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ABSTRACT 

Similar to supply air jets in mixing 
ventilation this paper describes a compre
hensive flow model for displacement venti
lation derived from the integrated Navier
Stokes differential equations for boundary 
layers. A new test method for low velocity 
diffusers in displacement ventilation is de
veloped based on this new flow model. 
Contrary to jet flow, it is shown that the 
only independent variable in the new model 
is the buoyancy flux. In addition to this 
variable the calculations need a single em
pirical constant which is determined from a 
limited nwnber of full scale tests of a lim
ited number of similar shaped diffusers of 
different size. There are made a number of 
tests to try out the new model. 

The results are promising. For plane 
(two dimensional) flow the velocity acceler
ates to a constant value. For radial flow 
there is also an acceleration zone, after 
which the velocity decays. Both theoretical 
and empirical data predicts that for similar 
shaped diffusers the width of the near zone 
(distance from the centre of the diffuser to a 
chosen velocity depends only on the buoy
ancy flux, not the dimensions of the diffuser 
(radius and height). One consequence of this 
is, among others, that the width of near zone 
cannot, for a certain air flow rate, be short
ened by choosing a larger radius and a lower 
height of the diffuser. The diffuser constant 
K for radial diffusers has, however, turned 
out to be more or less dependent on the dif
ference in temperature between the· supply 
air and the room air, probably due to that the 

outflow is not ideally radial and the effect of 
the temperature difference is to make the 
flow become more radial. The new model 
also enables the designer to calculate the 
near zone for arbitrary air flow rate, supply 
air temperature and arbitrary supply diffuser 
size of similar shaped diffusers. Practical 
benefits are, among other things, improved 
test standards and design methods for dis
placement ventilation. 

INTRODUCTION 

There are lacking aero- and thermody
namic models for the near zone of the air 
supply diffusers in displacement ventilation. 
Because of lacking flow models it is expen
sive to give valid near zone data for all 
combinations of supply air flows and supply 
air temperatures. Manufacturers of the dif
fusers supply test data which may be diffi
cult to extrapolate to the actual situation. 
The aim of this paper is to supply new 
knowledge into this field and to present a 
more scientific based, and less expensive, 
test method and design guide for low veloc
ity air diffusers in displacement ventilation. 

THEORY 

Basics 

The type of flow is a kind of boundary 
layer flow, fig. I, but it does not exhibit the 
features of self preservation. Because it is a 
boundary layer flow the boundary layer 
momentum equations apply: 
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diffeser. Supply air temperature lower 
than room air temperature. 

There is no external pressure gradient 
in the flow region so that the pressure gradi
ent is totally governed by the internal 

·(thermal buoyancy) forces. When the out
flow has a lower temperature than the sur
rounding air, the equation for the static pres
sure difference between the location (x,y) 
and a point at the same level in the room 
outside the boundary region becomes: 

Af'xy = ghnP1(Y}-Pr Yth(x) y 

fl (p,(y)-p,)d ; = gp,h(x) -( ) y/h(i) /7, h x 

Further relations are: 

p1(y)-p, = pJJ!lT1(Y) 

(2) 

!lT1. = T, -r1 "=Temperature difference between the 
boundary flow and the room air 

p = J_ =Volumetric thermal expansion coejf T, 
In the following we substitute h(x) 

with the parameter h. The final equation for 
the pressure difference in the boundary layer 
at a location (x,y) then becomes: 

I (!lT1(y)) y 
= gp,JMT,.h f -- d-yth !lTm h 

(.J) 

For the bottom stream line the pres
sure equation becomes: 

!lP = gp,p!lTmhf (!lT1(Y))dL 
"Y1y=O) 0 !lT,. h (4) 

= gp,/J!lT,.hi1(x) 
Ji(x) is the integral if the dimension

less temperature profile, in principle a func
tion ofx . 

Just for information the energy equa
tion can be used to express 6.T., in terms of 
qv. Differentiating equation 4 with respect to 
x gives the pressure gradient along the bot
tom stream line: 

(5) 

!.::! m0�t �!t>.!�t!•:m� 'h- wm not vary 
much, but it is necessary to incorporate the 
initial induction when calculating LIT m· The 
energy equation tells us however that 
(qvL1Tm) is constant and equal to (qvo LtTo) 
implicitly suggesting that the buoyancy flux, 
gptJ..T.,q,, does not vary with x. 

Before sol".ing the differential equa
tion for the bottom stream layer it is con
venient to change the continuity equation in 
equation 1 somewhat. We assume insignifi
cant induction in the acceleration section 
and, integrating the continuity equation 
across the boundary layer, we can express 
the velocity at the bottom plane through the 
total flow rate, qv, of the boundary layer. We 
get: 

J_f o(ux') dh+ f bV dh =J_�(Umhx')J _!!_dl_= O 
x' 0 arc 0 0' x' arc 0 u;.. h 

For a constant flow rate, qv, V=O both at the bottom 
plane and at the outer boundary. Then: 

�(u ,.hx'}f !!._d!._ = �(I2(x)U mhx') = .0 
arc 0 um h arc 

' (6) ( l2(x)U ,.hx'} =cons/.=;: 
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um is then given by: 

u = 
q. (71 

"' I2(x)iP'hx' 
/ 

The momentum equation in equation I 
can now be transformed to be valid for a 
stream layer at the bottom plane: 

U GU+ V GU = _ _!__!_.!!_(x' Af> 0) 
iJx 01. x' p dx ' 

(8) 

The justification for the expressions 

above is that v GU "' o at the bottom plane. 01 . 
U is substituted by Um in equation 7. 

x' q
. iJ ( q

. ) = -±(x' Pl (x)aT h) /2(x)¢' hx' iJx /2(x)¢' hx' dx g 1 "' 

Which further expanded yields: 
I lx' d d · 2 • 3 (12(x)hx')=gP-(11(x)aT.,hx') 
2 (¢') (12(x)hx') dx dx 

(9) 
ti.T,,, is a function of x because the pro

files change with x. However through the 
energy equation we can link it to the inflow 
conditions: 

aT,.; ::!b!- lz(x) aT0 
q, J,(x) 

/3(x) is the integral of the produc( of the dimen
sionless velocity- and temperature profile and is in 
principle a function of x. 

Substituting this expression in equa
tion 9 vi get: 

.!. q!x' d (12(x)hx') 
2 (¢'}2(I2(x)hx'f dx 

= gp±(!b2.. li(x) 12(x)aT0hx') 
dx q. /3(x) 

Here q. is the flow rate after the pri
mary induction when for instance a perfo
rated plate is used. Later the induction is 

small so we can put !l..!E. constant. Another 
q. 

considered constant. 
Altogether an acceptable simplifica-

tion will be that: q.o 11<x> =constant. 
q. /3(x) 

Finally we can rewrite equation 9 in 
the following way after gathering the de
rivatives: 

±.(12(x)hx'[ 1 q;x' - (!i)(x) :fu._g/JllTol � 

dx 
� 2 (¢'}2(I2(x)hx'Y (!lXx) q. 

(IO) 
Eq. 10 bas three possible solutions. 

Either the derivative is zero or the expres
sion within the parenthesis is zero or both 
are zero. The first alternative means that 

(Ji(x)hx') is constant. But this has no 

meaning in the acceleration section because 
this implies that the velocity is constant. 
Letting the value of the parenthesis expres
sion be zero we obtain the lowest value of 

(12(x)hx') or the value of (I2(x)hx') which 

gives the maximum value of the velocity. 
The derivative and the parenthesis may as a 
third alternative be zero simultaneously. 
Anyway we get: 

/2(x)hx'= [ 1 q�x' ]! 
2 11 (x)q.o (¢'}

2 g/JllTo /3(x)q. 
Which substituted into eq. 7 gives: 

I 

U =(2 f1(X) g/JllToqvo)j "' /3(x) ¢'x' 

(11) 

Equation 11 gives the maximum value 
of the maximum· velocity at the bottom of 
the boundary layer. For a radial flow pattern 
this is a function of the distance x. The pro
cedure outlined here does not allow us to 
establish an expression for calculating the 
distance x where the m�um value occur. 

The result shows that the maximum 
velocity is uniquely determined by the 
buoyancy flux of the inflowing air(qv0gpaT0). 
The relevance of the buoyancy flux is 
among others discussed by Sandberg (1991). 
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Plane flow 
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Plane flow is two-dimensional without 
;:my radial spread, fig 2, and is seldom real
ised in practice. In eq. i 1 we put r=O and we 
get the following expression for J2(x)h and 

Um (from eq. 6 and 11). The buoyancy flux 
is given per unit length of the diffuser. 

solution and consequently needs to be de
termined experimentally or numerically. 

Radial flow 

In practice most low velocity diffusers 
develop/exhibit a radial tlow pattern, fig 3, 4 
and 5. In eq.11 we put r=l and we get the 
following expression for I2(x)h and Um 

(from eq. 6 and 11). The buoyancy flux is 
given per unit length of the diffuser. 

(14) 

(15) 
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Fig.2 Plane, two-dimensional flow. 

(12) 

(- r, ) i . ( ).!. 3 Um= 2f;gpti.T0qvo =KP g/JllT,,q.o 3 (1 )  

The order of magnitude for the con
stant KP in equation 13 is found by putting 
actual numerical values into lhe expression: 

Jj y; 
K "' (2_!.L) 3 

= (2�) 3 "'I 5 p 11 0,368 ' 

(We have used relevant values calculated for ordi
nary jet flows, Abramovich (1963).) 

The analysis shows that the maximum 
velocity is uniquely determined by the 
buoyancy flux of the supply air. The result 
also shows that the velocity is constant in 
the far region, quite similar to what is found 

nominator in expression 15 with x0, eq. 15 
is transtormed to: 

(16) 
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/ . 

Fig 3 Radial flow pattern. 

Here qvogPti.To is the buoyancy flux 
Fa 

per unit horizontal length of the diffuser 
front, because ifrxo is the circumference of 

the diffuser, which we may choose to denote 
L. When the radial flow has expanded to the 
side walls or symmetry boundary for neigh-
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(constant velocity for larger distances). 

The solution gives the relation be
tween buoyancy flux, distance from the dif
fuser and the maximum velocity 
(acceleration velocity) for radial flow. The 
solution does not give any information about 
the length of the acceleration region and no 
4iformation about the rate at which the ve
locity decrease after the initial acceleration. 

It is a problem in radial flow, contrary 
to two-dimensional flow where the x-value 
does not appear, that the x-value for maxi
mum velocity cannot analytically be deter
mined. However, tests have shown that the 
value for x I x0 at maximum velocity does 
not vary very much for a set of similar 
shaped diffusers. The value seems to be 
within a span of 2,5 - 3,5. This implies that 

• • •u • 
• • • • • 

Fig 4. Horizontal flow pattern behind a plane 
diffuser. 

Verification 

Table 1 
QvO [m3/h) 
200, 
311, 
420, 
310, 
309, 
309, 
310, 
179, 
292, 
399, 
309, 

QvO [m3/s] 

0,05556 
0,08639 
0,11667 
0,08611 
0,08583 
0,08583 
0,08611 
0,04972 
0,08111 
0, 11083 
0,08583 

�t [K) L[m] Xo[m) 

3,0 0,785 0,25 
3,1 0,785 0,25 
3,2 0,785 0,25 
5,2 0,785 0,25 
8,2 0,785 0,25 
3,1 0,785 0,25 
3,2 0,785 0,25 
3,1 0,393 0,125 
5,1 0,393 0,125 
8, 1 0,393 0,125 
7,3 0,785 0,25 

an expression of the type: 

U =K (qvogfJl!iTo)
Yi 

m r L (17) 
The order of magnitude for the con

stant K,. is found by putting relevant numeri
cal values in eq.16: 

K, "'[2-11 JY, = (1�) Y, "' l. 
I x,,, 0,368·3 

3-
Xo 

We have here in the same way as for two
dimensional flow used values for the profile integrals 

from jet flow. 

The buoyancy flux, qv gflATm , is how
ever constant and can be set equal 
to: qv0gjJAT0, where subscript o refers to the 
supply outlet where: l!iT0 = r. - r, 
T, = supply air temperature 

Xm[m] 

0,85 
0,56 
0,47 
0,77 
1,09 
0,59 
0,57 
0,38 
0,37 
0,50 
1,03 

Fig.5. Horizontal flow pattern behind a 
radial diffuser. 

Ts [K) Ho[ ml Aro Um [mis] 

292 1,0 20,1 0,300 
292 1,0 8,6 0,440 
292 1,0 4,9 0,640 
290 1,0 14,6 0,455 
286 1,0 23,5 0,510 
292 0,8 4,5 0,450 
292 0,5 1, 1 0,515 
293 1,0 6,5 0,620 
291 1,0 4,0 1,020 
287 1,0 3,5 1,430 
282 1,0 21,2 0,480 

Kr 
1,56 
1,95 
2,54 
1,70 
1,63 
2,00 
2,26 
2,63 
3,10 
3,35 
1,59 
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tests, Wulff (1995), on a series of similar 
diffus�rs where K, is calculated from eq. 17 
based on test-data. As we can see the con
stant is not very much "constant". A com
prehensive paramder study was performed, 
also involving the Archimedes number. This 
resulted in the following: The flow pattern is 
not strictly radial but is influenced by the air 
flow per unit length and the temperature 
difference. "Incrt:asing flow rates (inertial 
effect) reduces the radial effect, and an in
creased temperature difference (buoyancy 
e1Tt:cl) has an opposite effect. The constant 
K, showed to be a function of the parameter 

(L1Tof(qvoJL}1) only. The height of the dif
fuser, and indirectly the Archimedes num
ber, did not matter. In fig. 6 is shown an 
example from a test st:rit:s where airflow 
rates. diffuser height, diffuser radius and 
temperature difference were varied. The 
result could be uniquely correlated in the 
following function: 

K = 25 4 llTo 
( )--0,44 r ' 2 q,, 

(18) 

Increased air flow rate increases the 
constant while increased temperature differ
ence has the opposite effect. 

FOr two-dimensional flow we found 
that the velocity is constant in the far region 
analogue to two-dimensional convection 
plumes. If in radial flow there is an analogy 
to three-dimensional convection plumes the 
velocity decay in the far region should obey 
the following relation: 

Um:::i(x0+xr� 
Our test data, fig. 7, indicate· that the 

decay· exponent is closer to -1. Work carried 
out by Peter V. Nielsen et al in Den
mark(1998, 1991 and 1992) also indicates 
that the exponent for x is more like -1 in the 
far region. We therefore adopt the exponent 
-1 in the far region for radial flow. 

Then the following interesting rela
tions can be derived for the far region.: 

f lJ>') 

x1 is the x-value where the decay curve 

crosses the ordinate value 1 ( � = 1) 
um 
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Fig. 7 Velocity as a function of x. 

10 

For a certain, arbitrary chosen, veloc
ity the following relation is valid in the far 
region, based on eq. 16 and 19: 

When the chosen constant velocity is 
f.ex. 0,2 mis we can put xu=xo,2• 



ers, tests have mdicated that the following 
relation holds: 

! 1 
(:J' (:J' �onstant 

Then we can postulate that test data 
should obey the following relation in the far 
region for a set of similar shaped diffusers.: 

Yi 
U - = K (qvogf1ilTo)Yi[_I ] (21) U-ki>nst rU l Xu 

Xo 
For a product series of similar shaped 

diffusers it can be expected that test data 
should obey the following relation in the 
region with decreasing velocity between the 
distance from the diffuser and an arbitrary 
chosen constant velocity: 

(22) 

The constant K.-u must be experimen
tally (empirically) determined. 

2,00 

i 1,50 
i 
J 1,00 

0,50. 

0,00. 
0 10 20 30 

Fig. 8 K,0,2 determined.from tests usingeq.22 

In fig 8 the constant Kr is calculated 
from the same tests as shown in table l 
based on eq. 22. As we can see the constant 
is not very much "constant". A comprehen
sive parameter study showed that in this far 
region only the temperature difference mat
ters. The explanation is the same as for the 
acceleration region that increasing thermal 
forces (buoyancy) increase the radial effect 

inertia forces have no effect in this region. 
Fig. 9 shows the temperature effect a.tld the 
good .correlation between the constant Kru 
and the temperature difference. Again the 
height of the diffuser and, indirectly, the 
kchimedes number does not matter. 

10,00 

� ... .. • 
1,00 

1,0 DTo 10,0 

Fig 9. K,uvaries uniquely with LlTo-

The temperature function for this test 
series became: 

. (23) 

This temperature function (tempera
ture and flow rate function for the maximum 
velocity) is different for different diffuser 
design. Having ideal diffusers with ideal 
radial flow, the exponents in these functions 
are expected to become zero. Then the con
stants in equations 7 and 22 is really cqn
stant. Low K-factor is equivalent !O good 
lateral spread. 

The relations shown indicate that for a 
set of similar shaped diffusers it is not nec
essary to test more than a few sizes and 
loads to determine Kru· Further it ·is suffi
cient to document a few velocities like 0,15, 
0,2 and 0,25 mis. The formulas make it pos
sible to calculate the distance from a dif
fuser, (xu -x0), where a given velocity oc
cur, using arbitrary combinations of tem
perature differences and air flow rates. 

In other words, a semiempirical model 
is developed making it possible for a de
signer to choose the right diffuser for a cer-
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manufacturer needs to detennine in a stan
dardised test for each velocity chosen to be 
documented. 

Performance documentation of air djffu
sion devices 

Performance documentation should 
contain the following information as a func
tion of size and flow rate; 

• Max.imwn velocity for the near zone of 
the diffuser as a function of distance and 
the temperature difference between the 
supply air and the air temperature l, 1 m 
above floor level, i.e K,. or �· 

• lsovel envelopes to show the spread of 
the air flow, i.e K.u· 

• The relative temperature increase in the 
near zone. 
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LIST OF SYMBOLS 
g -Acceleration due to gravity 
h - Coordinate of boundary layer border 
H -Height of diffuser 
I -Pro.file integral 
K -Performance constant 
L - The horizontal perimeter of a diffuser 
P -Pressure 
qv - Flow rate 
x - x-coordinate 
y - y-coordinate 
T - Absolute temperature 
U - Velocity in x-direction 
V - VP!nrity in y-direction 

p - Density of air 

P - Thermal expansion coefficient 

¢- Angle of spread 

Subscripts 
0 - location of outlet 
1 - location of maximum velocity, classifi-

cation of profile integarl 
2, 3 - classification of profile integral 
m-maximum 
p-plane 
r - radial, in the room 
f -in the flow 
s - supply 

U - a fixed arbitrary velocity 


