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Nonlinear Least-Squares Minimization 
Applied to Tracer Gas Decay for Determining Airflow 
Rates in a Two-Zone Building 

S. L. MILLER1, K. LEISERSON1 AND W.W. NAZAROFF1'2 

Abstract We developed a method based on tracer gas decay 
measurements to quantify the airflow rates, including the interzo
nal airflows, in a two-zone building: different tracer gases were 
simultaneously pulse-injected into each of the two zones and the 
evolution of the gas concentrations in each zone was measured; 
theoretical concentration profiles obtained by solving dynamic 
material-balance equations for two coupled, well-mixed zones 
were fit to the experimental data using nonlinear least-squares 
minimization; and estimates of the airflow rates were iteratively 
refined until a best fit was achieved between the model and the 
data. We conducted experiments validating the method in two 
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rates inferred by the tracer gas technique agreed with imposed 
airflow rates within an average absolute error of 8%. Results are 
also reported for two experiments conducted in the same struc
ture under uncontrolled conditions. Goodness-of-fit tests re
vealed no statistically significant differences between measured 
tracer gas concentrations and theoretical concentration profiles 
constructed using the least-squares parameter estimates. 
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Introduction 
A single, well-mixed reactor is the most common rep
resentation of indoor environments for analysis and 
modeling of air pollutant concentrations. This rep
resentation, in which pollutant concentrations are as
sumed to be uniform throughout, yields simple equa
tions that describe the evolution of pollutant concen
trations. Indoor environments, however, are not 
always well mixed. Several approaches have been sug-

gested for predicting indoor concentrations when mix
ing is incomplete, including ventilation efficiency and 
age-of-air concepts (Skaret and Mathisen, 1982; Breum, 
1993), and the application of computational fluid dy
namics (Awbi, 1991; Chen et al., 1992). In another com
mon approach, the indoor environment is represented 
as two or more idealized reactors, each independently 
well mixed (Rodgers, 1980; bzkaynak et al., 1982; Naz
aroff and Cass, 1986; Ryan et al., 1988). Pollutant con
centrations in each reactor are coupled by airflows be
tween them. 

.i-' rac tical app licctl(on L.' t m~tlti: '. u nc rnudeL to iudoor 
environments requires quantitative information on air
flows between zones. Airflow rates are difficult to 
measure directly, however, and are usually estimated 
indirectly using tracer gases. Tracer gas techniques 
have been used extensively to measure the air infil
tration of buildings considered as single zones (Hunt, 
1980; Lagus and Persily, 1985; Sherman, 1990a). Tracer 
gas techniques have also been extended to complex 
buildings that behave as multizone systems, providing 
information on the airflows between rooms (Sinden, 
1978; Lagus and Persily, 1985; Sherman, 1989). Multi
zone techniques have not received the same level of 
investigation and use, however, as single-zone tech
niques (Sherman, 1990b; AIVC, 1991). 

There are three common classes of tracer gas tech
niques: decay, constant injection, and constant concen
tration. The decay method is a transient technique in 
which a tracer gas is released as a pulse into a zone, 
allowed to mix within the zone to establish an initial 
uniform concentration, and monitored as the concen
tration evolves. The constant concentration method is 
a steady-state technique in which the tracer gas injec
tion rate is continuously adjusted to maintain constant 
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concentrations within the zone. In the constant injec
tion technique, tracer gas is injected at a constant rate 
and the time-varying concentration is measured. For 
detailed discussions of these techniques, see Lagus and 
Persily (1985), Sherman (1990b), AIVC (1991), or ASH
RAE (1993). 

Each of the above techniques can be applied to mul
tizone structures. In addition, multizone measure
ments can be made using single or multiple tracer 
gases. Single-tracer techniques used in a multizone 
sb·ucture require sequential injections: tracer gas is re
leased into one zone and the concentration is measured 
in all zones; this procedure is repeated for each of the 
other zones, one at a time (Afonso et al., 1986). 
Multiple tracer gas experiments are conducted by in
troducing many different tracer gases simultaneously, 
one into each zone of the building, and the concen
tration evolution of each tracer is measured in each 
zone. Multiple-tracer methods usually require more in
strumentation than single-tracer methods, since more 
than one type of gas is injected and analyzed, but re
quire less experimental time since only one measure
ment period is needed. Single-tracer methods are typ
ically more sensitive to temporal variations in the air
flow rates (Sherman, 1990b; AIVC, 1991). 

Four approaches have been described for deriving 
airflow ra tes from mulhpk trncer gas dec<1y data: tlu.: 
eigenvalue, differential, integral, and system identifi
cation approaches. In eigenvalue analysis, the system 
of material-balance equations is solved analytically, 
then linear regression is used over discrete sections of 
the experimental concentration profiles to estimate 
model parameters (Sinden, 1978; Hernandez and Ring, 
1982; Irwin and Edwards, 1990; Heidt et al., 1991). The 
differential approach is implemented by directly esti
mating quantities in the differential material balance 
with experimentally measured tracer gas concen
trations (Irwin and Edwards, 1990; Enai et al., 1993). In 
the integral approach, the experimental data are nu
merically integrated over a specified time interval. Air
flow rates are inferred from this integral value and 
measured concentration values at the start and end 
points of that time interval (Axley and Persily, 1988; 
Heidt et al., 1991; Irwin and Edwards, 1990; Enai et al., 
1993). In the system identification approach, the ma
terial-balance equations are regarded as state equations 
and the unknown airflow rates are coefficients in the 
state equation, and statistical estimation methods are 
used to obtain the airflow rates (Hedin, 1990; Okuya
ma, 1990; O'Neill and Crawford, 1990; O'Neill and 
Crawford, 1991; AIVC, 1991). 

We have been investigating the effectiveness of engin
eering techniques for controlling environmental tobacco 

smoke (ETS) exposure in multizoned buildings using a 
combination of modeling and experiments (Miller-Leid
en et al., 1993; Miller-Leiden and Nazaroff, 1994; Miller
Leiden and Nazaroff, 1996; Miller, 1996). Briefly, we con
ducted a suite of experiments in two full-sized intercon
nected rooms. After smoking a cigarette in one room, 
particle concentrations were measured over time in each 
room. A multiple .tracer gas decay method was used to 
characterize the airflow rates in the two rooms during 
each experiment. The decay method was chosen over 
alternatives because it imitated the release and decay of 
ETS particles due to smoking a cigarette. It also did not 
require equipment other than a gas chromatograph and 
it did not require the control or measurement of gas in
jection rates. Two tracer gases were used rather than one 
because the interzonal airflows were buoyancy-driven 
in some experiments and may have varied significantly 
over the course of the experiment. 

Initial application of the eigenvalue, differential, and 
integral approaches to extract airflow rates from our 
experimental tracer gas data did not yield realistic air
flow rates. Other investigators have reported similar 
problems: negative airflow rates were obtained, noise 
in the data prevented accurate determination of air
flows, and the approach sometimes required trial and 
error-type analyses (Hernandez and Ring, 1982; Prior 

Enai et al., 1993). These prob lems c,tcm from a number 
of factors, including measurement error, incomplete 
mixing of tracer gas, and too few measurements dur
ing the early time period. 

On the basis of this experience, we decided to use 
the system identification approach, expecting that this 
method would be effective over a wide range of experi
mental conditions, even with data of varying quality. 
Although system identification techniques have exist
ed for several years, their application to field data has 
not been widely reported. Hedin (1990) developed a 
method using quadratic programming to interpret data 
from single tracer gas injected into multiple zones, and 
illustrated its use with numerical simulations. O'Neill 
and Crawford (1990) presented a recursive least
squares algorithm for use with a single tracer gas in 
multiple zones and reported simulation results. Other 
researchers applied the least-squares approach to inter
pret measurements: Honma (1975), O'Neill and Craw
ford (1991), and Okuyama (1990), for a single tracer 
gas in multiple zones. The use of a multiple tracer gas 
system for determining airflows between multiple 
zones was demonstrated in Prior et al. (1985) and Prior 
and Littler (1986); their calculation of airflow rates in
volved matrix analysis, based on system identification 
theory. 
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In this paper, we describe the system identification 
technique of nonlinear least-squares minimization that 
we developed for analysis of two-tracer, two-zone de
cay experiments. This method has several advantages 
when compared to published methods for interpreting 
tracer gas data; in particular, it is not as sensitive to 
measurement error and is constrained against generat
ing negative airflow rates. In addition to describing the 
method, we summarize the experiments we used to 
validate the accuracy of this method, and illustrate its 
application in experiments in which unknown airflow 
rates were to be determined. 

Model of a Two-Zone Building 
Figure 1 illustrates the essential features of a two-zone 
model. Each zone is considered well-mixed and com
municates by airflow with the other zone and with the 
outside air. The airflow rates are assumed to be time 
invariant, and the indoor air pressure is assumed to be 
constant in each zone. Furthermore, isothermal con
ditions are assumed to prevail so that volumetric flows 
of air are balanced in each zone. The fractional error 
associated with applying this formulation in the case 
of non-isothermal conditions is approximately AT /T, 
where AT is the temperature difference between two 
~Ul '1l~S Clfld rr is th~ i1u:loo1 ~i..ll lLlripC~ fi..·tlurc, ill ~(. For 
the present application, L\T:.o;lOK, yielding a model for
mulation error of :53%. If a larger AT is expected, ma
terial-balance equations for non-isothermal conditions 
should be used (Roulet and Compagnon, 1989). 

Discrete quantities of tracer gas are separately and 
simultaneously introduced into zone 1 (tracer S) and 
zone 2 (tracer R) at time t=O. Each tracer is assumed 
to be instantaneously and uniformly mixed within that 
zone upon injection and to remain well mixed for all 
subsequent times. The tracer gases are assumed to be 
conservative; that is, they do not react chemically 
within the space and are removed only by airflow out 
of the zones. It is also assumed that there are no tracer 
gases in the indoor air prior to injection, nor in the 
outdoor air. For time t>O, the tracer gas concentrations 
as a function of time can be described by four differen
tial equations based on the principle of material con
servation. Denoting the volumetric airflow rate from 
zone i to zone j by F;j (m3 h-1), where zone 0 is out
doors, the material-balance equations take the follow
ing form: 

dCs1(t) 1 
-d- = - [F21Csz(t) - (F12+F10)Cs1(t)] (1) 

t V1 

dCs2(t) 1 
-d- = - [F12Cs1(t) - (F21 +F20)Csz(t)] (2) 

t V2 
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dCR1(t) 1 
-- = - [F21CR2(t)-(F12+F10)CR1(t)] (3) 

dt V1 

dCR2(t) 1 
-d- = - [F12CR1(t)-(F21 +F20)CR2(t)] (4) 

t V2 

These equations are solved subject to the following in
itial conditions: 

at t = 0, CR1(t) = 0, CRz(t) = CRo (5) 

at t = 0, Cs1(t) = Cso, Csz(t) = 0 (6) 

The symbols have the following definitions: 

C51(t) C52(t) =mole fraction (ppbv) of tracer gas S in 
zones 1, 2 at time t (h) 

CR1(t), CR2(t) =mole fraction (ppbv) of tracer gas R in 
zones 1, 2 at time t (h) 

Cs0, CRo =initial mole fraction (ppbv) of tracer gas Sin 
zone 1, tracer gas R in zone 2 

V11 V2 =volume of zones 1, 2 (m3) 

Two material-balance equations can also be written on 
airflow rates: 

(7) 

(8) 

The system of lineJr fir s t-order ordinary differential 
equations (1) through (4) can be solved analytically 
using eigenvalues (Sinden, 1978; Luenberger, 1979). 

Let a= F12+F10, b = F21, c = F12, and d = F21 +F20. 
V1 V1 V2 V2 

The system eigenvalues are 

-(a+d)+ Jd2-2ad+4bc+a2 

A-1 = and 
2 

-(a+d)-Jd2- 2ad+4bc+a2 

A-2 = . 
2 

Given initial conditions (5) and (6), model equations 
describe the evolution of tracer gas mole fractions as 
follows: 

Cs1(t) = Cso (-
1
-) [(a+A-2)e;i.,1 1-(a+A-1)el'21

] (9) 
A-2-A-1 

Cs2(t) = C50 (-c-) [(e;i.,21-e;i.,11] (10) 
A-2-A-1 

CRJ(t) = CRo (-b-) [(e;i.,11-e;i.,21] (11) 
A-1-A-2 

CR2(t) = CRo ( -
1
- ) [(d+A-1)e;i.,21-(d+A-2)e;i.,1 1

] (12) 
A-1-A-2 
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Nonlinear Least-Squares Minimization 
Overview 
The least-squares minimization method operates as fol
lows: given a set of experimental tracer gas data, the 
mathematical model described by equations (9)-(12) is 
fit to the data, subject to the constraints that equations 
(7) and (8) must be satisfied and that all flow rates 
must be non-negative. More formally, a mathematical 
model C(t) = C(t; a) is fit to a set of experimental data 
points (t;, Ci), i = 1, ... ,N, to determine M unknown par
ameters, a = av ... , aM, in the model. 'fhe parameters 
are systematically and iteratively adjusted so that the 
output of the model is the best match, in some sense, 
to the observed data. The least-squares minimization 
technique uses the chi-square statistic, X2

, to find the 
set of parameters that are considered to be best-fit 
values (Everitt, 1987). X2 measures the deviation of 
model predictions from the observed data: 

x2(a) = L~ [C;-C(t;;a) 
'= 1 cr;2 

(13) 

In equation (13), C; is the tracer gas concentration 
measurement at time t;, cr; is the standard deviation 
of the measurement (describes the uncertainty in the 
measurement), and C(t;;a) is the model prediction at 
time t;. 

iJecctus~ hte j l"tUdeh~Ll LL\ tc \.~J ga~ lJ.Jlil~Cn.~; L1Li1;i.~:; l·~l> 

pend nonlinearly Oil the parameter:::; we wish lo esti
mate, a closed-form solution of the best parameter 
values does not exist. Instead, an iterative minimiza
tion procedure is used. Given a set of parameters 
ai = aL ... ,a}..,r, successive estimations are made accord
ing to the following equation: 

(14) 

where &i+l is the correction vector and a; is the vector 
of M parameters determined during the ith iteration. 
The minimization procedure ensures that each iter
ation generates a new set of parameter values produc
ing a X2 statistic that is at least as good as the previous 
value: 

(15) 

We used the Levenberg-Marquardt (LM) method for 
finding a suitable correction vector, one of the more 
robust estimation methods (Davis, 1993). For a general 
discussion of these methods, see Everitt (1987), Bates 
and Watts (1988), Press et al. (1990), or Bevington and 
Robinson (1992). 

Implementation 
Our application of nonlinear least-squares minimiza
tion to the two-zone, two-tracer gas decay problem re-

~o 
I\ 

Zone 0 
(Outside) 

FJo 
I'\ 

Zone 2 Zone 1 

Volume V2 Volume \j 

CR2 (t), c82 (t) C Rl (t), C SJ (t) 

--->-:>F21 
FJ2 4'-<----

1 

Fig. 1 Schematic representation of the two-zone model. Tracer 
gases S and R are pulse-injected into zones 1 and 2 respectively 

quired the simultaneous fit of four mathematical equa
tions to four sets of measurement data. Our final objec
tive was to estimate six airflow rates: airflow from each 
room into the other room, airflow from each room to 
the outdoors, and airflow from the outdoors into each 
room (Figure 1). Only four of the six airflow rates were 
estimated from the tracer gas data: the two interzonal 

fr un.1 oulcloo1·s into tLc hvo :c.nncs were rleter:nined 

using equations (7) and (8). During each iteration, the 
airflow rate estimates were checked for non-negativity. 
If one or more of the flows was predicted to be less 
than zero, the correction vector was decreased by a fac
tor of 2 and the airflow rates were recalculated accord
ing to equation (14). This procedure was repeated until 
all six flows were non-negative before proceeding to 
the next iteration. 

It was determined during preliminary analysis that 
the minimization was sensitive to the model par
ameters CRo and C50. Although these parameters can 
be independently determined from the quantity of 
tracer injected and the zone volumes, there is some un
certainty in these values due to losses during injection, 
inaccuracy in measuring the exact amount injected, in
accuracy in measuring zone volumes, or incomplete 
mixing of tracer into the zone volume. Consequently, 
these two parameters were estimated in addition to the 
airflow rates. Note that it is common, even in single
zone tracer techniques, not to specify the initial tracer 
gas concentration a priori (ASHRAE, 1993). Similarly, 
other investigators have estimated effective zone vol
umes (volume in which the tracer is completely mixed) 
in addition to the airflows (O'Neill and Crawford, 
1990). 
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The X2 parameter measures the "fit" between the 
data and the model. To ensure that a best fit was simul
taneously achieved for our four sets of tracer gas data, 
four values of X2 were calculated, one for each set of 
data, and summed to obtain an overall X2

. During our 
experiments, the measured concentrations of tracer gas 
R were roughly four times larger than the concen
trations of tracer gas S. If we computed the overall X2 

as a simple sum of the four X2 values, it would be more 
heavily weighted by the fit between the data and the 
model for tracer gas R than for tracer gas S. To avoid 
this bias, the data were first normalized to the respect
ive peak measured concentrations. 

Initially, our X2 calculations assumed that all meas
urements had the same standard deviation. This as
sumption is appropriate when the true uncertainty as
sociated with the measurements is not known in ad
vance. It is a good assumption when all of the 
measurement errors are limited to statistical errors; the 
main implication is that all data values are equally re
liable (Bates and Watts, 1988). Eventually, we deter
mined that this assumption was not appropriate in 
some cases. We reformulated the X2 calculations in an 
attempt to better represent the data variation, as dis
cussed in the following section of this paper. 

Convergence of the minimization technique was 
based on two criteria: the relative size of terms in the 
co.i:i tdion vector as c01npared with res pective p revious 
pai:ameter VCllues, ~• nd the rela tive change in X' on suc
cessive iterations. After each iteration, X2 was evalu
ated to determine if it had decreased. If it did decrease, 
we checked both the size of the decrease and the size 
of the correction vector for convergence. More for-

I 
X2(a;)- X2Cifi+ 1) I 1a-i-a.i+11 

mally, if X2(a;+i) and 
/ 
a/}1 , for all j = 

1, ... ,M, were less than or equal to 10-6, then conver
gence was assumed to have occurred. 

A computer program to implement the minimiza
tion technique was written in Fortran-77, using com
puter routines from Press et al. (1990) to implement the 
LM method. Double precision was used for all calcu
lations, as recommended by Bates and Watts (1988). 

Assessing the Goodness-of-Fit 
Once the parameters of the model were estimated, 
we used several methods to evaluate the agreement 
between the measured tracer gas concentrations and 
the predictions of the fitted model. As a qualitative 
evaluation tool, we examined plots of residuals over 
time. To quantitatively assess the model, we tested 
for goodness-of-fit using the Kolmogorov-Smirnov 
statistic. 
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Residuals 
A residual analysis can assess the degree to which the 
underlying assumptions of the least-squru:es minimiza
tion are met. In this context, a residual is the difference 
at a given time between the model prediction and the 
corresponding measurement. The method of least
squares fitting assumes that the residuals are indepen
dent and normally distributed with constant standard 
deviation. In Equation (13), the assumption of constant 
standard deviation has been relaxed to obtain what is 
essentially a weighted least-squares, where cr; is the 
weighting factor for data point i. Residuals from a 
good fit have a uniform, random spread about zero; 
any systematic pattern indicates problems of non-con
stant standard deviation (Bates and Watts, 1988), that 
the underlying model is incorrect, or that the measure
ments errors are neither normally distributed nor inde
pendent (McCuen, 1985; Press et al., 1990). If the 
"strict" assumption of normally distributed residuals 
is violated, the least-squares minimization can still be 
useful for estimating parameters; however, the X2 can 
not be interpreted as the actual squared standard 
errors of the parameter estimates (McCuen, 1985; Press 
et al., 1990). 

Analysis of our validation experiments showed that 
the residuals were small and spread randomly about 
zero; thus, we c0ncluc1 ecl thnt the ci ssiimpticm of con
stClnt chl a stC1nd ;; ni d.~vi 21 ti nn v1·,; s z1 p p i'o ;Jri <1 t(: . I-Tow
ever, analysis of the uncontrolled experiments, con
ducted during our ETS research, revealed residuals 
that were very large during the first hour and biased 
either positive or negative. After the first hour, the re
siduals decreased to smaller values and the bias was 
reduced. This behavior suggests that there are other 
sources of variation in the data from the uncontrolled 
experiments besides statistical measurement error and 
that the real variance in the data is time-dependent. A 
potential source of variation is imperfect mixing of 
tracer gas within each zone. 

Because the residual plots indicated non-constant 
standard deviation, the minimization method was 
modified to better represent the variation in the data. 
Following the approach suggested by Bates and Watts 
(1988), the standard deviation of the data was modeled 
using a power function: a function of the form atP was 
fit to the absolute value of the residuals, where a and B 
are constants, determined by the fit. The minimization 
procedure wa then repeated, using the square of this 
power hmction in equation (13). Using a time-depend
ent expression for the weighting factor in the X2 equa
tion gives less weight to the data points measured in 
the beginning of the experiment and more weight to 
the data points measured later in the experiment. 
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Kolmogorov-Smimov Test 
We used goodness-of-fit statistical testing to assess 
whether the measured data agreed with the underlying 
model. The Kolmogorov-Smimov (KS) test is a non
parametric test for determining whether two indepen
dent samples could reasonably be supposed to come 
from the same continuous distribution (McCuen, 1985; 
Sprent, 1989). The test statistic, DKs, is the maximum 
absolute deviation between the theoretical and ob
served cumulative relative frequencies. For our appli
cation, we compared the empirical distribution func
tions from the data points and the model predictions. 
If the functions did not depart significantly from each 
other, then we concluded that there was a good fit be
tween the model and the data. 

The X2 goodness-of-fit test is a well-known, fre
quently used approach for assessing model fit, and it 
would appear to be an obvious choice for this appli
cation since X2 is an output of the least-squares minim
ization. However, we believe that it is not a suitable 
test for this method, for two reasons: (1) residual analy
sis revealed that the data standard deviation was nei
ther normally distributed nor independent, thus violat
ing the assumptions of the X2 test; and (2) the X2 good
ness-of-fit test is most appropriately used to compare 
discrete functions, not continuous functions from 
w h icl1 our cL-ltJ dcri\'C rl 

Model Parameter Uncertainties 
We estimated the uncertainties in the predicted airflow 
rates for the uncontrolled experiments using a Monte 
Carlo method. Starting with the predicted parameters, 
many sets of "artificial" data were generated using 
model equations (9)-(12) (Press et al., 1990). These data 
were corrupted by adding a random error term based 
on the power function model of the standard devi
ation; the least-squares minimization was then re
peated for each artificial data set. We generated and 
analyzed more than 200 data sets to derive a prob
ability distribution for each predicted parameter. 

Validation Experiments 
Method 
To validate the least-squares minimization method, we 
conducted tracer gas decay experiments under con
trolled conditions at the Indoor Air Quality Research 
House, located at the University of California's Rich
mond Field Station. The test facility is a two-story, 
wood building, within which three rooms have been 
retrofitted to have small air leakage (Offermann et al., 
1985). The validation experiments were carried out in 
two of these rooms, denoted zone 1 (36 m3) and zone 

Zone 2 * 31 m3 

* + 

* 

~Exhaust 
t:::..:::l hood 
=window 

- Door 

* 
loo! * Zone I 

36m3 

* Snm lin lines 1.6 m) 

+ * 
@ Computer 

* 

® Air supply (floor level) 

*Fans 
+Tracer gas 

injection (1.0 m) 

Fig. 2 Configuration of the test rooms used to conduct the two
zone, two-tracer gas decay experiments (plan view). GC=gas 
chromatograph. Height above the floor is given in parentheses 

2 (31 m3) (Figure 2). The two rooms are connected by 
a doorway. An exhaust hood is located in the comer of 
zone 1. Each room has four small instrument-cooling 
fans mounted at the center of each wall that can be 
remotely operated to promote mixing. 

For the validation experiments, both rooms were 
tightly sealed (including the connecting door), and all 
six of the airflows in the two rooms were mechanically 
cont-r:Jllcci.. \\7c j11sL1l1cd sl:< bi <.Y·. \·1:_1 1'~-~ :o provicL~ th'2 r.-1lr

flows: SUF;ply ::i, nd ~' dl <l l.I S\' olmvcrs pene trated lhe ceil
ing of each room, and interchamber blowers pen
etrated the wall connecting the two rooms. The two 
exhaust blowers discharged air to the outdoors to en
sure that tracer gas was not re-entrained into the test 
rooms. During the experiments, we continuously 
monitored the airflow through the supply and exhaust 
blowers for zone 1 with two orifice plate systems. 

Power to the blowers was provided by variable 
transformers. We used an orifice plate method to deter
mine the appropriate settings on the transformers to 
achieve desired airflow rates. A calibration system was 
configured with each blower in turn discharging into 
a large, airtight plenum from which air was extracted 
using a separate fan. The fan discharged to a 20-m 
straight pipe which contained an orifice plate. Airflow 
generated by the fan was adjusted to the desired target 
value, as measured by the pressure drop across the ori
fice plate. Then the blower airflow rate was adjusted 
to yield atmospheric pressure in the plenum; at this 
point, the fan and the blower airflows were assumed 
to be equal. 

After setting the blower transformers by this 
method, the blower airflow rates were accurately 
measured using a tracer gas technique (Drescher et al., 
1995). Compressed air containing 109 ppmv of SF6 was 
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0.005 

I 0 Zone 1 A Zone 2 

"' c;; 0.0025 A .g 0 A 

·;;; 0 
0 0 A 0 

0:: 0 A A 
"Cl 0 0 
N 

20 40 60 ~ 0 e 0 A 0 

~ -0.0025 Time (min) 

6 6 

-0.005 
Fig. 3 R13Bl concentration residuals for the validation experi
ment, scenario A (run 1). The residuals are calculated as the dif
ference between measurements and model predictions from the 
minimization with constant data standard deviation. The magni
tude of the residuals indicates the size of the deviation relative to 
the peak normalized concentration: a residual of 0.005 indicates a 
0.5% deviation 

injected through a mass-flow controller (Matheson, 
Model 8274) into the inlet of the blower. The steady
state concentration of SF6 was measured at the outlet 
of the blower with a gas chromatograph (GC) 
equipped with an electron capture detector (ECD) 
(Lagus Applied Technology). The airflow rate was de
termined by applying a material balance on SF6 . 

\!Ve condnc i:ed ch1plic1 te 1.:xperi rn eni··-: lor e::i.-h of the 
following airflow scenarios: in sceilario A, fiow rates 
were relatively high from outdoors into zones 1 and 2, 
from zone 2 to zone 1, and from zone 1 to outdoors; in 
scenario B, the flow rates were relatively high between 
zone 1 and outdoors and between the zones. In each 
experiment, wall fans plus a 0.3-m diameter oscillating 
fan were operated continuously in each room to pro
mote mixing. Prior to the start of each experiment, the 
blowers were off. A small volume of tracer gas was 
released in the center of each zone by injection through 
norprene tubing: 37 cm3 of 17.6% SF6 (in helium) into 
zone 1 and 15 cm3 of R13Bl (CBrF3) into zone 2. The 
tracer gases were mixed for seven minutes, then the 
blowers were turned on. Tracer gas concentrations 
were monitored continuously for one hour using a GC 
with an ECD (Hewlett Packard, Model 5890). Air was 
sampled at 7-minute intervals through norprene tub
ing from a position at the center of the room, 1.6 m 
above the floor. 

Results 
We applied the least-squares minimization method to 
the validation data using measurements taken after the 
blowers were turned on. In the minimization pro
cedure, we assumed that the data standard deviation 
was constant. The residuals were small and had no sys-
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tematic bias, as shown in Figure 3, thus modifications 
in the minimization procedure were not required. 

Figures 4 and 5 compare model predictions with 
measurements using both the measured blower airflow 
rates and the airflow rates estimated from least-squares 
minimization. It can be seen that a very good fit was 
obtained. Results of the KS goodness-of-fit tests, pre
sented in Table 1, show that there are no statistically 
significant differences (significance level: 0.05) between 
observed and modeled values. 
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'. 
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(a) 

Model: blower airflow rates 
Model; least-squares airflow rates 

O A Experimental tracer gas data 

O·r---- -- --,- --- --, ----------- --- ----T--------. ----··--
0 JO 2U 30 ·!O :ill (l() 
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Fig. 4 Comparison between model p redictions and tracer gas 
measurements for the validation experiment, scenario A: (a) SF6 
concentrations (denoted by S) and (b) R13Bl concentrations (de
noted by R). Model pred ictions are separately plotted for the 
least-squares and measured blower airflow rates 
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Table 1 Results of goodness-of-fit analysis for all experiments 

Experiment Zone Tracer DKsa 

Validation, Scenario Ab 1 s 0.11 
u<=29 R 0.11 

2 s 0.22 
R 0.11 

Validation, Scenario Bb 1 s 0.10 
u=29 R 0.10 

2 s 0.10 
R 0.10 

INFILT 1 s 0.14 
u=lOl R 0.21 

2 s 0.24 
R 0.14 

VENT 1 s 0.07 
u=lOl R 0.11 

2 s 0.07 
R 0.07 

a At 0.05 significance level, Dcrit=0.41 for scenario A and B, and 
Dcrit=0.24 for INFILT and VENT; if DKs<Dcrit' agreement be
tween measured and modeled data is good 

b Analyses for run 1 data only 
c Degrees of freedom, u=N-M-1, where N=total number of 

data points used in minimization, M =number of estimated par
ameters 

Table 2 Results of least-squares minimization analysis for the 
validation experiments 

Parameters Scenario A Scenario B 

Mei'ls-
Least-squaresb 

Meas-
Least-squaresh 

Lll i_ ..i' ' c11 :1 J_ 1 un ::~ 11u.::c1·1 
J L' I\ I fllll 2 

-----
f21 (m3 h- 1) 89 90 90 89 94 96 
F12 (m3 h- l) 33 30 32 100 92 94 
F10(m3 1i- 1) 167 156 154 167 161 162 
F20 (m3 h - 1) 32 30 25 32 34 39 
Fot (m3 h -1) 101 97 96 165 159 160 
Fm (m3 h - 1) 91 89 83 31 36 41 
Cs

0 
(ppbv) 166±3 167 169 167±2 172 175 

CR
0 

(ppbv) 444±3 463 475 434±1 457 455 

• Airflow rates as supplied by blowers; initial tracer gas concen
trations are meanzstandard deviation of GC measurements in 
the test chamber prior to turning on the blowers for runs 1 and 
2 

b Two tracer gas experiments were run consecutively; both sets 
of data were separately analyzed using the least-squares minim
ization method 

Table 2 compares the imposed blower airflow rates 
with the rates inferred using nonlinear least-squares 
minimization. The agreement is very 'good: the mean 
absolute relative error for individual flow rates is 8%. 
The four cases in which errors are greater than 10% 
correspond to low airflow rates; on a volume flow rate 
basis, the errors for low airflow rates are similar to the 
overall absolute average error of 5 m3 h- 1. Table 2 also 
compares the amount of tracer gas injected during the 
experiments, as measured by the GC after injecting 
tracer and allowing it to mix for 7 minutes, with the 
prediction using least-squares minimization. Again, 

the agreement is good, with average and muximum de
viations of 4% and 7%. 

Under ideal conditions, the blower airflow rates will 
satisfy equations (7) and (8). In these experiments, the 
material balances based on the measured airflow rates 
are not satisfied: the errors are 3-5% for scenario A and 
5-8% for scenario B. There are two main sources of 
error that could account for uncertainty in the blower 
airflow rates. First, in setting the rates we found that 
slight changes in the curvature of the ducting attached 
to a blower outlet could result in a flow rate change of 
up to 8%. In addition, we observed that while F01 was 
steady during the experiments (continuous monitoring 
during the experiments showed fluctuations of <l'X,), 
F10 fluctuated by 7%. The higher fluctuations are 
thought to be due, at least in part, to exhausting the 
air from this blower into a time-varying outdoor wind. 
Similar behavior is expected for blower flow F20 since 
it was also exhausted to the outdoors. Due to these 
factors, we expect the blower flow rates were accurate 
to within about 8%. 

Experimental Application 
Methods 
As part of our larger study on ETS-particle exposures, 
twn-2nn e, tvm-trnrer f;<!S rl ecav experiments were con
d ucted <1[· !lh:: illC!o<Jr ,\ ir Qu<1Jily t<c:;c,\! ''.11 1 -l mic'~. l 1; -.· 

experimental configuration was similar to the con
trolled experiments described above, except that the 
connecting door between zones 1 and 2 was not sealed, 
mixing fans were not operated after an initial tracer 
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Fig. 6 R13Bl concentration residuals for the VENT experiment. 
The residuals are calculated as the difference between measure
ments and model predictions from the minimization with con
stant data s tandard deviation. The power function fit to the abso
lute value of residuals for both zones is represented by the solid 
line. The magnitude of the residuals indicates the size of the devi
ation relative to the peak normalized concentration: a residual of 
0.15 indicates a 15% deviation 
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Fig. 7 Comparison between model predictions and measurements 
for the INFJLT experiment! (a) SF6 concentrations (denoted by S) 
and (b) R13Bl concentrations (denoted by R). Mopdel predictions 
are plotted using parameters estimated by the least-squares min
imization employing a power function for data s tandard devi
ation 
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Fig. 8 Same as Figure 7, for the VENT experiment 

dispersion period, and airflow rates were substantially 
uncontrolled. 

Prior to the beginning of each experiment, the door 
connecting zones 1 and 2 was closed and the wall fans 
were operated for 5-10 minutes to promote air mixing. 
Then, a small volume of tracer gas was released in each 
of the zones by injection through a copper tube: 25-30 
cm3 of 17.6% SF6 (in helium) into zone 1 and 10-15 cm3 

of R13Bl into zone 2. The wall fans were operated for 
an additional 5-10 minutes to thoroughly mix the 
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tracer gas. The fans were then turned off and the door 
connecting the two zones was remotely opened. Tracer 
gas concentrations were monitored for four hours 
using a GC with an ECD. Room air was drawn at 9-
minute intervals through norprene sample lines posi
tioned in the center of the room, 1.6 m above the floor. 

We conducted a total of six experiments under vari
ous ventilation conditions (both natural and mechan
ical). Two illustrative experiments are presented here. 
One (denoted INFILT) was conducted under low infil
tration conditions. The second (denoted VENT) was 
conducted with increased local ventilation supplied 
through a high-efficiency-particulate-air (HEPA) filter 
from outside to zone 1 at floor level through 0.1-m 
ducting. The supply airflow rate was approximately 20 
m3 h-1, as determined with an orifice plate. During 
VENT, the exhaust hood duct located in zone 1 was 
opened to allow excess air to flow outside. 

Results 
We applied the least-squares minimization to the IN
FILT and VENT experiments assuming that the data 
standard deviation was constant. Analysis of the re
siduals, however, revealed large non-random values 
during the first hour of data (Figure 6). Consequently, 
we modified the minimization to incorporate a non
co n ~.i LJ 1 ·Lt z:td:t! :.L.1i-:d0 1_-d 1 ~ i:·._: i ;--:!~:~}f': ,./~ flt p0i:A:cr fnn c

tions to tbe residuals in the ~)F6 and R1313l data to con
struct an estimate of the data standard deviation as a 
function of time. Figure 6 shows the residuals and the 
power function model for R13Bl in the two zones of 
the VENT experiment. We carried out the modified 
minimization using the square of the power functions 
for the weighting factor in equation (13). The absolute 
relative difference in estimated parameters from the 
minimization using constant standard deviations ver
sus using the power function model ranged from 1-
25%, with a mean difference of 4% for the INFILT ex
periment and 10% for the VENT experiment. 

Table 3 Results of least-squares minimization analysis for INFILT 
and VENT experimentsa 

Parameters INFILT VENT 

F 21 (m3 h-1) 60±2 154±17 
F12 (m3 h-1) 59±2 163±18 
F10 (m3 h-1) 2.4±1.3 10±5 
F20 (m3 h - 1) 0.001±0.001 11±5 
Fo1 (m3 h-1) 1.6±0.2 19±1.4 
Fo2 (m3 h-1) 0.8±0.2 2±1.3 
Cs0 (ppbv) 101±1 129±2 
CR

0 
(ppbv) 428±6 365±8 

• The power function model was used to represent the data stan
dard deviation; parameters are best estimate±standard devi
ation as determined by Monte Carlo simulation 
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From plots of the tracer gas data, overlaid with the 
model-predicted concentration profiles, it can be seen 
that good fits were obtained (Figures 7 and 8). The KS 
tests for goodness-of-fit indicated that there were no 
statistically significant (significance level: 0.05) differ
ences between observed and modeled values (see Table 
1). 

The estimated airflow rates and their standard devi
ations, determined by Monte Carlo simulation, are 
summarized in Table 3. The interzonal flow rates have 
low fractional uncertainty under both experimental 
conditions, suggesting that these flows are a strong de
terminant of the behavior of tracer gases in the system. 

Discussion 
We have developed a nonlinear least-squares minim
ization method to estimate interzonal airflow rates in 
a two-zone building from two-tracer gas decay experi
ments. One attractive feature of this method is that it 
uses information from all of the measurement data to 
determine the airflow rates. In validation experiments, 
we found that the airflow rates could be inferred with 
a mean accuracy of ± 8%. 

When applying the nonlinear least-squares minim
ization technique in practice, accuracy may be poorer 
thrin in thPc;e cnntrn11ecl e:xreriments cl11P to the m:my 
sources of error <v;sociatecl with multizone tracer gos 
measurements. Statistical fluctuations due to measure
ment error can be averaged out with enough data, or 
predicted based on previous experience. Incomplete 
mixing of tracer gas into the zones can be a major 
source of error, as much as 12-18% (Sandberg, 1987). 
Residual analysis for the uncontrolled experiments 
suggested that the mixing time for our system was 
roughly one hour. The residuals were large during the 
first hour of the experiments (Figure 6); after the first 
hour, the values were comparable to our well-mixed 
validation experiments. Previous studies on the mixing 
rate of pollutants in a single zone, conducted in zone 
1 of the same research house, showed that the mixing 
time for quiescent conditions was of the order of one 
hour and that factors such as forced airflow and inter
nal heating could reduce the mixing time by an order 
of magnitude (Baughman et al., 1994; Drescher et al., 
1995). Although mixing patterns in multizone enclos
ures include mixing between zones in addition to mix
ing within zones, these mixing time measurements 
support our inference that incomplete mixing contrib
uted most significantly to the error in the data from 
the uncontrolled experiments. 

To mitigate the effects of mixing error, we modeled 
the data standard deviation with a power function. 

Among the four sets of data that we analyzed (two 
experiments, two tracers), the exponential parameter 
in the power -~cti?n var~ed over a narrow range: 
0-S<P<0.8. This finding again supports the notion that 
despite differing experimental conditions, the main 
source of data error was similar among uncontrolled 
experiments and most likely due to incomplete mixing. 

In addition to incomplete mixing, there are several 
other issues to consider. The sampling of tracer gas 
should be frequent enough that there are ample data for 
model fitting, particularly during the early phase when 
concentration changes are most rapid. The mechanics of 
solving the system of mathematical equations used in 
this method (equations (9)-(12)) may prove difficult. In 
some cases, the system that must be solved to determine 
the theoretical airflow profiles will be ill-conditioned; 
that is, some of the elements of the system matrix are so 
close to zero that inversion results in numbers approach
ing infinity. This problem can arise when the airflow 
rates between zones are large. Although the interzonal 
airflow rates for our VENT experiment were large, we 
did not encounter this problem. A very powerful set of 
techniques, known as singular value decomposition, 
can be applied to such systems (Press et al., 1990). Pre
vious researchers have alternatively solved this problem 
by collapsing zones with large interzonal flows into a 
single zone (Nagda ct al., 1995) . 

The temporal stability of airflows is anolltcr in1po: l

ant factor. Researchers have suggested that multiple 
tracer gas methods accommodate changing interzonal 
airflows better than methods using single tracer gases 
(Sherman, 1990b; AIVC, 1991). The method of O'Neill 
and Crawford (1990) is able to track flow rate par
ameters in a system that vary slowly with time. The 
method we describe in this paper is only applicable to 
data collected during periods with relatively constant 
air flows due to the formulation of the well-mixed two
zone building model. Applying the minimization tech
nique to data gathered from a system with time-varying 
flows may result in airflow rate predictions that yield 
the best overall fit to the data but do not necessarily rep
resent the true mean values. Sandberg (1987) explored 
the accuracy of tracer gas techniques for predicting the 
mean flows in a time-varying system. He concluded that 
errors caused by varying flow rates could be disre
garded compared to other errors, provided that there 
were no oscillations with a time period greater than one
third of the mean nominal time constant (inverse of the 
air-exchange rate). In addition, experimental measure
ments in Sandberg's study showed that most oscil
lations in a naturally ventilated multizone house were of 
a high frequency nature (on the order of minutes) and 
would therefore not affect accuracy. Applying these re-
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sults to our work, oscillations with a period of greater 
than 60 minutes and 9 hours, respectively, would have 
affected the accuracy of our VENT and INFILT experi
ments. The impact of time-varying flow rates on tracer 
gas techniques merits future exploration. 

It is feasible to extend the minimization method de
scribed in this paper to determine airflow rates in 
buildings with more than two zones. A mathematical 
description of the tracer gas concentration profiles in 
the multiple zones must be written similar to equations 
(9)-(12). For each additional zone, an additional tracer 
gas is needed resulting in 112 equations for an n-zone 
building. Once this set of equations is written, they 
must be solved either numerically or analytically. If an 
analytical solution is written, then the minimization 
scheme described in this paper can be used directly. If 
the equations must be solved numerically, the minim
ization method would require small changes: the gov
erning equations will need to be solved with each iter
ation that generates a new set of parameter values. 
More rigorously, given a set of tracer gas data, where 
Cii is the datum associated with ti for zone j, and an 
initial set of parameters n°, the coupled system of dif
ferential equations is numerically solved for the values 
Ci(t;,a0). A X2 is computed by equation {13). Successive 
parmneter . timaf ns ar · made according to the LM 
m thod. Wh n th pri r•11 1 .lt'r •.;ti111,1tio11 n";ulb i11 a 
new X2 that is less than the previous value, the par
ameter estimates are updated to their new, more opti
mal values. At this point, the differential equations 
must be solved again for the values Ci(t;,ak) using the 
new parameters ak. Iterations are repeated until con
vergence is reached. Given present computational 
capabilities, coupling a numerical differential equation 
solver with the minimization procedure is a relatively 
straightforward exercise. 

In sununary, least-squares nonlinear minimization is 
an effective procedure for interpreting data from multi
zone tracer gas decay. Our approach to the specific 
two-zone, two-trace.r problem, relative to the eigen
value, integral, and differential methods, produced a 
more robust tool for studying ventilation and indoor 
air quality in cases in which a well-mixed single reac
tor model of the indoor environment fails and esti
mates of interzonal airflows are needed. An improved 
understanding of multizonal airflow is important be
cause of the errors inherent in using the conventional 
well-mixed single reactor model in nonideal situations. 
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