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ABSTRACT 

Since the last decade, it has seen a surge in the need 

of uncertainty analysis for building energy 

assessment, but it is often overlooked that the vital 

part of uncertainty analysis is the determination of 

uncertainty in model parameters. Significant 

discrepancy in microclimate state variables has been 

observed between the predictions and the true 

climates around the building. This paper quantifies 

the uncertainty stemming from different sources in 

the major microclimate variables: local temperature, 

wind pressure, and solar irradiation, which are used 

in the statement of the boundary conditions in 

building energy simulation tools. Although our 

analysis does not single out a specific simulation 

tool, we will explore EnergyPlus preprocessing 

calculations for microclimate as the test case to 

implement our uncertainty quantification approach. 

INTRODUCTION 

There is an increasing need to perform uncertainty 

analyses (UA) of building performance. Such 

analysis is for instance warranted to support risk-

conscious decision making in building design and 

retrofit when decision are driven by return on 

investment expectations, or when energy savings 

guarantees are part of the performance contract. In 

current practice a building simulation is routinely 

performed with best guesses to input parameters the 

true value of which cannot be known exactly. 

Obviously, these guesses directly affect the accuracy 

and reliability of the outcomes. Although best 

guesses can (in our most optimistic beliefs) lead to 

simulation outputs whose mean roughly corresponds 

to the mean of the true outcomes, the true variability 

of all possible outcomes is not discovered unless a 

full uncertainty analysis is conducted. Instead of 

taking best guesses, uncertainty analysis considers 

input parameters as uncertain and propagates the 

uncertainty through the model by sampling from the 

distribution of these input parameters. A general 

procedure of uncertainty analysis can be found in the 

reference (de Wit and Augenbroe 2002).  

A building simulation tool is a collection of many 

program modules that work together to calculate final 

outcomes. Each module performs a specific function. 

It is noteworthy that uncertainty existing in any 

module has many origins: physical parameter 

uncertainty, module inadequacy (i.e. modeling errors, 

also referred to as “code errors”), observation errors, 

and unknown deterioration effects. Physical 

parameter uncertainty reflects the variation of 

parameters under specified conditions. Even if 

physical parameter uncertainty is ruled out, i.e. all 

required input parameters can be assigned the true 

values, the prediction will not equal to the true value 

of the process as there will always be a certain level 

of model inadequacy. Observation error accounts for 

the discrepancy between measurements and true 

value, which means that the true value is merely a 

fiction that cannot be measured accurately, but we 

won’t address that part in this paper. 

In this paper the focus is on the physical uncertainty 

in micro climate conditions, typically expressed in 

micro climate variables that enter into the boundary 

conditions of the building shell. In most building 

simulation tools these parameters are obtained by a 

preprocessing step which transforms meteorological 

station weather data to building microclimate 

parameters. The following parameters enter into 

boundary conditions of energy simulation: local wind 

speed, local temperature, wind pressure, and total 

solar irradiation (direct and diffuse). Each simulation 

tool may deploy its own flavor of preprocessing 

calculation but the differences across the current 

leading tools are not significant. We will refer to the 

current pre-processing as the “standard model” in this 

paper. The standard model implemented in current 

simulation tools for micro climate conditions is rather 

crude and its representation of urban surroundings 

lacks sufficient detail. The UQ in this paper is not 

limited to specific simulation software, but as 

EnergyPlus is regarded as a representative high-end 

simulation application, it is used as starting point for 

the standard model of the microclimate parameters.  

By comparing its results with higher fidelity meso-

scale models, we can quantify the uncertainty 

stemming from module inadequacy as well as 

insufficient knowledge. The major purpose of this 

UQ approach is twofold: (1) to propagate the 

uncertainty through the simulation model of the 

whole building and quantify uncertainty in an 

outcome such as total consumed energy; (2) to enable 

the ranking of all microclimate parameters on their 

highest impact on a certain outcome, accomplished 
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through sensitivity analysis. The latter is an important 

result as it implicitly shows which parts of the 

standard model may need improvement to increase 

the fidelity of the simulation tool. 

BUILDING MICROCLIMATE 

Information about the building microclimate is 

usually unavailable, thus requiring some form of 

preprocessing calculation to transform recorded 

weather data from a nearby meteorological station to 

microclimate conditions. However, as shown in  

Figure 1, the microclimate around the building is 

affected by various factors such as surrounding 

vegetation, location of neighboring objects, meso-

scale air flow patterns etc. These effects results in the 

significant discrepancy with meteorological station 

weather data and actual micro climate conditions.  

 Figure 1 Suburban and urban climate 

In order to derive the building microclimate from far 

away meteorological weather data, the model needs 

to accurately capture air flow patterns around the 

building, temperature variations due to urban heat 

island, the existence of complex urban plumes in 

major metropolitan regions, and other phenomena. 

This would require a deep urban representation as 

well as a computational intensive numerical model. 

Although these kinds of models have been well 

developed at different scales, i.e. for regional weather 

forecasting and urban scale modeling, they have not 

yet been integrated with the current generation of 

building simulation tools. This study performs an UQ 

of standard models such as those adopted by 

EnergyPlus. The uncertainty in four microclimate 

state variables are studied in detail: (1) local wind 

speed, (2) local temperature, (3) wind pressure, and 

(4) total solar irradiation including direct, diffuse, 

reflected radiation. The standard model calculates 

these variables using weather data from a meteo 

station with partial consideration of the urban 

surrounding of the building under consideration and 

the distance between meteo station and the building. 

It should be noted that the standard model uses some 

form of urban characterization in the calculation. For 

instance, the calculation of local wind speed around 

the building utilizes two coefficients in the 

transformation of the meteorological weather data to 

the building’s micro climate wind speed variable. 

Another instance is the calculation of solar irradiation 

on vertical surfaces which uses a user specified 

reflectance of ground surfaces to approximate what is 

typically a combination of many surfaces with 

different reflectivity.  

It is obvious that the standard model for generating 

the microclimate variables is unreliable and in any 

case is too crude to investigate the effects of urban 

surroundings on the local microclimate. So far a 

rigorous uncertainty analysis of microclimate 

conditions has not been performed. This is an 

omission as it is well known that micro climate 

variables can have significant influence on local 

temperature, convective heat transfer coefficients, ex- 

and infiltration, reliance on natural ventilation, and 

solar heat gains. The motivation for this paper is to 

conduct a UQ for the micro climate variables, as a 

preparation towards uncertainty propagation and 

effect ranking to guide future model improvements. 

This paper only deals with the first part, the UQ. 

UNCERTAINTY QUANTIFICATION 

This section shows how meso-scale models are used 

to quantify uncertainty in current standard 

microclimate models used for the preprocessing in 

simulation tools. First we investigate meso-scale 

models that adequately represent the effects of urban 

surroundings on microclimate conditions. Then, we 

conduct pairwise comparisons between meso-scale 

model outcomes and standard model outcomes, and 

analyze their differences. Figure 2 shows the UQ 

process. Both the standard model and higher fidelity 

meso-scale model need meteorological station 

weather data and an urban built form representation 

as input. Wind speed and wind pressure standard 

models only recognize a crude representation of the 

urban form specification in the form of a terrain 

classification defined in the ASHRAE Handbook 

(i.e., open country, urban and suburban areas, and 

large city center (ASHRAE, 2005).  

This categorical information leaves a lot of 

variability in the urban form of each category. This 

variability intrinsically results in uncertainty as the 

specific built form is not regarded in the standard 

model. The effect of this variability is examined by 

generating a set of experimental situations within 

each terrain classification to explore the effects of all 

plausible urban contexts. For each experimental 

situation, we can now calculate the differences 

between the two model outcomes. Aggregation of all 

estimates leads to distributions of uncertainty in the 

two microclimate state variables. There is no 

standard model for the calculation of local 

temperature, which means meteorological station 

data for air temperature is assumed to be the local 

micro climate variable. In this case, we assume that 

only a low level urban knowledge about the urban 

form is available just because most standard models 

follow this rule. For solar irradiation, we focus on 

how the standard model (algorithm) distributes solar 

irradiation on building surfaces by considering 
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shading, reflection, etc. In general, the standard 

model in current simulation tools supports 

specification of building surroundings, which thus 

reflects a higher level of urban form knowledge. 

 

For direct solar irradiation the standard model 

calculates sun position and shadow area accurately 

enough such that the discrepancy between its 

outcomes and a better meso-scale model is 

negligible. For the diffuse solar irradiation the 

standard model employs the well-known Perez 

model. In ongoing work (not reported here) the 

uncertainty of the Perez model (Perez, 1987) 

outcomes are quantified based on experimental data. 

With regard to solar irradiation, this paper only 

shows the result for the ground reflected solar 

irradiation with and without snow presence. 

A global dataset of urban form and building 

properties was developed to study the urban climate 

(Jackson, Feddema et al. 2010). The dataset includes 

the urban morphology and physical characteristic of 

building materials across 33 regions of the world and 

subdivides urban area into four levels of urban 

density: tall building district, high, medium and low 

density urban. This study uses this dataset to consider 

the variability of urban form. 

1. local wind speed 

Typically simulation software follows Chapter 16 of 

ASHRAE Fundamentals (ASHRAE, 2005) to 

compute local wind speeds in the local terrain. 

ASHRAE Fundamentals specifies a method that 

computes local wind speeds at a certain height from 

the measured wind speed        at the 

meteorological station with use of a wind reduction 

factor. The wind reduction factor is derived as a 

function of measurement height (z), wind exponent 

(α), and boundary layer thickness (   for the site and 

the meteorological station as expressed in Equation1. 

ASHRAE Fundamentals provides default values for 

α and   for three terrain types. Typically in 

simulation modeling, users select values of the two 

parameters based on a site terrain type.   

       (
    

    
)

    
(

 

 
)

 

                (1) 

For the meso-scale model, we selected part of a 

Community Land Model (CLM) that computes 

average local wind speeds in the urban context 

(Oleson, 2008). It approximates urban surroundings, 

following the urban canopy concept. Figure 3 

represents the CLM urban form parameterization 

scheme; all buildings are identical in terms of their 

geometry, and they are regularly distributed over the 

urban grid; the open space between two rows of 

buildings is defined as a canyon. This approximation 

enables 3-D complex urban form representation to be 

transformed into a 2-D layout. CLM parameterizes 

urban surroundings by the three geometric variables: 

(1) canyon height (H), (2) canyon ratio (H/W), and 

(3) building length-to-width ratio (BL/BW). The urban 

parameterization scheme is used to capture all 

variability in heat transfer in the urban context such 

as drag effects and radiation trapping. 

 

 Figure 3 Urban parameterization scheme in the 

Community Land Model 

As CLM outcomes, we obtain average local wind 

speeds in the canyon areas surrounding a building at 

a given measurement height. That is, CLM does not 

capture variation of local wind speeds along building 

surfaces at a given measurement height. As a result, 

the difference between the ASHRAE model and 

CLM outcomes only quantifies uncertainties in 

average local wind speeds (i.e. averaged along the 

horizontal perimeter of the building shape at a given 

height). Hence, in order to quantify all sources of 
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Figure 2 Microclimate uncertainty quantification framework 
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uncertainty in local wind speeds for different 

positions on the building facade, we will introduce an 

additional term that explains potential deviations 

from the average speed quantified by our analysis. 

First experimental situations were generated for a set 

of urban surroundings, separately for the three terrain 

types. We set up experimental designs in terms of the 

three urban geometric parameters based on the global 

dataset (Jackson, 2010) introduced above. Since the 

dataset shows high correlations between canyon 

height and canyon ratio in cities and urban terrains, 

we used actual cases from the dataset in the design 

rather than randomly generated samples. The rest is 

considered independent. From the actual cases and 

the range of independent parameter values, we used 

Latin Hypercube Sampling (Wyss, 1998) to obtain 

260, 990, and 50 situations for cities, urban, and open 

country respectively. In the same manner, we also 

generated 20 situations for meteo station 

surroundings.  

Table 1 Setup for Experimental Design 

 H H/W BL/BW 

min max min max min max 

Country 3 3 0 0.3 0.25 1.00 

Urban 99 cases from the dataset 0.25 1.00 

Cities 26 cases from the dataset 0.25 1.00 

The purpose of the UQ framework is to model the 

difference between the output from the ASHRAE 

model and that from CLM. In this case a log scale is 

used. Through the difference modeling, we quantify 

the inadequacy of the ASHRAE model and 

uncertainty induced by not accurately specifying 

urban surroundings. We generate different situations 

in each terrain, and use statistical techniques to 

model the difference for each situation. Due to the 

length limit, we focus on the terrain of city in the 

following presentation. Through some exploratory 

analysis, the following statistical model is proposed 

to model the difference as a function of the measured 

height  . 

     {
                                           

                                           
           

For each situation in the terrain of a city, we estimate 

the unknown parameters    ,    ,    ,    ,   and    

using maximum likelihood estimation(Mendenhall, 

Beaver, and Beaver 2008). This results in a point 

estimate for these parameters for each situation. The 

histograms of the estimates of these parameters, 

induced by the different situations, are presented in 

Figure 4. From a statistical point of view, the sample 

size in each situation is large enough. So the shape of 

histograms should be robust to the random errors 

from the meteo station surroundings. But keep in 

mind the shape of the histograms depends on the 

experimental situations we have used. 

The     for all the situations is above 0.95. Most 

situations enjoy a    above 0.99, indicating the 

goodness-of-fit of the piecewise linear model 

employed here. Given the fitted statistical model, for 

any value of measured height  , a distribution of the 

difference between the outputs of the ASHRAE 

model and the meso-scale model results is derived. 

Note that the variation in the distribution represents 

the variation among different situations as well as the 

variation among the surroundings of the meteo 

station in each situation. By adding the distribution of 

differences for each measurement height to the 

outcomes of the ASHRAE standard model, the 

uncertainty in the local wind speed state variable is 

quantified. 

 
Figure 4 Histograms of unknown parameters 

2. Urban heat island effect  

Temperature discrepancy between the location of the 

meteo station and the building site caused by urban 

heat island (UHI) effect is not taken into account by 

the standard model in current simulation tools. In this 

section, it is shown how UQ was performed based on 

the town energy budget (TEB) model (Masson 2000). 

The TEB model simulates heat and moisture 

exchange through walls, roofs and roads by 

numerically solving energy balance equations. The 

model has been shown to be capable of accurtely 

predicting energy fluxes, canyon air temperatures, 

and surface temperatures (Masson, Grimmond et al. 

2002). To compute UHI intensity, we first applied 

this model under urban conditions with surfaces 

consisting of town and nature components for the 

urban canyon air temperature prediction. Then, a 

second run was performed under rural conditions 

with grassland covering the entire surface to compute 

temperature difference with the first run. The forcing 

atmospheric weather conditions were derived from 

TMY weather data through a simple calculation. This 

led to the required weather parameters for the model, 

which are: short-wave (  ) and long-wave (  ) solar 

radiation, air temperature (  ), wind speed (  ), 

pressure (  ), specific humidity (  ).  
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UQ was performed at an hourly basis in order to be 

able to verify the diurnal characteristic of the heat 

island phenomenon. We used whole-year TMY2 data 

of 16 DOE benchmark cities (Paul Torcellini, 2008) 

in 16 climate zones of the US to analyze the effect of 

climate. As an example, this section shows results for 

Atlanta, city terrain type. The urban geometry was 

shown to be the most influential factor on UHI 

intensity. Thus, we consider all urban geometry 

related parameters as uncertain in the TEB model; 

Table 2 lists the min and max value of urban 

geometric parameters. We don’t consider UHI effect 

for the building situated in open country. 

Table 2 Geometric parameters of TEB model 

Terrain      
       

 
 H(m) H:W 

Cities 
min 40% 12.5% 60 

W=25m 
max 85% 71.4% 200 

Urban 
min 5% 10% 

99 Cases 
max 90% 80% 

     
  :Area fraction occupied by roof;       

  : Area 

fraction of pervious road to total road area  

Roof, road and wall material properties are set 

according to the Vancouver case introduced in 

Masson’s paper (Masson, Grimmond et al. 2002), 

because these materials are more likely to represent 

the thermal properties of the US cities (Oleson, 

Bonan et al. 2008).  

We develop statistical models for predicting the time 

series of UHI intensity,    , for various scenarios in 

Atlanta. For simplification, we define the notations 

here. Hourly weather data comprises of six variables 

           
  mentioned above over the period 

of one year. Three physical parameters   
          

  (    building height,     area fraction 

occupied by roof,     area fraction of pervious road 

area to total road area) that characterize a scenario. It 

was found that for any fixed scenario, the 

relationship between    and            
  can 

be modeled well by the regression equation: 

      ∑     
 
        ,               (3) 

Where,    is the mesoscale prediction of the rural 

temperature. We estimate               
  by 

regressing the hourly time series of    versus the 

hourly time series of       . The value of    is 

generally found to be between     and    . We 

study the effect of   on   and build statistical models 

for predicting   based on  . The experiment region is 

taken as                                   . In 

the following analysis, we shall work with the 

variable             
 , which is   rescaled so that 

the experiment region is       . A   -run maximin 

Latin Hypercube design (LHD) is employed for the 

experiment. Data from the experiment is used to 

construct the Gaussian process (GP) emulators 

(Santner et al., 2003; Sacks et al., 1989)  ̂     for 

           Since    is unknown and depends on 

           
 , we would also need to build an 

interpolator (e.g., inverse distance interpolator (IDI) 

(Joseph and Kang, 2011))  ̂     to predict    if we 

want to predict    for a different set of weather data.  

Note that a LHD is a space-filling design used in 

computer experiments for the purpose of fitting 

highly nonlinear interpolators such as a GP emulator. 

A GP emulator is a statistical interpolator obtained by 

modeling the unknown function   as a Gaussian 

process, i.e.     (             ), where      is the 

mean function and          is the covariance 

function. The emulator value at  , i.e.,  ̂    is the 

conditional expectation of      given the data 

               . An important property of the GP 

emulator is that  ̂           (this justifies its use 

for interpolating deterministic output). An IDI is a 

simpler interpolator. It is more suitable for 

interpolating large data sets (such as the data for   ) 

due to its low computational requirements. 

It was found for all    time series of temperature 

difference produced by the experiment have similar 

patterns and this cyclical variation that repeats on a 

daily basis tended to be dominant compared to the 

month-to-month difference. Maximum UHI intensity 

appears during nighttime and deceases to its 

minimum around the middle of a day (Figure 5).  

3  

Figure 5 Plot of temperature difference versus hour 

of day for One Scenario (One Year’s Data) 

For all of the    runs, the weather variable    has a 

small regression coefficient    and in many of the 

runs, it is insignificant at the    level. All other 

coefficients are large and distinguishable from zero 

in all runs (except for an insignificant    for in of the 

runs). The coefficients             are positive in all 

experiment runs whereas       are negative in all 

runs. Each of the coefficients except    exhibit a 

clear linear trend when plotted against   . On the 

other hand, the plot of    against    suggests that the 

relationship between    and    is governed by a step 

function.  

We evaluate the predictive performance of the GP 

emulators   ̂    . Four confirmation runs are 

performed at four different  ’s distinct from the 

design points. In  

, the actual values of the   ’s for one of these runs are 

compared with the predictions, i.e., the  ̂    ’s. Also 

shown in the table are     prediction intervals 

(         ). It is seen that the predictions are very 
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close to the actual values, which are all within the 

prediction intervals. A plot (not shown) of the 

predicted and actual temperature difference for the 

confirmation run also show that predictions are 

reasonably close to the meso-scale model output. 

Table 3 Validation of Statistical Model 

                

 LCL UCL Prediction Actual 

   15.952 16.8 16.376 16.04 

   -0.00019 3.78E-05 -7.7E-05 8.4E-06 

   -0.00716 -0.00662 -0.00689 -0.00668 

   0.88714 0.92212 0.90463 0.91521 

   0.025534 0.028776 0.027155 0.026392 

   -0.00013 -0.00012 -0.00012 -0.00012 

   61.353 65.393 63.373 62.405 

   -0.9183 -0.88579 -0.90205 -0.91257 

3. Wind pressure  

The standard model in most simulation software 

follows Chapter 16 of ASHRAE Fundamentals 

(ASHRAE, 2005) to compute wind pressures on a 

building. Wind pressure on a building surface 

depends on ambient air density (ρ), local wind speed 

(  ), and wind surface pressure coefficients (  ) as 

defined in Equation 4. ASHRAE Fundamentals 

describes empirically driven models that generate 

surface-averaged pressure coefficients for low-rise 

buildings (Swami and Chandra, 1987) and high-rise 

buildings (Akins, 1979). All models are defined as a 

function of the wind incident angle and the ratio of 

the width of the wall under consideration to that of 

the adjacent wall.  

Equation 5 indicates the Swami and Chandra model 

as a function of wind incident angle (θ) and the 

natural log of the ratio (G). All models are based on 

wind-tunnel experiments for a stand-alone building 

without accounting for the interfering effects of 

neighboring buildings.  

      
  

 

 
                             (4) 

        

(

 
 

     -        (
 

 
) -            

                        (
 

 
)

           (
 

 
)          (

 

 
)
)

 
 

       (5) 

For the higher fidelity meso-scale model, we 

employed the TNO Cp generator that calculates wind 

surface pressure coefficients in the urban context. 

The Cp generator is a parametric model developed 

based on experimental data that calculates coefficient 

values based on wind direction and building 

dimensions and corrects coefficient values, taking the 

surrounding terrain into account. (Knoll, 1995). The 

Cp generator requires information about full 

geometries and terrain roughness for adjacent 

obstacles and for distant obstacles respectively. As 

outcomes, we obtain surface-averaged coefficient 

values for each wall for each wind direction. We 

follow the urban parameterization scheme in the 

Climate Land Model to represent surroundings in 

which a building under consideration may be 

situated: this leads to the selection of eight identical 

buildings surrounding the building under 

consideration. Configuration of the buildings and 

their spatial relationships are parameterized by the 

four variables: canyon height (H), canyon ratio 

(H/W), building height-to-length ratio (H/BL), and 

building width-to-length ratio          With the 

four variables and terrain roughness factor, we 

generated 81 situations for a range of various urban 

situations based on the ranges and cases shown in 

Table 4. Due to the time-consuming simulation setup, 

we use three distinct values of        in the 

simulation experiments, i.e.,      . We model the 

difference as a function of incident angle separately 

for each      value because of the scarcity 

of       samples. The following statistical model is 

utilized. 

     

{
 
 

 
                         

            
  

  
  

                         
           

  

  
  

                         
            

  

  
  

     (6) 

The question is how to estimate the      ’s. We tried 

smoothing spline models, local polynomial 

regression models, stochastic kriging models for the 

estimation of      ’s. The results all look similar. The 

common message is that a large portion of the 

variation of the pressure coefficient cannot be 

explained by the incident angle. In order to quantify 

the effect of       , we propose to fit a global 

parametric model for the      ’s for each      . By 

trial and error, we found a fourth-order polynomial 

regression model is adequate for all the three cases in 

the sense that the residual behavior of the polynomial 

regression models is similar to the aforementioned 

nonparametric models. The polynomial regression 

model for each case of      is specified as 

Equation 7.  

                    
      

      
       (7) 

where        .  

The scatter plots of the difference against incident 

angle as well as the fitted polynomial regression 

models are shown in Figure 6. 

Table 4 Setup for Experimental Design 

 H H/W H/BL BW/BL Roughness 

min max min max min max min max min max 

Low-rise Building 99 cases from the dataset 1 3 1 4 0.03 7.00 
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Figure 6 Scatter plots and regression models 

Statistical hypothesis testing proved that       has 

a significant effect on the coefficients     as well as 

the variance terms    . Hence, we propose to use a 

linear interpolator to get the coefficients     and the 

variances term   for those values of        not 

included in this analysis. As a result, for any value of 

     , we can obtain a fourth order polynomial 

regression model describing the relationship between 

difference and incident angle. Based on the model, 

we can issue a distribution of differences between the 

Swami and Chandra model outcomes and the TNO 

Cp generator outcomes for any value of incident 

angle and        Note that the variation of the 

distribution is induced by the different urban 

situations in which a low-rise building case may be 

located.  

4. Solar irradiation 

4.1 Ground reflectance  

A monthly reflectance of 0.2 is embedded in the 

calculation engine as default value and is commonly 

used in practice. In the meso-scale model, ground 

reflectance considers the road composition of 

impervious and pervious, calculated by the following 

equation:  

                                    

Where,               : pervious and impervious road 

solar reflectance;      ,        : pervious and 

impervious road area fraction.  

The range of each parameter comes from the global 

dataset and references (Ahrens 2007) (Clarke, 

Cockroft et al. 2002) and summarized in Table 5.  

Table 5 List of parameters and ranges for the 

generation of experimental situations 

Parameters 
Cities 

Urban/ 

Suburban 

Open  

Country 

Min Max Min Max Min Max 

      5% 25% 5% 90% 90% 1 

        0.072 0.44 0.072 0.44 0.072 0.44 

      0.05 0.4 0.05 0.4 0.05 0.4 

 

The uncertainty in each of the parameters is modeled 

with independent uniform distributions. For each 

terrain type, the probability density function (pdf) of 

        is estimated by generating a Monte Carlo 

sample and utilizing this sample to construct a Kernel 

density estimator. Figure 8 shows the estimated pdf 

for city terrain. The distribution is centered at around 

    , and it has a range from about      to     .  

 
Figure 7 City Terrain PDF Ground Reflectance  

4.2 Ground reflectance in the presence of snow  

As ground reflectance increases dramatically in the 

presence of snow, it can vary from 0.75 to 0.95 for 

fresh snow cover and 0.4 to 0.7 for old snow cover, 

(T.Muneer 2004) and detailed snow information is 

not available in the weather data, as a result, it is very 

difficult to capture the overall snow effect on ground 

reflectance by a yearly constant value. For urban 
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area, Hunn and Calaffell’s research (Hunn and 

Calafell 1977) concluded that no characteristic 

ground reflectance in winter could be specified and 

they suggested values ranging from 0.16 to 0.49. For 

the rural area, they suggested ground reflectance of 

0.6 to 0.7 for most rural landscape where a large 

snow cover is visible without obstruction. We will 

use their findings for further uncertainty analysis.  

SUMMARY AND CONCLUSIONS 

This paper starts from the recognition that the 

accuracy of the current generation of simulation tools 

is affected by many sources of uncertainty. We have 

focused on one particular set of input variables, i.e. 

the ones that appear in the micro climate boundary 

conditions. A UQ framework was introduced, which 

systematically compares the microclimate state 

variables computed by the standard model, embedded 

in current simulation models, with those computed 

with a higher fidelity meso scale model that also 

takes more detailed specifications of urban form into 

account. The approach was applied to five major 

micro climate state variables. The UQ results were 

obtained with a variety of statistical techniques. Not 

surprisingly, given the simplicity of the current 

standard micro climate models, the uncertainty in 

using these models has significant magnitude. The 

resulting expressions will now be used for the 

ensuing propagation of uncertainty through building 

simulation models. At that point the effect of the 

uncertainty in micro climate variables on building 

energy outcomes will be quantified and 

recommendations will be generated. 
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