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Abstract 

Vehicle emissions depend directly on urban driving patterns which are an 
integral part of a wider range of urban features including density of settlement , 
car ownership , status of public transport , etc. Thus the conditions vehicles 
experience and their consequent emissions are directly related to the urban 
fabric. A methodology of sampling an urban area is developed by defining 
homogeneous areas within the city in terms of their activity intensity, modal 
split and social/economic status. These homogeneous areas are used as a basis 
for sampling an urban area and defining the variation in driving patterns both 
spatially and temporally. This illustrates that changes in traffic conditions are 
based primarly on a decrease in intersection-based traffic events from central 
to outer areas, and secondarily on a general decrease in the number of vehicle­
based traffic events . These progressively freer flowing driving patterns , are 
associated directly with a variety of wider land-use and transport features, 
which also vary systematically according to centrality. Thus urban structure 
is directly related to vehicle emissions with an increase in emission rate as a 
function of proximity to the central business district. 
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1 Introduction 

Urban air pollution is directly related to the urban transport system and 
its interaction with the city, as motor vehicles produce different emis­
sions when driven under different conditions of speed, acceleration and 
idle. Although cities are recognised as a complex collection of interacting 
factors, few attempts have been made to isolate key variables to describe 
the interaction between the' city and its transport system. As such, most 
attempts to monitor mobile urban air pollution sources are based on intu­
itive sampling rather than a rational framework. This chapter attempts 
to lay such a framework by defining homogeneous areas within a city 
on the assumption that the conditions vehicles experience in driving on 
urban roads are influenced by a number of factors such as the density of 
the surrounding element, road type and availability, and public transport 
factors . 

Thus, if homogeneous areas within a city can be defined using diverse 
urban characteristics which together significantly affect driving patterns, 
then routes within these areas may provide a rational framework for 
sampling driving patterns and consequently emissions. Collecting driv­
ing pattern data on the basis of these homogeneous areas is aimed at 
maximising the probability that all noteworthy variations in driving pat­
terns and fuel efficiency across the city are identified and accounted for 
in the data collection. 

Driving cycles have been used to provide a single speed-time trace 
that characterises driving conditions across an urban area (i.e. Stonex 
( 1 957); Kuhler and Karstens ( 1978); Gandhi et al. ( 1983)). However, 
few studies have collected sufficient data to be able to specify the intra 
city variability in driving patterns or relate this to the structure of the 
city. The definition of homogeneous areas within a city, enables us to 
define representative driving cycles for each region of the city and discuss 
variations in the individual driving cycles in relation to the structure of 
the city. Such considerations have direct application to urban transport 
planning in relating the structure of the city to fuel consumption and 
urban air pollution through driving pattern variations. 

Thus, this chapter develops a methodology for sampling an urban 
system and applies it to Perth, Western Australia (Kenworthy et al. 
( 1 992)). Driving pattern data collected on the basis of the homogeneous 
areas are used to characterise morning, evening and off-peak driving and 
highlight the magnitude of congestion on' 

a broad city wide scale. It then 
provides a morning, evening and off-peak driving cycle for each of the 
homogeneous areas in an attempt to link the extra detail afforded by 
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these to the form and function of different areas of the city (Newman 
et al. ( 1992)) . Such driving cycles lead directly to an evaluation of 
vehicle emissions as a function of urban structure (Lyons et al. ( 1 990a) ; 
( 1990b)) . 

2 Definition of homogeneous areas 

Cities present a complex collection of interacting factors and processes 
that are difficult to understand without approaches and techniques which 
help to reveal underlying patterns or themes. Shevky and Williams 
( 1949) and Shevky and Bell ( 1955) defined social areas within a city 
in terms of socio-economic status, family status and ethnic status. This 
enabled them to define areas containing persons having the same level 
of living, the same way of life and the same ethnic background. They 
hypothesized that the behaviour and attitudes of people in these ar­
eas would be systematically different from persons living in other areas . 
Subsequent studies , involving the application of factor analysis and mul­
tivariate statistical techniques (Knox ( 1 982)) , have tended to support 
this hypothesis, although the constructs sometimes overlap or are weak­
ened by the peculiarities of a particular city. Stimson ( 1982) went a step 
further by considering the overall spatial patterns defined by certain vari­
ables and developing a typology of residential areas . That is, using cluster 
analysis, he derived a set of territorial spaces that are characterised by 
as high as possible a degree of within group homogeneity and between 
group heterogeneity with respect to overall social space characteristics . 

Enormous scope exists for describing a city both in the variables 
that can be chosen and in the level at which observations are made. A 
basic problem is achieving some degree of compatibility between these, 
by choosing variables that are available at the desired observation level. 
Within Perth, a reasonable solution was achieved by defining the ba­
sic spatial unit in terms of postcode areas . The available parameters, 
classified under six headings of (i) social/ecbnomic factors, (ii) land-use 
intensity factors, ( iii) road availability factors, (iv) congestion factors, 
(v) public transport availability factors and (vi) modal split factors, are 
shown in Table 1 .  Most of these were available at a postcode level, al­
though parameters 1 6-21 often required amalgamations of up to three 
postcode areas. Thus the Perth urban region was divided into thirty­
eight zones over which all of these parameters were available. 

These basic parameters do not represent the only parameters that 
could describe the urban system but rather represent a compromise be-
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Table 1: Basic parameters affecting travel and travel patterns (after Kenwor­
thy et al. (1992)) 
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tersections, w 
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Parameters 
Social/ economic 

1. Population 
2. Total vehicles on register 

3. Total vehicles parked at residence 
4. Household income 
Land-use intensity 
5. Total area 
6. Urbanised area 
7. Straight line distance to CBD 
8. Number of dwellings 
Road availability 

9. Total length arterial roads 
Congestion 

10. Vehicle kms on arterial roads 
Public transport availability 

11. Length of routes 
12. Service kms 
Modal split 

13. Journey to work by public transport 
14. Journey to work by private transport 
15. Journey to work by walking and biking 
16. All other public transport trips 

17. All other private transport trips 
18. All other walking biking trips 
19. Total public transport trips 
20. Total private transport trips 
21. Total walking biking trips 

Source 

1976 Census 
1976 Motor vehicle 
census 
1976 Census 
1976 Census 

WA Educ. Dept. 
WA Educ. Dept .  
Calculated 
1976 Census 

Calculated 

Main Roads Dept. 

Measured 
Calculated 
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DGT 
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tween available data and the need to characterise the city. The effects on 
fuel consumption and emissions of modifying driving patterns in selected 
areas (for example, through new roads or traffic management) cannot be 
adequately gauged without considering such things as possible changes 
in the use of public and non-motorised transport . Thus public transport 
and walking/ cycling data were included because these other forms of mo­
bility affect and are affected by driving patterns. Other variables, such 
as workforce location, land-use diversity or average distance between in­
tersections, would also provide useful measures of the urban system but 
were not readily available in sufficient detail. 

These initial parameters were used to define the twenty-two stan­
dardised variables shown in Table 2. Standardisation accounted for the 
marked variation in area and population between the different zones and 
also ensured the elimination of dependent ratios between variables. The 
resulting zones and variables accounted for 903 of Perth's population and 
753 of its urbanised area. The areas not covered are highly dispersed, 
low density suburbs with insufficient data available to incorporate them 
in this analysis . 

Cattell et al. ( 1966) defined a class as a clustering of objects wherein 
every object in the class is more like every other member of the class than 
it is like any object placed outside the class. Using this definition, Carlson 
(1972) developed a clustering technique that arranges zones into various 
homogeneous classes depending upon the input variables and a percent 
error factor. This technique defines the input variables as a number 
between 1 and 5. Hence the variables listed in Table 2 were classified for 
each zone in terms of their percentile distribution across the metropolitan 
area and redefined in the range 1-5. The boundary between percentiles 
was chosen subjectively to eliminate placing disparate variables in the 
same category when there were large differences in variable values. Such a 
technique defined seven clusters comprising thirty-four zones (four zones 
did not cluster) with a 1 03 error factor. 

Although these clusters appear to offer a reasonable framework, they 
were quantitatively evaluated through disciminant analysis (Finn ( 1977) ). 
In this, the actual value of each variable was used and it showed that a 
significant difference existed overall among the clusters with three dis­
criminant functions accounting for 88. 1  % of the between group variation. 
These functions could be classified as: 
Function 1 - 43.1 % of variation between clusters. This function appeared 
to relate chiefly to land-use intensity, all aspects of private vehicle usage, 
off-peak public transport usage and especially off-peak walking and cy­
cling. 
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Table 2: Standardised variables (after Kenworthy et al. (1992)) 

Social/economic factors 
1. Vehicles on register per person 
2. Vehicles parked at residence per person 
3. Household income 

Land-us e intensity factors 

4. Straight line djstance to CDB 
5. Urban density 
6. Dwelling density 

Main road availability 

7. Length of arterial road per vehicle on register 
8. Length of arterial road per hectare 

Congestion factors 
9. Vehicle kms per km per min 
10. Vehicle kms per hectare 

Public transport availabilty factors 
11. Length of public transport route per hectare 
12. Service kms per hectare 
13. Service kms per km 

Modal split factors 
14. % of journey to work trips by public transport 
15. % of journey to work trips by private vehicle 
16. % of journey to work trips by walking and biking 
17. % of other trips by public transport 
18. % of other trips by private vehicle 
19. % of other trips by walking and biking 
20. % of total trips by public transport 
21. % of total trips by private vehicle 
22. % of total trips by walking and biking 

Function 2 - 28.l % of variation between clusters. The main contributors 
to this function were the degree of congestion, intensity of public trans­
port routes and use of private vehicles for the journey-to-work. 
Function 3 - 16.  7% of variation between clusters. Modal split for off­
peak travel, proximity to the city and concentration of public transport 
services clearly defined this function. 
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tl. (1992)) To test if any clusters should be amalgamated the discriminant anal­
ysis was re-run using these functions as single variables . This provided 
cluster or cell means for each of these three composite variables and al­
lowed systematic tests to see where significant differences existed between 
clusters. In particular, the N ewman-Keuls method for testing differences 
between all pairs of ordered means gives 
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T: -T· 1 } qr= v'N ( 1) 

where qr is the test statistic to be compared to values in the distribution 
of the studentized range statistic ( r being the number of steps the two 
means are apart on an ordered scale) , Ti - Tj is the difference in the two 
means being compared, a the mean square error, and N the harmonic 
mean of the number of observations in each of the means. Undertaking 
this test , in turn for each of the three discriminant functions , suggested 
that there was support for amalgamating two of the clusters to form 
a single group whereas the remaining clusters warranted inclusion as 
distinct groups. 

3 Characteristics of homogeneous areas 

The discrimant analysis provided cluster means and standard deviations 
for each of the twenty-two variables , whereas a factor analysis provided 
the grand means and standard deviations for each variable based on the 
original thirty-eight zones. Knox ( 1 982) has shown that expressing the 
mean of each variable for a cluster in terms of standard deviations from 
the grand mean reveals patterns of differentiation between the clusters 
based on each variable. The patterns of differentiation in variables for the 
six groups have been summarised in Table 3, highlighting those variables 
which made a large contribution to the cluster's distinctiveness. 

In this table land-use, congestion anQ. public transport availability 
factors are listed as activity intensity because a high value for one of 
these factors is associated with comparably high values for the other two, 
relative to the average for Perth. Thus when urban density is high so are 
congestion and public transport availability. For modal split, there are 
consistently one or two variables which give each cluster a significantly 
different pattern of transport usage. As most journey to work trips are 
done during peak periods and most other trips during off peak times, 
Table 3 expresses modal split differences in these terms . Social/economic 
status is measured according to household income and vehicle onwership 



302 Urban Air Pollution 

Table 3: A summary description of the six driving pattern areas in terms of 
the major factors used to derive them (after Kenworthy et al. (1992)). Note 
all rankings of characteristics are made relative to Perth. 

Characteristics Social economic Activity Dominant modal 
status o{ r�sidents intensity o{ split features 

_ (household income area, land-use o{ residents 

and vehicle intensity, congestion, 
ownership) public transport 

availability 

Central core Very low Very high Peak period6 
Area I Low private 

vehicle usage, high 
public transport, 

walking, biking 

Inner suburbs Average to low High All period6 
Area 2 Very high public 

transport 

Middle Western Average to high Average to high Off peak 
suburbs Very low public 
Area 3 transport 

Middle South, outer High Low Peak period6 
North and Eastern High private vehicle 

Suburbs usage, low public 

Area 4 transport, walking, 
biking 

Outer South East Average Very low Off peak 
and North East Very high private 

suburbs vehicle usage, very 

Area 5 low walking, biking 

Northern State Low Average to low Off peak 
housing suburbs Very low private 

Area 6 vehicle usage, very 
high walking, biking 
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variables. Total vehicles on .register per person in an area tends to be a 
measure of the commercial/business nature of a zone as reflected in the 
enormous number of vehicles registered per person in the central core 
(Kenworthy ( 1986) ) ,  whereas people living in this area have very low 
vehicle ownership. Thus it is probably more a measure of congestion 
than social/economic status. 

The variables used to measure main road availability did not lead 
to a consistent picture across the urban area. For example, main road 
availability per vehicle on register in area 4 is higher than average, but 
per hectare it is lower than average. As well, in the central core where 
congestion is very high, main road availability is also high, but in the 
inner suburbs where congestion is still comparatively high, main road 
availability per vehicle is very low, but average on a per hectare basis. 
Overall main road availability does not appear to be a strong determinant 
of the clusters. 

A factor analysis program employing a principal component solu­
tion and Varimax rotation was applied to the twenty-two cluster analysis 
variables (Kenworthy et al. ( 1992) ) .  Combining the variables with high 
loadings suggests that the dimensions of the factors are 
1 - Private transport dominance, 
2 - Biking and walking facilitation for non-work trips, 
3 - Public transport facilitation, 
4 - Public transport usage for non-work trips, and 
5 - Main road availability. 
The spatial expression of these factors was found by defining a factor 
score as: 

(2) 

where Vi,j is the individual value of the variable i ( 1-22) for zone j ( 1-38), 
vi is the grand mean of variable i, O'j is the 'standard deviation of variable 
i and fi is the corresponding factor loading. Each range of factor scores 
was divided into five groups by taking the seven zones with the highest 
and lowest scores for each factor, plus three groups of eight zones each. 
The spatial distribution of these groups for Perth has been discussed by 
Kenworthy et al. ( 1989) ;  (1992) .  

These distributions show that the six areas of the city which were 
identified using the cluster analysis, are partly reproduced by the first 
factor of private transport dominance, which incorporates parameters 
associated with car availability, public transport availability and conges-
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tion. The spatial expression of this factor shows a clear pattern of private 
transport dominance for residents in Perth's outer suburbs with compar­
atively less emphasis on private transport and more emphasis on public 
transport/biking/walking for residents nearer the CBD. On the other 
hand, factor 3, public transport facilitation (with its land-use parame­
ters), is almost the inverse spatial pattern to that of private transport 
dominance. The inner areas are clearly dominant in characteristics that 
promote public transport us'age, especially for the journey to work, while 
the outer areas are almost uniformly the poorest at facilitating public 
transport due to their low density and comparatively low intensity pub­
lic transport service. 

If factor 3 is considered along with factor 1 ,  then the cluster analy­
sis result is almost reproduced. Thus the more urban an area becomes 
(defined in terms of its activity intensity), the more the area becomes 
oriented to public transport, biking and walking, and the less private car 
oriented it becomes for residents. On the other hand, the more suburban 
an area becomes , the more the area becomes dominated by private vehi­
cle usage and less public transport , biking or walking oriented. The other 
factors explain only a small amount of the variance and can be under­
stood by reference to specific Perth suburbs (Kenworthy et al. ( 1989) ). 

4 Route selection 

The usual approach to the collection of driving pattern data has been to 
choose a number of fixed routes throughout the city and to follow vehicles 
along these routes as many times as required to obtain a statistically 
meaningful sample (i .e. Watson ( 1 978) ; Kent et al. ( 1 978) ). Isolating 
a relatively small part of a total road network in an urban area so that 
the observed driving patterns are representative of the total network 
is a difficult problem. However, given the definition of homogeneous 
areas within the city, it becomes more a question of finding routes within 
these areas that are representative of vehicle travel within that area. 
As such the fixed routes are not meant to represent actual trips that 
an individual driver would make but rather attempt to characterise the 
various factors peculiar to a given area to determine the type of driving 
pattern experienced. 

Representative routes for this study were defined by utilizing (i) a 
detailed breakdown of daily vehicle kilometres of travel (VKT) according 
to road type and section of the city; (ii) average daily traffic flow data; 
and (iii) the Main Roads Department road classification system. 
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The VKT illustrated that any fixed routes need to include all road 
types to be representative. Thus fixed routes need to comprise road types 
in similar proportions to the amount of travel done on each road type in 
the area under consideration. It is also necessary to ensure road links of 
appropriate type and daily volume are incorporated into the fixed routes 
while maintaining the fixed routes within a given area. 

Given these constraints, a series of thirteen routes were chosen within 
the six homogeneous areas . These routes are described in detail in Ken­
worthy (1986) and all contain a mix of road types and volumes rep­
resentative of the specific area, with an overall mix of road types that 
approximate the proportions of daily driving done on different road types 
in Perth. 

5 Vehicle data collection 

Weekday driving patterns were characterised by collecting driving pat­
tern data on each on the thirteen fixed routes which were driven in morn­
ing peak, evening peak and off-peak using the chase car technique. This 
consists of randomly selecting a target vehicle in the traffic stream and 
following it, keeping as near as possible to a constant distance during 
cruise conditions, and constant time during acceleration and deceleration, 
but allowing a time lag <luring the latter conditions. Such a technique 
has been evaluated (Scott Research Laboratories (1971 ) ; Johnson et al. (1975)) and found to accurately represent the target vehicle's driving 
patterns . Where target vehicles turned off the fixed route, the nearest 
vehicle in front of the research vehicle was selected as the new target . 

The research vehicle was a 1980 General Motors Holden 3.3 litre, four 
speed manual, VC Commodore sedan equipped with a speed transducer 
capable of providing speed data at one second intervals resolved to 0.1 
km h-1 , a fuel meter and associated data logging equipment. Vehicle 
speed was measured through revolutions of the tailshaft and regular cal­
ibrations showed it to be accurate to within 0 .. 5%. Full details of the 
instrumentation is presented elsewhere (Kenworthy (1986) ). 

A minimum of five runs along each route in each period were logged. 
Morning peak sampling was carried out between 0700 and 0900 and 
evening peak between 1600 and 1800, with each route being driven in 
the one direction. This resulted in some 3000 kms of driving data spread 
across the urban area. 
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6 Peak and off-peak driving cycles 

Although statistically representative driving cycles can be generated from 
such data, they suffer a considerable loss in speed resolution (Lyons et al. 
{1986)), and emission estimates from modal synthetic cycles are affected 
by the loss of transient accelerations {Bulach ( 1977)). Hence, Newman 
et al. {1992) obtained representative driving cycles for each region by 
matching summary- characteristics of individual speed/time traces with 
averaged summary characteristics based on all data collected in each of 
the six areas and over each of the three time periods. This is consistent 
with the methodology of Kubler and Karstens {1978), who adopted 1 0  
summary variables t o  characterise urban driving. These were average 
speed, average running speed {i .e. excluding idle ped.ods), average accel­
eration of all acceleration phases, average deceleration of all deceleration 
phases, mean duration of a driving period from start to stop, average 
number of acceleration-deceleration changes within one driving period, 
proportion of time spent idling, proportion of time decelerating as well 
as the relative distribution of speeds and accelerations. Of these assess­
ment criteria, Kubler and Karstens (1978) considered it most important 
to match average speed, followed by average accelerations and decelera­
tions. Time proportions in the four operating modes were allowed less 
strict tolerances , whereas the other criteria were allowed large tolerances. 
Similar assessment criteria have been used in other studies (i.e. Watson 
et al. {1982); Lyons et al. ( 1986)). 

Overall statistics from the entire driving data defined target statistics, 
and the representative runs chosen for each time period to match these 
weighted target values are summarised in Table 4. In matching runs with 
the target values, the run which best matched average speed, stops per 
km, PKE and RMS acceleration was chosen. Although speed intervals 
were generally treated as a lower priority to the other parameters, runs 
were not considered that , for example, had extremely different percentage 
idle times from the target. Evans and Herman ( 1978) showed average 
speed is the primary determinant of fuel consumption in a range of urban 
driving and Kubler and Karstens ( 1978) also treated average speed as the 
primary variable. 

These cycles illustrate that Perth is comparatively free of congestion. 
Differences in average speed between peak and off-peak driving according 
to the weighted target values is only 4 to 5 km hr-1 and the average speed 
for any period does not drop below 40 km hr-1• The proportion of time 
spent idling in Perth in the off-peak is close to 10% while in peak periods 
it is 15%. 
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Table 4: Characteristics of target and actual driving cycles for Perth for each 
time period {after Newman et al. {1992)) 

MP OP EP 
Target Run Target Run Target Run 

Distance (kms) 15.8 15.8 18.4 
Duration ( s) 1448 1276 1626 
Average speed (km/h) 40.3 39.5 45.3 44.5 41.3 40.7 
Stops per km 1.04 1.01 0.73 0.76 0.95 0.98 
PKE (m/s/s) 0.42 0.41 0.41 0.43 0.43 0.42 
RMS accel. (m/s/s) 0.77 0.78 0.79 0.85 0.79 0.78 
3 Idle time 14.8 17.8 9.7 11.0 14.5 13.5 
3 Time within speed ranges 
0.1 - 7.0 km/h 4.6 4.0 3.6 4.0 4.5 4.7 
7.1 - 17.0 km/h 6.2 5.1 4.2 4.3 5.9 5.2 
17.1 - 27.0 km/h 7.5 8.0 7.0 6.9 7.1 5.6 
27.1 - 37.0 km/h 8.1 6.2 7.6 6.3 7.5 7.0 
37.1 - 47.0 km/h 9.9 11.4 10.3 8.7 9.2 10.3 
47.1 - 57.0 km/h 16.1 18.2 17.1 16.0 14.8 17.2 
57.1 - 67.0 km/h 21.9 13.1 25.3 27.5 23.0 29.4 
67.1 - 77.0 km/h 9.0 7.0 12.5 12.8 10.7 7.1 
77.1 - 87.0 km/h 1.7 8.5 2.4 2.6 2.7 0.0 
87.1 - 97.0 km/h 0.1 0.8 0.4 0.0 0.1 0.0 

The summary data for each of the six areas and three time periods 
form the target characteristics for each driving cycle. Selected individual 
driving traces that approximate these targets are summarised in Table 5. 

These driving cycles change from central core to outer suburbs in a 
visual pattern not unlike an expanding concertina, i .e. the traffic events 
are increasingly wider in their spacing (Lyons et al. (1986); Newman et 
al. (1 992)). This is expected as the number of intersections, and hence 
stops, decreases from central to outer �reas, leaving longer periods at 
higher speeds. Despite the difference in time spent at higher speeds , the 
major impression for all areas is a fairly uniform range of cruising speed 
towards which traffic returns after each stop or near stop. 

Previously driving cycles have been used in motor vehicle engineer­
ing, fuel consumption modelling, emissions testing and traffic manage­
ment but they also contain an imprint of the city through urban ecology. 
Newman et al. ( 1 992) suggested that driving cycles are an expression of 

c ., . • • ' . : �( 
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Table 5: Characteristics of representative driving cycles for each area and time 
period, where MP is morning peak, OP off peak and EP evening peak (after 
Newman et al. (1992)). 

Area Dist Average RMS Stops Idle Cruise Distance 
from Speed Accel. per km. Time Time dk 
CBD 
(km) (km h-1) (rri s-2) (km-1) (%) (%) (km) 

1 2 
MP 30.0 0.89 1.60 20.6 13.8 11.9 
OP 35.1 0.86 1.43 15.6 13.7 11.9 
EP 30.6 0.87 1.60 18.4 12.5 11.9 
2 5 

MP 36.4 0.80 1.39 17.9 27.5 14.5 
OP 43.1 0.82 0.84 9.6 38.3 14.2 
EP 38.8 0.85 0.95 17.9 30.3 16.8 
3 9 

MP 40.6 0.78 0.79 11.4 30.8 17.7 
OP 46.7 0.70 0.45 5.3 35.5 17.8 
EP 45.3 0.71 0.56 8.2 38.5 17.7 
4 13 

MP 37.6 0.77 1.08 14.3 30.6 19.4 
OP 46.8 0.80 0.67 10.1 46.7 19.4 
EP 41.1 0.76 0.82 18.3 33.7 19.4 
5 19 

MP 52.9 0.69 0.33 3.4 59.4 18.4 
OP 52.0 0.70 0.27 3.6 55.2 18.3 
EP 50.0 0.78 0.30 4.6 54.9 19.8 
6 11 

MP 42.4 0.74 0.72 13.3 36.7 19.4 
OP 47.4 0.76 0.54 11.3 44.7 20.3 
EP 45.2 0.76 0.64 14.4 49.5 20.3 
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traffic events made up of (i) intersection-related traffic events which are 
the primary physical obstacles to free movement , and (ii) vehicle-related 
traffic events which are those restrictions to .free movement caused by 
the number of vehicles on the road. In developing this conceptual model, 
Newman et al. ( 1992) defined these events directly in terms of the indi­
vidual speed/time histories giving the results shown in Table 6. 

Intersections are the dominant feature in the traffic system. These 
determine around 75% of the traffic events for most of the driving cycles. 
The exceptions are areas 5,6 in which intersections are responsible for 
97% and 82% respectively. Area 5 has virtually negligible vehicle-based 
traffic events consistent with its outer suburban character, whereas area 
6 has a relatively high proportion of uncontrolled intersections. In most 
areas the off-peak traffic events are fewer than the peak periods . There 
is a consistent decline in traffic events from central core to outer suburbs, 
which is mainly due to a decline in the number of intersections per km . 

7 Specification of emission factors 

Motor vehicles are the source of oxides of nitrogen (NOx), brake lin­
ing dust, hydrocarbons (HC), carbon monoxide (CO), smoke, aldehydes, 
lead salts and particles, rubber, gaseous petrol and carbon particles (Lay 
( 1984)). All of the CO and NOx are emitted from the exhaust pipe 
whereas approximately 50% of the HCs from an uncontrolled vehicle are 
emitted via the exhaust, with the remainder coming from the crankcase, 
carburettor and fuel tank vents (SPCC ( 1980) ). 

Evaporative emissions result from the fuel system leaking HCs to 
the atmosphere at a rate determined by the temperature of the system 
(diurnal emissions) and hot soak emissions occurring after the vehicle 
has been driven some distance, through heating of the carburettor and 
fuel lines (Nelson ( 1 981)). Hamilton et al. ( 1982) estimated evapora­
tive emissions from typical early 1970s vehicles as·0.8 g km-I and noted 
that these are generally constant throughout the life of the vehicle. Sub­
sequent to 1975, Australian emission standards (Table 7) have resulted 
in improved pollution control, as evidenced by Nelson ( 1981). He con­
firmed diurnal evaporative emission factors of 22.1 g vehicle-I day-I for 
uncontrolled (pre 1 975), and 5.1 g vehicle-I day-I for controlled vehicles, 
respectively; with hot soak emissions of 12 .5 g vehicle-I for uncontrolled, 
and 4.2 g vehicle-I for controlled vehicles. Consequently, evaporative 
emissions are a function of the age of the fleet whereas exhaust emissions 
are also dependent on vehicle driving characteristics. Hence the spatial 
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Table 6: Traffic events for each representative driving cycle in each area and and tempora 

time period (after Newman et al. (1992)). 
Table 7: ..1 

Total Intersection Vehicle Intersection 
traffic based based based 
events traffic traffic events as a 
per km events events proportion 

per km per km of total 3 
Area 1 

MP 2.77 2.27 0.50 82 
OP 2.69 1.85 0.74 69 
EP 2.61 2.10 0.51 80 

Average 2.69 2.07 0.62 77 
Area 2 Table 8: Ge1 

MP 2.21 1.52 0.69 69 vehicles ( afte 

OP 1.62 1.34 0.28 83 assuming an 
EP 2.14 1.55 0.59 72 

Average 2.00 1.47 0.53 74 
Area 3 

MP 1.92 1.47 0.45 77 
OP 1.35 0.96 0.39 71 
EP 1.41 ·o.96 0.45 68 

Average 1.56 1.13 0.43 72 
Area 6 

MP 1.34 0.98 0.36 73 
OP 1.08 0.94 0.14 87 
EP 1.23 1.08 0.15 88 

Average 1.22 1.00 0.22 82 
Area 4 

MP 1.70 1.29 0.41 76 strength is c 
OP 1.39 1.08 0.31 78 well as the< 
EP 1.44 1.08 0.36 75 Vehicle' 

Average 1.51 1.15 0.36 76 from the pr1 
Area 5 and travel fi 

MP 0.92 0.92 0.00 100 estimate ac1 
OP 0.93 0.87 0.06 94 the sources 
EP 1.11 1.06 0.05 95 From a· 

Average 0.99 0.96 0.03 97 ford ( 1979) 
conditions, . 
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and temporal variation of emission source 

Table 7: Australian emission standards , g km-1 (after SPCC (1980)) .  

Date of manufacture 
After 1 July 1976 After 1 January 1981 

co 24.2 18.6 
HC 2.1 1.75 

1.9 1.9 

3 1 1  

Table 8: General emission factors (g km-1) for heavy duty diesel powered 
vehicles (after 1 Stern (1976); 2 USEPA (1977)) and those used in this study 
assuming an average speed of 42.3 km h-1 (after 3 Luria et al. {1984)). 

Pollutant Emission Factor (g km-1)  
(1,2) (3) 

Particulates 0.8 
co 17.8 9.5 
HC 2.9 1.5 

NOx 13.0 10.2 
Aldehydes 0.2 

Organic acids 0 .2 
SOx 1.7 

strength is dependant on driving characteristics across the urban area as 
well as the age mix of the vehicle fleet. 

Vehicle emissions in Sydney were estimated by Stewart et al. ( 1 982) 
from the product of VKT, emissions per kilometre for each model year 
and travel fraction done by each model year. Although this gives a bulk 
estimate across the airshed it does not allow for the spatial resolution of 
the sources nor does it account for variations in driving conditions. 

From a preliminary dynamometer test of 28 vehicles, Kent and Mud­
ford ( 1979) found that typical emissions under Australian urban driving 
conditions, at · that time, could be expressed as :  

[CO] = 465s-0·97 (3) 
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[HG] = 21 .5s-0·73 (4) 

[NOx] = 2.2 + 0.008s (5) 

where [CO] is the carbon monoxide emission (g km-1 ) , [HG] hydrocarbon 
emission (g km-1 ) , [NOx] oxides of nitrogen emission (g km-1 ) and s 
the average vehicle speed (km h-1 ) . These are of a similar form to the 
estimates used by Iverach et 'al. ( 1976) ,  based on US experience, and 
equivalent to the vall.les employed by Taylor and Anderson ( 1982) . 

Such an estimation assumes emissions can be represented in terms 
of average speed alone. It neglects the influence of variations in driving 
conditions, particularly changes in acceleration, on emissions. For ex­
ample, Kent and Mudford ( 1 979) found that a three-dimensional plot of 
emission rates against speed and acceleration led to parabolic surfaces for 
CO and HCs, while NOx showed a general increase in emission rates with 
speed and acceleration. In particular, they found that both CO and NOx 
show marked increases in emission rate with positive acceleration. This 
cannot be accounted for from an average speed model and highlights the 
need to incorporate a wide range of accelerations and speeds to produce 
reasonably representative emission inventories. 

The spatial resolution of these emissions requires an integration of 
data concerning traffic flow characteristics with data on vehicle numbers , 
vehicle types and VKT. Previous work in this area has emphasised the 
latter data on vehicles and has lacked any detailed input about how 
those vehicles are being driven (SATS ( 1974) ;  Visalli ( 1981 ) ) .  A very 
basic approach to incorporate driving patterns has been attempted for 
Melbourne but uses only the standard Los Angeles driving cycle for its 
traffic characteristics (Neylon and Collins ( 1982) ) .  

The driving patterns for Perth (Table 5 )  illustrate a graduation from 
the CBD with higher speeds , longer cruise periods and shorter stops as 
you move further out. Average speed increases with distance from the 
CBD and is around 5 km h-1 higher in off peak driving except in the 
outer suburbs where driving is consistently free flowing. Stops km-1 
and root mean square acceleration are consistent with this and exhibit 
a general decreasing trend with distance from the CBD .  Thus , driving 
characteristics are determined by location within the urban area and it 
is reasonable to expect that vehicle emissions will also be dependant on 
location. 

The characteristic speed time traces for each region were converted 
into speed acceleration probability matrices, where each matrix cell, of 
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size 5 km h-1 by 1 km h-1 s-1 , contains the total number of one-second 
observations in the respective range from the representative driving cycle. 
Thus each matrix element represents the total time during the represen­
tative driving cycle that the vehicle was at that speed and acceleration. 

Post et al. ( 1985) extended the analysis of Kent and Mudford ( 1 979) 
to 1 77 Australian light duty vehicles in use, and obtained fleet averaged 
emission rates as a function of vehicle velocity and acceleration. Their 
results are presented at the same resolution as the speed acceleration 
probability matrices . Since cell averaged emission rates are indepen­
dent of the velocity profile followed by the vehicle (Post et al. ( 198la) ;  
( 1 981b) ) ,  these can be  used to estimate emissions for any driving pattern, 
assuming that the vehicles used by Post et al. ( 1985) are representative 
of the typical Australian urban fleet . Hence the total emissions over a 
representative driving cycle can be expressed as (Lyons et al. ( 1 990b)) 

i=n i=n 
[P] = ""' ""'  e ·  ·t · · D D  1,1 i,1 

i=l j=l 
(6) 

where [P] is the emission (g) of pollutant species P, ei,j is the emission 
rate (g s-1 ) of pollutant species P for the matrix element defined by 
velocity i and acceleration j (Post et al. ( 1985) ) ,  ti,j total time (s) vehicle 
spent at that velocity and acceleration during the driving cycle, and the 
summation is over all possible speed acceleration cells. [P] is the total 
emission over the period of the driving cycle. Hence the characteristic 
emission factor (g km-1 ) for that driving cycle can be represented as 

(7) 

where dk is the distance covered during the representative driving cycle 
(see Table 5) .  

Within Australia, exhaust emission rates for CO and NOx for heavy 
duty diesel powered vehicles remain uncontrolled and no locally validated 
data was readily available. Emission rates based on US experience and 
assumed independent of vehicle speed are listed in Table 8 (Stern ( 1976) ; 
USEPA ( 1 977)) .  These represent uncontrolled emissions averaged over 
a number of vehicles operating under a variety of conditions, and are 
consistent with the heavy duty emission rates used by Jakeman et al. 
( 1984) for Australian conditions. Luria et al. ( 1984) obtained similar 
values for buses and expressed the emission factors for NOx, HC and CO 
as a function of speed. They showed a marked decrease in  CO and HC 
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emissions with speed and an increase in NOx emissions up to a speed of 
40 km h-1 . In the absence of alternate emission factors these were used. 

Trucks within the Perth metropolitan area are mostly able to main­
tain easy cruise conditions and appear to avoid built up areas and peak 
conditions (Lyons et al. ( 1987) ) .  Unlike automobiles, their driving cycle 
shows no dependence on location or time period. Consequently, as the 
heavy duty diesel �mission factors are only expressed as a function of 
speed, the average speed from the Perth truck driving cycle of 43.2 km 
h-1 (Lyons et al. ( 1987)) was assumed for all truck emissions, leading to 
the emission factors shown in Table 8 .  

-

The total emission in any period and any area of the city can be 
expressed as 

m=n 
E = L[P]k,mVI<Tk,m (8) 

m=l 
where [P]k,m and V J<Tk,m are the emission factor and total V I<T, respec­
tively, for that time period and area and the summation is over vehicle 
type. 

Combining the characteristic driving patterns (Newman et al. ( 1992)) 
and the fleet emissions (Post et al. ( 1985)) leads to the automobile emis­
sion factors shown in Table 9 for each of the representative areas. As 
these factors are based on the same fleet data, the differences are di­
rectly attributable to the style of driving in each of the areas. This 
emphasises the contribution of variations in speed and acceleration pat­
terns across a metropolitan area in determining the spatial variation of 
emissions. Emission factors show the same decline as a function of dis­
tance from the CBD as traffic events. Since traffic events are directly 
related to the urban fabric this also illustrates the linkage between the 
physical structure of the city and motor vehicle emissions. 

The corresponding automobile emission factors based solely on aver­
age speed in each of the regions (Table 5) are shown in Table 10 .  With 
the exception of the NOx emission factors, the average speed factors are 
lower, as would be expected, since the incorporation of acceleration leads 
to greater variability in the driving patterns and hence higher emissions. 
The NOx emissions are higher because the average speed equation im­
plies a speed independent emission of 2.2 g km-1 (Kent and Mudford 
{1979)) compared to the idle emission of 0 .039 g min-1 of Post et al. 
{1985) . Their results also suggest that emissions of the order of 2.2 g 
km-1 are only observed under high acceleration which is not maintained 
for any length of time in representative urban driving cycles (Lyons et 
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al. ( 1 986) ) .  
Within Perth, areas 1 and 5 illustrate the greatest differences in  activ­

ity intensity ranging from the congested CBD,  with its greater reliance on 
public transport, to the private vehicle dominated outer suburbs. Emis­
sion factors, based on the speed/ acceleration distribution, show a de­
crease in emission factors between the CBD and the outer suburbs for 
NO.x corresponding to decreased accelerations characterised by high av­
erage speeds and maintaine� cruise conditions. Alternatively, emission 
factors based solely on average speed illustrate an increase as you move 
away from the congested CBD.  Thus, a simple average speed model sug­
gests higher emissions away from the congested CBD by not accounting 
for the marked acceleration changes induced by the congested stop start 
driving of the CBD.  

Although the rate of emission i s  a function of distance from the CBD ,  
the total source emission is the product of these emission factors with 
the total VKT in each region. Thus , the Perth metropolitan region was 
divided into grid squares of 1 km by 1 km and estimated daily VKT for 
each of these was obtained from traffic count information collected by 
the Main Roads Department (MRD ( 1986 ) ) .  Automatic traffic counts,  
of 1 - 3 days duration, are carried out on all major roads in the region, as 
well as points on these at which a change in volume might be expected. 
They are expressed as annual average weekday traffic flow and represent 
the 24 hour traffic volume passing through a site on a typical weekday 
(MRD ( 1986) ) .  

These individual grid values were summed to provided an overall 
measure of the recorded total daily VKT for Perth. Any shortfall be­
tween this figure and the estimated total VKT, listed in Table 1 1 ,  can 
be attributed to subarterial roads. This was allocated across the region 
on the basis of the recorded traffic volumes. 

The total truck VKT, given in Table 1 1 ,  was allocated to high truck 
usage routes in the metropolitan area (Lyons et al. ( 1 987)) on the basis 
of the total grid VKT and subtracted from the individual grid totals. As 
the truck driving cycle is independent of peak periods, the truck VKT 
was divided by 24 to represent an average hourly truck VKT. 

Twenty-four hour VKT weightings for Perth are 1 6.5% morning peak 
(0700 - 0900) ,  18 .5% evening peak ( 1 600 - 1 800) and 65% for all off-peak 
times (Kenworthy et al. ( 1 983) ) .  Consequently, the daily VKT for each 
grid square was corrected by these factors and divided by the length of 
the period to provide an hourly estimate of non-truck VKT. 

The truck and non-truck VKT were then multiplied by the appro­
priate emission factors (Tables 9, 8) ,  to provide an estimate of the total 
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Table 11: Estimated total VKT (Vehicle Kilometres Travelled) for Perth 1985. 
Note weekend VKT is estimated at 1.5 average weekday VKT (after ABS 
(1985)). 

Vehicle Class Total Annual VKT Equivalent average daily VKT 
(109 km) (107 km) 

Automobiles 6.996 2.064 
Utilities/Panel vans 1.168 0 .345 
Total motor vehicles 8.164 2.409 

Trucks 0.445 0 .131 
Motor cycles 0 . 138 0.041 

Total 8.747 2.581 

Table 12: Variation of CO/NOx ratio across the Perth airshed resulting from 
temporal and spatial variations in driving patterns, where MP is morning 
peak, EP evening peak and OP off peak (after Lyons et al. (1990b)). 

Region CO/NOx Ratio 
MP EP OP 

(0700-0900) (1600-1800) 
1. Central Core 9.44 9.84 6.65 
2. Inner suburbs 8.84 9.01 6.72 
3. Middle western 
suburbs 9.06 8.45 7.1 7 
4. Middle south, outer 
north and eastern 
suburbs 8.88 . 8.12 6.38 
5. Outer south east and 
north east 
suburbs 8.07 8.34 7.47 
6. Northern state 
housing suburbs 8.43 8.05 6.26 
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vehicle exhaust emission across the metropolitan area. Additional evap­
orative emissions are accounted for from the distribution of registered 
vehicles and added to the total for HC. Such calculations yield the spa­
tial variation of emissions (Lyons et al. ( 1990b) ) .  

These emission totals are not directly verifiable as they are based 
on average traffic conditions across the metropolitan area, which are not 
necessarily observed on any one day. However, they do indicate the spa­
tial variation in sol!-rce strength and provide an indication of the relative 
magnitude of pollutant sources in different regions which is essential for 
appropriate air quality modelling. An alternative statistic can be ob­
tained from Table 9 by computing the predicted CO/NOr ratio on the 
basis of both time period and location (Table 12) .  

The greater congestion and higher accelerations as you approach the 
CBD leads to an increase in the CO /NOr ratio of pollutants emitted 
from the exhaust pipe. As both smog-chamber and computed results 
suggest that added CO accelerates the depletion of NO and the genera­
tion of N 02 as well as enhanced generation of 03 through N 02 photolysis 
(Demerjian et al. ( 1974); Drake et al. ( 1979) ) ,  the change in driving pat­
terns brought about by increased congestion enhances smog formation, 
through increased CO generation per kilometre of travel. Given the in­
creased concentration of vehicles using the CBD this becomes significant . 
If evaporative emissions are also included, the greater number of vehi­
cles in the CBD would lead to a corresponding increase in HC emissions 
(Lyons et al. ( 1990a) ) .  

8 Conclusions 

Since driving patterns are an integral part of the urban fabric, they can­
not be sampled in isolation from an holistic concept of the city. Thus 
the city transport infrastructure is defined in terms of social/economic, 
land-use and transportation factors to define homogeneous areas within 
the Perth metropolitan region. Clustering techniques combined with fac­
tor analysis illustrate that homogeneous areas can be defined directly in 
terms of their activity intensity, modal split and social/economic status. 
This illustrates that the more urban an area becomes the greater its re­
liance on public transport whereas, conversely, the more suburban, the 
greater the reliance on private vehicle usa�e. 

The analysis of actual speed-time traces of representative driving in 
different areas and time periods, illustrates how traffic conditions change 
in a relatively ordered way from central to outer areas. These changes 
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are based primarly on a decrease in intersection-based traffic events from 
central to outer areas, and secondarily on a general decrease in the num­
ber of vehicle-based traffic events. These results also illustate a number 
of important traffic parameters vary systematically with distance from 
the CBD . 

This pattern of traffic events has a broader land-use base. In the 
central areas of comparatively high congestion, land-use intensity is also 
high; in the outer areas the reverse is true. There is greater walking, 
bicycling and public transport in central areas and higher car dependence 
in outer areas. The progressively freer fl.owing driving patterns from 
central to outer areas , are thus associated directly with a variety of wider 
land-use and transport features, which also vary systematically according 
to centrality. 

The motor vehicle emission inventory integrates data on traffic condi­
tions with emission factors that incorporate the effects of both speed and 
acceleration. This highlights the impact of varying driving conditions on 
the spatial and temporal resolution of vehicle emissions, and illustrates 
that traffic congestion enhances pollutant production through increased 
variations in vehicle accelerations . 

In particular, the greater congestion and corresponding variations 
in acceleration within the CBD, increases the production of pollutants 
and the potential for photochemical smog through enhanced CO produc­
tion. As the central core facilitates air quality emission stress through its 
greater congestion, this suggests that urban planning can influence air 
pollution through planning for reduced congestion and more free fl.owing 
traffic. Such a conclusion assumes a linear relationship between traf­
fic fl.ow and emissions which Lyons et al. ( 1990a) and Newman et al. 
( 1992) dispute in arguing that the extra road building required to reduce 
congestion would only further extend urban sprawl and create greater 
vehicle usage. It is a prescription for increasing total emissions whereas 
increased intensity of urban activity can be used to reduce automobile 
dependence leading not necessarily to a reduction i11 congestion but a re­
duction in overall emissions (Newman et ,al. ( 1988) ; ( 1992); Kenworthy 
et al. ( 1989) ) .  
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