
AN INTRODUCTION TO AIVC 11201

THE PHYSICAL MODELING LANGUAGE MOD~L.tva

ABSTRACT

Hilding Elmqvist

Dynasim AB
Research Park !dean

SE-223 70 Lund, Sweden
E-mail: Elmqvist@Dynasim.se

A new language called Modelica TM for physical model­
ing is developed in an international effort. The main
objective is to make it easy to exchange models and
model libraries. The design approach builds on non­
causal modeling with true ordinary differential and al­
gebraic equations and the use of object-oriented con­
structs to facilitate reuse of modeling knowledge. There
are already several modeling language based on these
ideas available from universities and small companies.
There is also significant experience of using them in
various applications. The aim of the Modelica effort is
to unify the concepts and to design a new uniform lan­
guage for model representation. The paper describes the
effort and gives an overview of Modelica.

INTRODUCTION

Mathematical modeling and simulation are emerging as
key technologies in engineering. Relevant computerized
tools, suitable for integration with traditional design
methods are essential to meet future needs of efficient
engineering.

In October 1996 an international effort started to
design a new language for physical modeling. The
language is called Modelica 1. The main objective is to
make it easy to exchange models and model libraries
and to allow users to benefit from the advances in object­
oriented modeling methodology. This paper presents the
status of the Modelica design as of August 1997.

Today's simulation tools

There is a large amount of simulation software on
the market. All languages and model representations
are proprietary and developed for certain tools . There
are general-purpose tools such as ACSL, SIMULINK,
System Build. They are based on the same mod­
eling methodology, input-output blocks, as in the
previous standardization effort, CSSL, from 1967
[Strauss (ed.) (1967)J . There are domain-oriented pack­
ages: electronic programs (SPICE, Saber), multibody
systems (ADAMS, DADS, SIMPACK), chemical pro­
cesses (ASPEN Plus, SpeedUp) etc. With few excep-

1 Modelica is a trade mark of the Modelica Design Group

Sven Erik Mattsson

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
E-mail : SvenErik@control.LTH.se

tions, all simulation packages are only strong in 0

d . d M omam an are not capable of modeling components in
o~her domai.ns reasonably. This is a major disadvantage
smce technical systems are becoming more and more
heterogeneous with components from many engineering
domains.

State-of-the art

Techniques for general-purpose physical modeling have
been developed during the last decades, but did not re­
ceive much attention from the simulation market. The
modern approaches build on non-causal modeling with
true equations and the use of object-oriented construct..
to facilitate reuse of modeling knowledge. There are
already ~everal modeling languages with such a sup·
port available from universities and small companies.
Examples of such model ing languages are ASCEND
[P iela et al. (1991)J, Dymola [Elmqvist et al. (1996)J.
gPROMS [Barton and Pantelides (1994)], NMF [Sahlin
et al. (1996)], ObjectMath [Fritzson et al. (1995)1.
Omola [Mattsson et al. (1993)j, SIDOPS+ [Breunese
and Broenink (1997), Smile [Kloas et al. (1995)1, U.L.M.
[Jeandel et al. (1996)] and VHDL-AMS [IEEE (1997)!.
There is also significant experience of using these Ian·
guages in various applications. The aim of the Modclic•
effort is to unify the concepts of these languages in ordtt
to introduce common basic syntax and semantics and 10

design a new unified modeling language for model r11p­
resentation.

The Modelica effort
The work started in the continuous time domain si(l('f
there is a common mathematical framework in the form
of differential-algebraic equation (DAE) systems 1114
there are several existing modeling languages b...,...
on similar ideas. There is a lso significant expcrien~ ti
using these languages i n various applications. It _ _...
thus appropriate to collect all knowledge and expen'°"'
in order to design a new unified modeling Ian~
or neutral format for model representation. 'fho ~
range goal is to design a modeling language •
on DAE systems with some discrete-event featu~
handle discontinuities and sampled systems. The
should allow an evolution to a multi-formalism. ISi

domaih, general-purpose modeling language.

110

e

e
e
t

d
0

n
\-

Table 1 The active members of the Modelica design
group.

Fabrice Boudaud, Gaz de France

Jan Broenink, Univ. of 'I\vente, Netherlands

Dag Bruck, Dynasim AB, Lund, Sweden

Hilding Elmqvist, Dynasim AB, Lund, Sweden

Thilo Ernst, GMD-FIRST, Berlin, Germany

Peter Fritzson, Link.oping University, Sweden

Alexandre Jeandel, Gaz de France

Kaj Juslin, VIT, Finland

Matthias Klose, Technical Univ. of Berlin

Sven Erik Mattsson, Lund University, Sweden

Martin Otter, DLR Oberpfaffenhofen, Germany

Per Sahlin, BrisData AB, Stockholm, Sweden

Hubertus Tummescheit, DLR Cologne, Germany

Hans Vangheluwe, University of Gent, Belgium

The members of the Modelica design group are
listed in Table 1. Hilding Elmqvist is the chairman.
Information on the Modelica effort is available on WWW
athttp://www . Dynasim.se/Modelica/.

The activity started in October 1996 as an effort
within the ESPRIT project "Simulation in Europe Basic
Research Working Group (SiE-WG)". Information on
SiE-WG can be found in Vangheluwe et al. (1996) and
the at home page http : I /hob bes . rug . ac . be/SiE/.

In February 1997 the Modelica design effort became
a Technical Committee within the Federation of Euro­
pean Simulation Societies, EUROSIM.

MODELICA FUNDAMENTALS

In order to give an introduction to Modelica we will con­
sider modeling of a simple electrical circuit as defined
in Figure 1. The system can be broken up into a set
of connected electrical standard components. We have
a voltage source, two resistors , an inductor, a capaci­
tor and a ground point. Models of these components are
tyPically available in model libraries. Using a graphical
~odel editor we can define a model by drawing an object
diagram as shown in Figure 1, by positioning icons that
represent the models of the components and drawing
connections.

~
::0

"' .!'.. .!'..
)> 0 0

0

• ()
II

"' :OS ()
II r
0 II

~
0
:....

Figure 1 A simple electrical circuit.

111

The corresponding Modelica model looks like

model circuit

Resistor Rl (R=lO) ;

VsourceAC AC;

Capacitor C (C=0.01);

Ground G;

Resistor R2 (R=lOO);
Inductor L (L=0.1);

equation

connect(AC.p, Rl.p) ; / / Capacitor circuit

connect(Rl.n, C.p);

connect(C.n, AC.n);

connect(Rl . p, R2 . p) ; I I Inductor circuit

connect(R2.n, L.p);

connect(L . n , C . n);

connect(AC.n, G.p);

end circuit;

This composite model specifies the topology of the
system to be modeled. It specifies the components and
the connections between the components.

The statement 'Resistor Rl (R=10);' declares a
component Rl of class Resistor and sets the default
value of the resistance R to 10.

Connections specify interactions between compo­
nents. In other modeling languages connectors are re­
ferred to as cuts, ports or terminals. A connector must
contain all quantities needed to describe the interac­
tion. For electrical components we need the quantities
voltage and current. Their types are declared as

type Voltage = Re al (Unit = "V") ;

type Current = Real (Unit = "A");

where Real is the name of a predefined type. A real
variable has a set of attributes such as unit of measure
minimum value, maximum value and initial value. '

To simplify the use of Modelica and to support com­
patibility, there is an extensive standard library of type
definitions which always is available with a Modelica
translator. The type definitions in this base library are
based on ISO 1000 and its naming conventions for phys­
ical quantities. Several ISO names are long, which make
them awkward in practical modeling work. For this rea­
son, shorter alias-names are provided if necessary. The
use of the name "ElectricPotential" repeatedly in a
model becomes cumbersome and therefore "Voltage" is
also provided as an alternative.

A connector class is defined as

connector Pin

Voltage v ;

flow Current i ;

end Pin;

A connection, connect (Pinl, Pin2), with Pini and
Pin2 of connector class Pin, connects the two pins such
that they form one node. This implies two equations,
namely Pinl. v = Pin2. v and Pinl. i + Pin2. i = 0.
The first equation indicates that the voltages on both
branches connected together are the same, and the
sc::ond corresponds to Kirchhoff's current law saying
that the current sums to zero at a node. Similar laws
apply to flow rates in a piping network and to forces

and torques in a mechanical system. The sum-to-zero
equations are generated when the prefix flow is used
in the connector declarations. In Modelica it is assumed
that the value is positive when the current or the flow
is into the component.

Defining a set of connector classes is a good start
when developing model libraries for a new application
domain. It promotes compatibility of the component
models.

A common property of many electrical components
is that they have two pins. This means that it is useful
to define a "shell" model class

partial model TwoPin

"Shell model with two electrical pins"

Pin p, n;

Voltage v;

Current i;

equation

v = p.v - n.v;

p.i + n.i = O;

i = p. i;
end TwoPin;

that has two pins, p and n, a quantity, v, that defines
the voltage drop across the component and a quantity,
i, that defines the current into the pin p, through the
component and out from the pin n. The equations de­
fine common relations between quantities of a simple
electrical component. In order to be useful, a constitu­
tive equation must be added. The keyword partial in­
dicates that this model class is incomplete. Between the
name of a class and its body a string is allowed. It is
treated as a comment attribute. Tools may display this
documentation in special ways.

To define a model for a resistor we exploit TwoPin
and add the definition of a parameter for the resistance
and Ohm's law to define the behavior:

model Resistor "Ideal resistor"

extends TwoPin;

parameter Resistance R;

equation

R*i = v;

end Resistor;

The keyword parameter specifies that the quantity
is constant during a simulation experiment, but can
change values between experiments. A parameter is a
quantity which makes it simple for a user to modify the
behavior of a model.

A model for an electrical capacitor is defined m a
similar way

model Capacitor "Ideal capacitor"

extends TwoPin;

parameter Capacitance C;

equation

C*der(v) = i;

end Capacitor;

where der(v) means the time derivative of v.

A model for the voltage source can be defined as

model VsourceAC "Sine-wave voltage source"

extends TwoPin;

parameter Voltage VA= 220 "Amplitude [VJ";

parameter Frequency f = 50 "Frequency [Hz]";

protected

constant Real PI=3.141592653589793;

equation

v = VA*sin(2*PI*f*time);

end VsourceAC;

Finally, we must not forget the ground point.

model Ground "Ground"

Pin p;

equation

p.v = O;
end Ground;

The purpose of the ground model is twofold. First,
it defines a reference value for the voltage levels.
Secondly, the connections will generate one Kirchhoff's
current law too many. The ground model handles this
by introducing an extra current quantity p. i, which
implicitly is defined to be zero by the equations.

HYBRID MODELING

Realistic physical models typically contain discontinu­
ities, events and changes of structure. Examples of such
phenomena are relays, switches, friction, impact, sam­
pled data systems etc. Modelica has introduced special
language constructs allowing a simulator to introduce
efficient handling of such events. Special design em­
phasis is given to synchronization and propagation of
events and the possibility to find consistent restarting
conditions after an event. It is possible to build model li­
braries allowing the efficient use of finite state machines
and Petri nets.

Modeling of a AC-DC converter

As an example, the discrete behavior which occurs in
diodes and thyristors will be studied. Consider the AC­
DC converter in Figure 2.

112

The circuit contains three diodes. The following

' ·'

r

Figure 2 Cir':uit diagram of AC-DC converter.
\

condition is an in'variant of an ideal diode
\

(i > 0 and "; == 0) or (v <= 0 and i == 0)
I

i.e. either the equation i = 0 or v = 0 should be active.
This can be described as follows

0 = if i > 0 or not v <= 0 then v else i;

or equivalently

0 = if i > 0 or v > 0 then v else i;

A simulator supporting Modelica is not required to sup­
port such mixing of algebraic equations and boolean con­
ditions since ordinary numerical integration routines
cannot be used. Instead the model has to be rewritten
using a boolean mode variable, Closed. The complete
ideal diode model is given blow.

model Diode "Ideal diode"

extends TwoPin;

Boolean Closed(Start=false);

equation
0 = if Closed then v else i;

new(Closed) = if Closed then i > 0 else v > O;

end Diode;

The first equation states that the voltage across the
diode is zero when the diode is Closed, otherwise the
current is zero. The second equation is boolean stating
that if the diode is Closed and the current becomes zero
or negative, Closed is changed to false. On the other
hand, if Closed = false and v becomes positive, then
Closed is changed to true. A special operator new is used
to introduce discrete state variables and break direct
dependencies between algebraic and boolean variables.
A simulator must perform a fix-point iteration over such
boolean variables in order to find consistent restart
conditions after a closing or opening event.

A tool supporting Modelica will typically extract
information from all relations in order to generate
zero-crossing functions allowing the root-finder of the
integration algorithm to find the exact time of events.
The relation i > 0 will use the crossing function i - 0
and similarly v - 0 will be used for v > 0.

A ideal thyristor model is similar and includes the
logic of the gate signal for switching. The thyristors are
in this case controlled by pulse-width modulation, More
details are given in Elmqvist et al. (1994).

A typical simulation result is given in Figure 3.

--·-..-·--~-

0 0,01 0.02 0.03

Figure 3 The current through the voltage source.

113

MORE ADVANCED MODELING FEATURES

The Modelica language has been introduced by giving
small examples. Model classes and their instantiation
form the basis of hierarchical modeling, connectors
and connections correspond to physical connections of
components. At the lowest level, equations are used
to describe the relation between the quantities of the
model.

The expressive modeling power of Modelica is large.
Some of the more powerful constructs are summarized
below.

Modeling of, for example, multi-body systems, con­
trol systems and approximations to partial differential
equations is done conveniently by utilizing matrix equa­
tions. Multi-dimensional matrices and the usual matrix
operators and matrix functions are thus supported in
Modelica. It is also possible to have arrays of compo­
nents and to define regular connection patterns. A typi­
cal usage is the modeling of a distillation column which
consists of a set of trays connected in series.

We have so far discussed component parameters like
the resistance value. Reuse of model library compo­
nents is further supported by allowing also model class
parameters. An example is a controlled plant where
some PID controllers are replaced with auto tuning con­
trollers. It is of course possible to just replace those con­
trollers in a graphical user environment, i.e., to create
a new model. The problem with this solution is that two
models must be maintained. Modelica has the capabil­
ity to instead just substitute the model class of certain
components using a language construct at the highest
hierarchical level, so only one version of the rest of the
model is needed.

Algorithms and functions are supported in Modelica
for modeling parts of a system in procedural program­
ming style. Constructs for including graphical annota­
tions are available in order that also icons and model
diagrams become portable. An extensive Modelica base
library contains standard variable and connector types
promotes reuse by standardizing on interfaces.

MODELING APPLICATIONS

Modelica has been used to model various kinds of sys­
tems. Otter et al. (1997) describe modeling of automatic
gearboxes for the purpose of real-time simulation. Such
models are non-trivial because of the varying struc­
ture during gear shift utilizing clutches, free wheels
and brakes. Mattsson (1997) discusses modeling of heat
exchangers. Class parameters of Modelica are used for
medium parametrization and regular component struc­
tures are used for discretization in space of the heat ex­
changer. Ernst et al. (1997) discuss thermodynamical
and flow oriented models. Broenink (1997) describes a
Modelica library with bond graph model classes for sup­
porting the bond graph modeling methodology.

CONCLUSIONS

The Modelica effort has been described and an overview
of Modelica has been given. The design is still evolving
(August 1997). A first version of the language definition
is scheduled to be available in September 1997.

There is ongoing work to write books on the Modelica
language and on Modelica model libraries. Several
Modelica tools are also under development. There are
discussions to extend the Modelica design into, for
example, handling partial differential equations and
discrete event models.

More information, including modeling requirements,
rationale and definition of the Modelica language and
the future developments is available on WWW at

URL: http://www.Dynasim.se/Modelica/.

Acknowledgements

The authors would like to thank the other members of
the Modelica Design Group for inspiring discussions and
their contributions to the Modelica design.

REFERENCES

BARTON, P. and C. PANTELIDES (1994): "Modeling of combined
discrete/continuous processes." AJChE J., 40, pp. 966-979.

BREUNESE, A. P. and J. F. BROENINK (1997): "Modeling mecha­
tronic systems using the SIDOPS+ language." In Pro­
ceedings of ICBGM'97, 3rd International Conference on
Bond Graph Modeling and Simulation, Simulation Series,
Vol.29, No.1, pp. 301-306. The Society for Computer Sim­
ulation International.

BROENINK, J. F. (1997): "Bond-graph modeling in Modelica." In
Proceedings of the 1997 European Simulation Symposium
(ESS'97). The Society for Computer Simulation, Passau,
Germany.

ELMQVIST, H., D. BROCK, and M. OTTER (1996) : Dymola -
User's Manual. Dynasim AB, Research Park Ideon, Lund,
Sweden.

ELMQVIST, H., F. CELLIER, and M. OTTER (1994): "Object­
oriented modeling of power-electronic circuits using Dy­
mola." In Proceedings of the First Joint Conference of In­
ternational Simulation Societies (CJSS). The Society for
Computer Simulation, ETH, Zurich, Switzerland.

ERNST, T., M. KLOSE, and H. TuMMESCHEIT (1997): "Model­
ica and Smile - A case study applying object-oriented
concepts to multi-facet modeling." In Proceedings of the
1997 European Simulation Symposium (ESS'97). The So­
ciety for Computer Simulation, Passau, Germany.

FRITZ.SON, P., L. VIKLUND, D. FRITZSON, and J. HERBER (1995):
"High-level mathematical modeling and programming."
IEEE Software, 12:3.

IEEE (1997): "Standard VHDL Analog and Mixed-Signal
Extensions." Technical Report IEEE 1076.1. IEEE.

JEANDEL, A., F. BOUDAUD, P. RAVIER, and A. BUHSING (1996):
"U.L.M: Un Langage de Modelisation, a modelling lan­
guage." In Proceedings of the CESA'96 !MACS Multicon­
ference. !MACS, Lille, France.

114

KLOAS, M., V. FRIESEN, and M. SIMONS (1995): "Smile -A sim­
ulation environment for energy systems." In SYDOW, Ed.,
Proceedings of the 5th International !MACS-Symposium
on Systems Analysis and Simulation (SAS'95), vol. 18-19
of Systems Analysis Modelling Simulation, pp. 503-506.
Gordon and Breach Publishers.

MATTSSON, S. E. (1997): "On modeling of heat exchangers in
Modelica." In Proceedings of the 1997 European Simula­
tion Symposium (ESS'97). The Society for Computer Sim­
ulation, Passau, Germany.

MATTSSON, S. E., M. ANDERSSON, and K. J. AsTROM (1993):
"Object-oriented modelling and simulation." In LINKENS,
Ed., CAD for Control Systems, chapter 2, pp. 31~9.
Marcel Dekker Inc, New York.

OTTER, M., C. SCHLEGEL, and H. ELMQVIST (1997): "Modeling
and realtime simulation of an automatic gearbox using
Modelica." In Proceedings of the 1997 European Simula­
tion Symposium (ESS'97). The Society for Computer Sim­
ulation, Passau, Germany.

PIELA, P., T. EPPERLY, K. WESTERBERG, and A. WESTERBERG
(1991): "ASCEND: An object-oriented computer environ­
ment for modeling and analysis: the modeling language."
Computers and Chemical Engineering, 15:1, pp. 53-72.

SAHLIN, P., A. BRING, and E.F.SOWELL (1996): "The Neutral
Model Format for building simulation, Version 3.02."
Technical Report. Department of Building Sciences, The
Royal Institute of Technology, Stockholm, Sweden.

STRAUSS (ED.), J. C. (1967): "The SCi continuous system
simulation language (CSSL)." Simulation, 9, pp. 281-303.

VANGHELUWE, H. L., E. J. KERCKHOFFS, and G. C.
VANSTEENKISTE (1996): "Simulation for the Future:
Progress of the ESPRIT Basic Research working group
8467." In BRUZZONE AND KERCKHOFFS, Eds., Proceedings
of the 1996 European Simulation Symposium (Genoa),
pp. XXIX - XXXIV. Society for Computer Simulation In­
ternational (SCS) .

