larger parameter spaces.

tive function from both algorithms are nearly identical
for Cases A, B and C. This suggests that the solution field
is well defined; and there are no significant local minimum
combinations where the steepest descent algorithm
becomes trapped. Differences in the predicted parameter
values and the final value of the objective function for
the Case D measurements, however, suggest that the
combined infrequent and imprecise measurements cause
considerable ill-definition of the system conditions.

To investigate the influence that the precision of the
data had on the predictions, the combination of par-
ameter values that yields the least sum of the squared
error in the solution field (i.e., the ‘best fitting" globally
optimum combination) was found for Cases A and B
using a full search of the parameter space.’ The predicted
values when gases were released in each zone for Cases
A and B matched these combinations with less than onc
percent deviation. Hence, the global minimum com-
binations have been determined by the algorithms; the
difference between the predicted and actual values is duc
to the imprecision of the data (i.e., if the data were precisc
(COV =0), the global minimum combination would
have been the actual values and the algorithms would
have predicted them).

In cases with incomplete sets of measurements, wher
gases were released in only two or one of the three zone:
(Tables 2 and 3, respectively), estimates using the simu
lated annealing algorithm were generally better tha
those using the steepest descent algorithm for Cases A, I
and C. This is due to the ill-definition of the solution fielc
caused by insuflicient concentration measurements t
describe the flow characteristics in the zones where :
gas was not released. In these cases, both algorithm
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Fig. 3. Case-by-case illustration of the synthetic tracer gas measurements for a unit source release in Zone | for a duration of 150 s. The solid line is
the simulated true concentrations: dots are the synthetic measurements obtained with normally distributed measurement error. High precision
measurements are made with error having COV = 0.1: low precision measurements with error having COV = 0.5. High frequency measurements are
made every 30 s. low frequency measurements are made every 150 s for the lirst 35 min and every 300 s thereafter. Similar synthetic tracer gas
measurements are also simuluted tor a sourcerelease in Zone 2 and in Zone 3, but are not illustrated here for brevity.

concentrate their iterative parameter selections to match
the better defined zones. This causes enough overshoot
to alter the low configuration such that flow to and from
the zones that do not have tracer gas releases can no
longer be accurately estimated. The steepest descent
method falls into a local minimum parameter com-
bination and is ineffective when this occurs. The simu-
lated annealing algorithm, on the other hand, slowly
settles down to its optimal combination so that even when
the algorithm is at a local minimum, the mechanism for
accepting poorer combinations allows it the opportunity
to pass beyond the local minimum and continue with
further parameter iterations. For the Case D measure-
ments, however, the general breakdown of the opti-
mization caused by the combined infrequent and
imprecise measurements resulted in less consistent esti-
mates for both methods.

Table 4 summarizes the final values of the objective

function for each scenario. This value represents the fit
of the predicted concentration profiles to the tracer gas
measurements. When gases are released in each of the
zones, the objective functionis effectively identical. When
fewer gases are released, the value estimated using the
simulated annealing method is lower than that from the
steepest descent method. This indicates that the com-
putationally intensive method of simulated annealing has
made better overall IAQ predictions. Furthermore, the
predicted volumes and air exchange rates from the pri-
mary zones, (i.e., where a tracer gas was released: V,, V5,

T fioe S and f5, in Table 2 and V, and f}, in Table 3)

using the simulated annealing algorithm, deviate by less
than 35 and 45% from their actual values, respectively.
This suggests that approximate parameter estimates for
zones which are of particular interest in a flow inves-
tigation can be made. even when a complete tracer gas
release experiment cannot be conducted.
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Summary of the optimization results for the condition when a different tracer gas was released in Zones | and 2. The percent error from the actual
values are in parentheses. Cl, C2 and C3 are the steady-state concentration for a unit release in Zone 1 for Zones 1. 2 and 3 respectively

Steepest descent

Simulated annealing

Case: Actual A B C D A B C D

VI (m3) 40 41 (3%) 45(13%) 42(5% 50(25%) 41 (3%) 44 (10%) 42(5%) 49(23%)
V2(m3) 20 18(10%) 13(35%) 18(10%) 13(35%) 18 (10%) 13(35%) 18 (10%) 13(35%)

V3 (m3) 60 4(93%) 5(92%) 4(93%) 6(90%) 41 (32%) 41 (32%) 34(43%) 35(42%)

f10 (m3;s) 0.03 0.0375(25%) 0.0381(27%) 0.0376(25%) 0.0384(28%) 0.0338(13%) 0.0363(21%) 0.0341(14%) 0.0341 (14%)
f12 (m3's) 0.01 0.0107(7%) 0.0107 (7%) 0.0103(3%) 0.0088 (12%) 0.0089(11%) 0.0048 (52%) 0.0090(10%) 0.0069 (31 %)
f13 (m3,s) 0.01 0.0007(93%) 0.0010(90%) 0.0007(93%) 0.0014 (86%) 0.0069(31%) 0.0083(17%) 0.0059(41%) 0.0076(24%)
20 (m3/s) 0.03  0.0368(23%) 0.0340(13%) 0.0354(18%) 0.0277(8%) 0.0326(9%)  0.0298(1%)  0.0321(7%)  0.0255(15%)
f21 (m3.s) 0.01 0.0113(13%) 0.0122(22%) 0.0110(10%) 0.0108 (8%) 0.0104 (4%) 0.0105(5%) 0.0106 (6%) 0.0104 (4%)
{23 (m3ys) 0.01 0.0006(94%) 0.0007(93%) 0.0006(94%) 0.0005(95%) 0.0068(32%) 0.0114(14%) 0.0050(50%) 0.0036(64%)
30 (m3;s) 0.03 0.0000(100%) 0.0000(100%) 0.0000(100%) 0.0000(100%) 0.0117(61%) 0.0075(75%) 0.0115(62%) 0.0135(55%)
f31 (m3's) 0.01 0.0000 (100%) 0.0000(100%) 0.0000(100%) 0.0000(100%) 0.0059(41%) 0.0000(100%) 0.0025(75%)  0.0000 (100%,
32 (m3/s) 0.0  0.0032(68%) 0.0043(57%) 0.0031(69%) 0.0055(45%)  0.0172(72%) 0.0545(445%) 0.0138(38%) 0.0173(73%)
Cl (mg/m3) 444 4.34(2%) 4.28(4%) 4.34(2%) 4.38(1%) 4.4 (1%) 4.31(3%) 4.39(1%) 4.39 (1%)
C2 (mg/m3) 1.11 1.02(8%) 1.08(3%) 1.03 (7%) 1.16(5%) 1.17 (5%) 1.26 (14%) 1.16 (5%) 1.31 (18%)
C3 (mg/m3) 1.1l 1.11(0%) 1.15(4%) 1.12(1%) 1.21(9%) 1.11(0%) 0.81(27%) 1.14(3%) 1.23 (11%)
Table 3

Summary of the optimization results for the condition when a different tracer gas was released in Zone |. The percent error from the actual values
are in parentheses. C1. C2 and C3 are the steady-state concentrations for a unit release in Zone 1 for Zones I, 2 and 3, respectively

Steepest descent

Simulated annealing

Method:

Case: Actual A B C D A B C D

VI (m3) 40 41 (3%) 44 (10%) 42(5%) 50(25%) 41 (3%) 44 (10%) 42(5%) 50(25%)

V2 (m3) 20 1(95%) 1 (95%) 1(95%) 1(95%) 5(75%) 5(75%) 5(75%) 3(85%)

V3 (m3) 60 2(97%) 1(98%) 2(97%) 2(97%) 29(52%) 26(57%) 28(53%) 22(63%)

f10 (m3;s) 0.03  0.0461(54%) 0.0469(56%) 0.0460(53%) 0.0454 (51%) 0.0401(34%) 0.0400(33%) 0.0389(30%) 0.0384(28%)
f12 (m3/s) 0.01 0.0004 (96%) 0.0005(95%) 0.0004(96%) 0.0004(96%)  0.0025(75%) 0.0026(74%) 0.0026(74%) 0.0027(73%)
f13 (m3/s) 0.01 0.0003(97%)  0.0001 (99%) 0.0003(97%) 0.0005(95%)  0.005i (49%) 0.0049(51%) 0.0054 (46%) 0.0052(48%)
{20 (m3/s) 0.03  0.0016(95%) 0.0018(94%) 0.0015(95%) 0.0013(96%)  0.0113(62%) 0.0117(61%) 0.0132(56%) 0.0141(53%)
21 (m3;s) 0.01 0.0002 (98%)  0.0000(100%) 0.0002(98%) 0.0001(99%)  0.0000(100%) 0.0000(100%) 0.0000(100%) 0.0000 (100%
23 (m3/s) 0.01 0.0002(98%) 0.0003(97%) 0.0002(98%) 0.0002(98%)  0.0018(82%) 0.0018(82%) 0.0006(94%) 0.0157(57%)
£30 (m3/s) 0.03  0.0009(97%) 0.0004(99%) 0.0011(96%) 0.0021(93%)  0.0115(62%) 0.0157(48%) 0.0167(44%) 0.0153(49%)
{31 (m3/s) 0.01 0.0002(98%) 0.0002(98%) 0.0002(98%) 0.0000(100%) 0.0064(36%) 0.0000(100%) 0.0006(94%) 0.0000(100%:
32 (m3;s) 0.01 0.0002 (98%) 0.0002(98%) 0.0002(98%) 0.0000 (100%) 0.0030(70%) 0.0027(73%) 0.0042(58%) 0.0237 (137%
Cl (mg/m3) 444  428(4%) 4.22(5%) 4.29(3%) 4.32(3%) 4.35(2%) 4.21 (5%) 4.29(3%) 4.32(3%)
C2(mg/m3) LI1 1.05(5%) 1.01 (9%) 1.08(3%) 1.18(6%) 1.1(1%) 1.05(5%) 1.13(2%) 1.25(13%)
C3 (mg/m3) .1l 1.16(5%) 1.2(8%) 1.12(1%) LI (1%) 1.15(4%) 1.21(9%) 1.1 (1%) 1.08 (3%)

Predicted steady-state concentrations resulting from a
unit release in Zone 1 were determined for each scenario
and compared to the ‘true’ steady-state concentrations,
as a method of investigating the effects of the errors in
the parameter estimation. Predicted concentrations show
good agreement with the true concentrations for all cases
and tracer gas release scenarios. This suggests that for
long-term IAQ assessments, where exact flow charac-
terization may not be essential for the assessment, these
methods may still be appropriate for quantifying some
of the concentration gradients in large, heterogeneous,

partitionless buildings, even if considerable uncertainty
is present in the selection of appropriate surrogate zone
volumes and their exchange flows.

The demonstration and results presented here are fo1
selected cases and conditions that are thought to span
typical building systems. However, under different site
conditions where compartment volumes and air exchange
rates may differ by orders of magnitude, the IAQ model
may not be appropriate due to ill-conditioned systems ol
equations. Under such cases a more appropriate IAC
model must first be designed and appropriate
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Fig. 4. llustration of the steepest descent and simulated annealing parameter optimization for Case A measurements. The area depicted by the
volume represents the foor area (i.e.. ‘footprint’) of a one-meter tall zone. The air exchange rates and steady-state concentrations for a unit release
in Zone | are summarized with the thickest line representing the actual value ( ] ). followed by the steepest descent (] ) and simulated annealing (| )
predictions. respectively.

optimization schemes investigated further. Nevertheless, 4. Summary and concluding remarks

for those cases, it is likely that optimization techniques

will be the only available general method of calibration The steepest descent and simulated annealing opti-
since analytical methods are unlikely to be applicable mization techniques were used to simultaneously estimate
over the full range of possible conditions. the effective mixing volumes and air exchange rates of a
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Fig. 5. lllustration of the steepest descent and simulated annealing parameter optimization for Case D measurements. The area depicted by the
volume represents the Roor area (i.e., ‘footprint’) of a one-meter tall zone. The air exchange rates and steady-state concentrations for a unit release
in Zone | are summarized with the thickest line representing the actual value ( JJ). followed by the steepest descent (| ) and simulated annealing (| )

predictions. respectively.

three-zone model for three levels of available data: (i)
tracer gases releases in all three zones; (ii) in Zones | and
2: and (iii) only in Zone 1; and for four measurement
conditions ranging from precise (COV = 0.1) and fre-
quent (every 50 s), to imprecise (COV =0.5) and

infrequent (every 150 s for 35 min and every 300 s there-
afier). The motivation for Lhe analysis is to develop a
method for making IAQ predictions in a large building
cxhibiting heterogeneous spatial air flow conditions by
representing it as a combination of several well-mixed
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Table 4
Summary of the values of the objective function (i.e.. the sum of the squared error between predicted and measured concentrations) at parameter
estimation completion for each measurement case and release scenario

Tracer gas released in each zone

Tracer gas released in Zones | & 2

Tracer gas released in Zone |

Steepest Simulated Steepest Simulated Steepest Simulated
Case descent annealing descent annealing descent annealing
A 0.1954 0.1954 0.1555 0.1474 0.0355 0.0346
B 4.7643 4.7643 3.6312 3.5271 0.8920 0.8910
C 0.0267 0.0267 0.0149 0.0137 0.0091 0.0088
D 0.7313 0.7235 0.3461 0.3440 0.2376 0.2370

partitionless surrogate zones. However, there is no ana-
lytical transformation that can be used to either sim-
ultaneously estimate volumes and air exchange rates, or
to consider cases where tracer gases are not released in
each of the surrogate zones.

Constraints on the optimization routines were limited
to non-negative parameters and a maximum total volume
constraint. When tracer gases are released in all three
zones, the solution field is well-defined so that there are
no significant localminimum combinations, and the more
efficient steepest descent algorithm can be used. In cases
of incomplete sets of measurements, local minimum com-
binations can prevent the steepest descent algorithm from
finding the global minimum. The simulated annealing
algorithm yielded improved estimates for those zones in
which a tracer gas was released and a better overall fit to
the tracer gas measurements.

Steady-state concentrations for a unit source release in
Zone | exhibited good agreement with the actual simu-
lated concentrations for all cases and tracer gas release
scenarios. This suggests the use of surrogate zones, with
appropriate optimization methods for parameter esti-
mation, can offer a reasonable approach for estimating
IAQ in long-term assessments in large, heterogeneous,
partitionless buildings.
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