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Abstract
In this paper, we developed a new method to forecast 10-
minutes ahead wind speed based on Heteroscdastic Gaus-
sian Process and investigated the impacts of this predict-
ing on a mix-mode operated building. The forecasting re-
sult shows the mean absolute percentage error (MAPE) of
9.2%. The indoor air temperature, infiltration air change
rate and cooling energy consumption varied 25% in av-
erage compared with the baseline model where the wind
speed is not from forecasting.

Introduction
With the increasing use of energy in buildings, design and
build energy efficient high performance buildings become
more and more important. The best way for buildings to
save on-site energy is to interact with its surrounding en-
vironment as much as possible. Natural and hybrid ven-
tilation strategies have been widely implemented (Allard
and Alvarez 1998; Heiselberg 2002; Lomas, Cook, and
Fiala 2007). According to (Heiselberg 2002), a reduc-
tion of 20%~30% in overall energy consumption and 50%
in electricity have been achieved comparing with full air
conditioned office buildings. Most of the hybrid ventila-
tion designs are based on simulation tools such as Ener-
gyPlus, ESP-r or Computational Fluid Dynamics (CFD).
Good et al.(Good, Frisque, and Phillips 2008) shows that
not only the magnitudes of Cp values vary significantly
for the different software, but also the predicting of the
opening status can differ. Besides the different calculation
methods could affect the decision of natural ventilation
design, the wind speed data from different sources have
very important impacts. The simulation of these software
replies on historic data or real-time hourly data at most.
However, the on-site wind speed can change dramatically
within even one hour. Figure 1 shows the results of wind
speed data from on-site measured 10 minutes interval and
measured hourly data while interpolated by EnergyPlus
into 10 minutes interval. The difference is up to ±35%
of measured 10 minutes data. Unfortunately, most of the
weather forecasting websites will not provide 10 minutes
ahead wind speed forecasting, but only hourly. This phe-
nomena motivates to the purpose of this study: 1) develop
a new method to forecast 10 minutes ahead wind speed;
2) investigate the impacts of such forecasting on the build-
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Figure 1: Comparison of 10 minutes wind speed from two
different resources

ing cooling energy consumption and indoor environment
based on a small-scale mix-mode operated building setup
in EnergyPlus, where airflow network model is used to
simulate building natural ventilation.

Methodology
Various time series regression approaches have been ap-
plied to the problem of short term wind speed forecast.
Steftsos (Steftsos 2000) applied various data mining tech-
niques to forecast mean hourly wind speed . These tech-
niques include linear models (ARMA), feed forward and
recurrent neural networks (NNT), adaptive neuro-fuzzy
inference systems and neural logic networks. The re-
sults show that NNT methods are better than other linear
and non-linear models within 5% in terms of root mean
square error (RMSE). Most recently, Palomares-Salas et
al. (Salas et al. 2009) compared two models, ARMA and
NNT, for short term wind speed forecasting (10 minutes, 1
hour, 2 hours and 4 hours) and the results are very similar
with average RMSE from 0.57 to 1.55.
Alternatively, as the wind speed has momentum over time,
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it can be treated as transitional behavior and modeled
as a Markov Process. Tore et al. (Tore, Poggi, and
Louche 2001) used first order Markov chain models for
synthetic generation of hourly wind speed time series in
Turkey. Youcef et al. (Youcef, H., and A. 2003) modeled
both hourly wind speed and wind direction data based on
Markov chains. Shamshad et al. (Shamshad et al. 2005)
have generated hourly wind speed data using first and sec-
ond order Markov chains and compared the first and sec-
ond order Markov chains using wind speed data measured
from two different regions in Malaysia . In their study, it
was concluded that the wind speed behavior slightly im-
proves at the increasing order of the Markov model.
In the literature, very few studies focused on a short-
time (10 minutes) forecasting. In this paper, we present
a novel method called Heteroscedastic Gaussian Process
(HGP) to tackle the short term wind speed forecasting
problem. Gaussian process (GP), unlike other regression
techniques, is defined as a distribution over functions, and
inference takes place directly in the space of functions.
The model combines a loss function with the predictive
distribution using decision theory to make point distribu-
tions in an optimal way. Please refer to section NOMEN-
CLATURE for notation details.

Gaussian process formulation

A Gaussian process is completely specified by its mean
function and covariance function. We define the mean
function m(X) and the covariance function k(X ,X �) of a
real process h(X) as

m(X) = E[h(X)], (1)
k(X ,X �) = E[(h(X)−m(X))(h(X �)−m(X �))], (2)

and will write the Gaussian process as

h(X)∼ gp(m(X),k(X ,X �)). (3)

The random variables represent the value of the function
h(Xt) over time, i.e. where the index set t of the random
variable Xt is time. One of the most important properties
of GP is known as the marginalization property. This sim-
ply means that if the GP e.g. specifies (Y1,Y2) ∼ N(µ,Σ),
then it must also specify Y1 ∼ N(µ1,Σ11), where Σ11 is the
relevant sub-matrix of Σ. In other words, examination of
a larger set of variables does not change the distribution
of the smaller set.
In function space, a simple example of Gaussian process
can be obtained from a Bayesian linear regression model
h(X) = φ(X)T w, with a prior w ∼ N(0,Σp), feature func-
tion φ(X). The mean and variance of h(X) is,

E[h(X)] = φ(X)T E[w] = 0, (4)

E[h(X)h(X �)] = φ(X)T E[wwT ]φ(X �)= φ(X)T Σpφ(X �),(5)

where h(X) and h(X �) are joint Gaussian with zero mean
and covariance given by φ(X)T Σpφ(X �). Note N repre-
sents the feature vector length of X while T represents the
length of the time series. If N < T then this Gaussian is
singular (as the joint covariance matrix will be of rank N).

A common choice of covariance function is the squared
error covariance function, which specifies the covariance
between pairs of random variables,

cov(h(X),h(X �)) = k(X ,X �) = exp(−1
2
|X −X �|2/l), (6)

where the positive constant l changes the characteristic
length-scale of the process. The covariance is almost unity
between variables whose corresponding inputs are very
close, and decreases quickly as their distance in the input
space decreases. This specification of covariance function
implies a distribution of functions.

Forecasting with noise-free observations

The previous section discussed about the training proce-
dure of GP but we are most interested in forecasting future
observations. Let’s first consider simple cases where the
observations are noise free, that is we know {(Xt ,ht)|t =
1, . . . ,T}. The joint distribution of the training outputs, f,
and the test output f∗ according to the prior is

�
h
h∗

�
∼ N(0,

�
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

�
). (7)

If there are T training points and T∗ test points then
K(X,X∗) denotes the T ×T∗ matrix of the covariance eval-
uated at all pairs training and test points, and similarly
for all other entries. To get the posterior distribution over
functions we need to restrict this joint prior distribution
to contain only those functions which agree with the ob-
served data points. Fortunately, in probabilistic terms this
is very simple, corresponding to conditioning the joint
Gaussian prior distribution on the observation to give

h∗|X∗,X,h ∼ N(K(X∗,X)K(X,X)−1f), (8)
K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)).

Function values h∗ can be sampled from the joint posterior
distribution by evaluating the mean and covariance matrix
from the above function and generating samples.

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 2829 -



Figure 2: Graphical model for a GP regression model. Xt Yt represent observed variables and ht represents unknowns.
The thick horizontal bar represents a set of fully connected nodes over time.

Forecasting with homogeneous noisy observations

In more realistic modeling, we often do not have ac-
cess to function values themselves, but only noisy ver-
sions thereof Y = h(X)+ ε. Assuming additive indepen-
dent identically distributed Gaussian noise ε with homo-
geneous variance σ2, the prior on the noisy observation
becomes

cov(Y,Y �) = k(X ,X �)+σ2δxx� , (9)

where δxx� is a delta function which is one if and only if
the index of x is identical to x� and zero otherwise. Intro-
ducing the noise term, we can write the joint distribution
of the observed target values and the function values at the
test location under the prior as

�
Y
h∗

�
∼ N(0,

�
K(X,X)+σ2

t I K(X,X∗)
K(X∗,X) K(X∗,X∗)

�
). (10)

Deriving the conditional distribution, we arrive at the key
forecasting equations for Gaussian process regression,

h∗|X∗,X,Y ∼ N(h̄∗,cov(h∗)), (11)

h̄∗ = E[h∗|X∗,X ,Y ] = K(X∗,X)[K(X,X)+σ2I]−1Y, (12)

cov=K(X∗,X∗)−K(X∗,X)[K(X,X)+σ2I]−1K(X,X∗).(13)

For any set of basis functions, we can compute the corre-
sponding covariance function as k(x,x�) = φ(x)T Σpφ(x�).
We can rewrite the functions above to make it unclut-
tered. Let K = K(X,X) and K∗ = K(X,X∗) and denote
k(X∗) = k∗as the vector of covariance between the test
point and the T training points, we reduce the original
functions to

h̄∗ = kT
∗ [K +σ2I]−1Y, (14)

cov(h∗) = K(X∗,X∗)− kT
∗ [K +σ2I]]k∗. (15)

One way to look at the prediction function f̄∗ is to see it
as a linear combination of kernel functions, each one cen-
tered on a training point, by writing h̄∗ =∑T

t=1 αik(Xi,X∗),
where α = (K +σ2

t I)−1Y , reveals the fact that the GP can
be represented in terms of a number of basis function. In-
tuitively, we can understand the result because although
GP defines a joint Gaussian distribution over all the y vari-
ables, one for each point in the index set X in making pre-
diction at x∗, we only care about the (n+1)-dimensional
distribution defined by the n training points and the test
point.

Forecasting with heteroscdastic noisy observations

To deal with more complicated nature environments, e.g.
wind speed, we need to relax our assumptions. To this
end, we model the noise by a function of X , thus we get a
Heteroscdastic regression problem, where the noise rate is
not assumed constant on the domain. By placing a Gaus-
sian process prior on h and assuming a noise rate function
r(x), the predictive distribution P(h∗|X∗,X ,Y ) at the query
points X∗ is a multivariate Gaussian distribution

h∗|X∗,X,Y ∼ N(h̄∗,cov(h∗)), (16)
h̄∗ = kT

∗ [K +Z]−1Y, (17)
cov(h∗) = K(X∗,X∗)−Z∗ − kT

∗ [K +Z]]k∗, (18)

where Z = diag(z) with z = (z(X1), . . . ,z(XT ))T and Z∗ =
diag(z∗) with z∗ = (z∗(X1), . . . ,z∗(XT ))T .
We use an independent GP to model the noise levels,
this z-process is governed by a different covariance func-
tion kz, parameterized by θz. The locations X1, . . . ,Xn of
the training data points Z = {z1, . . . ,zn}for the z-process
can be chosen arbitrarily, however, for notational conve-
nience, we set them to coincide with the ones of the t-
process here.
Since the noise rates zi are independent latent variables in
the combined regression model, the predictive distribution
for h∗, the vector of regressands at points X∗is,
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Figure 3: Plan and section views of the test building

P(h∗|X∗,X,Y) =
� �

P(h∗|X∗,X,Y,Z,Z∗)P(Z,Z∗|X∗,X,Y)dZdZ∗.

Given (Z,Z∗), the predictive process is Gaussian with
specified mean and variance. The real problematic term
is thus P(Z,Z∗|X∗,X,Y) as it makes the integral difficult
to handle analytically. (Goldberg, Williams, and Bishop
1998) and (Le, Smola, and Canu 2005) suggested Monte
Carlo approximation and full Bayesian treatment, respec-
tively. But both computation is quite time consuming. A
recent paper (Kristian et al. 2007) suggested an iterative
procedure to estimate the most likely per sample noise and
showed good empirical performance.
We suggest an easy way to estimate with the two rounds of
optimizations. First, we assume a homogeneous Gaussian
noise ε with variance σ2 to learn an ordinary Gaussian
Process ĥ with kernel Ko. Then, we estimate the covari-
ance from Ẋ = X∪X∗. Next, we plugin the covariance
error of Ẋ to form the new kernel.

Kn = Ko −σ2IN +σ2
ĥ(Ẋ)IN . (19)

Finally the value of the future wind speed X∗ is estimated
as the mean of the posterior

X̃∗ = k
�
T (K̂n +σ2I)−1X, (20)

where K̂n is composed of the rows and columns of Kn cor-
responding to X. We can add an small noise variance σ2

to our new function h to give robustness to the inversion
of K̂n.
We suggest a different way to approximate the ex-
pectation by the most likely noise levels (Z̃, Z̃∗),
that is we approximate the predictive distribution by
P(h∗|X∗,X,Y) ≈ P(h∗|X∗,X,Y, Z̃, Z̃∗), where (Z̃, Z̃∗) =
argmax(Z̃,Z̃∗)P(Z̃, Z̃∗|X∗,X,Y). This will be a good
approximate if most of the probability mass of
P(Z,Z∗|X∗,X,Y) is concentrated around (Z̃, Z̃∗). More-
over, computing the most likely noise level and
P(h∗|X∗,X,Y) now requires only standard GP inference,
much faster than sampling approaches.

Evaluating

The model efficacy is evaluated in Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error
(MAPE).

MAPE =
1
n

n

∑
t=1

����
At −Ft

At

���� (21)

RMSE =

�
1
n

n

∑
t=1

(At −Ft)2, (22)

parameterized where At is the actual value and Ft is the
forecast value.

Experiment setup
Wind speed forecasting

The wind speed sensor was installed two feet above the
highest point of the experiment building. It measures the
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Figure 4: Results of wind speed forecasting.

wind speed every five seconds and is stored into a database
every one minute. The data is continuously collected since
April, 2009. In this study, the data from June 1st to 30th,
2009 was used for training and from July 1st to 6th was
used for testing.

Simulating of a mix-mode operated building

A mix-mode operated building on campus was used as
the simulation testbed. It is a two story small building
with two offices and is used as an office building. Figure
3 shows the overall geometry of the building. There are

two windows in the great room, three windows in the up-
per space of the office (a double volume space) and three
back windows in the library are openable. Office and great
room are connected by doors in the lower level and holes
in the upper level.

The air flow through windows and doors were simulated
based on EnergyPlus Airflow Network, with natural ven-
tilation set-point of 18 C. In addition, only great room and
office are equipped with a cooling system with indoor air
temperature set point of 24 C. The hybrid ventilation con-
trol is based on temperature and wind speed with maxi-
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mum outside wind speed of 5 m/s and outside tempera-
ture of 22 C. The night setback is 28 C from 6:00pm to
the next day 8:00am.
The simulation period is from July 1st to July 6th, when
natural ventilation is possible most of the time. One of
the main purposes in this study is to compare the effects
of two different wind speeds only. Hence, during the En-
ergyPlus simulation, all other inputs in the weather file are
the same except the wind speed. In addition, the outdoor
dry-bulb air temperature and wind direction in the weather
file were also from on-site continuous measured data.

Results and discussion

Table 1: List of results of different methods from 10-
minutes ahead forecasting

Model MAPE RMSE Variance(%)
HGP 9.2 0.0092 0.8

ARMA 12.3 0.13 1.7
SVR 9.8 0.1 1.1
ANN 25 0.21 4.6

Wind speed

Figure 4 shows the results of ten minutes ahead forecast-
ing of on-site real time wind speed using HGP. The RMSE
is 0.092 with variance 0.008594. In addition, other re-
cently used methods were also run on the same datasets
and compared with HGP. The other methods are Sup-
port Vector Regression (SVR), Artificial Neural Network
(ANN) and Autoregressive Moving Average (ARMA).
The results are listed in Table 1. HGP has the best re-
sult while ANN has the worst one in terms of RMSE. The
ANN used in this study has three layers with 10 nodes
and sigmoid function on the hidden layer. Among all
other methods, only HGP considers the dynamic changes
of noise term. SVR method has the similar result with
HGP, which maps the input and output data into a high di-
mension space and correlates them but it does not handle
Heteroscedastic noise.

Cooling energy

The forecasting result from the wind speed is used as an
input into the mix-mode simulation in EnergyPlus (DOE
2009). Another wind speed source is from the hourly
measured data while interpolated by EnergyPlus into 10
minutes. The cooling energy usages are shown in Figure
5 above. It shows that at different time periods, the cool-
ing energy consumption varies because of different wind
speed within a short-time period. For example, on the day
of July 1st , the cooling energy from wind-speed-1 (mea-
sured) happened more frequently than wind-speed-2 (En-
ergyPlus interpolated). However, on July 3rd, there is no
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Figure 5: Cooling energy consumption from two different
wind speed sources

cooling needed from wind-speed-2. In addition, on July
5th and 6th, cooling energy from wind-speed-1 is less than
the one from wind-speed-2. Overall, the total cooling en-
ergy consumption from wind-speed-1 and wind-speed-2
are 94kWh and 99kWh, respectively. In order to inves-
tigate the insights, indoor air temperature and air change
rate were analyzed in the next section.

Indoor environment

July 1st and 5th were picked up for detailed analysis. Fig-
ure 6 (a) shows the simulated indoor and measured out-
door temperature on July 1st in the great room. The simu-
lated indoor mean air temperature from two different wind
speed sources vary slightly different (within 1 C) during
the noon time. Figure 6 (b) shows the zone infiltration
air change rate (ACH), July 1st and 5th were picked up
for detailed analysis. Figure 6 (a) shows the simulated
indoor and measured outdoor temperature on July 1st in
the great room. The simulated indoor mean air tempera-
ture from two different wind speed sources vary slightly
different (within 1 C) during the noon time. Figure 6 (b)
shows the zone infiltration air change rate (ACH), which
represents the number of air changes per hour produced
by outdoor air flow into the zone from window/door open-
ings and cracks in the exterior surfaces of the zone (DOE,
2009). Overall, the cooling happened at different time
of the day for these two wind speeds. The cooling en-
ergy needs from wind-speed-1 is higher than the one from
wind-speed-2. In addition, the infiltration air change rate
from wind-speed-2 is up to 46% higher than wind-speed-
1, especially during the day time. This is because out-
side wind-speed-2 is larger than wind-speed-1 on July 1st
as shown in Figure 1which represents the number of air
changes per hour produced by outdoor air flow into the
zone from window/door openings and cracks in the exte-
rior surfaces of the zone. Overall, the cooling happened at
different time of the day for these two wind speeds. In ad-
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Figure 6: (a),air temperature on July 1st (b) zone infiltration air change rate on July 1st.
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Figure 7: (a) Air temperature on July 5th (b) Zone infiltration air change rate on July 5th.

dition, the infiltration air change rate from wind-speed-2
is up to 46% higher than wind-speed-1, especially dur-
ing the day time. This is because outside wind-speed-2
is larger than wind-speed-1 on July 1st as shown in Fig-
ure 1. The natural ventilation time from wind-speed-2 is
also longer. This explains the cooling energy needed by
wind-speed-1 is more.

Figure 7 (a) and (b) shows the air temperature and the
zone infiltration air change rate on July 5th, when the
cooling needs from wind-speed-2 is more than wind-
speed-1. The indoor air temperature around 6:00am from
wind-speed-2 is higher than that from wind-speed-1 be-
cause infiltration air change rate from wind-speed-1 at
night is 20% higher in average. This is also illustrated
in Figure 1, where the wind-speed-1 is higher than wind-
speed-2 at night. This also causes the zone air temperature
from wind-speed-2 is a bit higher than wind-speed-1 be-
fore the cooling on around 11:00am, which leads to the
higher cooling energy use for wind-speed-2.

Sensitivity analysis
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Figure 8: Comparison of cooling energy consumption
from four different frequencies of measured wind speed

After all the simulation tests, we found that the indoor
environment and energy consumption could vary accord-
ing to different wind speed resources. In this section, we
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will discuss whether the frequencies of wind speed inputs
based on the same data source would impact. The on-
site measured wind speed data from 10 minutes, 20 min-
utes, 30 minutes and 60 minutes intervals were used as in-
puts into the mix-mode operated building model. Figure
8 shows the results of hourly cooling energy consumption
from these inputs. Overall, different frequencies of wind
speed have different cooling energy consumption patterns,
particularly in natural ventilation dominated days such as
July 1st to July 3rd. On cooling energy dominated days,
the more frequent of the wind speed, the less the cooling
energy consumption, but very slightly. The 60 minutes in-
terval wind speed data have larger impacts on the cooling
energy than others.

Conclusion
In this paper, we presented a new method to forecast
the short-term wind speed. This new method performs
20% better in average than other recently used methods
in terms of prediction accuracy. In addition, the fore-
casting results were used as inputs into a simulation of
a mix-mode operated building. The energy and indoor
environment performance were compared with the wind
speed interpolated by EnergyPlus. The results show that
although cooling energy consumption from two sources
differs slightly, the total cooling energy consumption pat-
tern varies significantly due to the different zone infiltra-
tion air change rate. The future study will focus on ap-
plying this wind forecasting method into model predictive
control in natural ventilation buildings.

Nomenclature

X = [X1, . . . ,XT ]�T×1 Feature vector

Y = [Y1, . . . ,YT ]�T×1 Target values

m(X) Mean function

k(X ,X �) Covariance function

f (X) GP function

h={h1, . . . ,ht , . . . ,hT} Random variable corre-
sponds to the case (Xt ,Yt)|Tt=1

φ(X)T Feature function for X

w Weight vector

k(X ,X �) =
exp(− 1

2 |X −X �|2)
Kernel function

K = K(X,X), K∗ =
K(X,X∗) , k(X∗) = k∗

Kernel matrix

N = |φ(X)T | Length of the feature
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