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Sound Attenuation in Long Enclosures 
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An intensive review indicates that among tlte e:cisting formulae on tlte sound a11enuatio11 in long 
enclosures, only the geometrical reflection model seems relatively practical. Computations with this 
model show the following for rectangular long enclosures: with a larger cross-sectional size tire 
relative a11e1111ationfrom a given section is less but the absolute auenuation with reference to tire 
source power is greater; the efficiency of absorbers is higher when there is less absorption; and 10 

obtain a higher allenuation, the absorbers sho11ld be evenly arranged it1 a section. Jn conc111sion, it 
is still necessary co develop a more practical prediction method. Copyright © 1996 Elsevier Science 
Ltd. 

NOMENCLATURE 

a cross-sectional height 
a0 radius 
a 1 reference distance, 1 m 

a
8

,,,, distance between the receiver and the image 
source (g,h,q) 

b cross-sectional width 
B attenuation coefficient, 0.14 
c sound speed in air 

cb sound speed in a boundary 
CCSD spatial complex cross-spectral density 

d distance from source to the end wall 
db boundary thickness 
D sound attenuation ratio, dB/m 

ER sound energy density from the image sources 
f frequency 

g,h,q numbers of reflections on the ceiling, floor and 
walls 

i boundary number, 1-4 
1(8) sound energy intensity in the direction 8 

l(v,w) plane-wave weighting function 
l(x,y,:) sound energy intensity at the receiver (x,y,z) 

k wave number vectors 
K coefficient in relation to a 
/ 1 width of the boundary i 
12 width of the boundary which is vertical to the 

boundary i 
I, distance between the receiver and the cross­

section with P1N 

I doorway height 
L tunnel length 

m,n number of reflections (order of image source) 
P sound power of the source 

P' sound power per unit length of the line source 
P1N input power 
P~0 power flow at the receiver 

Pso.; power flow at the receiver caused by the bound­
ary i 

PWL sound power level 
r = x - x', x and x' are position vectors 

R reflection coefficient of the end wall 
S cross-sectional area 

SPL sound pressure level 
SPL, SPL at the receiver with a distance of z from 

the source 
SPL,.1 reference SPL 
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24,? 

u overall sound energy density 
U cross-sectional perimeter 

w,v azimuthal and polar spherical angles 
W(v,w), W(v) modal power function 

x0 horizontal distance between the receiver and a 
tunnel end 

z source-receiver distance 
y =a, 13/212 

a.,a,,Xw absorption coefficients of the ceiling, floor and 
walls 

a, absorption coefficient of the boundary i 
If mean absorption coefficient 

a. normal absorption coefficient 
:x.W = ~K1 (~). K 1 is the modified Hankel function 

y rate of the attenuation along a corridor outside 
the direct field, l.4Ulf/S 

i. wavelength 
(J angle between the boundary normal and a 

reflection 
p mean reflection coefficient 

p8 angle dependent reflection coefficient 
Po density of air 
Pb density of a boundary 

p.,pr,Pwi.Pwi reflection coefficients of the ceiling, floor and 
walls 

si(y), ci(y) - r (sint/t) di, - r (cost/t) di 
y y 

INTRODUCTION 

THE subject of this paper is concerned with long enclos­
ures, such as underground stations, corridors, street tun­
nels and so on, where one dimension is much greater than 
the other two. It is noted that the other two are still 
relatively large compared to the acoustical wavelength. 

The sound attenuation in long enclosures has been 
investigated for several decades. An outstanding feature 
of long enclosures is that the sound field is not diffuse 
and thus the classic room acoustical theory is not appli­
cable [!]. Based on various assumptions and by using 
various methods, a number of formulae have been estab­
lished. 

In this paper the investigations on the sound attenu­
ation in long enclosures are intensively reviewed and the 
usefulness of various formulae is compared. Through 
computation with some of the formulae, the basic charac-
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teristics of the sound attenuation in long enclosures are 
systematically analysed. 

REVIEW 

Geometrical rejlectio11 
As a typical case, geometrical reflection is assumed in 

most of tbe ·existing formulae. Diffusion is ignored, and 
the absorption coefficient is considered to be independent 
of the incident angle. 

Image source method. The image source method is the 
most conventional way to treat the geometrical reflection. 
By using this method the sound energy density in an 
inJinite rectangular long enclosure with geometrically 
reflecting boundaries can easily be derived (2-4). The 
simplest case is that all the boundaries have the same 
absorption coefficient, and a point source and a receiver 
are positioned at the centre of the cross-section 

p oo oo plml+l•I 

u = 4itc m-~ 00 .)~ 00 (ma)2 +(nb)2+z2 (1) 

p [ 4p J u ~ ---::2 1 + --)2 (z » a,b). 
4itcz- (l -p 

(2) 

The calculation using equation (l), however, is some­
what complicated. Hence Kuno et al. [5] developed a 
method to simplify the summation in equation (l) 

J(x,y,=) = -{s[cosa2=ci(a~=)+sina2zsi(a2z)), (3) 

where the source and receiver were at (x0,y0 ,0) and (x,y,z) 
respectively, and 

u 
a2 = itSlgp. 

Computations showed that the results of equations {I) 
and (3) were quite similar. The differences of the two 
equations were within ±I dB in the near field and became 
less with the increase of source-receiver distance. Equa­
tion (3) was validated by the measurements in a corridor 
of 2 m by 2.6 m by 57 m with an accuracy of around 
± 1.5 dB, where the measurement frequencies were from 
500 to 4 kHz in octave. The measurements, however, 
were limited within a relatively low boundary absorption, 
0.04--0.07. 

Both equations (1) and (3) are unable to consider the 
difference of absorption coefficient between various 
boundaries, and thus the results could be inaccurate when 
this difference is great, such as a hard-walled corridor 
with a strongly absorbent ceiling. Yamamoto [6], there­
fore, deduced a formula to consider the difference of 
absorption between the four boundaries in infinite rec­
tangular long enclosures that is 

SPL = PWL-ll-101 g[~ 

"°' "°' <PrPc)"{pw1Pw2Y" 
+ m ~ 0 • -:-0 z2+ (2n + 1)2a2+ (2m+ l):h2 

X (PcPwl + PrPw1 + PcPwi + PrPw2) 

"°' "°' {pf!Jc)"{pw1Pw2)"' (p ) 
+"'~I• -:-o 2 z2+ (2n+ l)2a2+ (2m)2b2 r+ Pc 

"°' ""' {pfpc)"(p.,1Pw2)"' 
+ ,,,~1.-:-1 4 

z2+(2n)2a2+(2m)W 

+ L 2 CPrPc)" 
•-I z2+(2n)2a2 

""' (p,pc)" (p ) 
+ .-:-oz2+(2n+ l)2a2 r+Pc 

""' (p.,1Pw2)'" 
+ m~I 2z2+(2m)2b2 

""' (P.,1Pw2)'" ( )] 
+ m~oz2+(2m+ l)2b2 Pw1+Pw2 · (4) 

Corresponding to equation (l), equation (4) was also 
deduced by assuming geometrical reflection and using 
the image source method. The source and receiver were 
still at the centre of the cross-section. Consequently, the 
results of both the equations will be the same if all the 
boundaries have a unifonn absorption coefficient. 

The calculations using equation (4) showed good 
agreement with the measurements in a corridor of cross­
section l. 76 m by 2. 74 m, and absorption coefficients 
tXc = 0.34 . .. 0.63, tX., = 0.3 l ... 0. 74 and 1Xr = 0.03. The 
accuracy was within about ± 2 dB from 150 to 4.8 kHz. 
This indicated that equation (4) could be valid until a 
quite low frequency. Moreover, the above results dem­
onstrated that equation (4) could also give an effective 
prediction even if the boundary absorption was relatively 
high. Unfortunately, the measurements were made with 
a maximum source-receiver distance of 18 m, and thus 
the conclusion was limited. 

This limitation. in fact, has been noticed by Redmore 
(7]. Based on the assumption of the geometrical reflection 
above, Redmore used a computer model with the ray 
image theory to predict the sound attenuation in rec­
tangular corridors where two absorption coefficients. 
namely the average of ceiling and floor, and the average 
of two side walls, were considered. This model , similar 
to equations (1) and (4), gave good agreement with both 
site and scale model measurements in hard-walled corri­
dors. However, it tended to overestimate the sound levels 
for corridors containing more highly absorbent material 
on the floor and ceiling as the distance from the source 
increased. This appears to be an important extension of 
Yamamoto's above conclusion, as in their measurements 
the cross-section and absorption materials (non-resonant 
absorbers) were similar but Redmore's corridor was 
around 20 m longer. A possible explanation for this 
overestimation could be that for highly absorbent boun­
daries the exclusion of diffusion and angle dependent 
absorption was unreasonable. In other words, the 
assumption of the geometrical reflection might be inap­
plicable in this case. 

The angle dependence of the absorption coefficient was 
considered by Sergeev [8, 9] when he derived a series of 
formulae for long enclosures in a similar manner as the 
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above. This consideration, however, was limited to rela­
tively hard boundaries: 

Po= e-"'10 (n/3 :s; 8 ~ n/2) 

= const (0 ~ 8 :s; n/3), (5) 

where 

I/I= 4Re(l/p) (boundary with infinite thickness) 

= -4lpl2lm[pctg(2nfe=ldb/A.)] 

(boundary with finite thickness) 
M 

p= 
.foCl 

M =Pb/Po 

N = c/cb. 

Unfortunately, no experimental result was given to 
demonstrate that the above consideration of the angle 
dependent absorption could enable better predictions. 

Wave theory. In contrast to the specular, single plane 
wave reflection theory of geometrical acoustics as used 
above, Davies [IO], in a manner of plane wave decompo­
sition, derived a series of formulae to estimate the sound 
attenuation in rectangular corridors. The estimates, how­
ever, were still based on following the propagation of 
plane waves on a form of geometrical acoustics. The 
analyses were at high-frequency, at which the modal sum­
mations could be replaced by suitable integrals. Attention 
was limited to the total acoustic power flow, and not to 
the details of the cross-sectional variations of the sound 
pressure field. 

The diffraction was ignored. In other words, the uni­
form impedance condition was assumed. As the diffrac­
tion effects might accumulate after several reflections, 
only two cases were considered: either highly absorbent 
materials, where all the energy of a plane wave was 
absorbed effectively after two reflections, or relatively 
hard boundary materials, where the true sound field 
involved only a small perturbation of the rigid boundary 
case. 

Two idealised sound sources were assumed. One of 
them was the equal energy source with which the pro­
pagating modes had equal energy. This could be 
described as the sound field resulting from a noise source 
in a reverberate room at the input end of the corridor. 
The other source was a simple source with which there 
was relatively more energy in the higher order modes. 

Based on the above assumptions, the formulae for 
calculating the receiver/input energy ratio were given 

~= l+ L ABS.i ' 
P 

( 
4 p )-1 

P1N ;- 1 PIN-PAeS,i 
(6) 

where 

(7) 

For the low absorbent boundaries, the simple source 
.•. and large values of /3//1 

p soi 2 [ "( ) . "( ) l --· = - c1 y smy-s1 y cosy. 
PIN 7t 

(8) 

For the low absorbent boundaries, the equal energy 
source and large values of /3//1 

Pso.; = - ~[ci(y)(ycosy-siny)+si(y)(ysiny+cosy)]. 
P1N 7t 

(9) 

For the high absorbent boundaries and the simple 
source 

Pso1 ( 2 1 412) 2 --· = l-2ix; I- -tan- - +ix; 
P1N 1C /3 

For the high absorbent boundaries and the equal 
energy source 

Pso; ( 2 1 4/,) 2 --· = I -2ix; 1- -tan- -=- +ix; 
PIN 1C 4 

(11) 

When ix; = l, equation (I I) can be used to calculate 
the sound attenuation in open corridors or the corridors 
with doorways 

P50 1 ( 2 1 2/2) I 
Pi~ = l - 1 - ~tan - 7; /... (12) 

The theoretical estimates were compared to the 
measurements in two corridors in a 1/3 octave band cen­
tred at 2 kHz. The equal energy source was simulated by 
a loudspeaker placed in a large, hard-walled stairwell at 
one end of a corridor. The simple source was simulated 
by a loudspeaker placed at a corner of the other corridor. 
The agreement between calculations and measurements, 
however, was not as good as that of equations (l}-(4). 
The calculations tended to underestimate the actual 
attenuation. Possibly this was because the assumptions of 
Davies' method were too strict to be practically achieved, 
even for a designed measurement. 

Line source. Corresponding to the above investigations 
on a single source, line sources have also been inves­
tigated. Similar to equation (1), Kuttruff[2] gave a theor­
etical formula to calculate the sound energy density in 
infinite long enclosures with a line source along the width 
and in the middle of the cross-section, where the geo­
metrical reflection was also assumed and the receiver was 
at the centre of the cross-section 

p «> p'"' 
u=- I 

4c._ -«>j(na)2+z2 
(13) 

u::::::. .!....(1 +~)(z»a). 
4cz 1-p 

(14) 

Different from Kuttruff, Said [11, 12] derived a formula 
to consider the different absorption coefficients for the 
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floor, ceiling and walls in rectangular street tunnels with 
a line source along the centre of the cross-section and 
with the same length as the tunnel, where geometrical 
reflection was still assumed 

( 
Xo L-Xo) x arctan- + arctan-- . 

a9h9 a,hq 
(15) 

To simplify equation (15), Said developed a statistical 
method, where the average absorption coefficient of all 
the boundaries was used 

_ -P'n {2 - 2 [ln{l -<2)7tSx0] 

ER - 2cU1n (1-<2) exp U 

2 [ln(l-!X)nS(L-x0)]} 
-exp U . (16) 

It was demonstrated that equation (16) was valid for 
<2 < 0.4. In addition, calculations in a tunnel (height: 5 m; 
width: 15 m; length: I 00 ... 500 m) showed that the sound 
absorption materials on the ceiling were very effective for 
noise reduction. With an absorbent ceiling the effect of 
the absorbent walls was not significant. Said, however, 
did not validate his theory by measurement. 

Consideration of diffusion 
As mentioned above, the assumption of geometrical 

reflection could be unreasonable when the boundaries 
are highly absorbent. Moreover, acoustically hard but 
rough boundaries often exist in long enclosures. Hence it 
is necessary to consider the diffuse reflection. 

Yamamoto [6] gave a theoretical formula for the semi­
diffuse field, namely, that the sound density was the same 
in a cross-section 

Calculations showed that in this case the sound attenu­
ation was greater than in the sound field formed by the 
geometrically reflecting boundaries assumed above. 
However, in comparison with the measurements for val­
idating equation (4), equation (17) was far from accurate. 
Possibly this was because the assumption of the semi­
diffuse field was not applicable in this corridor. 

Ollendorff [13] developed a theoretical method to cal­
culate the noise level and reverberation time in rec­
tangular street tunnels by using the partial differential 
equation of the diffusion of phonons. As an example, 
calculations were made for a street tunnel witfi. a section 
of 12m by 4m, where it was assumed that the floor was 
totally reflective and the other boundaries were totally 
absorbent. Ollendorff's method, however, seems too 
complicated to be used practically. 

Kuttruff [2] proved theoretically that with diffusely 
reflecting boundaries the sound attenuation along the 
length was greater than that of the geometrically reflect­
ing boundaries. It was explained that with diffusely 
reflecting boundaries the sound rays had more chances 
of impinging upon the boundaries. According to the 
Lambert cosine diffuse rule, /(0) - cos 0, two formulae 

for calculating the sound energy density at the centre of 
the cross-section were given, where the angle independent 
absorption coefficient was still assumed. 

(1) For a point source at the centre of a circle cross­
section 

where 

[x(e)J2cos (e ~) 
P 2pP I'° ao • 

u = 4ncz2 + ~~c J
0 

1-pA.<e) di;, 

1 
..tm~-4-· 

l+-e2 

3 

(18) 

(19) 

(2) For a line source along the width and in the middle 
of a rectangular cross-section with geometrically reflect­
ing walls and diffusely reflecting ceiling and floor 

e-~cos(e:.) 
p 2pPf"' a u=-+- di;. 

4cz nae 0 1-px(e) 
(20) 

Kuttruff's work is of great theoretical importance. 
However, due to the assumption of the simple diffusion 
and the lack of solutions for more general cases, the 
formulae seem less practical. 

Leschnik (14] investigated the sound distribution in 
rectangular street tunnels by using a computer model 
with the Monte-Carlo method. The vehicles acted as 
sound sources as well as diffusers. It was found that the 
sound attenuation along the tunnel with a single source 
was greater when there were more vehicles in the tunnel. 
The computer model was validated by measurements in 
a 1 : 20 scale model (5 m x 6.5 m x 40 m, full-size) and site 
measurements in two tunnels ( 4.5 m x 6 m x 45 m and 
5mx lOmx IOOOm). The importance of Leschnik's 
work was that the effectiveness of diffusers on the sound 
attenuation in long enclosures was experimentally dem­
onstrated. However, in his model, the tunnel boundaries 
were still geometrically reflective. 

Consequently, the effect of diffusely reflecting bound­
aries on the sound attenuation in long enclosures was 
experimentally demonstrated by Kang [15]. The experi­
ments were carried out in a 1 : 16 scale model of an under­
ground station in London. It was found that with ribbed 
diffusers the sound attenuation could be significantly 
increased. For example, with a sourc~receiver distance 
of 50 m, the attenuation became 22 dB from 16 dB. 

An empirical f ormu/a 
Redmore (16] established an empirical formula by per­

forming a series of tests in a 1 : 8 scale model (height: 1.6 
. .. 3.2 m; width: 1.28 ... 2.48 m; length: 18.4 ... 36.8 m, full 
size). The source was a loudspeaker positioned behind a 
small hole on an end wall. The formulae were as follows: 

SPL, = 101gp0c+ IOlgP+ IO lg 

x (-
1
- + !!....10-1

•
110)-SPL 2nz2 UIX rer 

(21) 
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SPL, = l0lg{2~z2 + ia.10-yzflO+R[2n(2~-z)2 

+ g(210-y(2J-z)/IO]}· (22) 

Equation (21) was used for the absolute SPL and equa­
tion (22) was applied to at least two receivers to predict 
comparative levels outside the direct field. In equation 
(22) the effect of end walls was considered. The mean 
absolute difference between the predicted and measured 
values was 0.4 dB in the scale model and 1.4 dB in a 
corridor. However, Redmore's formulae, which were 
obtained from limited boundary and dimension 
conditions, are not necessarily applicable in a further 
range, although this was not clearly indicated by 
Redmore in his paper [16]. 

Redmore also demonstrated that in a side corridor the 
absorbent materials on the walls were more effective than 
on the ceiling or floor since the sound rays entering the 
side corridor were no longer omnidirectional. 

Duer theory 
The sound attenuation in ducts has been thoroughly 

investigated [17]. Although the dimension and boundary 
conditions are quite different, some of the theoretical 
principles for ducts are also useful for long enclosures, 
especially at low frequency. The following semi-empirical 
formulae for calculating the sound attenuation in ducts 
are most commonly used [18, 19]: 

u 
D = Ka.S 

u 
D = l.5ix•s· 

(23) 

(24) 

By using equations (23) and (24) the attenuation along 
the length is linear, which is fundamentally different from 
the measurements in long enclosures [l-14]. Moreover, 
equations (23) and (24) are applicable at low frequency 
(A.» a,b) and become inaccurate as the frequency 
increases [18]. Furthermore, equations (23) and (24) are 
valid for porous materials, but limited for selective struc­
tures. By making a series of calculations at the resonant 
frequencies of the selective structures in a duct, Piazza 
[20] indicated that there was great difference between the 
above formulae and the more exact theoretical formulae 
given by Morse [21]. Unfortunately, Morse's formulae 
were only for ducts and not applicable for long en­
closures. 

Mechel [22] investigated the sound field in a duct with 
periodically arranged partition panels on an absorbent 
boundary. It was shown that the panels prevented the 
realisation of the maximum attenuation which was pre­
dicted by the theory for the homogeneous absorbent 
boundaries. With a comb-line, the periodicity of the 
boundary introduced new attenuation maxima and a 
fluctuating sound pressure along the duct. 

Doak [23-25] derived a series of theoretical formulae 
for the sound field inside and outside hard-walled ducts. 
For a point source, Doak carried out some illustrative 
numerical calculations for a rectangular duct with five 
different source positions and the following modes: (0,0), 

(0,1), (1,0), (0,2), (1,1). It was demonstrated that the 
mean square pressure did not have any simple, universal 
relationship to the acoustic power. 

Baxter and Morfey [26] established a method to deter­
mine the distribution of the power among the propa­
gation modes in ducts. The sound attenuation in ducts 
depends on this distribution, among other factors. In 
other words, if this distribution is variable, a wide range 
of liner properties could produce the same attenuation. 
This method was based on a statistical description in 
which the power distribution was regarded as a con­
tinuous function of the modal coordinates. 

The idea of this method can briefly be described as 
follows. In free-wave field, that is, the sound field made 
up of uncorrelated plane waves propagating in different 
directions, I(v,w) can be estimated experimentally from 
the measurement of a finite number of CCSD, a typical 
second-order statistic of the field. Although the actual 
measurement process is very complicated, the basis of the 
technique seems simple 

CCSD(r) =Sf dw dv sinvl(v,w)exp(j=lkr). (25) 

In a rectangular hard-walled duct, if the frequency is 
high enough and the modal weighting smooth enough 
for the modal sums to be approximated by the integrals, 
and the modes are uncorrelated, then 

l(v,w) = (-lkl 2p0c/2n2)W(v,w). (26) 

In a hard-walled circular duct, if a further condition is 
satisfied, that is, the modal power distribution at any 
frequency is a function only of modal cut-off frequency, 
then 

(27) 

With equations (26) and (27) the modal power distri­
bution can be obtained from l(v,w). An experimental 
technique for assessing the modal power distribution in 
a duct (diameter: 0.6858 m; length: 2.032 m; cut-off 
frequency: 5 kHz) was developed. 

In equations (9) and (11) it was assumed that the propa­
gation modes carried equal energy. This can be described 
as 

W(v,w) = const (0 ~ v < n/2) 

=0 (n/2 < v ~ n). (28) 

Comparison 
The formulae obtained by assuming the geometrical 

reflection and using the image source method [equations 
(l}-{4)] seem reasonable and practical. As there are many 
long enclosures with acoustically hard and smooth 
boundaries, these formulae have a considerable range 
of applicability. The corresponding formulae for line 
sources {equations (13}-{16)] should also be reasonable, 
although no comparison between measurements and 
calculations has been found. 

Davies' formulae [equations (6}-{12)], obtained using 
the wave theory, are theoretically important. However, 
as the assumptions were too strict, and the comparison 
between measurements and predictions was not quite 
satisfactory, the practical application of this method 
seems limited. 

Redmore's empirical formulae [equations (21) and 
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Fig. I. SPL attenuation from 20 m calculated using equation 
(I) (dotted: ('Z = 0.05; thick dotted: ('Z ~ 0.2), equation (8) (line: 
('Z = 0.05; thick line: ('Z = 0.2) and equation (22) (dashed: 

('Z = 0.05; thick dashed: ('Z = 0.2). S = 5 m by 5 m. 

(22)], obtained from limited experiments, might be ques­
tionable if extended to a further range. The limitation of 
this method is discussed in the following part of this 
paper. 

There are obvious differences between the three 
methods above, although in principle they are compara­
tive. Figure 1 shows the SPL attenuation from 20 m cal­
culated using equations (I), (8) and (22) in the case 
of if = 0.05 and 0.2, where S = 5 m by 5 m. It can be 
seen that the attenuation calculated using equation (8) is 
Jess than that using equation (I), especially for if= 0.2. 
Possibly this is because in equation (8) the assumption of 
"hard boundary" tends to be unsatisfied with the increase 
of absorption coefficient. Conversely, the attenuation cal­
culated using equation (22) is much greater than that 
using equation (I) . This might be caused by the fact that 
the calculation range is outside the original range of 
equation (22). 

The theoretical and experimental works on the effect 
of diffusers on the sound attenuation in Jong enclosures 
are of great significance in relation to the acoustic design 
oflong enclosures. However, the corresponding formulae 
[equations (l 7H20)] seem Jess practical. 

Duct theories are useful for the basic understanding of 
sound attenuation in Jong enclosures. However, due to 

0 

l = 
-S .,, 

:!!, 0 

" -10 -- .. ....... ........... 
c -···.r·------.. = .. -- .... = -15 -- .... 
" -- ..... 
.!! . 
ii 
~ -20 .. .. 
" lo! 

-25 

-30 

3x3 SxS IOxlO 
l.5x6 2.5xl0 Sx20 

Section (m x m) 

Fig. 2. Attenuation of the total energy in the whole section (line: 
a = b; circle: a = 4b) and the energy per unit area in a section 
(dotted: a = b; point: a = 4b). ('Z = 0.05 and /3 = 120 m. Calcu-

lated using equation (8). 

the difference of the wavelength/dimension ratio, it seems 
unreasonable to directly apply duct theories in long 
enclosures. 

In summary, up to now, the only method which seems 
practical is the simple geometrical reflection method, 
namely equations (1H4), although its range of appli­
cability is limited. The other methods discussed are of 
theoretical significance and can be used for qualitative 
analyses. 

COMPUTATION 

The objective of this part is to investigate the effect of 
some factors on the sound attenuation in Jong enclosures. 
The factors, which are considered to be important for the 
acoustic design oflong enclosures, are cross-sectional size 
and form, and absorption amount and arrangement. 

The calculations are carried out by assuming the geo­
metrical reflection, point source and rectangular cross­
section. Correspondingly, equations (I) and (4) are used. 
For comparison, Davies' method and Redmore's empiri­
cal formulae are also used. The diffusion methods are not 
chosen, as no formula has been found to be directly 
comparative with equations (1) and (4). 

The range of sectional size and form is representative 
of actual tunnels, in particular some underground 
stations. It should be noted that most corridors also fall 
within this range. In principle, this range is within the 
applicable range of equations (l) and (4), as well as 
Davies' formulae. However, as indicated above, the cal­
culation results with highly absorbent boundaries at long 
distances should be understood qualitatively rather than 
quantitatively. Conversely, this range is out of the orig­
inal range of Redmore's empirical formulae and con­
sequently, the unsuitability of Redmore's method in a 
further range is discussed. 

There are two kinds of sound attenuation. One is the 
relative attenuation with reference to a given section and 
the other is the absolute attenuation with reference to 
PWL. In Davies' formulae, the former is in cor­
respondence with the attenuation of the total energy in 
the whole section, and the latter the attenuation of the 
energy per unit area in a section. 

Cross-sectional size and form 
Figure 2 shows the attenuation of the total energy in 

the whole section [!Olg (Ps0/P1N)] at 120m in six long 
enclosures with different sectional forms and sizes, where 
c2 = 0.05 and 0.2. The calculations are carried out by 
using equation (8) (the simple source). It can be seen that 
the larger the section is, the less the attenuation is. This 
is because the number of reflections in a given time is less 
for a larger section. Similarly, the calculations based on 
equations (1) and (22) (Fig. 3) show that the relative SPL 
attenuation from 20 to 120m becomes less with increase 
of the sectional size, although the absolute values with 
the two formulae are quite different. 

On the other hand, the attenuation of the energy per 
unit area in a section [!Olg (9P50/SP,N)] is greater for a 
larger section, which is also shown in Fig. 2, where the 
unit area is assumed to be 3 m by 3 m. This result seems 
closer to the subjective loudness. Similarly, the SPL 
attenuation with reference to PWL at 120m calculated 
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using equation (1) also increases with increasing sectional 
size (Fig. 3). 

Conversely, by using equation (21) the SPL attenu­
ation with reference to PWL at 120 m decreases with 
increasing sectional size, as shown in Fig. 3. This seems 
physically unreasonable, which could be one reason for 
using Redmore·s empirical formulae in a limited range. 

In summary, with a larger cross-sectional size the 
attenuation of the lotal energy in the whole section is 
less, but the attenuation of the energy per unit area in a 
section is greater. In other words, the relative attenuation 
from a gj~en section is less but the absolute attenuation 
with reference to PWL is greater. [n addition, Figs 2 
and 3 show that with the same sectional area, when the 
width: height is 1 : 4, the sound attenuation is close to or 
slightly greater than that of the square section. 

Absorption amount 
Figure 4 shows lhe SPL attenuation (with reference to 

PWL and 20 m) at 50 m in a long enclosure with a = 
0.1 ... 0.5 and S = 3 m by 3 m. By using equation (1) the 
attenuation especially with reference to PWL, increases 
concavely with linear increase of the absorption co­
efficient. This phenomenon, which has also been noticed 
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in normal enclosures [27], seems physically reasonable. 
Conversely, by using equation (22) the SPL attenuation 
from 20 m becomes less for a higher absorption coefficient 
when a > 0.3. This seems physically unreasonable, which 
might be a further reason for using Redmore's empirical 
formulae in a limited range. 

Figure 5 shows the SPL attenuation (with reference to 
20m and P1N) at 50 and 120m in a long enclosure with 
one to four absorbent boundaries (cx1 = 0.8), again for 
S = 3 m by 3 m. For the sake of convenience, the calcu­
lations are according to equations (9) and (11) (the equal 
energy source). The absorption coefficient of the other 
boundaries is assumed as 0.05. Similar to Fig. 4, when 
the number of absorbent boundaries increases, the 
attenuation increases concavely, especially the attenu­
ation with reference to PiN · 

In short, Figs 4 and 5 illustrate that the efficiency of 
absorbers is greater when there are less absorb~rs; 

Absorption arrangement 
Figure 6 shows the SPL attenuation with reference to 

PWL at 120 m in a long enclosure with the same amount 
of absorption but different absorber arrangements. The 
calculations are based on equation (4), which is the only 
formula available considering a wide range of absorption 
difference between four boundaries. It is seen that the 
attenuation is obviously higher when the absorbers are 
on three or four boundaries. A possible reason for this is 
that with more than one hard boundary it is possible for 
some reflections to reach the receiver without impinging 
upon the absorbent boundaries. For this reason, in the 
case of one or two absorbent boundaries, the attenuation 
is significantly greater when the absorption coefficient of 
the hard walls becomes 0.1 from 0.0 I. Conversely, with 
the same amount of total absorption, the attenuation of 
three or four absorbent boundaries is nearly the same. 

Generally speaking, the absorbers are more effective 
when they are evenly distributed. However, it should be 
indicated that in Fig. 6 the absorption coefficients in some 
cases are quite high and the exclusion of diffusion might 
be unreasonable. If diffusion had been included in the 
calculation, the attenuation differences created by the 
placement of absorbers could be significantly less. 
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DISCUSSION 

As indicated above, the application range of existing 
formulae for predicting the sound attenuation in long 
enclosures is limited by some assumptions, such as geo­
metrical reflection or optimal diffusion. The sound 
attenuation in actual long enclosures is more complicated 
[28-30). For example, using the above formulae it is 
difficult to predict the "plateau" phenomenon [7]; that is, 
at a point beyond the direct field in a corridor the SPL 
increases sharply by about 2.5 dB, and remains above the 
previous SPL for more than 8 m. 

Therefore, from the viewpoint of acoustical design, a 
more practical method for the prediction of the sound 
attenuation in long enclosures is still necessary, where the 
angle dependent absorption coefficient and more prac­
tical diffusion should be considered. These two factors 
are of significant importance in long enclosures, because 
the boundaries are likely to have a higher diffusion 
coefficient than normal enclosures, and the sound propa­
gation at a long distance may favour wave directions that 
are nearly tangential to the boundaries. Some further 

factors, such as the strategic arrangement of absorbers 
and diffusers along the length, the form of cross- and 
longitudinal section, the characteristic and position of 
sources, etc. should also be taken into account. 

It is difficult to achieve the above requirements with a 
simple formula. Alternatively, computer modelling seems 
to be a better solution. As the basis of a computer model, 
the basic characteristics of sound behaviour in long 
enclosures should be investigated at first. For this 
purpose, scale modelling might be a useful tool. In 
addition, for some complicated cases, the results of com­
puter modelling could be corrected by the empirical data 
obtained from scale model or site measurements . 

CONCLUSION 

A number of formulae for the sound attenuation in 
long enclosures have been found from the literature. 
Among them, only the geometrical reflection model 
seems practical, although its range of applicability is lim­
ited to acoustically hard and smooth boundaries. The 
other formulae, especially those considering diffusion, 
are of theoretical importance, but they seem of a less 
practical nature than the geometrical reflection model. 

Computations with some of the above formulae with 
the assumption of geometrical reflection, where diffusion 
and the angle dependent absorption coefficient are 
ignored, show that in rectangular long enclosures: 

• with a larger cross-sectional size the relative attenu­
ation from a given section is less but the absolute 
attenuation with reference to PWL is greater; 

• with the same cross-sectional area, when the width/ 
height ratio is 1 : 4, the sound attenuation is close to or 
slightly greater than that of the square section; 

• the efficiency of absorbers is higher when there is less 
absorption; 

• to obtain a higher attenuation, the absorbers should 
be evenly arranged in a section. 

The discussion suggests that a more practical method for 
predicting the sound attenuation in long enclosures is 
still necessary. In conclusion, it would appear that the 
combination of computer and scale modelling is a good 
solution. 
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