Statistical and persistence analysis of high summer ambient temperatures in Athens for cooling purposes

1. Tselepidaki and M, Santamouri (Greece)
(Received March 19, 1991)

Abstrac

The increase of living standards in buildings and the recent high summer temperature values have dramatically increased the installation of cooling systems in buildings. Analysis of the summer ambient temperatures is thus necessary in order to provide appropriate informatio to design and to investigate possible inc

$$
\begin{aligned}
& \text { mportant impact on energy consumption. } \\
& \text { A statistical analysis of the summer ambin }
\end{aligned}
$$

ormation for evaluation of passive, hybrid and cerature data is presented in order to provid Multiyear data of Athens, Greece, have been used. No statistically significant increasing or decreasing trend of the hot and very hot summer hours was found
The persistence of high summer temperatures was also calculated and found to be statistically significant. Probabilities of hourly temperatures being higher than a temperature base ar calculated for each month

1. Introduction

Avoidance of overheating during the warm period is a major concerm in hot climate coun tries. Thermal comfort in indoor spaces can be achieved using appropriate architectura design principles, together with heat remova techniques, and auxiliary cooling equipment An increase in living standards has promoted the use of conventional air-conditioning (AC) systems. An increase of 300% in the total market has been registered for the period 1976-1985 presenting today a market turnover of U.S.\$ 20 billion [1]. This increase is extremely important for selective countries like Greece where the purchase of air conditioners during the last three years has increased by 800% approximately. [2]. The impact of air conditioners on the peak electricity load is extremely important. Thirty eight percent of is induced by ar peak demand in the U.S.A.
 coner for uilite and concern for utilities and energy experts.

Various research and development policie re defined and proposed, in order to reduc the impact of air conditioners [4]. Tasks primary importance are the development methods for appropriate sizing of AC system and the use of passive and hybrid coolin techniques like ventilative, evaporative, radia tive and ground cooling Frors of about 200% in calculatedcoolingloads are reported leading to oversizing of the AC systems [5] Correct calcuiz of the cooling load of buidige appropriate sizing of AC systems and integra hybrid cooling techniq and related to the availability of local climatic data of which ambient temperature is the most important

The basic parameters and the information related to ambient temperature, necessary for the design of cooling systems are described in ref. 6. However, research on passive and hybrid cooling systems and techniques demore profound and extensive analys of the ambient temperature data involving so
phisticated analysis of its reported variation These data are absolutely necessary for the design of convective cooling and the evaluation of the ventilation capability in a place. They are also necessary for the evaluation of buried pipes, radiative and evaporative techniques. This paper presents a statistical and persistance analysis of high ambient temperature for Athens, Greece. The paper aims to offer a procedure on the necessary calculation methodology for the statistical treatment of summer temperature data used for cooling purposes Also it aims to offer the necessary data for cooling systems and techniques.

2. The data used

Hourly temperature data for the period 1977-1989 are taken from the National Ob servatory of Athens [7], (latitude $=37^{\circ} 58^{\prime} \mathrm{N}$ longitude $=23^{\circ} 43^{\prime} \mathrm{E}$ and altitude 107 m). The Observatory is on a hill located at the centre of Athens and has recorded measurements of ambient temperature since 1858 .
The climate of Athens is characterized as accentuated thermoMediterranean with a we period during winter months and a dry ho period during summer. Mean monthly tem perature during the summer period vary be tween 19 and $28^{\circ} \mathrm{C}$.

3. Statistical analysis of the data

3.1. The frequency distribution of ambient temperatures
Knowledge of the time period for which cooling is required in a place is of primary importance for designers of cooling systems Information should be given on the daily distribution of cooling needs as well as on a monthly basis. Therefore, the frequency distribution of hot and very hot hours during day as well as the general probability for a specific hour of a month being hot or ver hot is necessary and very useful input.
Using the above-mentioned temperature data, the frequency for each hour of a day to present a temperature higher than $25^{\circ} \mathrm{C}$ and period months (May to October). Values are expressed in days per month. Temperature bases equal to $25^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ were selected because it is accepted that they represent the ower and higher level for cooling calculations espectively. The probability of an hour being hot, above $28{ }^{\circ} \mathrm{C}$, is between $P=0.01$ for October and $P=0.387$ for July. this mean that for July 38.7% of hours are characterized by temperatures higher than $28^{\circ} \mathrm{C}$.
The daily distribution of the mean number days presenting a temperature higher than $25^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$, for each month is given in Fig. 1, with a maximum at 14:00, when the maximum daily temperature occurs. Especially for July and August and for the hours over

TABLE 1. Frequencies of hourly air temperature values above the limits of $25^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ in Athens over the period 1977-1989 (in days/month)

	Hours											
	1	2	3	4	5	6	7	8	9	10	11	12
$T>25{ }^{\circ} \mathrm{C}$	0.1	0.1	0	0	0	0	0	0.3	1.2	4.8	8.3	10.5
$T>28^{\circ} \mathrm{C}$	0	0	0	0	0	0	0	0	0	0.2	1.1	2.4
$T>25{ }^{\circ} \mathrm{C}$	3.0	2.3	2.0	1.5	1.4	1.4	2.5	7.6	15.2	21.6	24.4	26.2
$T>28^{\circ} \mathrm{C}$	0.2	0.2	0.2	0.1	0.1	0.1	0.2	0.8	4.2	8.2	12.4	15.6
$T>25{ }^{\circ} \mathrm{C}$	9.9	7.9	6.6	6.1	5.5	5.5	7.5	21.1	26.0	28.8	30.1	30.4
$T>28^{\circ} \mathrm{C}$	1.4	1.4	1.3	1.1	1.0	0.8	1.2	3.1	10.3	19.4	24.1	25.8
T>25 ${ }^{\circ} \mathrm{C}$	9.5	7.2	5.5	4.2	3.6	3.5	4.8	14.5	23.6	27.9	30.1	30.5
$T>28{ }^{\circ} \mathrm{C}$	0.4	0.2	0.2	0.1	0	0	0	1.2	6.4	16.8	22.2	25.7
T>25 ${ }^{\circ} \mathrm{C}$	0.8	0.6	0.5	0.4	0.4	0.3	0.3	1.0	4.9	13.8	19.8	22.6
$T>28^{\circ} \mathrm{C}$	0.1	0	0	0	0	0	0	0	0.5	2.2	2.2	10.6
T> ${ }^{2} 5^{\circ} \mathrm{C}$	0	0	0	0	0	0	0	0	0.2	0.9	2.8	4.6
T> $28^{\circ} \mathrm{C}$	0	0	0	0	0	0	0	0	0	0.1	0.2	0.8

$25^{\circ} \mathrm{C}$, high frequencies are calculated for the period between 09:00-20:00. Frequencies decreased after 20:00 and a minimum occurs at 6:00. Almost the same distribution was recorded for the variation of the number of hours over $28^{\circ} \mathrm{C}$, for the same months, indicating hat during noon hours, temperatures exceeded $28^{\circ} \mathrm{C}$. A difference was observed for the night hours between 21:00 and 07:00 L.T, when the corresponding frequencies for $T=28^{\circ} \mathrm{C}$ are low.
For the rest of the summer months, it should be pointed out that slightly higher temperatures were recorded in June than September, especially during noon hours for both temperature bases. Also May is slightly hotter than October which represents climatological conditions of a fall month.
3.2. Investigation of tendencies

Increased emission rates of anthropogenic pollutants may be the source of important limatic changes. Recent data on the greenouse effect (8) show that there is a nonnegligible increase of the ambient air temperature. This should have a direct impact on the design and size of the cooling system. Therefore, the confidence on the existing and used multiyear mean temperature data of the mean and extreme air temperatures should be examined.
In order to investigate the probable existence of a tendency concerning the monthly number of hours over a temperature base, the non-
parametric test of Spearman can be used 9 . This test is based on the estimates of the coefficient, r_{s} where
$r_{\mathrm{s}}=1-\frac{6}{n\left(n^{2}-1\right)} \sum\left(y_{i}-i\right)^{2}$
where $n=13$ is the number of studied years Also $i=1,2, \ldots$ is the real time series of the number of hours, x_{i}, over a temperature base. For example $i=1$ for the first and $i=13$ for the last year of the study. The parameter y_{i} is the rank of the corresponding x_{i} when dat are classified in increasing order. For example $y_{i}=1$ corresponds
According to the statistical analysis [10], r tends asymptotically to a normal distribution with
$E\left(r_{\mathrm{s}}\right)=0 \quad$ and $\quad \operatorname{var} r_{\mathrm{s}}=1 /(n-1) \quad$ (2) where $E\left(r_{\mathrm{s}}\right)$ is the mean value of r_{s} and var r_{s} is the variance of the parameter.
Therefore, using normal distribution tables,
the probability a_{i}
$a_{i}=P\left(|u|>\left|u\left(r_{\mathrm{s}}\right)\right|\right)$
corresponding to the value $u\left(r_{\mathrm{s}}\right)$, where

$$
\begin{equation*}
u\left(r_{s}\right)=r_{s}(n-1)^{0.5} \tag{4}
\end{equation*}
$$

is calculated.
In order to accept or reject a tendency of the time series, the value of the probability a_{i} is compared with the value $a_{0}=0.05$ which corresponds to a significant level equal to 95%

Hours													Month
13	14	15	16	17	18	19	20	21	22	23	24	P	
$\begin{array}{r} 12.3 \\ 2.7 \end{array}$	$\begin{array}{r} 13.6 \\ 2.8 \end{array}$	$\begin{array}{r} 12.9 \\ 3.2 \end{array}$	$\begin{array}{r} 11.6 \\ 2.8 \end{array}$	$\begin{aligned} & 8.5 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0 \end{aligned}$	${ }_{0}^{0.3}$	$\begin{aligned} & 0.1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.126 \\ & 0.025 \end{aligned}$	May
$\begin{aligned} & 26.7 \\ & 16.9 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 26.2 \\ & 17.4 \end{aligned}$	$\begin{aligned} & 25.1 \\ & 14.7 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 10.3 \end{aligned}$	$\begin{array}{r} 17.7 \\ 6.4 \end{array}$	$\begin{array}{r} 11.6 \\ 2.5 \end{array}$	$\begin{aligned} & 8.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.446 \\ & 0.210 \end{aligned}$	June
$\begin{aligned} & 30.4 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 30.6 \\ & 27.9 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 27.7 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 27.2 \end{aligned}$	$\begin{aligned} & 30.2 \\ & 26.6 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 17.1 \end{aligned}$	$\begin{array}{r} 23.9 \\ 8.2 \end{array}$	$\begin{array}{r} 20.4 \\ 5.0 \end{array}$	$\begin{array}{r} 16.8 \\ 3.0 \end{array}$	$\begin{array}{r} 14.5 \\ 2.5 \end{array}$	$\begin{array}{r} 11.5 \\ 1.9 \end{array}$	$\begin{aligned} & 0.654 \\ & 0.387 \end{aligned}$	July
$\begin{aligned} & 30.7 \\ & 26.3 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 27.5 \\ & \hline 7 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 27.6 \end{aligned}$	$\begin{aligned} & 30.6 \\ & 27.0 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 25.8 \end{aligned}$	$\begin{aligned} & 28.5 \\ & 20.9 \end{aligned}$	$\begin{aligned} & 26.3 \\ & 13.6 \end{aligned}$	$\begin{array}{r} 21.9 \\ 5.8 \end{array}$	$\begin{array}{r} 19.3 \\ 2.9 \end{array}$	$\begin{array}{r} 15.6 \\ 1.5 \end{array}$	$\begin{array}{r} 13.1 \\ 0.9 \end{array}$	$\begin{array}{r} 10.8 \\ 0.6 \end{array}$	$\begin{aligned} & 0.613 \\ & 0.341 \end{aligned}$	August
$\begin{aligned} & 24.2 \\ & 13.8 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 15.9 \end{aligned}$	$\begin{aligned} & 23.8 \\ & 13.6 \end{aligned}$	$\begin{gathered} 21.2 \\ 9.8 \end{gathered}$	$\begin{array}{r} 16.9 \\ 4.3 \end{array}$	$\begin{array}{r} 10.1 \\ 1.6 \end{array}$	$\begin{aligned} & 4.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 0.1 \end{aligned}$	1.9 0.1	$\begin{aligned} & 1.0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.321 \\ & 0.136 \end{aligned}$	September
$\begin{aligned} & 5.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 1.8 \end{aligned}$	6.2 1.6	4.8 1.2	$\begin{aligned} & 3.2 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.010 \end{aligned}$	October

(b)
HOURS
$-T, 26 \mathrm{C}+T, 28 \mathrm{C}$

(c)

HOURS
$-T, 28 \mathrm{C}$
(f)
Fig. 1. Frequencies (days per month) of hourly air temperature values above the limits of $25^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$

A tendency is accepted when $a_{i}>a_{0}$ and is rejected when $a_{i}<a_{0}$. When it is statistically significant, the tendency is increasing or de creasing for $r_{\mathrm{s}}>0$ and $r_{\mathrm{s}}<0$, respectively. The calculated values of $r_{\mathrm{s}}, u\left(r_{\mathrm{s}}\right)$, and a_{1} are given in Table 2. As it is shown, there is not any statistically significant $25^{\circ} \mathrm{C}$. Congarding the number of hours over $25{ }^{\circ}{ }^{\circ} \mathrm{C}$, a cerning the number or hours over decreasing tencency is observ that Therefore, it can be deduced that external mate therefore the used data are homogeneous.

Example

In order to make clear the computation procedure of the tendency using the Spearman test, an example is given. Table 3 summarizes the procedure to estimate the existence of tendency for June and for the hours x_{i} with a temperature exceeding $28{ }^{\circ} \mathrm{C}$.
For the 13 studied years, the number of hours, x_{i} characterized by temperature exceeding $28^{\circ} \mathrm{C}$ are calculated. Then for each year the corresponding value of y_{i} is assigned in increasing order. Then r_{s} is calculated from qn. (1). Also from eqn. (4), the value of $u(r)$ is computed. Using normal distribution tables

TABLE 2. Parameters of the Spearman's tendency test

	May		June		July		August		September		October	
	$>25{ }^{\circ} \mathrm{C}$	$>28{ }^{\circ} \mathrm{C}$										
r_{s}	0.099	0.203	-0.483	-0.665	0.115	0.297	0.473	0.549	0.484	0.533	-0.352	-0.071
$u\left(r_{s}\right)$.	0.343	0.704	-1.675	-2.303	0.4	1.028	1.637	1.903	1.675	1.846	-1.218	-0.247
a_{1}	0.375	0.312	0.099	0.028	0.668	0.235	0.105	0.065	0.098	0.073	0.190	0.387

TABLE 3. An example of the computation procedure using the Spearman test for June

In order to calculate the persistence of ho and very hot hours, the distribution of the sequences of successive hours in a day, pre senting temperatures over $25^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ was tabulated and is given in Fig. 2
For May and October it was found that the distribution of the sequences decreased fo increasing spells of time. For the rest of the months, and for the hours over $25^{\circ} \mathrm{C}$, it wa found that the maximum frequencies of spell occurred for 9 successive hours during June 17 successive hours during July, 17 successive hours during August and 9 successive hour during September. For July and August, high frequencies also occurred for sequences of 24 hours. That indicates that sequences exceeding 24 hours were not detected as a result of the followed calculation procedure. Concerning the distribution of successive hours over 28 C it was found that a maximum frequency for 9 successive hours occurred in June, a maximum frequency for 10 successive hours in Juy and of the day ($10: 00$ 21:00), and a 6 successive hours in , Mor successive how in $28^{\circ} \mathrm{C}$. More tha during July. July
From the above analysis it is deduced that there is a persistence of daily hot and very hersitence cofficie on is calculated [9] Tht R_{b}, defned by Bes value equal to zero when there is no persistenc and tends to infinite in the case where persistence is observed, ie an is olwas followed by another event The Besson's coef ficient is calculated by the expression
$R_{\mathrm{b}}=\frac{1-P}{1-P_{i / i}}-1$
where P is the general probability of an event as defined in Section 3 and $P_{i n}=1$-(numbe of hot spells/total number of hot hours).

TABLE 4. The Besson's $\left(R_{\mathrm{b}}+1\right)$ coefficient of persistence

Temperature	May	June	July	August	September	October
$T>25{ }^{\circ} \mathrm{C}$	4.62	5.77	4.62	4.70	5.77	4.80
$T>28{ }^{\circ} \mathrm{C}$	3.85	5.64	5.91	5.78	4.48	3.62

P_{k}, that a spell of hours above a defined emperature level, which lasted k hours will persist for at least one more hour, should be calculated. It is defined that [16]:
$P_{k}=F_{k+1} / F_{k}$
where
$F_{k}=\sum_{i \rightarrow k}^{n} f_{i}$
Values of P_{k} for every month and for the wo studied temperature bases are given in Table 5. For the temperature base of $25^{\circ} \mathrm{C}$, it is observed that P_{k} increases slowly until $k=2$ for May, June, September and October where k is the duration of spells in hours Therefore, the persistence is important only for spells until a period of 2 h .
Also, P_{k} increases rather quickly until $k=3$ and $k=6$ during July and August, respectively.

Then P_{k} tends to asymptotic values. So persistence for these months is important for spells up to 3 and 6 hours, respectively.
For the upper limit of $28^{\circ} \mathrm{C}, P_{k}$ values present a rather quickly increasing rate until $k=3$ or 4 for all months and then tend to asymptotic values. As Berger pointed out, the value of P values. As Berger pointed out, the value of P_{k}
may not be considered as an absolute indicator of the order of persistence [16]. The estimation of P_{k} values is either an indicator between months or between air temperature levels.
xample
As an example of the followed procedure, he persistence of the spells of hours above $2{ }^{\circ} \mathrm{C}$ during June is calculated.
In Table 6 the values of f_{i} for spells of 1 to 24 hours are given. Then the cumulative frequencies of f_{i} are calculated for the 24 studied spells. Finally from eqn. (7), the cor-

TABLE 5. Estimation of the probability P_{k} that a spell which lasted k hours will persist for at least one more hour

Duration of spells (h)	May	June	July	August	September	October
For $T>25^{\circ} \mathrm{C}$						
1	0.86	0.93	0.93	0.94	0.96	
2	0.88	0.98	0.96	0.94	0.97	0.87
3	0.88	0.96	0.98	0.94	0.97	0.88
4	0.88	0.97	0.97	0.96	0.95	0.89
5	0.85	0.97	0.98	0.97	0.94	0.74
6	0.79	0.97	0.99	0.98	0.92	0.71
7	0.92	0.97	0.98	0.87	0.50	
8	0.69	0.94	0.97	0.98	0.83	0.73
9	0.85	0.97	0.91	0.64	0.64	
10	0.50	0.83	0.94	0.90	0.62	0.43
For $T>28{ }^{\circ} \mathrm{C}$						
1	0.78	0.90	0.96	0.97	0.87	0.73
2	0.81	0.91	0.97	0.98	0.90	0.79
3	0.84	0.93	0.98	0.98	0.88	0.80
4	0.78	0.95	0.98	0.96	0.83	0.92
5	0.78	0.91	0.95	0.97	0.80	0.73
6	0.86	0.96	0.92	0.67	0.38	
7	0.20	0.84	0.91	0.89	0.71	0.33
8		0.81	0.88	0.83	0.54	
9	0.71	0.82	0.77	0.62		
10	0.66	0.69	0.63	0.44		

TABLE 6. Estimation of the ratio P_{\star} for the spells of hours above $28^{\circ} \mathrm{C}$ during June

i	f_{i}	\sum_{i}	P_{k}
1	27	276	0.902
2	22	249	0.912
3	15	227	0.934
4	11	212	0.948
5	19	201	0.905
6	25	182	0.863
7	25	157	0.841
8	25	132	0.811
9	31	107	0.710
10	26	76	0.658
11	19	50	0.620
12	12	31	0.613
13	3	19	0.842
1	5	16	0.688
15	3	11	0.727
16	3	8	0.625
17	3	5	0.4
18	1	2	0.5
19	0	1	1.0
20	0	1	1.0
21	0	1	1.0
22	0	1	1.0
23	0	1	1.0
24	1	0	
25	0		

responding value of P_{k} is calculated. As shown from Table 6, an important persistence is ob served for $k=4$.

5. Conclusions

As shown from the data analysis, the probability of hourly temperatures during summer being higher than $25^{\circ} \mathrm{C}$ is between 0.05 fo October and 0.654 for July.

For the temperature base of $28^{\circ} \mathrm{C}$, the corresponding probabilities are between 0.01 and 0.387 .
Due to the recent increased interest in the appearance of high summer temperatures, the tendency coelficient of the temperature time and it is concluded that there is no statisticall and itif conclude in the high signies. alues
The persistence of appearance of consecutive hours with temperatures exceeding $25^{\circ} \mathrm{C}$ and $8{ }^{\circ} \mathrm{C}$ is statistically significant for all th studied months. Thus the time period wher high part of the day period.

For July and August, cooling is necessary for more than five hours per day and mor especially during noontime ($10: 00-16: 00$).

Nomenclature

$a_{i} \quad$ element obtained from the normal distribution tables
number of observations
$F_{k} \quad$ sum of the spells of hot hours
$P_{P} \quad$ general probability of an event
$P_{i / i} \quad$ probability that an event will occur after an occurrence on the next occasion $P_{k} \quad$ probability that a spell lasted k hour will persist for at least one more hour Besson's coefficient of persistence
$\begin{array}{ll}R_{\mathrm{b}} & \text { Bessons } \\ r_{\mathrm{s}} & \text { correlation coefficient of the Spearmans }\end{array}$ test of tendency
$y_{i} \quad$ rank of the observation x_{i} when the series are classified in increasing order

References

1 Predicasts Inc., Predicasts Forecasts, Issue 108 , 4 th Quarter Refrigeration and Air Conditioning Equipmen Data, U.S.A., 1987.
2 M. Santamouris, Natural cooling techniques, Proc Workshop of Passive Cooling, Ispra, Italy, 1990, EEC, Luxembourg, pp. 143-153.
3 U.S. Dept. of Energy, Non-residential Buildings Energy Conservation Surves, Characteristics of Com pp. ix, 21, 105.
4 C. J. Andrews, Anticipating air conditioning impact on the world electricity producers, Energy J., 4 (1) (1987) 79.

5 J. Cook, The state of passive cooling research, in J 6 I. Tselepidaki, M. Santamouris and D. Melitsioti Analysis of the summer ambient temperatures fo cooling purposes, Solar Energy (submitted for pub lication).

Bulletin, National Observatory of Ath-
8 M. Budyko and Y. S. Sedunov, Anthropogenic climatic changes, in H. J. Karpe, D. Otten and S. C. Trinidade (eds.), Climate and Development, Springer-Verlag 1990, pp. 270-284.
9 O. M. Essenwanger, World survey of climatology, Gen Climatol., I (Part B) (1986) 16-17, 113.
10 R. Sneyers, Sur 1 analyse statistique des séries d'observation, Note Technique No. 143, OMM No
415, Geneve, 1975, p. 192.

1 E. Maldonado, Auxiliary environmental control in passively cooled buildings, Proc. Workshop on Pass Cooling, Ispra, Ltaly, 1990, EEC, Luxembourg.
2 B. Fleury, Convective cooling, Proc. Workshop on Passive Cooling, Ispra, Italy, 1990, EEC, Luxembourg.
3 M . Antin
3 M. Antinucci et al., Horizontal Study on Passive Cooling, in M. S. Satamounis
EEC, D.G. 12, 1990 .
14 M. Santamouris and A. Argyriou, Earth to air heat exchanges for passive cooling of buildings. Validation
of tools and results from two application projects,
roc. Int. Conference on Evolution of External Perimetral Components in Bioclimutic Architecure, Milan, 1990, Italian Section 157-159
C. P. Brooks and N. Carruthers, Handbook of Sta1953.

16 A. Berger and C. Goossens, Persistence of wet and dry spells at Uccle (Belgium), J. Climatol., 3 (1983) 21-34.

