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ABSTRACT 
This paper presents an analysis of whole-building 
performance modelling and simulation process of a 
low-energy single-family detached residence located 
in Northeast U.S. A total of six design alternatives 
are modelled with EnergyPlus to predict relative 
performance improvements associated with a diverse 
set of energy efficiency measures of both building 
envelope assemblies and unconventional HVAC 
systems with inclusion of on-site renewable energy 
technologies. Simulation results indicate 29.3% 
energy cost savings (with respect to ASHRAE 90.1 
2004 Standard Model) achieved through envelope 
efficiency measures only and 49.1% savings through 
coupling with a complex HVAC configuration and 
renewable energy systems.  

INTRODUCTION 
According to current statistics (U.S. DOE, 2010), 
residential buildings in the U.S. are responsible for 
22% (6.2x1012 kWh) of primary energy demand per 
year. 68.8% of this demand is to generate electricity 
for space cooling, ventilation, lighting and household 
appliances, which accounts for about 36% of national 
electricity demand. Residential sector uses 20.8% of 
annual natural gas production (23.4 Quads) for space 
heating and domestic hot water generation. 
Reduction of energy intensity of residential buildings 
started with passive solar homes movement of 1960s. 
It then evolved to super-insulated, highly airtight 
envelope designs. Technological advancements  in 
residential HVAC systems and small-scale renewable 
energy technologies further led to potentially net-
zero energy homes of today. Contemporary low 
energy residential buildings combine passive and 
active solar features with highly insulated and 
weatherized envelopes coupled with high efficiency 
domestic appliances, and lighting systems to 
minimize space heating, cooling and household 
electrical loads (demand side efficiency measures) 
(Parker, 2009 and Malhotra et al., 2010). Overall 
building load minimization paves the way to 
significant reductions of energy use intensities when 
such loads are managed by optimally controlled, 
high-performance and mixed mode HVAC systems 
coupled with air-based heat recovery equipments and 
ground source heat exchangers (supply side efficiency 

measures). Moreover, utilization of grid-tied building 
integrated photovoltaic systems together with hot 
water systems backed up with solar thermal 
collectors can shift net energy balance to potentially 
zero level on an annual basis (on-site renewable 
energy measures). The complex and highly 
integrated nature of the above mentioned efficiency 
strategies and related technologies pose considerable 
challenges for analysing and evaluating the building 
energy performance with simulation-based 
assessment techniques. For instance, Brahme et al., 
2009 discussed capabilities of three whole-building 
energy simulation tools (eQUEST, EnergyPlus, 
TRNSYS) to simulate a number of zero energy 
building technologies common to single-family 
residences in Southeast U.S. It was claimed that 
current simulation tools are not effectively 
supporting passive design strategies and 
unconventional HVAC configurations. Literature 
indicates the necessity of using dynamic, and 
integrated whole-building energy simulation 
methods, which require coupling multiple modelling 
tools for majority of the cases. For instance, Brahme 
et al., 2008 conducted a study on performance-based 
design process of a low-energy single-family 
residence in Northeast U.S. involving programs of 
RetScreen for electricity and solar thermal energy 
production analysis, eQUEST for envelope, internal 
load and system analyses, and Trane Trace 700 for 
equipment sizing.  
This paper presents whole-building performance 
simulation of a low-energy residence with an 
unconventional HVAC system. Emphasis is given to 
full exploitation of integrative simulation capabilities 
offered by EnergyPlus program without recourse to 
other simulation tools. Comparative evaluations of 
simulation results are also presented.  

METHODOLOGY 
In order to form a basis for energy performance 
comparison of possible design alternatives, a baseline 
model (referred as ASHRAE Baseline Model) is first 
established. Since the residential building project 
under consideration was already registered as a low-
rise commercial building type for Leadership in 
Energy and Environmental Design-New Construction 
(LEED-NC) rating calculations, the baseline model 
development is in accordance with Performance 
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limit, whereas DSEM model (0.59 point) covers 
almost 60% of all possible efficiency gains. Coupling 
DSEM with advanced HVAC can only increase 
index point by 0.08. REM alternative achieves 0.34 
point by utilization of solar PV and thermal energy 
systems only.  
 

 
Figure 9 Energy cost effectiveness scale 

 

CONCLUSIONS 
This paper evaluates whole-building energy 
performance of a relatively large single-family 
residence design equipped with state-of-the-art 
efficiency measures on the demand side and supply 
side energy flows together with contributions from 
on-site renewable energy technologies. Through 
energy simulations and comparative performance 
assessments of 6 different building models following 
conclusions are drawn:  

 Considerable energy performance 
improvements (29.3% cost reduction) can be 
gained by giving highest priority to 
envelope-based demand side energy 
measures before incorporating 
unconventional HVAC system components. 
Coupling high-end HVAC systems with 
thermally resistive and air-tight envelopes 
becomes even more significant with 33.2% 
maximum energy cost reduction.  

 On-site renewable energy systems 
(particularly solar electric power generation) 
can provide significant improvements of net-
energy balance (49.1% energy cost 
reduction) and associated LEED-NC credit 
points collection from multiple sections of 
Energy and Atmosphere category (Credit 1 
and Credit 2).  

 Complex HVAC systems with centralized 
AHUs present inefficiencies and increased 
energy consumption for auxiliary system 
components (e.g., fans, pumps, ERVs) for 
residential buildings having relatively large 
volumes requiring diversified operational 
schedules. Under the climatic and geologic 
conditions of the investigated buildings case, 
cooling energy recovery through ventilation 

as well as using ground as heat sink provides 
marginal reductions in overall building 
energy performance. 

 Combined system configuration and 
operational strategies of complex HVAC 
systems for low-energy residential buildings 
can be handled without recourse to multiple 
simulation tools by the use of integrated, 
simulation engines (i.e., EnergyPlus). 

 Current whole-building performance 
simulation tools are not suited to provide 
effective support for modelling of hybrid 
HVAC systems (e.g., whole house 
ventilation fans alternating with central 
AHUs for fan-assisted ventilation for space 
cooling purposes).  
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