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ABSTRACT 

The faulty operation of Heating Ventilation and Air 

Conditioning (HVAC) systems in commercial 

buildings can waste vast amounts of energy, cause 

unnecessary CO2 emissions and decrease occupant 

thermal comfort, reducing productivity.   

We propose a new method of automating Fault 

Detection and Diagnosis (FDD), based on the 

modelling of operational faults in HVAC subsystems, 

using techniques from statistical machine learning 

and information theory.  Discovery of 

interrelationships between groups of sensors by 

analysing the level of Information Transfer present 

can help fine tune the simulation inputs and improve 

model accuracy.   

We present results of the detection and diagnosis of 

faults from an occupied commercial office building 

in Newcastle, Australia and using data from the 

ASHRAE 1020 fault detection project (Norford, 

Wright et al. 2000). 

INTRODUCTION 

HVAC in Australian commercial buildings accounts 

for 84% of the sector’s annual greenhouse gas 

emissions (AGO 2010).  A range of case studies 

show that significant energy savings: 5-15% 

(Gregerson 1999); 2-20% (Claridge, Culp et al. 

2000); 13% (Mills and Mathew 2009); can be 

obtained by diagnosing and repairing faults in HVAC 

systems.  

Non-catastrophic faults can be very difficult for 

operators to detect due to the increasing complexity 

of Building Management Systems and the large 

number of sensors, set-points and zones in modern 

commercial buildings. Equipment failure and 

degradation often goes unnoticed until it results in a 

direct impact on occupant comfort, triggers an 

equipment-level alarm, or results in excessive energy 

consumption.  The large amount of data available 

from modern Building Management Systems (BMSs) 

often captures the information necessary to detect 

and diagnose such failures, but it can be difficult and 

time consuming for even a domain expert to analyse 

manually, and in practice, this rarely happens.     

Most existing fault detection or diagnosis techniques 

fall into one of the following categories; rule-based 

threshold approaches; or physical building models 

(Katipamula and Brambley 2003).   

Rule based approaches perform well for simple faults 

that can be detected with only a few sensors, but it is 

often difficult to set thresholds for good performance. 

Operators are often found to have adjusted the 

threshold level until the alarms are effectively 

disabled, defeating the advantage of having the 

system in place.   

Although FDD systems based on physical models 

can be useful for complex  HVAC subsystems, they 

are generally time consuming to configure, requiring 

detailed information - about equipment, components, 

building dimensions and construction materials - and 

are most often used for very specific subsystems and 

equipment models.  These systems can be successful 

in detecting faults, however it is difficult to translate 

the system for use in other buildings or with 

unfamiliar equipment, once developed and 

configured, due to the low-level operation. 

With advances in statistical machine learning and 

increasing storage and availability of real-time and 

historical BMS sensor data, it has become possible to 

develop advanced FDD approaches that can address 

the shortcomings of rule-based and physical 

modelling approaches while delivering high detection 

accuracy and ease of deployment to a wide range of 

new and existing building and equipment stock.   

DETECTION AND DIAGNOSIS 

The ability to detect and diagnose faults in complex 

HVAC systems means that abrupt failures can be 

quickly remedied, gradual equipment degradation 

addressed and preventative equipment upgrades or 

servicing scheduled efficiently.  

The presented technique makes use of Hidden 

Markov Models (HMMs) to simulate a network of 

time-varying interdependent relationships between 

sensors in an HVAC subsystem, such as in an air-

handling unit (AHU).  

To detect faults, a model is taught the inter-sensor 

relationships from historical data representing normal 

operation. It is then able to infer the likelihood that a 

stream of real-time data matches the learned 

historical behaviour; enabling detection of deviations 

from the norm.   
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Similarly, to diagnose faults, a model is trained using 

operational sensor data recorded during the faulty 

operation of a specific subsystem, such as a water 

valve, air damper, filter, heat exchanger, chiller, 

pump or fan.  Incoming real-time data with a high 

likelihood of matching one or more of these fault 

models causes the system to notify the user that a 

fault has occurred, as well as identifying which 

model, or models, it most closely matches – giving a 

diagnosis.  The data used for building fault models 

are recorded during experiments where the system 

responds to a range of induced fault conditions.  

These experiments are run in a separate test system in 

a lab, or online in the monitored building - by forcing 

control signals in the BMS to induce faulty operation 

after-hours, or for short periods during the working 

day where faults will not affect occupant comfort. 

It is common for flow-on effects from a single fault 

to cause a number of fault models to trigger with 

varying degrees or certainty.  Data fusion is 

employed to resolve the uncertainty in these 

conflicting diagnoses and determine the most likely 

cause of failure. 

One deployment challenge is identifying which set of 

points is useful for detecting a particular type of 

fault.  It is detrimental to prediction accuracy to omit 

a relevant sensor, and performance and accuracy are 

reduced by the inclusion of many irrelevant sensors.   

To assist in the process of choosing which data to 

include we have used a technique from Information 

Theory that analyses the relationships between all 

sensors over a representative period of operation.  

This allows only the system components that have a 

measureable effect on other components to be 

included in each fault model, maximising the 

accuracy of the fault prediction. 

  Later we show results of these FDD algorithms 

from a large, operational commercial building in 

Newcastle, Australia, and using standard 

experimental fault data from the ASHRAE 1020 Air 

Handling Unit FDD project (Norford, Wright et al. 

2000).  We are able to identify relevant sensor 

combinations using information transfer theory, 

detect a wide range of faults in air-handling unit 

subsystems and HVAC system components with a 

high degree of accuracy, and successfully resolve 

conflicting detection results using data fusion. 

 

RESULTS 

To save on computational resources, the first stage in 

the FDD process – detection – is performed using 

only a model trained to recognise normal operation 

of the overall system. We use 3 months of data at 5-

minute intervals (which is typical of the resolution of 

data from a BMS database), representing normal 

operation, to train an HMM model.  This model is 

then tested on several weeks of new data in which 

were manually induced a number of faults.  Faults 

were recreated by manually overriding actuators, 

physically interfering with the system, or purposely 

decalibrating sensors and de-tuning feedback loops.  

Faults that have been identified as having the highest 

impact on emissions, energy loss and occupant 

discomfort were given priority.   

 

Two datasets were used for these results.  The first is 

from an operational office building in Newcastle, 

Australia with 4 floors, 15 zones and about 100 

occupants. A range of faults were created during 

spring and summer.  The second data set was 

obtained from the ASHRAE-1020 FDD project, 

which recorded 162 separate sensor readings during 

faults generated in one of a pair of AHUs in a special 

test facility over four seasons in 2007. Fault types 

considered in one or both of these data sets include: 

 

1) Exhaust air damper stuck 

2) Return air fan fault 

3) Cooling coil valve control fault 

4) Cooling coil valve stuck  

5) Heating coil valve leaking  

6) Outside air damper leaking  

7) Outside air damper stuck  

8) Supply air filter fouled 

 

For fault detection, several days of fault-free data 

were used to train an HMM before testing.  Five days 

of normal data were used for the Newcastle dataset, 

and only two for the ASHRAE data, due to the 

limited number of fault-free days available. Data for 

the period containing each fault was then used for 

testing.  A number of fault-free days were also tested 

to check for false positives. 

 

Fault diagnosis models were trained using data from 

each fault run.  Faults generated at Newcastle were 

repeated several times, and all except one used for 

training. Each repetition reproduced the fault using a 

range of parameters, to minimise the chance of 

overfitting. Testing was performed on the faulty data 

that was omitted from training.  The ASHRAE 

dataset could, unfortunately, not be used for 

diagnosis testing as each fault was only produced 

once making it impossible to test on different data 

sets.  

 

When recreating faults via setpoint manipulation 

(such as forcing a valve or damper open), data from 

these points was not used as an input to detection or 

diagnosis models because the real fault would not 

cause these changes. 

 

Figure 1 shows a typical output from the detection of 

a fault - a stuck hot water valve from a Newcastle 

AHU.  The circled points during Day 2 correspond to 

the time of the induced fault, and the likelihood of 

matching the model of ‘normality’ is an order of 
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magnitude lower than the fault free operation, 

making it trivial to detect the fault period. 

Stuck hot water valves are a relatively common fault 

and lead to a large waste of energy as hot water leaks 

through the exchanger. In summer, this is a 

particularly nasty fault because the control system 

opens the chilled water valve to compensate for the 

extra heat added to the supply air by the leak, wasting 

even more energy but maintaining the supply air 

temperature at expected levels.  Because of this, 

these faults often goes unnoticed by occupants (who 

would otherwise be the most direct form of 

feedback), and is usually only noticed in the next 

energy bill, if at all. 

 

Figure 2 illustrates the detection model testing for a 

fault in the ASHRAE dataset.  The fault was induced 

by reducing the proportional band of the PID 

controller to cause large fluctuations in the cooling 

coil water valve.  This recreates the response from a 

control loop that is badly tuned during 

commissioning or maintenance.  The lower chart 

shows the affected sensors - the chilled water valve 

(CHWV), hot water valve (HWV) and supply air 

temperature (SATemp) - and the fault which begins 

just before 15:00.  The upper chart shows the output 

from the detection process after the clustering has 

been run.  The samples with a class ID of 2 have 

fallen into the second, abnormal cluster, indicating a 

fault. 

 

Initially only the detection model, trained on normal 

fault-free historical data, is used for detection of 

faults.  This is done so that not all specific fault 

diagnosis models need to be run on every sample of 

incoming data, and computational resources are freed 

accordingly.  If a fault is detected by this normality 

model, the more specific fault models are run against 

the data to determine what sub-groups of components 

are causing the fault.  If a single fault model 

determines, with high likelihood, that its learnt 

relationships match the incoming data, the fault is 

considered diagnosed.  Because fault models only 

use data from a small number of targetted 

components, identifying the model is tantamount to 

identifying the cause of the faulty behaviour. 

 

If multiple models match the data, we use Dempster-

Shafer data fusion (see Figure 3) to resolve the 

uncertainty in the diagnosis, based on pre-trained 

knowledge of the performance of each fault model 

under similar conditions. The final output of the 

system is a single fault diagnosis which indicates that 

the modelled fault has occurred, and which piece of 

equipment is responsible. 

 

Figure 4 shows the diagnosis result from testing a 

network of 9 sensors from an AHU during a fault 

where the outside air damper was forced open.  This 

recreates a common fault where the damper becomes 

stuck open and the AHU uses unconditioned air 

unecessarily. This experiment was performed in 

Newcastle during summer when the AHU was in 

cooling mode and the outside air relatively warm, 

meaning that the stuck open damper had a 

detrimental effect on supply air cooling and so the 

control loop opened the chilled water valve further to 

maintain the cool air temperature. The AHU supply 

air fan power is also charted for reference. 

 

The diagnosis model for this experiment has been 

trained on data from previous experiments where the 

same fault was created with a range of severity levels 

and operating modes.  The trained model was then 

tested by forcing several similar, but previously 

unseen faults in the outside air damper position.  The 

fault, occurring after 12:00 is reliably detected at the 

times indicated by the red dots at the top of the chart.  

The two fault indications prior to 12:00 are false 

positives, probably caused by sharp changes in the 

data at these times.  Our experimental results show 

that these false positives generally occur only for 

short periods of time, and are thus simple to 

distinguish from the real faults, which tend to persist 

for longer. 

 

One difficulty with the Hidden Markov Model 

training algorithm, which learns the probabilistic 

associations between sets of sensors, is that the 

process is non-deterministic, and is prone to getting 

‘stuck’ in local optima.  This can result in the 

magnitudes of the tested likelihood curves differing 

between models trained on the same historical data, 

making it difficult to determine a robust threshold for 

identifying faults.  To overcome this, we train a 

number of models with randomised sets of starting 

weights, discarding those that do not converge, and 

test new data with each trained model to produce a 

number of likelihood curves, as seen in Figure 5.  

Each point on this set of curves is then clustered by 

distance with a simple K-mean algorithm.  To 

determine how many clusters in the datasets, we used 

the silhouette  metric. The silhouette of a datum is a 

measure of how closely it is matched to data within 

its cluster and how loosely it is matched to data of the 

neighbouring cluster.  Intuitively, if no fault is 

present in the tested data, the silhouette is low a 

single cluster results.  If one or more faults are 

present, there is a high silhouette and two or more 

clusters result, with the majority of points falling into 

the ‘normal’ cluster - allowing the faulty data from 

other clusters to be easily identified and appropriate 

action taken. 
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Figure 1- Detection results for the stuck hot water valve fault using the Newcastle dataset. 
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Figure 2– Fault detection results for Cooling coil valve control unstable fault using the ASHRAE dataset. 
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Figure 3 – Using Data Fusion to resolve and improve multiple conflicting diagnoses. 
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SENSOR SELECTION 

Currently, a domain expert is responsible for 

identifying which sensors and actuators within the 

HVAC system should be considered by a given fault 

or normality model.  For example, an expert will 

know from experience that a drifting supply-air 

pressure sensor can be detected by looking at the 

supply air fan speed and setpoint, the fan power, and 

the outside and return air duct positions - so we build 

a Hidden Markov Model to represent the flow of 

information between these sensors.   

 

For the system to be easily deployed into an new 

building with a unique design, layout and set of 

equipment, the process of determining these 

relationships can become difficult.  Mapping physical 

knowledge of the system functionality to a set of 

point names in the BMS database can also be tedious 

and error-prone thanks to the dramatic variation 

present in data precision, update rates, protocols, 

naming conventions and sensor availability.  To 

overcome these difficulties, we employ a method for 

automatically determining the directional flow of 

information between sets of sensors. This analysis 

technique from Information Theory measures the 

Local Transfer Entropy (Lizier, Prokopenko et al. 

2008) between the source and destination.  This 

measures how much information about the next state 

of the destination is determined by the current state 

of the source but is not contained in the destination’s 

past states (Wang, Lizier et al. 2011). Information 

transfer is not sufficient to directly determine causal 

effect, but is a useful metric to suggest some level of 

causality, direct or otherwise (Lizier and 

Prokopenko. 2010). 

 

Results were generated by analysing a month of data, 

recorded at 5 second intervals, from 11 sensors in a 

single AHU and calculating the apparent Local 

Transfer Entropy between every pair of points in 

either direction.  Figure 6 shows a graphical 

representation of these results; high values show 

strong transfer entropy from the x-axis point (source) 

and the y-axis point (destination) indicating a 

probable causal relationship.  For example, the 

highest level of transfer discovered in the data 

indicates that fan power (sensor 2) depends strongly 

on the fan speed setpoint (7).  This is an obvious 

relationship, and it makes sense that there is the 

highest transfer entropy between these two points, as 

the fan power is directly determined the fastest 

responding control loop considered by these sensors.   

 

It can also be seen that the position of the chilled 

water valve (10) depends, weakly, on the average 

zone temperature (11). Again, this makes sense 

intuitively, as the chilled water valve position is 

determined by the zone temperature; a warm zone 

requires more cooling. The relationship is not strong 

though, because other factors contribute to the 

valve’s position (such as the supply air temperature), 

causing more frequent valve changes, so this explains 

the lower degree of information transfer between 

these two points. 

 

A third and final example is the strong apparent 

dependency of fan power (2) on the outside air 

damper (3).  At first glance this is not an obvious 

relationship appears, but further experimentation 

showed that a dependency did actually exist; the air 

return path distance from the zone is much longer 

when the outside air damper is closed, forcing the fan 

to consume more power sucking the air back to 

maintain supply duct pressure. However, the power 

level decreases when the damper opens, as the air 

path becomes much shorter, so the air-resistance is 

decreased and less fan power needs to be consumed.   

 

Analysis by domain experts verifies that the other 

relationships shown in Figure 6 also make sense 

with respect to this system’s normal operation, as do 

the pairs of non-related points and the indicated 

direction of information transfer, showing this to be a 

useful technique for point relationship discovery in 

such sensor networks.  The discovery of non-obvious 

relationships adds additional weight to the usefulness 

of Local Transfer Entropy analysis for fault 

detection. 

CONCLUSION 

We have presented a novel system capable of 

automating detection and diagnosis of faults in 

commercial building HVAC systems.   

This system is able to detect faults accurately and 

robustly and in real-time using data from an 

operational building in Newcastle, Australia, and in a 

standard ASHRAE 1020 project’s FDD dataset. A 

new FDD technique employing Hidden Markov 

Models has been developed to learn probabilistic 

relationships between groups of points during both 

normal and faulty operation.  This can passively infer 

the likelihood of similar patterns in the data during 

future operation with a high degree of accuracy.   

Multiple parallel models and clustering were used to 

overcome issues with training state being stuck in 

local optima, and Data Fusion was employed to 

resolve conflicting diagnoses from multiple related 

models. 

A novel Local Transfer Entropy was used to confirm 

and discover relationships between pairs of points, 

and the process was successfully demonstrated using 

data from an operating AHU.  The discovered 

correlations between sensors built upon existing 

knowledge of the system, as well as confirming 

previous assumptions. 

Successful operation has been demonstrated for a 

number of fault types on a real building and using 

data from a specialised test facility.   
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Figure 4 – Diagnosis results for a stuck outside air damper fault using the Newcastle dataset. 
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Figure 5- A family of likelihood curves from a detected fault prior to clustering. 

 

 
Figure 6 – The Apparent Transfer Entropy between pairs of points from an Air Handling Unit.
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