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ABSTRACT

In this paper, a methodology for interfacing and as-
sessing a Model Predictive Control strategy in a build-
ing simulation tool (SIMBAD) is presented. Firstly, a
system identification is performed in order to derive a
suitable embedded model for the predictive controller
from the simulation tool. Secondly, we assess the per-
formance of this control strategy by introducing un-
certainties on forecasted weather conditions and oc-
cupancy. Finally, we provide some simulation results
in order to analyse the robustness of the controller in
presence of uncertainties on forecast.

INTRODUCTION

Active energy efficiency is becoming a crucial
paradigm for energy consumption reduction of build-
ings. As witnessed in (Dounis and Caraiscos, 2009), a
lot of effort has been deployed during the last decade
in order to improve energy efficiency related algo-
rithms in buildings. Among several control techniques
that have been investigated, Model Predictive Control
(MPC) appears clearly as one of the most promis-
ing control strategies for building energy management.
The reader may refer to (Gyalistras and Team, 2010)
where a large study on the potential energy saving of
this control strategy is presented.

Within HOMES program!, assessment of such ad-
vanced control strategies in a complete simulation tool
(SIMBAD) is a key point.

Nevertheless, some specific requirements need to be
addressed for MPC integration and assessment in our
simulation tool, they represent the main contributions
of this short communication:

e Necessity of disposing of an internal model of the
building. This implies that a sufficiently compact and
representative simplified model has to be derived from
the simulation tool. To tackle this issue, an identifi-
cation procedure that takes advantage of some given
properties of the model is proposed.

o Predicted weather scenarios should differ from the
"real" weather data injected in the building in order
to assess the robustness of the MPC strategy against
uncertainties on weather predictions.

e Some stochastic occupation scenarios have to be

Thttp://www.homesprogramme.com

introduced. As it will be discussed in the paper, mod-
eling this uncertainty source differs from the previous
one. In fact, a Markov chain parameterized with some
presence probability is used to model the presence of
occupants.

This paper firstly gives some recalls on MPC and pre-
vious developments that we carried out on this topic.
The issues cited above are then addressed and the pro-
posed solutions are shortly presented. In the last sec-
tion, some simulation results are given to prove the
added value of the methodology and a direct applica-
tion of the designed predictive controller for HVAC
dimensioning is briefly depicted. The conclusion em-
phasizes the main results obtained and gathers some of
the further issues that will be studied within HOMES
program.

BACKGROUND

Recalls on MPC

In this section, we briefly recall the principle of MPC.
More detailed presentation can be found in (Mayne
et al., 2000).

Consider a general dynamical system governed
by the following set of discrete-time equation:

w(k+1) = f(z(k), u(k), w(k)) (D

where (z, u, w) € R" x R™ x R™ stand for the state,
the control and the exogenous signal, respectively.
MPC feedback control at instant k is computed by first
finding the optimal sequence of future open-loop con-
trols @*(z(k)) = [u* (k),...,u* (k+ N —1)]* €
RN"« that minimizes some cost function J (i, z(k))
defined over the prediction horizon [k, k + N starting
from the initial state x(k), namely:

@*(z(k)) = Argmin J(@,z(k))

WERN nu

st C(a,z(k)) <0

where C(@, z(k)) < 0 gathers the set of operational
constraints. The feedback at instant % is then defined
to be the first control w* (k) in the optimal sequence
u*(k), namely:

u(k) = Kype(z(k)) = 07 - a* (2(k)) ()
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where Hi»v € R™*(Nnu) js the matrix that selects
the j-th vector u*(k + j — 1) in the sequence of N
concatenated vectors @*(x(k)). At the next sampling
instant & + 1, the new optimal sequence @*(x(k + 1))
is computed and the first control u*(k + 1) is applied
during the sampling period [k + 1, k + 2] and so on.

Zone MPC

As it has been briefly depicted, the core component
of MPC lies in the model of the process z+ =
f(z,u,w). In previous works, we designed Multi-
Input/Multi-Output zone MPC’s (Lamoudi et al.,
2011). Namely, in our framework each zone controller
is responsible of maintaining a certain comfort level in
the zone by controlling temperature, CO, level and in-
door illuminance (see fig. 1). Moreover, each zone
takes directly into account forecast on disturbances
and occupancy predicted profiles in order to optimally
manage its local actuators. Table 1 gathers all inputs
and outputs related to one zone, where Ny is the num-
ber of external facades of the zone, IV;, is the number of
blinds and N,4; the number of adjacent zones. There-
fore, accessing to a dynamical representation of each
zone in the building is a crucial requirement. In the
next section, we describe the technique used in deriv-
ing the zone models from our simulation tool. Once
these models are identified, we will briefly describe
the zone MPC algorithm for completeness of the pre-
sentation.

Zone MPC Zone MPC

- ——
>

3 .
gs{rﬁﬁ) 5%% %gq
s

Figure 1: Each zone MPC manages the actuation of its
local actuators in order to ensure comfort

ZONE MODELS IDENTIFICATION
A brief description of SIMBAD simulation tool

We provide in the section a brief description of the
simulation tool, the reader can find more informa-
tion in (P. Riederer, 2002; Riederer et al., 2000) or

(http://kheops.champs.cstb.fr/Simbadhvac/index.html).

SIMBAD (SIMulator of Building And Devices) is a
Matlab/Simulink toolbox dedicated to building simu-
lation (temperature, IAQ?, Lighting). It is developed

2Indoor Air Quality

Table 1: Description of controlled inputs, outputs and

exogenous variables of each zone

Variables Description unit
up Heating control -]
Ue Cooling control [—]
Uy Ventilation control -]

u Lighting control -]
{ul}ien, blind control -]
Te” Outdoor temperature [°C]
{134;}ieN.4; | Adjacent zones temp. [°C]
{¢'}jen, Global irr.* flux per facade | [75]
~y Number of occupants -]
Cos*t Outdoor CO4 level [ppm)]
" Indoor air temperature [°C|
cm Indoor CO; level [ppm)]
L Indoor illuminance [Luzx]

*: irradiance

by CSTB?. In SIMBAD, each building is described by
an XML file that contains all the information related
to:

o the architecture of the building in terms of phys-
ical characteristics of the envelope, physical intercon-
nections between zones (common walls), facades and
windows orientations of each zone of the building;

o the systems involved in the building, this includes
HVAC systems, lighting as well as all auxiliary sys-
tems (pumps, valves etc.) and their respective dimen-
sioning;

o the location which is mainly used to determine
the related weather station and for the calculation of
solar position.

Knowledge related to the topology of the building is
essential in order to determine:

e 2]l temperatures impacting the zone in interest
(determination of the physically linked zones),

e number and nature of each actuator in each zone,

e disturbances impacting each zone (orientation of
each facade, number and orientations of windows).
This information enables to build the structure of the
model of each zone in terms of inputs/outputs. Table 1
shows a typical zone input/output description.

In the following, an identification procedure is used
to derive the dynamical model of each zone on any
building described in SIMBAD.

Zone model Identification

SIMBAD has been delivered as a black box simulink
library. Therefore, the building mathematical model is
not explicitly accessible and has to be deduced from
this simulation tool in order to be integrated in the
Model Predictive Controllers.

Hopefully, the embedded model has only to represent
inputs/outputs transfers and therefore any dynamical
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representation that captures the dynamical behavior of
SIMBAD can be used. This means that it is unnec-
essary to derive a physical model form SIMBAD and
greatly simplifies the task since physical models are
generally more difficult to identify than non physical
ones even in simple cases.

A key point in system identification is the choice of
an appropriate mathematical structure. This choice is
generally linked to the form of the first principle equa-
tions used in the description of the system.

Once this structure is fixed, one can perform an identi-
fication procedure in order to find the set of parameters
involved in the parametrization of the model structure.

According to the modeling hypotheses considered in
SIMBAD (P. Riederer, 2002; Mustafaraja et al., 2010;
Kolokotsa et al., 2009; Freire et al., 2005) it comes that
the dynamical model of each zone can be expressed by
the following bilinear state-space representation:

o= A(ﬂ + [BG(y7
Coz + [Dy(w)

)u+ Gow
u + Fpw

8
\
S

3

M(0) - {

Y

where:

o Ay, By,Cy, Dy, Gy, Fy are matrices of appropri-
ate sizes parameterized by a set of parameter 6;

e 1 is the state vector of the identified model and
has a priori no physical meaning (during simulation, it
is recovered using a Kalman observer);

oy = (T, O™, L")t € R3 is the output vector
(see table 1);

o u = (up,uy,up,up, ..., up®)t regroups all the
controlled inputs (see table 1);

o w = (T, { ad]}zeNmiJ" {(bj }jENf 7 Cem)t is
the vector of exogenous variables (see table 1);
Remarks:

e The term [By(y, w)]u is a bilinear term (By(y, w)
is affine in y and w) and is explained by the fact that
the temperature and C'O5 level depend not only on the
actuator position u but also on the difference between
indoor and external quantities (7" — T*) (convec-
tive heat introduced by the mechanical ventilation) and
(C™ — C°®). Moreover, the blinds positions impact
the temperature of the zone through the terms (7% —
Tm™up, ..., (T — T up®, ¢rup, ..., oNou,".

e In SIMBAD the radiative exchanges are lin-

earized. This explains that the terms on the form 7
are non-existent in (3).
For the given model structure M (), the identification
problem consists of finding the best set of parameters
denoted 6* so that the error between the output of the
identified model M (6) noted 9, and the output of the
simulator y;,, for the same inputs is minimized. This
is expressed by the following optimization problem:

k=Tsim

0* = Arggmin Z | Ysim (k) — y?d(k)HQ “)
k=0

where Ty, is the simulation duration.

M(0) is a Multi-Input/Multi-Output dynamical sys-
tem with coupled dynamics. In order to simplify
the identification task, this system is (virtually) split
into three Multi-Input/Single-Output systems, each
one corresponds to an output (temperature, CO4 rate,
indoor illuminance).

The temperature behavior can be described using the
following Multi-Input/Single-output Nonlinear Auto
Regressive model (which is strictly equivalent to dy-
namical relation linking 7" and w,w expressed by
M(9)):

Ny

Tin(k,) — AT( -1 Tm +ZBT —1 ) (53.)
with:
vl = [up, (T — Tm)uv, ug, gblué, A d)”fu 7

(Tem _ Tm)ué) . (Tem _ Tzn) Zf7sz’

¢17"‘7¢nf77] (Sb)
where:
vT is the i*" component of the vector vT;
e AT(¢g Y :=afqg +- + a;l;aq’"”' is a poly-
nomial of order n,;
BT (¢7") :=bF g7+ ~er;1:n£tf"Z is the input

polynomial related to the i* T

and is of order né;

e ¢~ ! is the delay operator defined for any time de-

pendant x(k) by: ¢~ "x(k) := x(k — n).

Notice that the vector vT gathers all affine contribu-
tions on temperature (i.e. such that the transfer be-
tween each input vI and the output 7" is linear).

component of vector v

Using the same notations for indoor C'O- level, it
comes that:

C™(k) = A®(g O™ (k +ZBC “HvE(k) (©6)
[(Cm Cew)uw,ﬂt

Concermng the indoor illuminance level, the following
static model is assumed:

where vC

Jj=Np

L) = azu(k)+ Y b6 (k)i (k)

+ 3 Hami-uk) @)

The model mathematical structure being now de-
scribed, one can identify the polynomials AT, BT,
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AC, BiC and constants ay,, b%, l_)i in order to fully
describe the model. Noting the set of the unknown co-
efficients cited above 6, it is easy to recover the model
M(6).

It can be shown that (4) is in our case a linear least
square problem (Landau and Zito, 2006), this problem
is efficiently solved using some dedicated optimization
tool (we used Matlab optim. toolbox).

Even if this identification problem seems to be quite
simple given that no noise affects the measurements
and no unmeasured disturbance is present, one has to
mention that the following precautions must be taken
in order to ensure the success of the identification:

1— Appropriately chosen excitation signals have to
be injected in the simulator. This in order to ensure
that inputs are not correlated. Moreover each excita-
tion signal has to be sufficiently rich in frequencies to
excite all the modes of the simulation model (Landau
and Zito, 2006);

2— The initial state of the process (SIMBAD) is
forced to zero (equilibrium);

3— Let us finally notice concerning the thermal as-

pect that adjacent zones air temperatures are consid-
ered as disturbance from the point of view of the zone
in concern, therefore local zone controllers must be
inserted in each adjacent zone in order to control each
adjacent zone temperature.
The identification procedure described above has been
applied on SIMBAD for different buildings. It has
been noted that the simulation model (SIMBAD) can
be identified quasi perfectly (mean error less than 0.01
%) for sufficiently high model orders (typical value
was n, = np = 6 concerning temperature and a first
order for COs, level).

Design of the zone MPC

In this section, the cost function J(-,z(k)) and the
constraints C that are used at each instant &k to compute
the optimal sequence (as recalled in the first section)
are described. The MPC optimization problem is de-
fined at each decision instant & based on the following
knowledge:

e The current state x(k) of the system model (ob-
tained via classical dynamic observer),

e The prediction of disturbances w,

o The normalized characteristic power consumption
p; of each actuator j (p; - u; represents the power)

e The prediction of the normalized energy rate pro-
file 7; for each actuator type j.

e The comfort related bounds profiles y(k + ¢) and
g(k+i)forie {1,...,N} a
It is generally admitted that occupant comfort can be
described by an admissible set to which the output y
has to belong (please refer to existing standard (EN1).
This admissible set obviously depends on the occu-
pancy of the zone, the current season and the nature

of the zone under consideration. These consideration
leads to the following constraints:

y(k) € [y(k),y(k)] ®

where y(k) € R? and 7(k) € R are lower and upper
bounds that implicitly depends on the occupancy in-
dicator (through the time argument k). Table 2 shows
typical values of y and iy depending on the occupancy
indicator. a

Table 2: Nominal comfort region

T; cm L
min | max | min | maxr | min | max
Occup. | 20 23 — 900 | 500 —
Vacant 5 30 — — — —

Moreover, saturation constraints on the actuators are
also considered using standard constraints of the form:

[Asat] U(k) S bsat (9)

which may include both saturation the value of u
as well as on its rate of change. For convenience,
normalized vector are considered, then all inputs u
must be comprised in [0, 1].

The cost function at instant k is affine in the con-
trol sequence and defined over the prediction horizon
[k, k + N] by the total energy invoice:

N—-1 ny

I, x(k)) = > ri(k+1i)[pju;(k + )] (10)
i=0 j=1
=R(k)-@ ; R(k)eRVNm (11)

and the MPC-related optimization problem at instant
k becomes:

=N
min [R(k) - a(k) + p- D ot(E) + 6 (i)] (12a)
=1
Subject to: Vi € {1,..., N}

y(k+1)—57(i) (120)
Asatu(k + Z) S bsat (12d)
dt@) =0 , 67 (i)>0 (12¢)

where the notation Y (-, a(k), w(k), z(k)) is used to
denote the trajectory of the output vector for given se-
quences (k) and w(k) of future evolutions of
u and w respectively. (k) is the initial state. The
positive slack variables 67 () and 0~ (-) are heavily

- 2706 -



Proceedings of Building Simulation 2011:

12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November.

weighted through p > 0 in order to avoid unneces-
sary constraint violation. Moreover, they unsure the
feasibility of the problem (12). Discussion about the
resolution of the optimization problem (12) (which is
not necessarily convex) lies beyond the scope of this
article, the reader can refer to (Lamoudi et al., 2011)
for more details concerning this point.

INTRODUCING UNCERTAINTIES

At this point, zone model predictive controllers have
been designed and integrated in SIMBAD. Neverthe-
less, it is worth underlining that within our framework,
it is crucial to take into account uncertainties on pre-
dictions during the assessment of this control strategy,
since predictions are directly integrated in the process
of decision making (Gyalistras and Team, 2010). This
is the reason why we propose to study the effect of
uncertainties related to weather and occupancy.

Weather uncertainties

It is unrealistic to model exactly the errors introduced
by meteorological forecast service due to its complex-
ity. Therefore, let us assume that a meteorological
forecast service (with in situ correction feature*) can
be modeled by:

w(k) =a-wp(k)+ (1 —a) wp(k) 13)

where wp (k) is the perfect prediction profile, wg (k)
is the prediction given by the n4-bin predictor defined
in (14), « € [0, 1] is used to weight the perfect profile
and the unperfect one. This way, we can easily control
the error on forecast (if o = 1 the weather is perfectly
known).

The n4-bin that we use is a slightly modified version
of the one given by (Henze et al., 2004), namely:

1 d:nd
p(k) = — Y dp(k—24-d)
d 4=
1 d:’ﬂd
+wp(k) — - > wp(k—24-d) (14)
d=1

This simply means that the predicted temperature for
the next 24hours is the mean temperature profiles ob-
served on the ng previous days and adjusted to fit the
current measured temperature (this explains the term
wp (k) — £ Y 9=t wp(k — 24 d)). Remark that the
first temperature is always perfectly known.

This procedure is used for the prediction of outdoor
temperature and irradiance fluxes.

Fig. 2 shows the mean error distribution probabil-
ity with a 20-Bin predictor for Paris weather station
for one year. It is interesting to notice that the pro-
posed simple model (13) gives unbiased predictions

4The current weather forecast is corrected based on in situ mea-
surements

Distribution [%]
[J I N = T |
o O O O O

:

T 3 2 0 T3 3 4
Mean error on T forecast [°C]|

Figure 2: Mean error distribution probability of the
meteo. forecast service for different values of .

with gaussian like error distribution. This is in ac-
cordance with the generally admitted models used in
other related works (Gyalistras and Team, 2010).

Occupancy Modeling

In order to enrich the occupancy profiles, the follow-
ing Markov chain based model is used to describe the
presence of each occupant in a given zone. This model
has been proposed in (Page, 2007) and is defined by its
transition matrix 7 (k):

0= T ] 09

where {T;j(k)}ici0,1},je{0,1} are time dependent
transition probabilities of the Markov chain describ-
ing the presence/absence of the occupant in the zone
(O:absent, 1:present), and are given by:

Occupant 1 Tao(®)
| w) @, T )
OCCllpant Noce Tio(k)

o @] F

Figure 4: Markov chain with states. The transition
probabilities are time varying. Each occupant can be
characterized using its own Markov chain.
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Presence Probability

no

Real Occupation of the zone

120

Time [hour]

Figure 3: Presence probability (blue) and corresponding generated stochastic occupancy profile (green).

Tor(k) = % - P(k) + P(k +1) (16a)
_ Pk)—-1 p—1
T (k) = P '[u+1 -P(k)+ P(k+1)]
P(k+1)
+ POt (16b)
Too(k‘) = 1- T()l(ki), Tlo(k’) =1- Tll(k)(16C)

where p is the parameter of mobility and is used to
adjust the moving frequency of the occupant. P(k)
is the presence probability of the occupant in the
zone. Given a nominal number of occupants in each
zone N,.., one can define for each occupant a pres-
ence/absence model. Fig. 3 depicts a typical result
given by 15. The presence probability profile (blue
curve) is defined in accordance with the occupation
schedule of the zone. One can refer to (Page, 2007;
Mahdavi and Proglhof, 2009) to find some elements
regarding appropriate choices of y and P(k).

SIMULATION RESULTS

We propose in this section some simulations per-
formed on a simple case study. We consider a 500 m?
office building located at Paris. Because of lack of
space, only results related to one zone of this building
are provided. The zone in consideration is a 20 m?
office and has two facades (west and south), each of
them has a window equipped with blinds. The con-
trolled actuators consist of a heater (u), a mechan-
ical ventilation (u,), a lighting system (u;) and two
blinds up1, ups. Their respective power consumptions
are (1.5,.15,.5,0,0) [kW].

Adjacent zones temperatures are perfectly known.

Numerical values of the identified model are omitted,
however let us mention that the identification phase
leaded to a 7t(6 states for temp. and 1 for CO,) order
model with a sampling period of 1 min that fits ex-
actly SIMBAD. The number of occupants N,.. = 3.
MPC prediction horizon is 24 hours and a new optimal
solution is computed each min. The energy rate r(k)
is two times higher between 6a.m and 10p.m (Fig. 5).

Perfectly known occupation

In this first simulation, only uncertainties on weather
conditions are introduced. This leads to the results de-

picted on fig. 5. Simulations for 3 values of « has
been conducted (0, 0.5 ,1). Unsurprisingly, degrada-
tion of weather forecast quality generates an increase
of the invoice (table 3). In this case study, a maxi-
mum of 4% of increase (corresponding to o = 0) has
been noted. Let us notice that, independently of the en-
ergy invoice, the comfort of the occupant is maintained
since temperature , CO- level and indoor illuminance
are kept within their respective prescribed bounds (red
and cyan).

Table 3: Energy invoice for different values of o

« 0 5 1
Invoice (Euro) | 10.17 | 9.88 9.78
% 104% | 101% | 100 %

Uncertainty on both weather and occupation

Let us now introduce in addition uncertainties on the
number of occupants in the zone. In this case, the pre-
dicted number of occupants (used by the MPC) cor-
responds to occupancy schedule used in the previous
simulation, however the real number of occupants in
the zone (injected in SIMBAD) is generated using the
stochastic procedure cited above. Notice in this case
that the invoice is enlarged comparing to the "perfectly
known forecast” case by 18% (table 4). This enables
us to give a quite realistic potential gain given a known
quality of weather forecast for a realistic occupancy
profile. Let us finally mention that comfort require-
ment is always ensured (Fig. 6) attesting the robust-
ness of the control strategy in providing comfort for
occupants.

Table 4: Invoices with the introduction of errors on
occupation and weather forecast

« 0 5 1 *
Invoice (Euro) | 9.57 | 898 | 8.92 8.13
% 118 % | 110 | 109 % | 100 %

*: weather and occupancy perfectly known.

Some elements on HVAC dimensioning

We give in this last part some elements on the dimen-
sioning of HVAC systems using the designed MPC.
For simplicity of the presentation, let us consider that
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Figure 5: Simulation results for « = {0, 0.5, 1} with perfectly known occupation proﬁle. Remark that uncertainties
on predictions mainly induce a bad estimation of the heating optimal start time (top-left). Comfort bounds are

always respected.

we are interested in studying the effect of a modifi-
cation of the size of the electrical heater on the in-
voice (related to the case described above). As it has
been mentioned in the first section, MPC is based on
the resolution of the optimization problem (12). Re-
mind that saturations on actuators are introduced in
(12) through the set of constraints expressed by (12d):
Asat-u(k+1) < bgey which includes the constraint on
heater control u;, € [0 1] (we consider normalized in-
puts). Suppose now that this last constraint is modified
in order to let the control uy, lies in [0, @p], @p, > O (this
means that the heater dimension has been increased -
or decreased- by a factor uy), then one can solve the
resulting optimization problem for different values of
up,. The results are provided on (fig. 7) for perfectly
known weather and occupancy.

Notice that the sensitivity curve (fig. 7) considers only
sensitivity of the energy invoice and doesn’t include
the price of the electrical heater. This consideration
can be easily included further. Moreover, only admis-
sible values of u; (those that ensure that comfort is
always provided) are considered, u; > 0.7 (fig. 7).
Let us also mention that this procedure can be applied
for the sizing of other actuators (ventilation, lighting,
cooling etc.). Many improvements can be imagined
concerning this point. For instance: based on the fact
that the actions of some actuators may affect more
than one output (e.g lighting influences indoor illumi-
nance and temperature), one could optimally dimen-
sion these actuators simultaneously.

CONCLUSION

In this paper, a methodology for interfacing and as-
sessing MPC strategy with an existing building sim-
ulator has been proposed. This approach enables to

110

105

Invoice sensitivity [%]

Reference

100 -

90 i i i i i i i
0.7 1 1.3 1.6 1.9 2.2 2.5 2.8

up,
Figure 7: Sensitivity function of the invoice with re-
spect to up. Remark that tripling the size of the heater
induces a maximum diminution of 7% of the total
invoice, however a diminution of 30% increases in-
creases the invoice with 21%.

give a gain potential of this control strategy in quite
realistic conditions. It consists of deriving embedded
models in order to design zone predictive controllers.
The control strategy is then assessed in quite realis-
tic situations thanks to the introduction of errors on
predictions. These uncertainties gather the uncertainty
on meteorological forecast and on occupancy of the
zone. For the simulation of the meteorological forecast
service, a simple weather station model has been pro-
posed. Moreover, we presented an application of the
designed predictive controller for heater dimension-
ing. This last point will be more detailed and enhanced
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in further studies that will also focus on designing ro-
bust predictive controller as well as studying the effect
of uncertainties introduced on embedded models.
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