
Ventilative Cooling in Buildings: Now & In The Future BBRI Institute 23rd October 2017

Design and Performance of Ventilative Cooling: A Review of Principals, Strategies and Components from International Case Studies

Paul D O'Sullivan

Cork Institute of Technology

Well Documented Case Studies of VC Annex 62 – Sub Task C

Objectives of Annex 62 - STC

To fulfil the scope of the Annex and to make energy-efficient use of ventilative cooling (air-based systems) the preferred solution the Annex focuses on the following specific objectives:

- To analyse, develop and evaluate suitable methods and tools for prediction of cooling need, ventilative cooling performance and risk of overheating in buildings that are suitable for design purposes (Subtask A).
- To give guidelines for integration of ventilative cooling in energy performance calculation methods and regulations including specification and verification of key performance indicators (Subtask A).
- To extend the boundaries of existing ventilation solutions and their control strategies and to develop recommendations for flexible and reliable ventilative cooling solutions that can create comfortable conditions under a wide range of climatic conditions (Subtask B).
- To demonstrate the performance of ventilative cooling solutions through analysis and evaluation of well-documented case studies. (Subtask C).

Objectives of Annex 62 - STC

• Activity C.1.

Analysis and evaluation of performance of ventilative cooling solutions and of used design methods and tools using similar criteria and methods

• Activity C.2.

Lessons learned and development of recommendations for design and operation of ventilative cooling as well as identification of barriers for application and functioning.

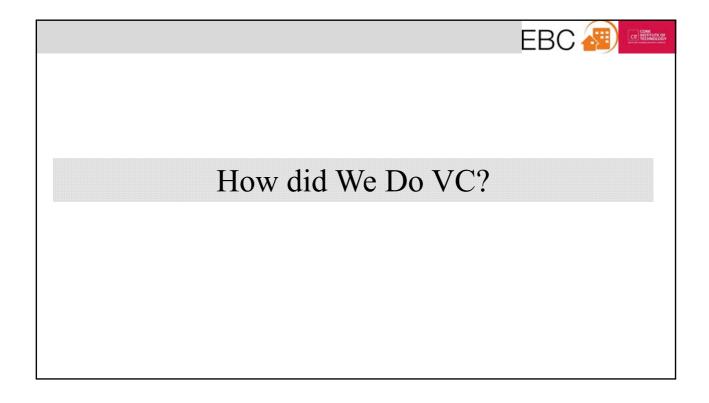
What Climates Are Covered In The Case Studies?

Climate of Case Studies

Variation in climate regions for all case study buildings.

(Please refer to the Koppen-Geiger climate classification system for details on KG abbreviations in column 1)

K-G	General Description	Qty	Locations
Cfb	Temperate with warm summers and no dry season	5	Cork, IE; Ernstbrunn, AT; Waregemand Ghent, BE; Verrieres-le-Buisson, FR; Bristol, UK
Cfa	Temperate, hot summers and no dry season	3	Changsha, CN; Hayama, JP
Dfb	Cold with warm summers and no dry season	3	Stavern, NO; Trondheim, NO; Innsbruck, AT
Dfc	Cold with no dry season and cold summer	1	Larvik, NO
Csa	Temperate with dry, hot summers	2	Sicily, IT; Lisbon PT

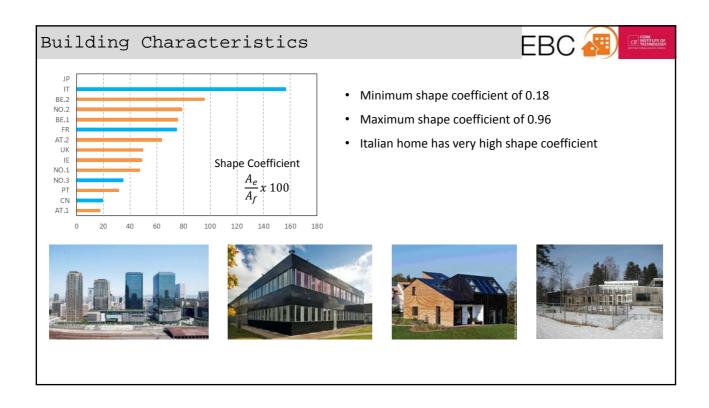

Who, Where, What, When?

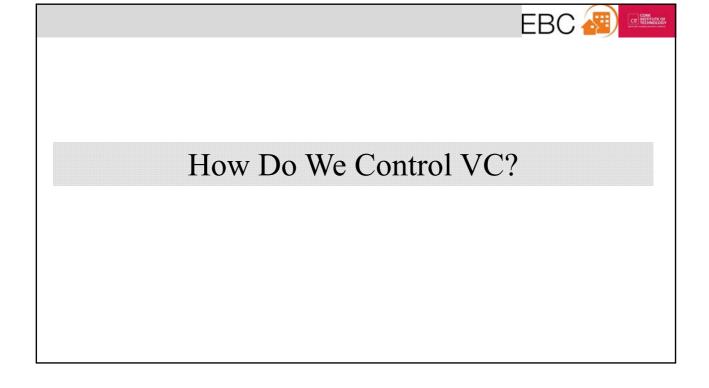
ntributions EBC 🚑 🖪									
Country	Building Name	Building Type	Year	Floor Area m²	Strategy				
IE	zero2020	Office	2012 ^(R)	223	Natural				
NO	Brunla Primary school	Education	2011 ^(R)	2500	Hybrid				
NO	Solstad barnehage	Kindergarten	2011 ^(N)	788	Hybrid				
AT	UNI Innsbruck	Education	2014 ^(R)	12,530	Hybrid				
AT	wk Simonsfeld	Office	2014 ^(N)	967	Hybrid				
BE	Renson	Office	2003 ^(N)	2107	Natural				
BE	KU Leuven Ghent	Education	2012 ^(N)	278	Hybrid				
JP	Nexus Hayama	Mixed Use	2011 ^(N)	12,836	Natural				
JP	GFO Building Osaka	Office	2013 ^(N)	394,000	Hybrid				
PT	CML Kindergarden	Education	2013 ^(N)	680	Natural				
UK	Bristol University	Education	2013 ^(R)	117	Mechanical				
Country	Building Name	Building Type	Year	Floor Area m ²	Strategy				
CN	Wanguo MOMA	Residential	2007 ^(N)	1109	Mechanical				
FR	Maison Air et Lumiere	House	2011 ^(N)	173	Natural				
IT	Mascalucia ZEB	House	2013 ^(N)	144	Hybrid				
NO	Living Lab	Residential	2014 ^(N)	100	Hybrid				

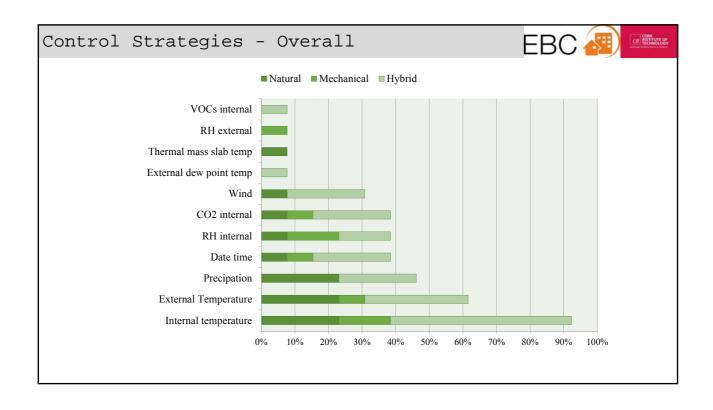
What were the design influences for Ventilative Cooling?

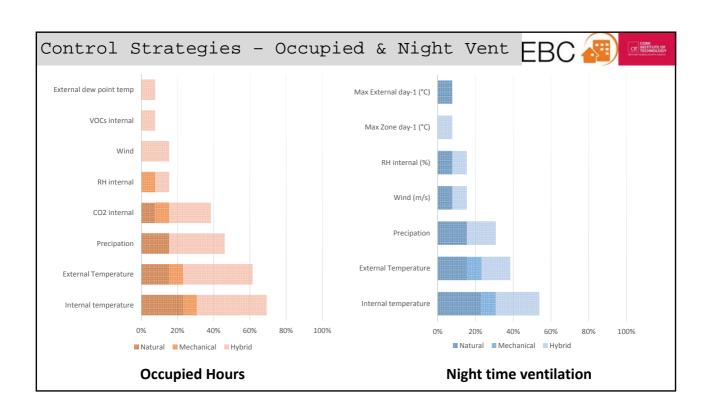
es	sig	gn	Influences										B	C 👍		CIT COUR TEOUR
	Country		Building	Lower Initial costs	Lower Maintenance Costs	Lower Energy Costs	Reducing Solar Loads	Reducing Internal Loads	Reducing External Noise	High Internal noise propagation	Elevated Air Pollution	Avoiding Rain Ingress	Insect Prevention	Burglary Prevention	Reduced Privacy	Air Leakage
IE	E	R	zero2020	н	М	Н	Н	L	L	L	L	М	L	Н	М	М
N	10	R	Brunla Primary school	н	н	н	L	М	L	L	н	М	L	L	L	Н
N	10	R	Solstad barnehage	L	L	Н	L	L	L	М	н	L	L	L	L	Н
A	λT	U	UNI Innsbruck	н	Н	н	М	L	М	L	L	М	L	L	L	Н
A	·Τ	R	wk Simonsfeld	н	н	н	М	L	L	L	L	L	L	L	L	М
В	Ε	R	Renson	L	М	L	н	н	н	L	L	L	L	L	L	L
В	Ε	U	KU Leuven Ghent	н	L	Н	н	н	L	L	L	М	L	L	L	н
JF	P	R	Nexus Hayama	М	М	н	н	L	L	L	L	М	Н	н	М	М
JF	Р	U	GFO Building	н	М	L	L	L	L	L	L	L	L	L	L	L
P.	т	U	CML Kindergarden	н	L	L	М	М	L	L	L	М	М	М	М	L
U	JK	R	Bristol University	н	Н	Н	L	Н	L	М	L	М	М	Н	L	L
c	:N	U	Wanguo MOMA	н	M	Н	н	L	L	L	L	М	L	М	L	Н
FI	R	U	Maison Air et Lumiere	М	М	L	н	M	L	L	Н	L	L	М	L	М
IT	Т	R	Mascalucia ZEB	н	М	н	н	L	L	L	L	L	L	М	L	М
N	10	U	Living Lab	L	L	н	н	М	L	М	L	н	L	L	L	н




entilative Coo	El	EBC 💯 🕝 RESIDENCE							
Ventilative cooling Concepts	Natural driven	Mech. Supply Driven	Mech. exhaust driven	Natural night ventilation	Mech. night ventilation	Air conditioning	Indirect Evap. Cooling	Earth to Air Heat Exch.	Phase Chang eMaterials
zero2020 (IE)	Х			X					
Brunla Primary school (NO)	Χ			Χ					
Solstad barnehage (NO)	Χ		Χ	Χ	Χ				
UNI Innsbruck (AT)	Χ		Χ	Χ					
wk Simonsfeld (AT)	Χ		Χ						
Renson (BE)	Χ			Χ					
KU Leuven Ghent (BE)	Χ		Χ				Χ		
Nexus Hayama (JP)	Χ					Χ			
GFO Building (JP)	Χ	Χ	Χ			Χ			
CML Kindergarden (PT)	Χ			Χ					
Bristol University (UK)					Χ	Χ			X
Wanguo MOMA (CN)		Χ	Χ		Χ	Χ			
Maison Air et Lumiere (FR)	Χ								
Mascalucia ZEB (IT)	Χ			Χ				Χ	
Living Lab (NO)	Χ								


Ventilative Cooling Strategies Summary points System Type • 86%, of the case studies use natural ventilation in their **VC** strategy • Generally, sensible internal loads for NV \leq 30 Wm⁻². (Average is 25 Wm⁻².) 0.00 0.20 0.40 0.60 0.80 1.00 • No. of Days with a maximum daily external temperature ■ Natural Ventilation ■ Mechanical Ventilation ≥ 25°C was ≤ 30 in all cases except Portugal □ Hybrid • Hybrid VC most prevalent strategy with 50% of buildings using this approach • The internal loads in Hybrid spaces were ≥ 40 Wm⁻² in Norway and Belgium, in Austria & Italy they were ≤ 10 Wm^{-2}



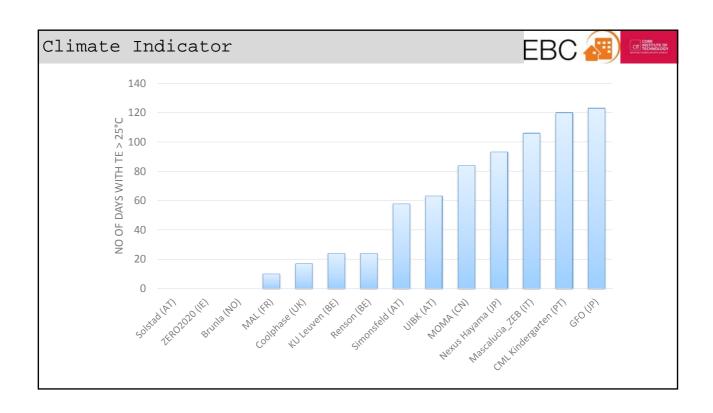

What Were the Building Characteristics?



Control Strategies - Summary

- Temperature and RH were the main parameters used (CO₂ for IAQ).
- Internal temperature used by all cases studies with set-point control
- Mean internal air temperature set-point was around 22°C. (20-24°C)
- Over 60% of case studies use external temp as a low temp limit
- Mean external low temperature limit set-point 14°C. (10-18°C)

Control Strategies - Summary

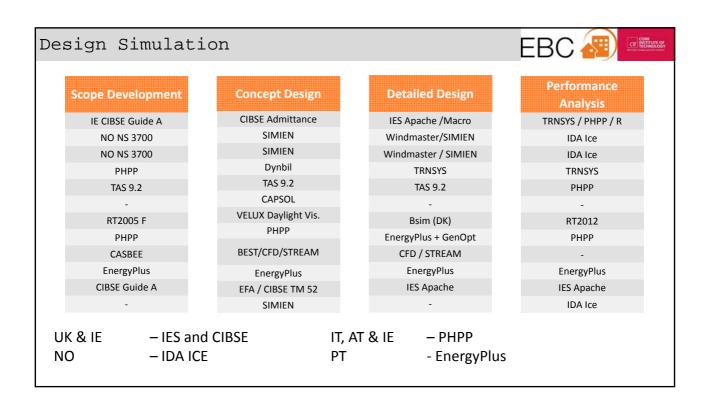


Summary points

- All NV case studies had occupant interaction with the VC system
- Only 60% of hybrid systems had this interaction.
- 69% of the case studies had a night ventilation strategy
- Wind speed had to be ≤ 10m/s with no rain for night ventilation systems

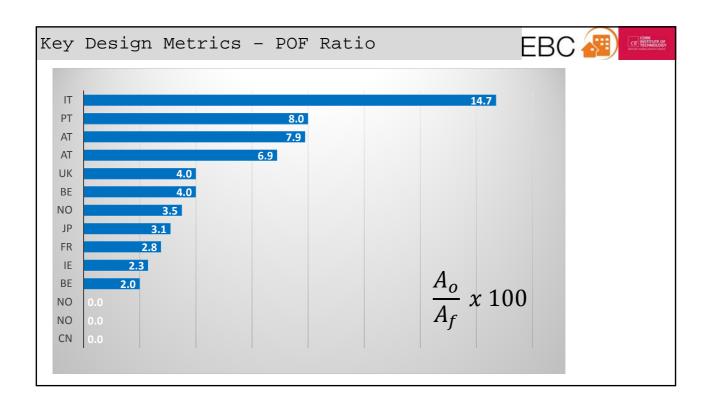
How Have these Buildings Performed?

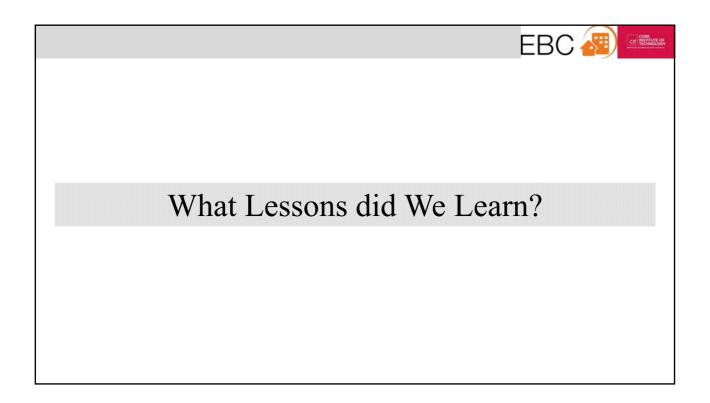
Design Criteria & Overheating



Preliminary results of VC performance evaluation

Country	Building	Summer Valu		overheating criteria	abo	% Occ hrs above threshold		
		T _e	$T_{i,o}$		28°C	25°C		
IE	zero2020	26.0	25.0	T _i < 28°Cfor 99% occ hrs	0.7	5.5	2600	
NO.1	BrunlaSchool	25.0	26.0	T _i > 26°C	0.0	0.0	2600	
NO.2	Solstad	25.0	24.0	T _i > 26°C	0.0	0.0	2860	
AT.1	UNI Innsbruck	34.0	27.0	T _i < 26°C for 95% occ hrs	1.1	16.2	2600	
AT.2	wkSimonsfeld	34.5	24.0	T _i > 26°C zone / T > 29°C gallery	0.0	5.0	3250	
JP	Nexus Hayama	26.0	26.0	T _i < 28°C for 99% occ hrs (check)	1.0	40.0	8736	
PT	Kindergarden	30.0	26.0	80% acceptability for 99% hr occ	2.6	16.0	3640	


EBC (CONTRIBUTION OF TECHNOLOGY


How are We Simulating VC?

What about the Percentage Opening Area to Floor Area Ratio? A Key VC Metric?

Lessons Learned

Design and Construction

- Detailed building simulation is important when simulating ventilative cooling strategies. Most case studies analysed highlighted the need for reliable building simulations in the design phase of a ventilative cooling system. This was considered most important when designing for hybrid ventilation strategies where multiple mechanical systems need harmonization.
- Some studies also said that simulating the window opening in detail was important.
- Customisation may be an important factor in when designing a ventilative cooling system. In order to ventilate certain buildings it may be necessary to design custom components. Some case studies highlighted the need to have custom design systems that were specific to country regulations and the use of a building or space.

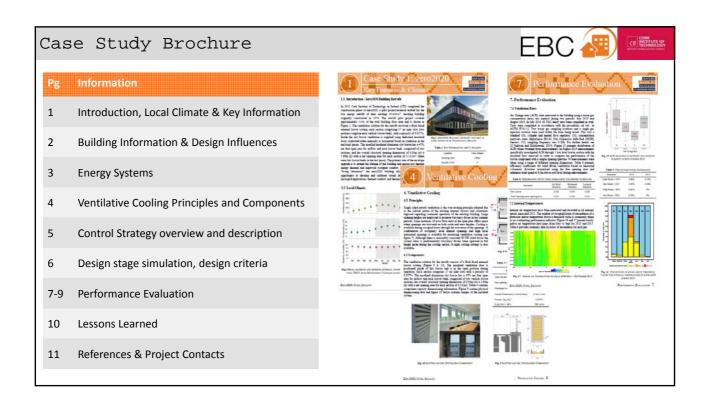
Lessons Learned

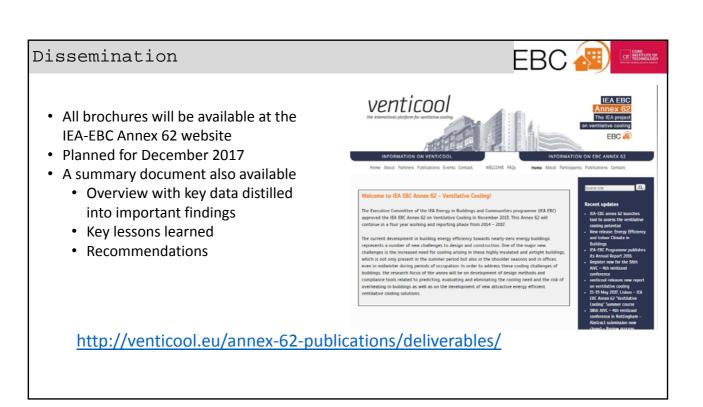
Design and Construction

- Some consideration should also be given to the **clients expectations** around specific issues like **rain ingress and insect prevention**.
- Ventilative cooling systems were considered cost-effective and energy efficient in design by most case studies, but particularly with naturally ventilated systems. It was indicated that designing with the integration of manual operation and control was important, particularly in a domestic setting.

Lessons Learned

Operation


- Engaging with the building owners or operators as soon as possible is integral to guaranteeing building performance for IAQ, comfort or energy savings. For some case studies this specifically meant educating or working with the facilities operator or manager for the building, for others it meant educating the building occupiers themselves.
- It was suggested by some that this **engagement should be as early as the design stage**.


Lessons Learned

Operation

- VC in operation is generally a good option. Case studies comment on the reduction of overheating and improvement of comfort conditions in the buildings that used outside air. However correct maintenance and calibration of the systems is integral to maintaining performance.
- Some case studies highlighted the need to **exploit the outside air more** with lower external air control limits during typical and night-time operation.
- Others suggested that **exploiting the thermal mass of a building was key.** However it was noted that care must be taken with considering these low temperatures as some case studies, particularly in cold climates observed more incidences of overcooling than overheating.

Stay Tuned for Updates! Thank You